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It is widely expected that automated vehicles (AVs) will revolutionise travel experience by better 
facilitating various on-board activities. While these activities could make travel more pleasant, as 
is often supposed, they could also affect daily schedules, the related travel choices, and finally, the 
aggregate travel patterns – possible influences that are still insufficiently studied. For example, a 
morning commuter deciding to perform some home or work activities during travel, instead of at 
home or work, could also reconsider his departure time to work. More such travellers together 
could reshape traffic congestion. This paper models exactly this scenario. It formulates new 
scheduling preferences, which account for home and/or work activities during morning commute, 
and uses these (1) to analyse the optimal departure times when there is no congestion, and (2) to 
obtain the equilibrium congestion patterns in a bottleneck setting. If there is no congestion, it is 
predicted that AV users would depart earlier (later), if the on-board environment supports their 
home (work) activities. If there is congestion, AV users that perform home (work) activities during 
travel skew the congestion to earlier (later) times, and AV users that perform both activities 
increase both early and late congestion. Engaging in any activity during travel worsens congestion, 
at least when assuming that AVs do not increase bottleneck capacity. If future AVs would be 
specialised to support only home, only work, or both home and work activities, and would do so 
to a similar extent, then ‘Work AVs’ would increase the congestion the least. 
 
Keywords: automated vehicles, bottleneck model, departure time choice, on-board activities, scheduling 
preferences, traffic congestion. 

1. Introduction 

Among the core expected benefits of automated vehicles2 (AVs) is their promise to let their users 
perform new non-driving activities, or engage more efficiently in current non-driving activities, 
while being on the way. The literature (see Soteropoulos et al., 2019, for a recent review of 

                                                        
1 A: Jaffalaan 5, 2628BX Delft, The Netherlands E: b.pudane@tudelft.nl  
2 This paper considers primarily the so-called level 5 or fully automated vehicles, according to SAE International 
(2016) standards. 
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modelling studies) commonly anticipates that this would make travel more pleasant, thus reducing 
the ‘penalty’ associated with travel time. This, the reasoning goes, may lead to acceptance of longer 
travel times, thereby increasing traffic congestion, which may be (partly) offset by shorter 
headways and increased throughput expected from AVs. The possible net congestion effects of 
AVs have been extensively modelled and discussed (e.g., van den Berg & Verhoef, 2016; Wadud et 
al., 2016; Auld et al., 2017; Milakis et al., 2017; Simoni et al., 2019). 

However, a thought experiment can demonstrate that the substance of on-board activities may directly 
influence the timing preferences for a trip, and in so doing affect congestion patterns in ways that 
would not be predicted using travel time penalty. For example, an AV user may consider shifting 
or extending the pre- or post-travel activities into the trip. In the context of the morning commute, 
an individual may choose to perform in the AV ‘home activities’, such as getting ready, preparing 
and eating breakfast, getting a little more sleep, or ‘work activities’, such as replying to emails, 
planning the day, adjusting meeting schedule. This shift might reduce the aversion to longer travel 
and encourage AV users to depart at peak times. At the same time, it might result in a desire to 
depart from the origin earlier, while shifting origin-type activities to the trip, or to depart and arrive 
at the destination later, while shifting destination-type activities to the trip. That on-board activities 
may have varied influence on the preferred departure times, may also be expected knowing that 
various on-board activities differently influence the value of travel time or travel satisfaction (as 
found by Ettema & Verschuren, 2007; Susilo et al., 2012; Rasouli & Timmermans, 2014; Frei et al., 
2015; Correia et al., 2019), as well as pre- and post-trip activities and daily time-use (Banerjee & 
Kanafani, 2008; Pawlak et al., 2015, 2017; Das et al., 2017; Krueger et al., 2019; Pudāne et al., 2018, 
2019; Kim et al., 2020). Lastly, work or leisure during travel matters for the value of travel time 
savings, according to the time-use theory and the widely-used Hensher’s equation (Hensher, 1977; 
Batley, 2015), and this link was recently examined by Pudāne and Correia (2020) in the AV context.  

Yet, most current models that aim to predict mobility and congestion patterns in the AV era do not 
consider that various on-board activities may differently affect departure times (e.g., Correia & van 
Arem, 2016; Lamotte et al., 2017; Simoni et al., 2019; F. Zhang et al., 2020). The possibility to model 
multiple scenarios there is largely lost whenever the effects of a multitude of possible activities are 
condensed into a single travel time penalty (such as value of travel time). This treatment implies 
that the travel behaviour effects of various on-board activities are the same and indistinguishable 
from increased comfort of travel (such as more comfortable seats).  

This study proposes a more flexible modelling approach, which lets to investigate, first, how 
various on-board activities may influence departure times of AV users and, second, how they may 
affect traffic congestion. It starts by formulating new scheduling preferences that let the analyst 
specify how suitable the travel environment is for home and work activities. After, it uses the new 
scheduling preferences to analyse the optimal departure times for users of different AVs. Finally, 
it obtains equilibrium congestion patterns in a minimalistic bottleneck setting, where a number of 
travellers with the same scheduling preferences move from a single origin to a single destination 
on a single route. 

Thereby, this study contributes to two streams of literature: first, to the study of the potential travel 
behaviour impacts of on-board activities (in AVs or other modes), especially those reaching beyond 
the effects on the value of travel time, and second, to the rich tradition of using the bottleneck 
model to analyse the impact of behaviour changes on congestion. With regard to the former, this 
study relates to the work of Pawlak et al. (2015, 2017), which uses a scenario with two out-of-vehicle 
activities connected by a trip, during which two in-vehicle activities may be performed. Pawlak et 
al. analysed a multidimensional choice in this setting: choice of activity types, departure times, 
duration and switching times between on-board activities, mode, route and use of ICT. Relatedly, 
Rasouli and Timmermans (2014) explored the impact of on-board activities on activities directly 
preceding or following the travel episode: interactions in what they named ‘activity envelope’. 
More broadly, this work contributes to the literature that studies daily time-use effects of on-board 
activities (Banerjee & Kanafani, 2008; Pudāne et al., 2018; Kim et al., 2020).  
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With regard to the latter, this study provides an on-board time-use module to the classical 
bottleneck framework (conceived by Vickrey, 1969, and Arnott et al., 1990, 1993). The bottleneck 
model has been instrumental in investigating various factors influencing congestion (see the 
reviews by de Palma & Fosgerau, 2011, Small, 2015, and Li et al., 2020), and notably, it often allows 
to obtain analytic as opposed to simulated results. Related to the present work, time-use aspects 
were included in the bottleneck model by Gubins and Verhoef (2011), who studied the effects of 
teleworking on congestion, and by Xiaoning Zhang et al. (2005) and Li et al. (2014), who integrated 
bottleneck-based departure time choice in a whole-day activity pattern.  

Moving forward, Li et al. (2020), in their review of the bottleneck model development over the past 
half a century, emphasise the need to include different properties of new transport technologies, 
such as automated vehicles, in the bottleneck model. This work contributes to this goal, along with 
other recent studies that have modelled congestion patterns when AVs and conventional vehicles 
use different roads (Lamotte et al., 2017), the congestion impacts of AVs being able to park 
themselves (Liu, 2018; Xiang Zhang et al., 2019; Tian et al., 2019), and the congestion patterns in the 
long run, when travellers can choose between conventional vehicles and AVs (F. Zhang et al., 2020). 
In particular, this work furthers the study of van den Berg and Verhoef (2016), who investigated 
the effects of AVs on congestion in a bottleneck, while assuming that any on-board activities 
contribute to a decreasing travel penalty. They concluded that AV users would concentrate in the 
middle of the peak congestion. The same conclusion was reached also by Fosgerau (2019) and F. 
Zhang et al. (2020). Finally, this study aligns with other ongoing work that looks into departure 
time effects of on-board activities in AVs: Yu et al. (2019) and Abegaz and Fosgerau (personal 
communication, September 2019). Yu et al. (2019) analyse congestion patterns given 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 
preferences3, where an on-board activity simultaneously substitutes home and work activities to 
various degrees. They also derive market and AV-provision effects. Abegaz and Fosgerau model 
on-board activities as a separate class of mobile activities in a general scheduling preference 
framework and derive changes in value of time and reliability. The present work contributes to 
this ongoing research in two main directions. First, it shows how optimal departure times depend 
on the activities performed during travel – home-, work- or both home and work activities –, even 
if there is no congestion. Second, it provides a derivation of congestion patterns given a different 
(compared to Yu et al.) set-up within the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preference framework, which also enables to 
capture a situation where traveller switches from performing home to work activities during travel. 

The remainder of the paper is structured as follows. Section 2 introduces the scheduling 
preferences that capture the possibility to shift home or work activities to the trip. It also introduces 
three types of AVs that are used further in the paper. Section 3 analyses the departure times for a 
single traveller or multiple travellers that do not create congestion. Section 4 analyses congestion 
changes with AVs in bottleneck setting. Section 5 compares the current approach with travel time 
penalty method, discusses the assumption of α − β − γ scheduling preferences and other aspects 
of the model set-up, assesses the validity and applicability of the developed model to other 
transport modes, and recommends directions for further research. Section 6 concludes and 
discusses the implications of this study for AV-related transport policy.  

2. Model set-up 

2.1 Scheduling preferences considering on-board activities 
A general form of scheduling functions (based on Vickrey, 1973) assumes that marginal home and 
work utilities ℎ[𝑥𝑥] and 𝑤𝑤[𝑥𝑥] are positive and monotonously decreasing and increasing functions, 
respectively, of the clock-time 𝑥𝑥 in a morning time interval [0,Ω]. Conventionally, it is assumed 
that the individual cannot participate in any home or work activities during travel and therefore 

                                                        
3 The 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences, also called the step model, are the most commonly used scheduling preferences and 
are further explained in section 2.1. 
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does not gain any home or work utility at that time. In the context of AVs however, I assume that 
individuals may continue with their home activities during travel or start to perform their work 
activities while on the way to work, but a specified share of the utility of these activities would be 
lost, reflecting some inconvenience of performing these activities in the vehicle. This loss is 
expressed using multiplicative efficiency factors 𝑒𝑒ℎ ,𝑒𝑒𝑤𝑤 ∈ [0,1] for home and work activities, 
respectively.4 

Figure 1 illustrates the model set-up. It shows the marginal utilities of home and work activities (y-
axis), which depend on time (x-axis) in a morning time interval. As can be seen from the distance 
between the solid and dashed lines, this figure illustrates a situation where home activities are 
better facilitated on board than work activities: 𝑒𝑒ℎ > 𝑒𝑒𝑤𝑤. Shaded areas represent the total utility 
gained from activities at home, at work and during travel. 

 

 
Figure 1. Scheduling preferences including the utility obtained from home and work activities on 
board: general scheduling preferences 

The individual engages in home activity during travel at time 𝑥𝑥 if 𝑒𝑒ℎℎ[𝑥𝑥] > 𝑒𝑒𝑤𝑤𝑤𝑤[𝑥𝑥] (utility from on-
board home activities is higher than utility of on-board work activities) and in work activity if 
𝑒𝑒ℎℎ[𝑥𝑥] < 𝑒𝑒𝑤𝑤𝑤𝑤[𝑥𝑥]. Therefore, knowing that 𝑒𝑒ℎℎ[𝑥𝑥] and 𝑒𝑒𝑤𝑤𝑤𝑤[𝑥𝑥] are monotonously decreasing and 
increasing with 𝑥𝑥 ∈ [0,Ω], respectively (due to the above assumptions), the optimal time for on-
board home activity (if any) is at the start of the trip, and similarly the optimal time for the on-
board work activity (if any) is at the end of the trip. 

Furthermore, since marginal home and work utilities ℎ[𝑥𝑥] and 𝑤𝑤[𝑥𝑥] are assumed to be positive for 
𝑥𝑥 ∈ [0,Ω], the individual would want to continually engage in on-board activities, if they are at 
least slightly facilitated (i.e., if 𝑒𝑒ℎ , 𝑒𝑒𝑤𝑤 > 0, then utilities 𝑒𝑒ℎℎ[𝑥𝑥],𝑒𝑒𝑤𝑤𝑤𝑤[𝑥𝑥] > 0). This setting yields a 
single optimal switching point between the home and work activities, which can be expressed as a 
share of the trip duration 𝑘𝑘 ∈ [0,1]. Hence, a traveller that departs from home at time 𝑡𝑡 and arrives 

                                                        
4 Alternatively, an additive efficiency factor would lead to a situation where higher utility of the activity is 
associated with a lower utility loss percentage-wise. See Yu et al. (2019) for the congestion derivations given this 
set-up. The assumption of multiplicative efficiency factors is further discussed in section 5.2.  
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at work at time 𝑡𝑡 + 𝑇𝑇[𝑡𝑡] engages in home activity on board during the time interval [𝑡𝑡, 𝑡𝑡 + 𝑘𝑘𝑇𝑇[𝑡𝑡]] 
and in work activity on board during the time interval [𝑡𝑡 + 𝑘𝑘𝑇𝑇[𝑡𝑡], 𝑡𝑡 + 𝑇𝑇[𝑡𝑡]]. Travel time 𝑇𝑇[𝑡𝑡] is 
assumed to depend on the departure time 𝑡𝑡, which enables to model the effects of congestion. The 
boundary cases, where 𝑘𝑘 = 0 or 𝑘𝑘 = 1, correspond to individual engaging only at work or home 
activity on board, respectively. If travel took no time at all (the individual would be able to 
‘teleport’ from home to work), then the optimal switch time between home and work would be 𝑡𝑡∗. 

Total home utility 𝐻𝐻[𝑡𝑡, 𝑘𝑘], total work utility 𝑊𝑊[𝑡𝑡, 𝑘𝑘] and total utility 𝑉𝑉[𝑡𝑡,𝑘𝑘] are defined as follows: 

 
𝐻𝐻[𝑡𝑡,𝑘𝑘] = � ℎ[𝑥𝑥]𝑑𝑑𝑥𝑥

𝑡𝑡

0
+ 𝑒𝑒ℎ � ℎ[𝑥𝑥]𝑑𝑑𝑥𝑥

𝑡𝑡+𝑘𝑘𝑇𝑇[𝑡𝑡]

𝑡𝑡
, (1) 

 
𝑊𝑊[𝑡𝑡,𝑘𝑘] = � 𝑤𝑤[𝑥𝑥]𝑑𝑑𝑥𝑥

Ω

𝑡𝑡+𝑇𝑇[𝑡𝑡]
+ 𝑒𝑒𝑤𝑤 � 𝑤𝑤[𝑥𝑥]𝑑𝑑𝑥𝑥

𝑡𝑡+𝑇𝑇[𝑡𝑡]

𝑡𝑡+𝑘𝑘𝑇𝑇[𝑡𝑡]
, (2) 

 
𝑉𝑉[𝑡𝑡,𝑘𝑘] = 𝐻𝐻[𝑡𝑡, 𝑘𝑘] + 𝑊𝑊[𝑡𝑡, 𝑘𝑘]. (3) 

Every traveller tries to maximise the total utility 𝑉𝑉[𝑡𝑡,𝑘𝑘] by choosing the departure time 𝑡𝑡 and the 
switching point between the on-board activities 𝑘𝑘. This defines the scheduling preferences that 
determine the optimal departure times given a broad class of home and work marginal utility 
functions ℎ[𝑥𝑥] and 𝑤𝑤[𝑥𝑥]. From here on, I call these ‘general scheduling preferences’. While it is 
possible to use them to analyse the optimal departure times in case of no congestion (section 3), the 
analysis of equilibrium congestion patterns (section 4) requires that specific forms of ℎ[𝑥𝑥] and 𝑤𝑤[𝑥𝑥] 
are used. For this purpose, I select the most widely used scheduling preferences, the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 
model5 (Vickrey 1969; Small, 1982), which can be specified by inserting the following as the home 
and work utility functions in (1)-(3): 

 
ℎ[𝑥𝑥] = 𝛼𝛼, (4) 

 
𝑤𝑤[𝑥𝑥] = �𝛼𝛼 − 𝛽𝛽, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 𝑡𝑡∗

𝛼𝛼 + 𝛾𝛾, 𝑖𝑖𝑖𝑖 𝑥𝑥 > 𝑡𝑡∗, (5) 

where 𝛼𝛼,𝛽𝛽, 𝛾𝛾 are positive constants, and 𝛼𝛼 and 𝛽𝛽 are assumed to have the relationship 𝛽𝛽 < 𝛼𝛼; 𝑡𝑡∗ is 
the preferred arrival time at work. Parameter 𝛼𝛼 is the utility of spending time at home; 𝛽𝛽 and 𝛾𝛾 are 
the utility differences between home utility and work utility, if work is performed before or after 
the preferred arrival time, respectively. Figure 2 illustrates the model set-up, using the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 
scheduling preferences. The illustrated efficiency factors 𝑒𝑒ℎ and 𝑒𝑒𝑤𝑤 are such that until the time 𝑡𝑡∗ it 
would be optimal for the individual to engage in home activities, but after time 𝑡𝑡∗ it would be 
optimal to switch to performing work activities during travel: 𝑒𝑒ℎℎ[𝑥𝑥] > 𝑒𝑒𝑤𝑤𝑤𝑤[𝑥𝑥] for 𝑥𝑥 ≤ 𝑡𝑡∗ and 
𝑒𝑒ℎℎ[𝑥𝑥] < 𝑒𝑒𝑤𝑤𝑤𝑤[𝑥𝑥] for 𝑥𝑥 > 𝑡𝑡∗.6 The figure shows a situation where traveller arrives late at work (𝑡𝑡 +
𝑇𝑇[𝑡𝑡] > 𝑡𝑡∗). As before, the shaded areas represent the total utility 𝑉𝑉[𝑡𝑡] gained from activities at home, 
at work and during travel. Note that these utilities no longer contain the switching point 𝑘𝑘 as a 
decision variable: if the traveller switches between on-board home and on-board work activities, 
then he will do so necessarily at time 𝑡𝑡∗ (see section 2.2 for further explanation). 

                                                        
5 The advantages of the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 model in the present study are its elegant closed form flow rates (obtained by 
Arnott et al., 1990) and the conservative predictions for congestion changes with AVs. The drawbacks are the 
constant home utility assumption, which has been shown to have limited validity, and the restricted subset of 𝑒𝑒ℎ 
and 𝑒𝑒𝑤𝑤 values, for which the flow rate computations apply. Section 5.2 further discusses these properties. 
6 Note that the set-up (1)-(3) permits scenarios where the utility of on-board activity is higher than utility of home 
or work activities just before or after the trip. For example, in the context of 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences, home activity 
during travel may be more valuable than work activity before the preferred arrival time 𝑡𝑡∗: 𝑒𝑒ℎ𝛼𝛼 > 𝛼𝛼 − 𝛽𝛽. In such 
cases, it is assumed that the individual would still leave the AV once it has arrived, rather than continuing with the 
home activity in a parked vehicle. 
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Figure 2. Scheduling preferences including the utility obtained from home and work activities on 
board: 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 scheduling preferences 

Finally, note that the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 model does not belong to the class of general scheduling 
preferences. For the general scheduling preferences, the home and work utility functions are 
strictly decreasing and increasing, respectively, but in the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 model they are constant and 
piecewise constant, respectively. 

2.2 Three types of automated vehicles 
The set-up introduced in section 2.1 allows us to imagine scenarios where AVs are specialised (e.g., 
via interior design and equipment) to suit the needs of (1) home activities, (2) work activities, or (3) 
both home and work activities. In the following sections, these AV-types are called ‘Home AV’, 
‘Work AV’, and ‘Universal AV’, respectively. However, the precise classification differs between 
sections 3 and 4. In section 3 with general scheduling preferences (as in Figure 1), the three types 
are defined using only the efficiency factors: 𝑒𝑒ℎ > 𝑒𝑒𝑤𝑤 characterises the Home AV, 𝑒𝑒ℎ < 𝑒𝑒𝑤𝑤 
represents the Work AV, and 𝑒𝑒ℎ = 𝑒𝑒𝑤𝑤 corresponds to the Universal AV.  

In section 4, which uses the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 scheduling preferences (as in Figure 2), the definitions 
involve the parameters of the home and work utility functions (𝛼𝛼, 𝛽𝛽, 𝛾𝛾). The resulting definition of 
Universal AV is such that it would be optimal for the users of this AV to engage in home activities 
before time 𝑡𝑡∗ and in work activities after 𝑡𝑡∗ (as in Figure 2). The Home AV and Work AV facilitate 
one of the two activities much better than the other, such that, independently of the departure time 
𝑡𝑡, it is optimal to engage in home activities in Home AV and work activities in Work AV during 
the entire trip. The parameter combinations that define each AV type in the context of 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 
preferences are shown in Figure 3. If, for example, 𝛼𝛼𝑒𝑒ℎ (the utility of on-board home activity) is 
smaller than (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤 (the utility of on-board work activity before 𝑡𝑡∗), then these parameter values 
correspond to a Work AV. 

 
Figure 3. Definition of Home, Universal, Work AVs using 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 scheduling preferences 
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In addition, it could be possible to distinguish a fourth type of AV that only increases the comfort 
of travel or facilitates such activities on board that do not substitute activities out-of-vehicle (e.g., 
on-board entertainment). Such an AV could be defined by replacing the home and work functions 
in the second integrals of equations (1) and (2) with constants (or other time-independent 
functions). This would define an AV that is modelled by reduced travel time penalty approach. 
This AV type is discussed as a point of reference in section 5.1. 

3. Case of no congestion 

3.1 Optimal departure times with general scheduling preferences 
Having introduced the scheduling preferences, we can analyse the optimal departure time of a 
single traveller. The derivation would be the same in a hypothetical situation when multiple 
identical travellers do not create congestion, that is, when the bottleneck capacity exceeds the 
number of travellers who desire to depart in the given time unit. Formally, this situation can be 
represented as travel time being independent from the departure time and constant: 𝑇𝑇[𝑡𝑡] = 𝑇𝑇. 
Using the general scheduling preferences, finding the optimal departure time is a 2-variable 
constrained optimisation problem: choose departure time 𝑡𝑡 and switching point 𝑘𝑘 between home- 
and work-type activities that maximises the total utility 𝑉𝑉[𝑡𝑡,𝑘𝑘] from (3). The optimisation problem 
is constrained, because switching between activities needs to occur during the trip time (0 ≤ 𝑘𝑘 ≤
1). These conditions result in the following model: 

 
max𝑉𝑉[𝑡𝑡, 𝑘𝑘], (6) 

subject to: 

 
𝑔𝑔1[𝑘𝑘] = −𝑘𝑘 ≤ 0, (7) 

 
𝑔𝑔2[𝑘𝑘] = 𝑘𝑘 − 1 ≤ 0. (8) 

Using the definition of 𝑉𝑉[𝑡𝑡,𝑘𝑘] from (3), the Karush–Kuhn–Tucker conditions7 for this problem are 
as follows:  

 

𝜕𝜕
𝜕𝜕𝑡𝑡
�𝑉𝑉[𝑡𝑡, 𝑘𝑘]− � 𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖[𝑘𝑘]

𝑖𝑖=1,2

�

= ℎ[𝑡𝑡0] + (ℎ[𝑡𝑡0 + 𝑘𝑘0𝑇𝑇]− ℎ[𝑡𝑡0])𝑒𝑒ℎ − 𝑤𝑤[𝑡𝑡0 + 𝑇𝑇]
+ (𝑤𝑤[𝑡𝑡0 + 𝑇𝑇] −𝑤𝑤[𝑡𝑡0 + 𝑘𝑘0𝑇𝑇])𝑒𝑒𝑤𝑤 = 0, 

 (9) 

 
𝜕𝜕
𝜕𝜕𝑘𝑘

�𝑉𝑉[𝑡𝑡, 𝑘𝑘]− � 𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖[𝑘𝑘]
𝑖𝑖=1,2

� = ℎ[𝑡𝑡0 + 𝑘𝑘0𝑇𝑇]𝑒𝑒ℎ𝑇𝑇 − 𝑤𝑤[𝑡𝑡0 + 𝑘𝑘0𝑇𝑇]𝑒𝑒𝑤𝑤𝑇𝑇 + 𝜆𝜆1 − 𝜆𝜆2 = 0,  (10) 

 𝑔𝑔𝑖𝑖[𝑘𝑘0] ≤ 0 𝑖𝑖 = 1,2, (11) 

 𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖[𝑘𝑘0] = 0 𝑖𝑖 = 1,2, (12) 

 𝜆𝜆𝑖𝑖 ≥ 0 𝑖𝑖 = 1,2, (13) 

                                                        
7 The Karush-Kahn-Tucker conditions can be applied for this problem, because it fulfils the linear independence 
constraint qualification (Nocedal & Wright, 2006, p. 320). Since at most one of the constraints 𝑔𝑔1 and 𝑔𝑔2 is active for 
any 𝑘𝑘 value, the independence is trivial. 
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where the solution is denoted (𝑡𝑡0,𝑘𝑘0), and 𝜆𝜆𝑖𝑖, 𝑖𝑖 = 1,2 are the Karush–Kuhn–Tucker multipliers. The 
stationary points (𝑡𝑡0;𝑘𝑘0) determined by (9)-(13) are the global maximum points of the utility 𝑉𝑉[𝑡𝑡,𝑘𝑘], 
because the utility 𝑉𝑉[𝑡𝑡, 𝑘𝑘] is concave with respect to 𝑡𝑡 and 𝑘𝑘, as shown next. The second order 
conditions are 

 𝜕𝜕2

𝜕𝜕𝑡𝑡2
𝑉𝑉[𝑡𝑡, 𝑘𝑘] =

𝜕𝜕
𝜕𝜕𝑡𝑡

(ℎ[𝑡𝑡](1− 𝑒𝑒ℎ) + ℎ[𝑡𝑡 + 𝑘𝑘𝑇𝑇]𝑒𝑒ℎ − 𝑤𝑤[𝑡𝑡 + 𝑇𝑇](1− 𝑒𝑒𝑤𝑤)−𝑤𝑤[𝑡𝑡 + 𝑘𝑘𝑇𝑇]𝑒𝑒𝑤𝑤) < 0, (14) 

 𝜕𝜕2

𝜕𝜕𝑘𝑘2
𝑉𝑉[𝑡𝑡,𝑘𝑘] =

𝜕𝜕
𝜕𝜕𝑘𝑘

(ℎ[𝑡𝑡 + 𝑘𝑘𝑇𝑇]𝑒𝑒ℎ𝑇𝑇 − 𝑤𝑤[𝑡𝑡 + 𝑘𝑘𝑇𝑇]𝑒𝑒𝑤𝑤𝑇𝑇) < 0, (15) 

and 

 𝜕𝜕2

𝜕𝜕𝑡𝑡𝜕𝜕𝑘𝑘
𝑉𝑉[𝑡𝑡, 𝑘𝑘] =

𝜕𝜕
𝜕𝜕𝑘𝑘

(ℎ[𝑡𝑡 + 𝑘𝑘𝑇𝑇]𝑒𝑒ℎ − 𝑤𝑤[𝑡𝑡 + 𝑘𝑘𝑇𝑇]𝑒𝑒𝑤𝑤) < 0. (16) 

The negativity of the second order conditions can be confirmed by recalling that the marginal 
utilities ℎ[𝑥𝑥] and 𝑤𝑤[𝑥𝑥] are monotonically decreasing and increasing, respectively. Therefore, 
𝜕𝜕/𝜕𝜕𝑥𝑥 ℎ[𝑥𝑥] < 0 and 𝜕𝜕/𝜕𝜕𝑥𝑥 𝑤𝑤[𝑥𝑥] > 0. Further, parameters 𝑡𝑡 and 𝑘𝑘 enter the marginal utilities ℎ[𝑥𝑥] and 
𝑤𝑤[𝑥𝑥] in (14)-(16) positively, therefore the derivatives of ℎ[𝑥𝑥] and 𝑤𝑤[𝑥𝑥] with respect to 𝑡𝑡 and 𝑘𝑘 
maintain their signs. Finally, notice that ℎ[𝑥𝑥] and 𝑤𝑤[𝑥𝑥] enter the second order conditions with 
positive and negative signs, respectively. From here follows that all additive terms in (14)-(16) are 
negative, making all second order derivatives negative. Hence, the utility is concave with respect 
to 𝑡𝑡 and 𝑘𝑘. 

Knowing that (9)-(13) yield the global maximum points, we can analyse the optimal departure 
times for Home, Universal, and Work AVs. Although these equations do not reveal the optimal 
points in a closed form, they are nevertheless sufficient to analyse their relationships. To proceed 
with that, we need to separately consider the non-binding and binding cases of constraints (11).  

If (11) are non-binding, then 𝜆𝜆1 = 𝜆𝜆2 = 0 due to the complementary slackness conditions (12), and 
the traveller switches from performing home to work activities during the trip. Then (10) can be 
rewritten as  

 
𝜕𝜕
𝜕𝜕𝑘𝑘

�𝑉𝑉[𝑡𝑡, 𝑘𝑘]− � 𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖[𝑘𝑘]
𝑖𝑖=1,2

� = ℎ[𝑡𝑡0 + 𝑘𝑘0𝑇𝑇]𝑒𝑒ℎ𝑇𝑇 − 𝑤𝑤[𝑡𝑡0 + 𝑘𝑘0𝑇𝑇]𝑒𝑒𝑤𝑤𝑇𝑇 = 0. (17) 

Using this equality, we can simplify the first stationarity condition (9) for the non-binding case. 
Being an equation with a single unknown, (18) determines the optimal departure time in the non-
binding case: 

 
𝜕𝜕
𝜕𝜕𝑡𝑡
�𝑉𝑉[𝑡𝑡, 𝑘𝑘]− � 𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖[𝑘𝑘]

𝑖𝑖=1,2

� = ℎ[𝑡𝑡0](1− 𝑒𝑒ℎ)−𝑤𝑤[𝑡𝑡0 + 𝑇𝑇](1− 𝑒𝑒𝑤𝑤) = 0. (18) 

If one of the constraints (11) is binding, then the traveller spends the entire trip performing either 
home or work activity. Such a situation would arise, when one of the efficiency factors 𝑒𝑒ℎ and 𝑒𝑒𝑤𝑤 
is much higher than the other, as well as when only one of the factors equals zero or one. In the 
latter case, we can observe that the non-binding condition (17) would not yield a feasible solution 
if one of 𝑒𝑒ℎ or 𝑒𝑒𝑤𝑤 equals zero, and the non-binding condition (18) would not yield a feasible solution 
if one of 𝑒𝑒ℎ or 𝑒𝑒𝑤𝑤 equals one. The binding cases also necessarily correspond to Home AV (𝑘𝑘 = 1) or 
Work AV (𝑘𝑘 = 0), except when 𝑒𝑒ℎ = 𝑒𝑒𝑤𝑤 = 1 (which would correspond to a Universal AV). We can 
derive the optimal departure times for the binding cases by inserting the binding 𝑘𝑘 values in (9): 

 𝑡𝑡1,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑘𝑘0 = 1: ℎ[𝑡𝑡1](1− 𝑒𝑒ℎ) + ℎ[𝑡𝑡1 + 𝑇𝑇]𝑒𝑒ℎ = 𝑤𝑤[𝑡𝑡1 + 𝑇𝑇], (19) 
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 𝑡𝑡3,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑘𝑘0 = 0: ℎ[𝑡𝑡3] = 𝑤𝑤[𝑡𝑡3]𝑒𝑒𝑤𝑤 + 𝑤𝑤[𝑡𝑡3 + 𝑇𝑇](1− 𝑒𝑒𝑤𝑤). (20) 

Here and further the optimal departure times for Home, Universal, and Work AV users are 
denoted 𝑡𝑡1, 𝑡𝑡2, and 𝑡𝑡3, respectively. We can use the obtained conditions (18)-(20) to analyse the 
relationship between these three departure times. The results are shown in Table 1. The rows in 
the table differentiate between scenarios where the maximum efficiency factor of 1 is or is not 
reached. The columns present results for the three AV types. Parameter 𝑡𝑡∗ is defined such that 
ℎ[𝑡𝑡∗] = 𝑤𝑤[𝑡𝑡∗]. 

Table 1. Optimal departure times in case of no congestion 

 𝑡𝑡1 – Home AV 
(𝑒𝑒ℎ > 𝑒𝑒𝑤𝑤) 

𝑡𝑡2 – Universal AV 
(𝑒𝑒ℎ = 𝑒𝑒𝑤𝑤) 

𝑡𝑡3 – Work AV 
(𝑒𝑒ℎ < 𝑒𝑒𝑤𝑤) 

𝑚𝑚𝑚𝑚𝑥𝑥(𝑒𝑒ℎ, 𝑒𝑒𝑤𝑤) < 1: 𝑡𝑡1 > 𝑡𝑡∗ − 𝑇𝑇 𝑡𝑡1 < 𝑡𝑡2 < 𝑡𝑡3 𝑡𝑡3 < 𝑡𝑡∗ 

𝑚𝑚𝑚𝑚𝑥𝑥(𝑒𝑒ℎ, 𝑒𝑒𝑤𝑤) = 1: 𝑡𝑡1 = 𝑡𝑡∗ − 𝑇𝑇 𝑡𝑡2 ∈ [𝑡𝑡∗ − 𝑇𝑇; 𝑡𝑡∗] 𝑡𝑡3 = 𝑡𝑡∗ 

The relationship between optimal departure times 𝑡𝑡1 < 𝑡𝑡2 < 𝑡𝑡3 in the first line of Table 1 follows 
from the non-binding solution in equation (18) as well as from binding solutions (19) and (20). In 
the non-binding case, the definitions of the three AV types: 𝑒𝑒ℎ > 𝑒𝑒𝑤𝑤 for Home AVs, 𝑒𝑒ℎ = 𝑒𝑒𝑤𝑤 for 
Universal AVs, and 𝑒𝑒𝑤𝑤 < 𝑒𝑒ℎ for Work AVs should be inserted in (18). In the binding case, it can be 
noticed that both (19) and (20) contain weighted averages on one side of the equality. The following 
(in-)equalities arise: 

 
 
 
𝑡𝑡1 𝑠𝑠. 𝑡𝑡.ℎ[𝑡𝑡1] > 𝑤𝑤[𝑡𝑡1 + 𝑇𝑇], (21) 

 𝑡𝑡2 𝑠𝑠. 𝑡𝑡.ℎ[𝑡𝑡2] = 𝑤𝑤[𝑡𝑡2 + 𝑇𝑇], (22) 

 𝑡𝑡3 𝑠𝑠. 𝑡𝑡.ℎ[𝑡𝑡3] < 𝑤𝑤[𝑡𝑡3 + 𝑇𝑇]. (23) 

Recalling that home and work marginal utilities are decreasing and increasing, respectively, it 
follows that 𝑡𝑡1 < 𝑡𝑡2 < 𝑡𝑡3. Note that equation (22) holds for any 𝑒𝑒ℎ and 𝑒𝑒𝑤𝑤 values that are smaller 
than 1. Hence, they include the conventional vehicle, for which 𝑒𝑒ℎ = 𝑒𝑒𝑤𝑤 = 0. This leads to the 
conclusion that the users of the Home AV would depart earlier and the users of the Work AV 
would depart later than the conventional vehicle users. The users of the Universal AV would 
depart at the same time as conventional vehicle users (given general scheduling preferences where 
𝑒𝑒ℎ = 𝑒𝑒𝑤𝑤 < 1). 

The earliest and latest optimal departure times 𝑡𝑡1 = 𝑡𝑡∗ − 𝑇𝑇 and 𝑡𝑡3 = 𝑡𝑡∗ for Home and Work AVs (in 
the second row of Table 1) follow from inserting 𝑒𝑒ℎ = 1 and 𝑒𝑒𝑤𝑤 = 1 in the binding cases (19) and 
(20), respectively. It can be seen that for any efficiency factors lower than 1, these end-points are 
not reached, leading to the inequalities 𝑡𝑡1 > 𝑡𝑡∗ − 𝑇𝑇 and 𝑡𝑡3 < 𝑡𝑡∗ in the first row of Table 1. Finally, if 
both home and work activities are perfectly facilitated in the AV (𝑒𝑒ℎ = 𝑒𝑒𝑤𝑤 = 1), then the traveller 
would experience zero disutility in such a Universal AV and would be indifferent between any 
departure times in the interval [𝑡𝑡∗ − 𝑇𝑇, 𝑡𝑡∗], which is determined by conditions (17) and (18) and 0 ≤
𝑘𝑘 ≤ 1 (constraints (11)). 

Hereby, this section has obtained that, in case of general scheduling preferences, travellers whose 
home activities are better facilitated on board than work activities, would depart earlier than 
conventional vehicle users. Similarly, travellers whose work activities are better facilitated on 
board than home activities, would depart later than conventional vehicle users. This result holds 
even if there is no congestion. The implication of this finding is that a hypothetical traveller 
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population with identical general scheduling preferences would, upon replacing their 
conventional vehicles with a mixture of Home, Universal and Work AVs, disperse with respect to 
their departure times. All departures would however still fit in the interval [𝑡𝑡∗ − 𝑇𝑇, 𝑡𝑡∗]. 

3.2 Optimal departure times with 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 scheduling preferences  
It is useful to note that the departure time sequence 𝑡𝑡1 < 𝑡𝑡2 < 𝑡𝑡3 does not hold for the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 
scheduling preferences. Due to the discontinuity of 𝑤𝑤[𝑥𝑥], we cannot follow the same derivation as 
in the case of the general scheduling preferences. However, it is intuitive from Figure 2 that the 
optimal departure time generally equals �̃�𝑡 = 𝑡𝑡∗ − 𝑇𝑇. Formally, it can be shown that only in two 
cases, the optimal departure time would be 𝑡𝑡∗ instead of �̃�𝑡: when 𝑒𝑒𝑤𝑤 > 𝛾𝛾/(𝛽𝛽 + 𝛾𝛾) for Work AV and 
when (1− 𝑒𝑒ℎ)/(1− 𝑒𝑒𝑤𝑤) > 1 + 𝛾𝛾/𝛼𝛼 for Universal AV. Further, it can be demonstrated that optimal 
departure time is necessarily �̃�𝑡, if it is (conservatively) assumed that 𝑒𝑒𝑤𝑤 does not exceed 0.5 and 
that 𝛽𝛽 < 𝛼𝛼 < 𝛾𝛾 (as is conventional). The proofs of these results are in Appendix A.  

The special case of optimal departure time being t∗rather than t̃ is intuitive for large ew: excellent 
facilitation of work during travel should incentivise the traveller to travel when work, rather than 
home, activities are most valuable, which is the meaning of the preferred work start time t∗. 
However, one could argue that this special case also counters the common usage of the α − β − γ 
model: it is usually assumed that being late at work is worse than being early (γ > β). Therefore, 
the researcher may consider other scheduling preferences in such scenarios. Section 5.2 further 
discusses the choice of scheduling preferences.   

4. Case of congestion 

In order to analytically study the changes in congestion patterns, we need to assume that travellers 
have certain shape of departure time preferences. The previous section showed that, while general 
scheduling preferences lead to changing optimal departure times even if there is no congestion, 
the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences lead to the same optimal departure time, unless work activity is very well 
facilitated on board. This makes the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences an interesting case to be studied in the 
congestion setting: it would provide a conservative prediction for changes in congestion patterns, 
which can serve as a good starting point. Furthermore, 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences have a well-known 
closed form-solution for the equilibrium flow rate in a bottleneck setting – the number of travellers 
departing at every time moment, obtained by Arnott et al. (1990) –, which has contributed to their 
continuing popularity for congestion modelling. For these reasons, I adopt this form of scheduling 
preferences from now on. However, note that 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences in general and in the current 
application have some limitations; see section 5.2. 

The following derivations assume the most minimalistic bottleneck setting, where a number of 
individuals with the same scheduling preferences travel from a single origin to a single destination 
on a single route. Free-flow travel time is assumed to be zero, such that the total travel time equals 
the queueing time at the bottleneck.8 

4.1 Congestion with conventional vehicles 
Before proceeding to compute the equilibrium congestion patterns for AVs, it is useful to recap 
how this is done for conventional vehicles (as per Arnott et al., 1990). As introduced in equations 
(4)-(5), the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences contain a preferred arrival time 𝑡𝑡∗, when the individual starts to 
value being at work higher than being at home. Because everyone would like to arrive at work at 
exactly 𝑡𝑡∗ (assuming homogeneous preferences), congestion arises – travel time is longer for trips 
that end around 𝑡𝑡∗. The departure time that leads to arrival at exactly 𝑡𝑡∗ and is associated with the 
                                                        
8 It can be verified that this assumption does not limit the generality of the results: the equilibrium flow rates follow 
from the travel time changes due to queuing (see the derivations in the next sections 4.1 and 4.2); start and end 
times of congestion, as well as the on-time departure time would be shifted earlier by a positive free-flow time (due 
to condition 3 in Appendix B). 
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longest travel time is denoted �̃�𝑡 and called the ‘on-time departure time’. Eventually, it is assumed 
that the disutility caused by schedule delay and travel time at all departure times is perfectly 
balanced. This condition corresponds to the Nash equilibrium. In other words, as anyone would 
consider departing at another time, the gained and lost utility from so doing would cancel each 
other out. 

Figure 4 illustrates a case where a traveller would consider postponing his departure by one time 
unit. The gained utility from home activity is 𝛼𝛼, whereas the lost utility from work activity is 𝛼𝛼 − 𝛽𝛽, 
if traveller arrives early, and 𝛼𝛼 + 𝛾𝛾, if he arrives late. If we want to obtain the travel utility difference 
between these two hypothetical departure times, then the utility loss at the destination should be 
multiplied with the arrival time difference between the two considered departure times (because 
the travel times may differ at both considered departure times). This arrival time difference time is 
1 + �̇�𝐷/𝑠𝑠, where �̇�𝐷 is the change in queue length at time 𝑡𝑡: �̇�𝐷 = 𝑟𝑟[𝑡𝑡]− 𝑠𝑠. Here, 𝑟𝑟[𝑡𝑡] is the number of 
individuals departing at time 𝑡𝑡, and 𝑠𝑠 is the number of travellers that can pass through the 
bottleneck (i.e. the bottleneck capacity). 

 
Figure 4. Utility components for computing equilibrium flow rate with conventional vehicles (CV) 

By equalling the gained and lost utilities (as illustrated in Figure 4), we can obtain the flow rate 
𝑟𝑟[𝑡𝑡]: 

 𝑟𝑟[𝑡𝑡] = �

𝛼𝛼𝑠𝑠
𝛼𝛼 − 𝛽𝛽

, 𝑖𝑖𝑖𝑖 𝑡𝑡 ∈ [𝑡𝑡𝑞𝑞, �̃�𝑡)
𝛼𝛼𝑠𝑠

𝛼𝛼 + 𝛾𝛾
, 𝑖𝑖𝑖𝑖 𝑡𝑡 ∈ (�̃�𝑡, 𝑡𝑡𝑞𝑞′],

 (24) 

where 𝑡𝑡𝑞𝑞 and 𝑡𝑡𝑞𝑞′ are times at which congestion begins and ends. At these end-points of the 
congestion, the travel (or queueing) times are zero, but the earliness or lateness (respectively) is at 
its maximum. Conversely, as explained before, queueing time is longest at the on-time departure 
time �̃�𝑡. Using an equation system, Arnott et al. (1990) further derived these three times: 

 
 
 
𝑡𝑡𝑞𝑞 = 𝑡𝑡∗ −

𝛾𝛾
𝛽𝛽 + 𝛾𝛾

𝑁𝑁
𝑠𝑠

, (25) 
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 𝑡𝑡𝑞𝑞′ = 𝑡𝑡∗ +
𝛽𝛽

𝛽𝛽 + 𝛾𝛾
𝑁𝑁
𝑠𝑠

, (26) 

 �̃�𝑡 = 𝑡𝑡∗ −
𝛽𝛽𝛾𝛾

𝛼𝛼(𝛽𝛽 + 𝛾𝛾)
𝑁𝑁
𝑠𝑠

, (27) 

where 𝑁𝑁 is the number of travellers. Equations (24)-(27) fully describe the congestion pattern with 
conventional vehicles. 

4.2 Congestion with automated vehicles 
Moving on to AVs, it has so far been established that the scheduling preferences of AV users would 
differ from those of the conventional vehicle users and depend on the activity performed during 
travel (see section 2). This section analyses the changes in congestion that stem from such 
scheduling preferences of AV users. Note that this section does not consider the other major source 
of potentially changed congestion patterns with AVs: their ability to drive closer to each other and 
thereby increase road capacity, especially in high penetration scenarios (e.g., Wadud et al., 2016). 
This simplification is made for two reasons. First, omitting the capacity changes allows to isolate 
the effect of various on-board activities on congestion. Second, the relative magnitude of capacity 
increase to the changes in scheduling parameters is rather unclear: see van den Berg and Verhoef 
(2016) for how net congestion patterns (assuming a generic on-board activity) depend strongly on 
these relative magnitudes.  

The most intuitive approach, when studying how changes in scheduling preferences may affect 
the congestion, is to consider, whether the changes can be expressed as a transformation of the 
parameters 𝛼𝛼, 𝛽𝛽, 𝛾𝛾. If such transformation could be found, we could use the results (24)-(27), while 
only modifying the parameters therein. For the Home AV such a transformation is intuitive. 
Replacing 𝛼𝛼 with 𝛼𝛼(1− 𝑒𝑒ℎ) leads to the desired result (and replicates the result of van den Berg & 
Verhoef, 2016). In case of Universal and Work AVs however, it is not immediately clear what 
transformation of the 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 parameters would capture the AV impact on travel costs (see Figure 
2).9 Therefore, it is necessary to follow the path of Arnott et al. (1990) to obtain the equilibrium flow 
rates for these AVs. As the on-board activities lead to more complex forms for the equilibrium flow 
rates, Figure 5 is helpful in the derivations. Similarly to Figure 4 for conventional vehicles, Figure 
5 shows all the utility components needed to compute the flow rates for AVs. Compared to the 
Home AV, it can be seen that the Universal and Work AV results contain an additional line for 
computing the equilibrium flow rate. This is needed because the utility of time spent in the AV 
changes depending on the clock time. Before 𝑡𝑡∗, the utility during travel is obtained from home 
activity carried out in a Universal AV or early work activity carried out in a Work AV. After 𝑡𝑡∗, the 
utility is obtained from late work activity carried out in either the Universal or Work AV.  

                                                        
9 Note that such transformation can be derived for Home and Work AVs if the utility of stationary and on-board 
activities is assumed to always differ by a fixed amount – the additive set-up developed in Yu et al. (2019). 
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Figure 5. Utility components for computing equilibrium flow rates with AVs 
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Table 2 shows the results: the parameters needed to fully describe congestion patterns with AVs. 
The equilibrium flow rates are derived from Figure 5 by balancing the utility components in each 
line. The congestion start, end and on-time departure times are derived in Appendix B. It is found 
that the start and end times of congestion are the same for conventional vehicles and all AVs, while 
the on-time departure time is earlier for all AV-types than for the conventional vehicles, and even 
earlier, if the AV facilitates home activities. The last row in Table 2 indicates that the results are 
valid only for the specified relationships between efficiency factors 𝑒𝑒ℎ, 𝑒𝑒𝑤𝑤 and the parameters 𝛼𝛼, 𝛽𝛽, 
and 𝛾𝛾. These conditions follow from the definitions of the three AV types and from a requirement 
that the flow rates are positive. It can be shown that these conditions are stronger than the sufficient 
condition for the optimal departure time to be �̃�𝑡 in the no-congestion case (i.e., 𝑒𝑒𝑤𝑤 < 0.5, as derived 
in Appendix A). As an example, for common values in the literature 𝛼𝛼 = 2, 𝛽𝛽 = 1, 𝛾𝛾 = 4 (Small, 
1982, 2015), the highest possible 𝑒𝑒ℎ that satisfies the conditions in Table 2 would be 0.5, and the 
highest possible 𝑒𝑒𝑤𝑤 would be 0.33. The values of Small and efficiency factors of 0.3 (for home 
and/or work activities, depending on AV type) are used for the following illustrations of the 
congestion patterns.10 

Table 2. Flow rates, congestion start, end times, on-time departure times for homogeneous 
AV population 

 Home AV Universal AV Work AV 
Optimal on-board 
activity before 𝑡𝑡∗ 

Home Home Work 

Optimal on-board 
activity after 𝑡𝑡∗ 

Home Work Work 

Equilibrium flow 
rate 𝑟𝑟[𝑡𝑡] 

In departure time interval 𝑡𝑡 ∈ [𝑡𝑡𝑞𝑞 , �̃�𝑡]: 

𝛼𝛼(1 − 𝑒𝑒ℎ)
𝛼𝛼(1 − 𝑒𝑒ℎ) − 𝛽𝛽 𝑠𝑠 

𝛼𝛼(1 − 𝑒𝑒ℎ)
𝛼𝛼(1 − 𝑒𝑒ℎ) − 𝛽𝛽 𝑠𝑠 

𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤 − 𝛽𝛽 𝑠𝑠 

In departure time interval 𝑡𝑡 ∈ [�̃�𝑡, 𝑡𝑡∗]: 

𝛼𝛼(1 − 𝑒𝑒ℎ)
𝛼𝛼(1 − 𝑒𝑒ℎ) + 𝛾𝛾 𝑠𝑠 

𝛼𝛼(1 − 𝑒𝑒ℎ)
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾 𝑠𝑠 

𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾 𝑠𝑠 

In departure time interval 𝑡𝑡 ∈ �𝑡𝑡∗, 𝑡𝑡𝑞𝑞′�: 

𝛼𝛼(1 − 𝑒𝑒ℎ)
𝛼𝛼(1 − 𝑒𝑒ℎ) + 𝛾𝛾 𝑠𝑠 

𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾 𝑠𝑠 

𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾 𝑠𝑠 

Congestion start 
time 𝑡𝑡𝑞𝑞 𝑡𝑡∗ −

𝛾𝛾
𝛽𝛽 + 𝛾𝛾

𝑁𝑁
𝑠𝑠  ‘’ ‘’ 

                                                        
10 The efficiency of 0.3 may appear low at first, considering that Wardman and Lyons (2016) summarised several 
studies that found comparable productivity of work during travel and outside of it: i.e., 𝑞𝑞 ≈ 1 in Hensher (1977) 
equation. Note, however, that this productivity applies only to the 0-50% of travel time that is used for work in 
different modes (parameter 𝑝𝑝 in Hensher’s equation). If the remaining travel time would be characterised by lower 
productivity (hence, the travellers not using it for work), then an average factor of 0.3 does not seem entirely 
unrealistic. Nonetheless, clearly, much future work is needed to calibrate these parameters, considering also AV 
and commute trip contexts; see more discussion in sections 5.2 and 5.3. 
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On-time 
departure time �̃�𝑡 𝑡𝑡∗ −

𝛽𝛽𝛾𝛾
𝛼𝛼(1 − 𝑒𝑒ℎ)(𝛽𝛽 + 𝛾𝛾)

𝑁𝑁
𝑠𝑠  𝑡𝑡∗ −

𝛽𝛽𝛾𝛾
𝛼𝛼(1 − 𝑒𝑒ℎ)(𝛽𝛽 + 𝛾𝛾)

𝑁𝑁
𝑠𝑠  𝑡𝑡∗ −

𝛽𝛽𝛾𝛾
(𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤)(𝛽𝛽 + 𝛾𝛾)

𝑁𝑁
𝑠𝑠  

Congestion end 
time 𝑡𝑡𝑞𝑞′ 

𝑡𝑡∗ +
𝛽𝛽

𝛽𝛽 + 𝛾𝛾
𝑁𝑁
𝑠𝑠  ‘’ ‘’ 

Conditions 𝑒𝑒ℎ <
𝛼𝛼 − 𝛽𝛽
𝛼𝛼  

𝑒𝑒𝑤𝑤 <
𝛼𝛼

𝛼𝛼 + 𝛾𝛾 𝑒𝑒ℎ 

𝛼𝛼 − 𝛽𝛽
𝛼𝛼 𝑒𝑒𝑤𝑤 < 𝑒𝑒ℎ <

𝛼𝛼 − 𝛽𝛽
𝛼𝛼  

𝛼𝛼
𝛼𝛼 + 𝛾𝛾 𝑒𝑒ℎ < 𝑒𝑒𝑤𝑤 <

𝛼𝛼
𝛼𝛼 + 𝛾𝛾 

𝑒𝑒ℎ <
𝛼𝛼 − 𝛽𝛽
𝛼𝛼 𝑒𝑒𝑤𝑤 

𝑒𝑒𝑤𝑤 <
𝛼𝛼

𝛼𝛼 + 𝛾𝛾 

The resulting congestion shapes for all AV-types and the base conventional vehicle are illustrated 
in Figure 6. This and later figures use queueing time as an indicator for the severity of the 
congestion. The queueing time 𝑇𝑇[𝑡𝑡] is a function of the departure rate 𝑟𝑟[𝑢𝑢]:  

 𝑇𝑇[𝑡𝑡] = �
𝑟𝑟[𝑢𝑢] − 𝑠𝑠

𝑠𝑠
𝑑𝑑𝑢𝑢

𝑡𝑡

0
. (28) 

 
Figure 6. Development of queueing times for conventional vehicles and AVs. 𝑁𝑁 = 200, 𝑠𝑠 = 5, 
(𝛼𝛼,𝛽𝛽, 𝛾𝛾) = (2,1,4), 𝑡𝑡∗ = 50, (𝑒𝑒ℎ; 𝑒𝑒𝑤𝑤) = (0.3; 0) for Home AVs, (𝑒𝑒ℎ; 𝑒𝑒𝑤𝑤) = (0.3; 0.3) for Universal AVs, 
(𝑒𝑒ℎ; 𝑒𝑒𝑤𝑤) = (0; 0.3) for Work AVs. 

Four properties of AV congestion can be observed from Figure 6. First, congestion is more severe 
with AVs compared to conventional vehicles (at least while not considering any potential capacity 
effects of AVs). This result is intuitive – performing any activity during travel leads to less negative 
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experience of travel, and consequently, lower aversion to the most congested and longest travel 
times. And this result aligns with previous works that do not differentiate between on-board 
activities (and specifically, with van den Berg & Verhoef, 2016, who use bottleneck models). 
Second, congestion is more skewed to earlier times for the Home AVs and to later times for Work 
AVs. This finding aligns with Yu et al. (2019) who found that when an on-board activity closer 
resembles home- (work-) activity (defined differently than here), then the AV users will travel in 
the beginning (end) of the peak. Universal AVs (in Figure 6) partially overlap with both Home and 
Work AV graphs, thereby increasing both early and late congestion. It is noteworthy that these 
results of skewed congestion follow from the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences, which do not lead to any 
changes in optimal departure times in the no congestion case (see section 3.2). Intuitively, an even 
stronger skew in congestion could be expected, if general scheduling preferences were used. Third, 
Home and Universal AVs lead to longer maximum queueing times than Work AVs. It can be 
shown that this property holds when 𝛼𝛼𝑒𝑒ℎ𝐻𝐻 > (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤𝑊𝑊, where 𝑒𝑒ℎ𝐻𝐻 is the efficiency of home 
activities in the Home or Universal AV, and 𝑒𝑒𝑤𝑤𝑊𝑊 is the efficiency of work activities in the Work AV. 
This condition determines that the Home AV is not inferior to Work AV in terms of the on-board 
activity facilitation. In the converse scenario, the queueing times of Home AVs would be shorter 
than of Work AVs at all departure times. Fourth, congestion starts and ends at the same time for 
all vehicles. This leads to the conclusion that, although congestion levels are increasing, the 
experienced costs of congestion do not change. The proofs of these four properties are in Appendix 
C.  

4.3 Congestion with mixed vehicles 
Given that all AV types intensify the congestion, but possibly in different directions, it is useful to 
see the net congestion effect of having different AVs in the population. Arnott et al. (1994) 
demonstrated how this can be done using the so-called Travel Equilibrium Frontier (TEF). The idea 
of the TEF is that the travellers are indifferent between departing at any moment 𝑡𝑡 ∈ [𝑡𝑡𝑞𝑞, 𝑡𝑡𝑞𝑞′], given 
that the queueing times are as depicted in Figure 6 (for their vehicle type). They would therefore 
not use any departure times when the queueing times are longer – which is whenever a graph of 
other traveller group lies above theirs. Furthermore, note that decreasing or increasing the number 
of travellers N adjusts the graph proportionally ‘down or up’ (the duration of congestion is always 
N/s). Similarly, to obtain the TEF with a specified number of travellers using each vehicle, the 
graphs need to be ‘scaled down or up’, such that all travellers of each group depart during the time 
intervals, when their graph lies above other graphs. 

Three combinations of vehicles are used to demonstrate the congestion patterns in Figure 7: Home 
AVs and conventional vehicles (top left of Figure 7), Work AVs and conventional vehicles (top 
right), and Home and Work AVs (bottom).11 For every pair, Figure 7 shows scenarios with 25%, 
50%, 75% of travellers using each vehicle, as well as the corresponding homogeneous cases from 
Figure 6. The different shades of grey represent the scenarios with various vehicle shares; lane 
types (solid, dashed, dotted) represent vehicle types departing at every moment during the 
congestion. Note that a part of the graph stays unchanged for every mixture – this part overlaps 
with the congestion graph of the vehicle with lower peak (e.g., the graph of conventional vehicles 
on the top left of Figure 7). Considering any type of AV, the graphs demonstrate, in line with van 
den Berg and Verhoef (2016) and F. Zhang et al. (2020), that having a mixture of AVs and 
conventional vehicles leads to the AVs occupying the central departure time interval, and the 
conventional vehicles departing as the first and last in the congestion. Furthermore, higher share 
of AVs in the mixture leads to more severe congestion. This is intuitive: being able to perform any 
on-board activity reduces the travel time costs and makes AV users less averse to long travel times. 
However, note once again that higher AV shares do not lead to increased bottleneck capacity in 
the present model. 

                                                        
11 The MATLAB code used to create figures can be found in Pudāne (2020), https://doi.org/10.4121/13247633.  

https://doi.org/10.4121/13247633


EJTIR 20(4), 2020, pp.306-334  322 
Pudāne 
Departure time choice and bottleneck congestion with automated vehicles: Role of on-board activities 
 

  

 
Figure 7. Development of queueing times with mixture of conventional vehicles and Home AVs (top 
left), conventional vehicles and Work AVs (top right), Home AVs and Work AVs (bottom). 𝑁𝑁 = 200, 𝑠𝑠 =
5, (𝛼𝛼,𝛽𝛽, 𝛾𝛾) = (2,1,4), 𝑡𝑡∗ = 50, (𝑒𝑒ℎ; 𝑒𝑒𝑤𝑤) = (0.3; 0) for Home AVs, (𝑒𝑒ℎ; 𝑒𝑒𝑤𝑤) = (0; 0.3) for Work AVs. 

Considering the congestion effects of different AVs, Work AVs depart later than Home AVs and 
conventional vehicles (top right and bottom of Figure 7). Given a mixture of Home and Work AVs 
(bottom of Figure 7), Work AVs reduce congestion, unless Home AVs are inferior to Work AVs in 
terms of the on-board activity experience (in a sense explained at the end of section 4.2: the third 
congestion property). However, if Home AVs are inferior, the converse is true and they reduce the 
congestion; the effect then resembles the combination of Work AVs and conventional vehicles (top 
right of Figure 7). In general, the higher the efficiency of on-board activities in AVs, the more likely 
are the AV users to cause severe congestion, and the more likely they are to benefit from sharing a 
road with travellers whose activities are less well facilitated on board (their graphs are ‘scaled 
down’). See van den Berg and Verhoef (2016) and Yu et al. (2019) for an in-depth discussion of how, 
in terms of congestion benefits or costs, the AV introduction affects their users and the users of 
conventional vehicles. 

Hereby, this section has demonstrated that, given the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 scheduling preferences and 
bottleneck setting, travellers whose home activities are better facilitated on board than work 
activities, would prefer to depart earlier than conventional vehicle users and increase the severity 
of congestion in its early to middle part. Similarly, travellers whose work activities are better 
facilitated on board than home activities, would prefer to depart later than conventional vehicle 
users and increase the congestion mostly in its middle to late part. Given similar levels of activity 
facilitation on board, the increase in queueing times due to Work AVs is smaller than due to Home 
AVs. Thereby, Work AVs have a moderating effect on the increasing congestion levels. 
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5. Discussion and suggestions for further research 

5.1 Comparison with the travel time penalty approach 
This work started from a proposition that it is important to differentiate among on-board activities 
when modelling departure time choice and congestion patterns. It was assumed that, similarly to 
out-of-vehicle activities, the utility of different on-board activities varies with clock-time. In 
contrast, the travel time penalty approach assumes that the utility of on-board activities is time-
independent. Now we are in a position to ask: has the approach taken in this paper yielded 
qualitatively different results than the travel time penalty approach would have?  

In the case of no congestion and general scheduling preferences, the answer is ‘yes’. If the utility of 
on-board activities did not vary with time, the on-board activities would not influence the 
departure time preference, and the optimal departure time of conventional vehicles would be 
maintained. Formally, the second integrals of the total home and work utility functions (1) and (2) 
would not depend on 𝑡𝑡, and hence would disappear when the total utility (3) is differentiated with 
respect to 𝑡𝑡. However, clearly, the conclusion of section 3 was that the optimal departure times 
depend on the activities performed during travel – or on the use of various AV types that facilitate 
various activities to different extents. 

In the case of congestion and the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences, the answer is ‘yes, but with an exception’. 
Different congestion patterns were obtained for Home-, Work-, and Universal AVs. However, 
because the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences assume constant home utility, the results of Home AV exactly 
replicate the travel time penalty approach (as derived in van den Berg & Verhoef, 2016). Since it is 
furthermore known that a constant home utility is a rough approximation (Tseng & Verhoef, 2008), 
this correspondence is not desirable. A way to avoid this situation would be to adapt other 
scheduling preferences where both home and work activity utility varies with clock-time. The 
following section further discusses this possibility. 

5.2 Beyond 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 scheduling preferences and multiplicative efficiency factors 
As just mentioned, adopting the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 scheduling preferences has some potential drawbacks. 
First, it means that the scenario, where the traveller engages in home activities, is constrained to be 
equivalent to the scenario where AVs generally provide better travel experience (e.g., less stressful, 
smoother drive), which is embedded in the travel time penalty concept. Second, the assumption of 
constant home utility has been challenged before (Tseng & Verhoef, 2008). Finally, using the 𝛼𝛼 −
𝛽𝛽 − 𝛾𝛾 preferences allows the researcher to arrive at closed-form departure rates only for low to 
medium 𝑒𝑒ℎ and 𝑒𝑒𝑤𝑤 values (see ‘Conditions’ in Table 2). For these reasons, exploring the effects of 
other scheduling functions on the congestion changes with AVs, while differentiating between 
home and work activities performed on board, is a highly recommended direction for further 
research. The literature offers good alternatives for this endeavour: the so-called slope model 
(Fosgerau and Engelson, 2011), where the marginal utilities of out-of-vehicle activities are linear 
functions of time, or exponential scheduling preferences (Hjorth et al., 2015). A closed-form 
departure rate function for the slope model has recently been derived (Xiao et al., 2017) and would 
be useful for such study. 

It can be expected that replacing the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 model with any type of general scheduling 
preferences (such as slope model or exponential preferences) would lead to larger congestion 
differences between conventional vehicles and AVs and among different AVs. Because of this 
consequence however, the weakness of the 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 model is also its strength: the current 
approach provides conservative results – a lower bound of the possible influence of on-board 
activities on congestion patterns, which would apply even in contexts with a strong preference for 
a single work-start time.  

Another feature of the current model set-up that deserves further discussion is the assumption of 
multiplicative efficiency factors. This assumption implies that the utility of on-board home and 
work activities depends on the clock-time in a similar way as the utility of stationary activities. 
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Considering stationary activities, Fosgerau and Small (2017) discuss how their time-dependent 
utilities emerge from the benefits of agglomeration in time. That is, it is often important to 
synchronise the working hours within companies and industries (e.g., teamwork, work with 
clients), as well as to synchronise them with supporting services (e.g., childcare). Similarly, many 
leisure or home activities require the members of a household or social circle to be simultaneously 
available, as well as some leisure activities (e.g., theatre, TV programs, opening hours of bars) are 
scheduled considering such typical available times. To some extent, this clock-time dependence 
could be assumed to translate to on-board activities. However, unlike for stationary activities, the 
utility variations of on-board activities are not influenced by availability of physical spaces (such 
as opening hours of shops) or presence of other people, unless remote communication with them 
is sufficient. Hence, future work should further explore whether this utility reduction is, first, 
proportional, and second, whether it depends only on the utilities of stationary activities. As for 
the first, other functional forms could be used. For example, Yu et al. (2019) penalise the on-board 
activities with an additive factor. Other forms could reflect, for example, that some travellers may 
not be able to work on board after the preferred arrival time, but they may engage in preparatory 
work tasks during travel. Ultimately, the functional form should be determined empirically. As for 
the second assumption, it is evident that the utility of on-board activities could depend also on 
travel-specific conditions that vary within a trip: winding road or congestion may obstruct or ease 
activities for only some portions of the trip. Furthermore, travellers may choose to switch between 
home and work activities multiple times during the journey (as was observed by, e.g., Pawlak et 
al., 2017), especially if both activities are well facilitated on board. Incorporating such dependencies 
and multiple switches in a bottleneck model would be challenging, and would likely require a 
simulation approach.   

5.3 Validity and applicability to public transport and shared automated vehicles 
As with all travel behaviour models, an important aspect is their validation and estimation. While 
there are not yet sufficient number of AVs on the roads, studies have occasionally turned to public 
transport to gain insights into possible effects of on-board activities (e.g., Pawlak et al., 2015; 
Malokin et al., 2019). Hence, a relevant question to the present study is: would the devised models 
apply and could they be validated using public transport data? Unfortunately, there are several 
important obstacles to such an application. First, future AVs could be expected to perform 
significantly better in facilitating on-board activities compared to current public transport. The 
difference may be even larger when considering on-board activities that substitute out-of-vehicle 
activities: recall the examples of morning home activities - getting ready, preparing and eating 
breakfast, getting a little more sleep - or work activities - replying to emails, planning the day, 
adjusting meeting schedule. Several of these may require privacy, space, silence, continuity 
(absence of transfers), comfort and facilities that may be available in AVs, but not in public 
transport. On the flipside, public transport may outperform AVs with regard to proneness to 
motion sickness. (See Pudāne et al., 2019, for a qualitative discussion of the potential advantages 
and disadvantages of AVs for on-board activities.) Second, trade-offs involved in departure time 
choices are fundamentally different for car and public transport users: while car drivers trade off 
on-time arrival with travel time, public transport users balance on-time arrival with crowding 
levels and to a lesser extent, travel time and reliability. Third, public transport users face constraints 
(which the car drivers do not) when choosing departure time: they must choose from a set of 
scheduled departure times or predicted departure times according to public transport frequency. 
These characteristics would make the departure time choice model for a public transport user, who 
is able to engage in on-board activities during travel, fundamentally different from the model 
presented in this paper. Therefore, other sources of travel behaviour and departure time data could 
be more useful for estimation and validation of the current models: naturalistic experiments (Harb 
et al., 2018) or surveys (for example, stated choice experiments), which have been shown to provide 
trustworthy results in AV contexts (Wadud & Huda, 2019). This is an important direction for 
further research. 
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Nevertheless, even before having access to data supporting the current models, it is possible to 
argue for their face-validity. The current work builds on established microeconomic models of 
scheduling preferences (Vickrey, 1969, 1973; Small, 1982), which have stood the test of time to 
predict departure time choice and resulting congestion patterns in a variety of contexts. 
Furthermore, the analytical results correspond to intuition: the possibility to substitute home or 
work activities with their on-board counterparts leads to departure time adjustments towards the 
most desirable time for these activities. 

Another often asked and important question is: how would travel experience and behaviour differ 
between users of privately owned and shared AVs (including both car sharing and ride sharing), 
and would the same models be valid for these modes? Considering the current departure time 
choice model, two differences could be anticipated. First, the on-board activities may be facilitated 
to a different extent in shared AVs. The activities may be impaired by the reduced privacy, storage 
and personalisation possibilities, which would be available in privately owned AVs. At the same 
time, the facilitation may be increased, if fleet owners customise the AVs to suit various on-board 
activity needs. For example, some cars may be equipped with business and conference facilities, 
while others may be suited for resting and leisure. The net effect of sharing on the efficiency of on-
board activities is an interesting question for future research. Second, clients of car and ride sharing 
may have less flexibility of choosing their departure time as compared to owners of vehicles: they 
may need to book the car in advance or coordinate with other users. Hence, the departure time 
choice and congestion models for future AV owners and users of shared AVs may differ somewhat; 
yet, the present model can provide a good starting point for modelling these scenarios.  

5.4 Suggestions for further research 
This work has presented the first steps in a detailed analysis of the impact of different on-board 
activities on congestion patterns. Nevertheless, and as importantly, it opens up a new field of study 
into the AV-effect on future mobility – and invites further work to investigate whether the 
proposed peak-skewing, increasing and moderating effects are also observed in more complex 
contexts. Previous sections mentioned the need to explore other scheduling preferences and 
specifications of on-board activity utility (section 5.2), as well as to obtain data to estimate and 
validate the current models (section 5.3). Following are few other suggestions for further research. 

1. A natural extension of the present work would be to simulate the effects of the proposed 
scheduling preferences in artificial and real city networks, as done by Correia and van 
Arem (2016), while incorporating heterogeneity in scheduling parameters. An extended 
simulation would also include other types of choices, such as mode- and route-choices, trip 
making and destination choice, to balance the effects of departure time changes with other 
anticipated AV effects, such as induced travel. Potentially increased road capacity in high 
AV penetration scenarios would also need to be considered. 

2. An important extension would be to account for various on-board activities when 
modelling the full day of a commuter and account for the flexibility of work hours, as is 
done in the activity-based bottleneck analyses (Xiaoning Zhang et al., 2005; Li et al., 2014; 
Xiang Zhang et al., 2019) and studies of departure time choice (e.g., Thorhauge et al., 2016). 
Some flexibility in activity schedules in general and work start times in particular is a 
prerequisite for the congestion shifting and moderating effects observed in this work.  

3. Empirical work should continue in assessing the sources of decreasing travel time disutility 
in AVs. Note that the peak-mitigating effect would come into play only if on-board 
activities constitute a significant portion of the AV-benefits. If instead the travellers mainly 
appreciate the reduced burden and increased comfort when using AVs (as argued by 
Singleton, 2019) or even experience some disadvantages of converting resting time into 
busy activity time (Shaw et al., 2019; Pudāne et al., 2019), they would constitute a more 
homogeneous group, and hence, be more prone to intense congestion.  



EJTIR 20(4), 2020, pp.306-334  326 
Pudāne 
Departure time choice and bottleneck congestion with automated vehicles: Role of on-board activities 
 

4. Finally, it would be important to incorporate potential endogeneity effects in the model. 
Travellers whose work or home activities can be performed on board may self-select to 
obtain access to certain type of AVs. The approach here could follow F. Zhang et al. (2020), 
who included a choice between conventional vehicles and (a generic type of) AVs into 
bottleneck congestion analysis. 

6. Conclusions and policy implications 

The arrival of automated vehicles (AVs) is expected to increase the feasibility and role of on-board 
activities in people’s daily schedules. This paper argued that the current ways of modelling the 
departure time choice and congestion impacts of the improved on-board activities, based mostly 
on the idea of a reduced travel time penalty, are not sufficient. While travel time penalty condenses 
effects of all on-board activities into a single indicator, different activities may in reality have varied 
impacts on travel behaviour. This intuition was supported in the present paper. A classical 
microeconomic approach – modelling departure time choices and their congestion impacts using 
scheduling functions – was extended to consider effects of different on-board activities in AVs. It 
was obtained that, if travellers are able to perform home activities on board (in Home AVs), they 
prefer to depart earlier than if they are able to perform work activities (in Work AVs), even if there 
is no congestion. If there is congestion, results obtained in a minimalistic bottleneck setting indicate 
that congestion would increase due to on-board activities in AVs, – doing something during travel 
decreases people’s aversion to longer travel times, thereby prioritising on-time arrival and 
concentrating travellers in the middle of the peak. However, if several AV types are available that 
facilitate home and/or work activities to a similar extent, then Work AVs increase the congestion 
levels the least. 

The model developed and results obtained in this paper can provide input for one of the key AV-
related policy questions: will AVs lead to higher congestion levels and, if yes, how to avoid or 
mitigate that effect? While congestion can be expected to increase, at least while assuming no 
increases in road capacity due to AVs, travellers who are able to work during travel seem to 
mitigate that effect. This offers a valuable tool for policy makers: although some work tasks may 
be easily transferred to AVs, the mobile work possibilities could be further encouraged by allowing 
flexible working hours and, perhaps even, making work-equipped AVs available for a broader 
range of professions. Such measures should be further tested using models that account for 
possibly diverging effects of different on-board activities (such as the one presented in this paper, 
but also by Yu et al., 2019), while accounting for the model limitations outlined earlier. If their 
effects are positive, these measures could help to ensure that the celebrated benefits of AVs – such 
as allowing individuals to re-allocate their travel time for other activities – are maintained, while 
their potential downsides are reduced. 
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Appendix A. Proofs of the optimal departure times with 𝜶𝜶 − 𝜷𝜷 − 𝜸𝜸 
scheduling preferences in case of no congestion 

Proposition A1. If the optimal departure time without congestion using 𝛼𝛼 − 𝛽𝛽 − 𝛾𝛾 preferences is 
not �̃�𝑡 = 𝑡𝑡∗ − 𝑇𝑇, then it must be 𝑡𝑡∗. 

Proof. 

Departure time �̃�𝑡 is better than any departure time 𝑡𝑡 < �̃�𝑡. The earlier departure times 𝑡𝑡 would incur 
the same costs during travel as departing at �̃�𝑡 (being the lost utility due to on-board activity being 
less efficient than home activity). However, the early departure would also incur costs due to 
arriving early. 

Departure time 𝑡𝑡∗ is better than any departure time 𝑡𝑡 > 𝑡𝑡∗. The later departure times 𝑡𝑡 would incur 
the same costs during travel as departing at 𝑡𝑡∗ (being the lost utility due to on-board activity being 
less efficient than work activity). However, the later departure would also incur costs due to 
performing home instead of work activity after 𝑡𝑡∗. 

Departure times between �̃�𝑡 and 𝑡𝑡∗ have either monotonously increasing or decreasing utility, which 
depends on whether a travel time unit costs more before or after 𝑡𝑡∗, see Figure 2. Therefore, the 
optimal departure time is either �̃�𝑡 or 𝑡𝑡∗.  

Proposition A2. Optimal departure time is 𝑡𝑡∗ in two cases only: when 𝑒𝑒𝑤𝑤 > 𝛾𝛾/(𝛽𝛽 + 𝛾𝛾) for Work AV 
or when (1− 𝑒𝑒ℎ)/(1− 𝑒𝑒𝑤𝑤) > 1 + 𝛾𝛾/𝛼𝛼. 

Proof. 

The necessary and sufficient condition for 𝑡𝑡∗ to be the optimal departure time is that unit costs of 
travel before 𝑡𝑡∗ is higher than after 𝑡𝑡∗. 

For Home AVs, the condition equals 𝛼𝛼(1− 𝑒𝑒ℎ) > 𝛼𝛼(1 − 𝑒𝑒ℎ) + 𝛾𝛾, which is never true. 

For Universal AVs, the condition leads to (1 − 𝑒𝑒ℎ)/(1− 𝑒𝑒𝑤𝑤) > 1 + 𝛾𝛾/𝛼𝛼. 

For Work AVs, the condition leads to 𝑒𝑒𝑤𝑤 > 𝛾𝛾/(𝛽𝛽 + 𝛾𝛾). 

Proposition A3. Optimal departure time is never 𝑡𝑡∗ if 𝑒𝑒𝑤𝑤 < 0.5 and 𝛽𝛽 < 𝛼𝛼 < 𝛾𝛾. 
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Proof. 

For Universal AVs, the condition from Proposition 2 requires that  (1 − 𝑒𝑒ℎ)/(1− 𝑒𝑒𝑤𝑤) > 1 + 𝛾𝛾/𝛼𝛼. 
Since it is assumed that 𝛾𝛾 > 𝛼𝛼, then the strongest form of the condition is (1− 𝑒𝑒ℎ)/(1− 𝑒𝑒𝑤𝑤) > 2. If 
𝑒𝑒𝑤𝑤 < 0.5, then that will never occur, and optimal departure time for Universal AVs will never be 
𝑡𝑡∗. 

For Work AVs, the condition from Proposition 2 requires that  𝑒𝑒𝑤𝑤 > 𝛾𝛾/(𝛽𝛽 + 𝛾𝛾). Since it is assumed 
that 𝛾𝛾 > 𝛽𝛽, then the strongest form of the condition is 𝑒𝑒𝑤𝑤 > 0.5. Hence, if 𝑒𝑒𝑤𝑤 < 0.5, then optimal 
departure time for Work AVs is never 𝑡𝑡∗. 

Appendix B. Start, end and on-time departure times of AV congestion 

Three conditions determine the start, end and on-time departure times of congestion:  

1. Total number of travellers departing equals 𝑁𝑁;  

2. Duration of the congestion is 𝑁𝑁
𝑠𝑠
, where 𝑠𝑠 is the bottleneck capacity;  

3. Departing at the on-time departure time leads to the arrival at the preferred arrival time 𝑡𝑡∗. 

Derivation for Universal AVs 
Conditions 1 and 2: 

 
𝛼𝛼(1− 𝑒𝑒ℎ)

𝛼𝛼(1− 𝑒𝑒ℎ)− 𝛽𝛽
𝑠𝑠��̃�𝑡 − 𝑡𝑡𝑞𝑞�+

𝛼𝛼(1− 𝑒𝑒ℎ)
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾

𝑠𝑠(𝑡𝑡∗ − �̃�𝑡) +
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤

𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾
𝑠𝑠�𝑡𝑡𝑞𝑞′ − 𝑡𝑡∗� = 𝑁𝑁 

 
(B1) 

 𝑡𝑡𝑞𝑞′ − 𝑡𝑡𝑞𝑞 =
𝑁𝑁
𝑠𝑠

 (B2) 

Insert condition 2 into condition 1, and obtain 𝑡𝑡𝑞𝑞 as a function of �̃�𝑡: 

 𝑡𝑡𝑞𝑞 =

𝛾𝛾 𝑁𝑁𝑠𝑠 − 𝑡𝑡∗�(𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 − 𝛼𝛼𝑒𝑒ℎ�
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾 − � 𝛼𝛼(1− 𝑒𝑒ℎ)

𝛼𝛼(1− 𝑒𝑒ℎ)− 𝛽𝛽 −
𝛼𝛼(1 − 𝑒𝑒ℎ)

𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾� �̃�𝑡

𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾 −

𝛼𝛼(1 − 𝑒𝑒ℎ)
𝛼𝛼(1− 𝑒𝑒ℎ)− 𝛽𝛽

. 

 

(B3) 

Condition 3: 

 �̃�𝑡 = 𝑡𝑡∗ −
𝐷𝐷(�̃�𝑡)
𝑠𝑠

= 𝑡𝑡∗ −
∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢�̃�𝑡
𝑡𝑡𝑞𝑞

− 𝑠𝑠��̃�𝑡 − 𝑡𝑡𝑞𝑞�

𝑠𝑠
= 𝑡𝑡∗ −

𝛽𝛽
𝛼𝛼(1− 𝑒𝑒ℎ)− 𝛽𝛽

��̃�𝑡 − 𝑡𝑡𝑞𝑞� 

 
(B4) 

Obtain �̃�𝑡 as a function of 𝑡𝑡𝑞𝑞 from condition 3: 

 �̃�𝑡 =
(𝛼𝛼(1− 𝑒𝑒ℎ)− 𝛽𝛽)𝑡𝑡∗ + 𝛽𝛽𝑡𝑡𝑞𝑞

𝛼𝛼(1− 𝑒𝑒ℎ) . 

 
(B5) 

Insert (B5) into (B3) to obtain 𝑡𝑡𝑞𝑞, which, after simplification, coincides with the 𝑡𝑡𝑞𝑞 for the 
conventional vehicle case: 

 𝑡𝑡𝑞𝑞 = 𝑡𝑡∗ −
𝛾𝛾

𝛽𝛽 + 𝛾𝛾
𝑁𝑁
𝑠𝑠

. 

 
(B6) 

Using (B2), the end of congestion 𝑡𝑡𝑞𝑞′ is  
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 𝑡𝑡𝑞𝑞′ = 𝑡𝑡∗ +
𝛾𝛾

𝛽𝛽 + 𝛾𝛾
𝑁𝑁
𝑠𝑠

. 

 
(B7) 

Inserting (B6) into (B5), we can obtain the on-time departure time: 

 �̃�𝑡 = 𝑡𝑡∗ −
𝛽𝛽𝛾𝛾

𝛼𝛼(1− 𝑒𝑒ℎ)(𝛽𝛽 + 𝛾𝛾)
𝑁𝑁
𝑠𝑠

. (B8) 

Derivation for Work AVs 
Conditions 1 and 2: 

 

𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤 − 𝛽𝛽

𝑠𝑠��̃�𝑡 − 𝑡𝑡𝑞𝑞�+
𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤

𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾
𝑠𝑠(𝑡𝑡∗ − �̃�𝑡) +

𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾

𝑠𝑠�𝑡𝑡𝑞𝑞′ − 𝑡𝑡∗�

= 𝑁𝑁 
 

(B9) 

 𝑡𝑡𝑞𝑞′ − 𝑡𝑡𝑞𝑞 =
𝑁𝑁
𝑠𝑠

 (B10) 

Insert condition 2 into condition 1, and obtain 𝑡𝑡𝑞𝑞 as a function of �̃�𝑡: 

 
 
𝑡𝑡𝑞𝑞 =

𝛾𝛾 𝑁𝑁𝑠𝑠 − 𝑡𝑡∗(𝛽𝛽 + 𝛾𝛾)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾 − � 𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤

𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤 − 𝛽𝛽 −
𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤

𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾� �̃�𝑡

𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾 −

𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤
𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤 − 𝛽𝛽

. 

 

(B11) 

Condition 3: 

 �̃�𝑡 = 𝑡𝑡∗ −
𝛽𝛽

𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤 − 𝛽𝛽
��̃�𝑡 − 𝑡𝑡𝑞𝑞� 

 
(B12) 

Obtain �̃�𝑡 as a function of 𝑡𝑡𝑞𝑞 from condition 3: 

 �̃�𝑡 =
(𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤 − 𝛽𝛽)𝑡𝑡∗ + 𝛽𝛽𝑡𝑡𝑞𝑞

𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤
. 

 
(B13) 

Insert (B13) into (B11) to obtain 𝑡𝑡𝑞𝑞. Congestion start and end times turn out to be the same for all 
vehicles. Insert 𝑡𝑡𝑞𝑞 into (B13) to obtain the on-time departure time for Work AV: 

 �̃�𝑡 = 𝑡𝑡∗ −
𝛽𝛽𝛾𝛾

(𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤)(𝛽𝛽 + 𝛾𝛾)
𝑁𝑁
𝑠𝑠

. 

 
(B14) 

Appendix C. Proofs of the congestion properties given single AV type and 
𝜶𝜶 − 𝜷𝜷 − 𝜸𝜸 scheduling preferences 

Proposition C1. The queueing times are longer with AVs compared to conventional vehicles. 

Proof. 

It is sufficient to show that the inflection points of AV graphs at �̃�𝑡 are higher and lie earlier for the 
AV graphs than the inflection point of the conventional vehicle graph, and that the inflection point 
at 𝑡𝑡∗ for Universal and Work AVs also lies above the conventional vehicle graph. 

The highest peak at �̃�𝑡 is as high as it is far from the preferred arrival time 𝑡𝑡∗. This follows from the 
definition of �̃�𝑡 as the departure time that leads to on-time arrival. Knowing this, it can be seen from 
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Table 2 that 𝑡𝑡∗ − �̃�𝑡 increases with 𝑒𝑒ℎ and 𝑒𝑒𝑤𝑤 for all AV types. Therefore, the inflection point at �̃�𝑡 is 
higher and earlier for the AV graphs than for the conventional vehicle graph, for which 𝑒𝑒ℎ = 𝑒𝑒𝑤𝑤 =
0. 

The peak at 𝑡𝑡∗ for Universal and Work AVs lies above the conventional vehicle graph, because the 
Work AV graph in segment [�̃�𝑡, 𝑡𝑡∗] is flatter than the conventional vehicle graph. This is because the 
departure rate (from Table 2) is higher for Work AV in that interval: it can be verified that (𝛼𝛼 −
(𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤)/(𝛼𝛼 − (𝛼𝛼 + 𝛾𝛾)𝑒𝑒𝑤𝑤 + 𝛾𝛾) 𝑠𝑠 > 𝛼𝛼/(𝛼𝛼 + 𝛾𝛾) is always true. Since Work and Universal AV 
graphs overlap from 𝑡𝑡∗ onward, the inflection point of Universal AVs is also necessarily above the 
conventional vehicle graph. 

Proposition C2. Congestion is more skewed to earlier times for the Home AVs and to later times 
for Work AVs. Congestion with Universal AVs is skewed in both directions. 

Proof. 

To prove this property, we need to select an indicator that describes the skew well. I propose the 
following indicator, which captures the difference between the relative increase of congestion at 
times �̃�𝑡 and 𝑡𝑡∗, while taking the congestion with conventional vehicles as a reference point: 

 𝑆𝑆𝐴𝐴𝐴𝐴 =
𝑄𝑄�̃�𝑡
𝐴𝐴𝐴𝐴

𝑄𝑄�̃�𝑡
𝐶𝐶𝐴𝐴 −

𝑄𝑄𝑡𝑡∗
𝐴𝐴𝐴𝐴

𝑄𝑄𝑡𝑡∗𝐶𝐶𝐴𝐴
, (C1) 

where 𝑄𝑄�̃�𝑡
𝐴𝐴𝐴𝐴 and 𝑄𝑄�̃�𝑡

𝐶𝐶𝐴𝐴 are queuing times at the on-time departure time �̃�𝑡 with AV and conventional 
vehicle (CV), respectively; 𝑄𝑄𝑡𝑡∗

𝐴𝐴𝐴𝐴 and 𝑄𝑄𝑡𝑡∗
𝐶𝐶𝐴𝐴 are the corresponding queueing times at 𝑡𝑡∗. If 𝑆𝑆𝐴𝐴𝐴𝐴 is 

positive, then the congestion is skewed towards earlier times as compared to the congestion with 
conventional vehicles; if it is negative, then congestion is skewed to later times. 

The skew indicators for the Home AV (𝑆𝑆𝐴𝐴𝐴𝐴1), Universal AV (𝑆𝑆𝐴𝐴𝐴𝐴2) and Work AV (𝑆𝑆𝐴𝐴𝐴𝐴3) are the 
following: 

 𝑆𝑆𝐴𝐴𝐴𝐴1 =
1

1 − 𝑒𝑒ℎ
−

𝛼𝛼 + 𝛾𝛾
𝛼𝛼(1− 𝑒𝑒ℎ) + 𝛾𝛾

=
𝛾𝛾𝑒𝑒ℎ

(𝛼𝛼(1− 𝑒𝑒ℎ) + 𝛾𝛾)(1− 𝑒𝑒ℎ) > 0, (C2) 

 𝑆𝑆𝐴𝐴𝐴𝐴2 =
1

1 − 𝑒𝑒ℎ
−

1
1− 𝑒𝑒𝑤𝑤

, (C3) 

 𝑆𝑆𝐴𝐴𝐴𝐴3 =
𝛼𝛼

𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤
−

1
1 − 𝑒𝑒𝑤𝑤

= −
𝛽𝛽𝑒𝑒𝑤𝑤

(𝛼𝛼 − (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤)(1− 𝑒𝑒𝑤𝑤) < 0. (C4) 

This indicator shows that, indeed, Home AVs skew the congestion to earlier times; Work AVs skew 
it to later times. The indicator is zero for Universal AVs, if 𝑒𝑒ℎ = 𝑒𝑒𝑤𝑤 = 0, and positive (negative), if 
𝑒𝑒ℎ is larger (smaller) than 𝑒𝑒𝑤𝑤. 

Proposition C3. Longer queueing times are reached with Home and Universal AVs compared to 
Work AVs. 

Proof. 

Having congestion with any vehicle, the longest queueing time occurs at the on-time departure 
time �̃�𝑡. Following the definition of �̃�𝑡, this queueing time equals 𝑡𝑡∗ − �̃�𝑡. Comparing the distance 𝑡𝑡∗ −
�̃�𝑡 for Home (or Universal), and Work AVs, it can be obtained that 𝑡𝑡∗ − �̃�𝑡 is larger for Home and 
Universal AVs, whenever 𝛼𝛼𝑒𝑒ℎ𝐻𝐻 > (𝛼𝛼 − 𝛽𝛽)𝑒𝑒𝑤𝑤𝑊𝑊, where 𝑒𝑒ℎ𝐻𝐻 is the efficiency of home activities in the 
Home and Universal AV, and 𝑒𝑒𝑤𝑤𝑊𝑊 is the efficiency of work activities in the Work AV. This condition 
determines that home activities would yield higher utility in Home AV than early work activities 
(before 𝑡𝑡∗) yield in Work AV. If this condition is not fulfilled, then Home AVs are inferior to Work 
AVs in terms of the quality of on-board activities, and Home AVs would lead to shorter queueing 
times than Work AVs (the congestion pattern would be only slightly altered from the conventional 
vehicle case). 
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However, if AVs are specialised to support only home, only work, or both home and work 
activities, and do so to a similar extent (such that none of AVs is inferior to another at all clock-
times), then Work AVs would result in a smaller congestion increase than other AV types. 

Proposition C4. Congestion costs with AVs are the same as with conventional vehicles. 

Proof. 

The start and end times of congestion are the same for conventional vehicles (25) and (26) and AVs 
(Table 2). At these times, the travel time is zero, and the individual experiences only the costs of 
being at work too early or too late. Since these costs are not influenced by AVs, the equilibrium 
costs of all congestion patterns in Figure 6 are the same and equal (𝛽𝛽𝛾𝛾/(𝛽𝛽 + 𝛾𝛾)) ∗ (𝑁𝑁/𝑠𝑠)). 

Appendix D. Code used to create Figures 6 and 7 

Code can be found in Pudāne (2020), https://doi.org/10.4121/13247633. Code was created in 
MATLAB R2018b. 

https://doi.org/10.4121/13247633
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