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1. Introduction 

1.1 Motivation 
Travel demand models play an essential role in transportation planning. They are applied to 
forecast traffic volumes and user benefits for future infrastructure projects and future service 
concepts. Since the beginning of computer-based travel demand models in the 1960s until today, 
the majority of transportation planning models uses a macroscopic (i.e. aggregated) approach. 
Mobility is simulated as a set of isolated trips that are neither connected in tours nor in activity 
schedules (Boyce and Williams, 2015). Some spatio-temporal constraints of travel are thus ignored. 
Today, the state of the art in travel demand modeling follows microscopic approaches, i.e. 
simulating each traveler as an autonomous decision-making unit.  
 
This article presents a travel demand model that is microscopic and combines activity-based and 
agent-based approaches. The novelty of this methodology is that all mobility decisions of each traveler 
– including long-term and daily decisions – are modeled while ensuring that all of these individual 
decisions are sensitive to transport supply and to time-space constraints. This model property is 
crucial for the evaluation of infrastructure and service planning projects, where the complete 
reaction of travel demand to supply changes needs to be computed. 

1.2 Previous related work 
Two important approaches in microscopic travel demand modeling have advanced to real-world 
application, commonly referred to as activity-based and agent-based models. These approaches are 
discussed with recent examples in this section.  

Activity-based models 
The concept of activity-based transport models emerged and was put into practice in the 1990s. For 
a historical review see Bowman (2009) or Rasouli and Timmermans (2014).  
 
In North America, microscopic activity-based models follow an econometric approach. A 
comprehensive presentation of the methodology is given by Castiglione et al. (2015). Important 
pioneers who managed to put the methodology into practice for several major U.S. cities in the 
2000s are Bowman and Ben Akiva (2001), Vovsha et al. (2004) and Bhat et al. (2004). Individual day 
plans are built for each person or household, by a set of discrete-choice models for mode 
ownership, tour generation, activity selection, mode choice, location and destination choice.  
 
Another activity-based approach by Roorda et al. (2008) adds rules to the individual activity and 
travel decisions. This approach allows verification of feasibility of individual patterns and builds 
consistent 24-hour day plans for each traveler.  
 
While the common practice of the activity-based models presented above simulate 24 hours of a 
day, mobiTopp (Mallig et al., 2013) simulates an entire week, where long-term and short-term 
activity needs of all persons in a household are scheduled and simulated over seven days. 
 
The strength of these activity-based approaches is that individual travel decisions are sensitive to 
travel time and cost in many mobility choices. A shortcoming of most activity-based models in 
practice is that the microscopic approach is given up once travel demand is established, and trips 
are aggregated to origin-destination (OD) matrices that are fed into aggregated network 
assignment models to simulate route choice and network flow. To overcome this shortcoming, 
some activity-based models have been extended with dynamic highway assignment, for example 
by Vovsha et al. (2016), but up to this day the activity-based concept is not extended into network 
simulation for the entire demand with all modes of travel. 
 



EJTIR 20(4), 2020, pp.152-172  154 
Scherr, Manser, Joshi, Frischknecht and Métrailler 
Towards agent-based travel demand simulation across all mobility choices – the role of balancing preferences and constraints 

In recent years, several researchers have developed methods to optimize activity-based day plans 
with the aim to provide mobility planning tools to individual travelers (Arentze, 2013; Sierpinski, 
2016; Hilgert et al., 2016; Estergár-Kiss, 2017). While this work does not aim for system-wide traffic 
forecasting, there is a potential for synergy with activity-based or agent-based travel demand 
modeling. 

Agent-based models 
Within the microscopic approaches, agent-based simulation treats also vehicles as autonomous units 
(in addition to traveling persons) and keeps a memory for each unit (i.e. for each agent). Using this 
memory, agents learn and update their travel patterns iteratively. Agent-based simulation aims at 
a user equilibrium of all agents across the entire transport system.  
 
Agent-based models emerged in the 2000s with a focus on large-scale microscopic traffic 
simulation. A first approach was TRANSIMS (Cetin et al., 2002). Today, the open source software 
MATSim (Horni et al., 2016) is used in many academic applications. MATSim connects supply and 
demand in a network equilibrium, where individual travelers (agents) start with pre-defined day 
plans, search routes through the networks and adapt choices of travel mode and time of day. An 
important feature of MATSim is its integrated end-to-end simulation of persons and vehicles. 
Vehicle flow is modeled with a queue-based traffic flow model. Compared to activity-based 
models, the microscopic approach is more detailed as each agent makes decisions based on 
individual travel conditions which are computed with high resolution in both time and space. 
MATSim automatically enforces natural arrival/departure time constraints to 24-hour day plans. 
As a result, a person cannot depart for travel from an activity location before having arrived and 
dwelled for the required activity time. In the standard software version of MATSim, only the 
following mobility decisions can be simulated: mode choice, time-of-day choice and route choice.  
 
To include other mobility decisions in the simulation, several researchers have developed 
extensions of MATSim for the destination choice of secondary activities, (Horni et al., 2011; 
Ordonez, 2016; Hörl et al., 2019). Still, neither long-term mobility decisions (mobility tool 
ownership and primary activity locations), nor activity choices have been included. Hence in all 
MATSim variations we know, the day plans of agents remain largely fixed and do not react to 
changes in travel supply. Another interesting extension of MATSim has been developed by Hörl 
et al. (2018), by replacing the random mode choice by a discrete choice model. For each tour or 
subtour the mode is chosen by a multinomial LOGIT, as input for the agent-based traffic flow 
simulation. 
 
In Switzerland, there is more than a decade of experience with agent-based modeling using 
MATSim. Since Meister et al. (2008), a model at national scale had been developed. This model has 
gone through several updates and extensions (e.g. Bösch et al., 2016) and has been applied over a 
multi-year research program to advance agent-based modeling to address various research 
questions. In this model, generation of day plans and long-term location choices are not responsive 
to transport supply. The work presented in this article was inspired by this model. This model also 
provided a strong foundation for the starting point of this work, since a lot of technical and 
administrative ground had been broken for agent-based modeling in Switzerland during the 
development of this model. 

Combination of the activity-based and agent-based approaches 
In recent years, several researchers have combined activity-based modeling with agent-based 
simulation in MATSim, obtaining synergy from both approaches.  
 
Ziemke at al. (2015) compute a set of day plans for each agent using the CEMDAP activity-based 
model, subsequently the agents choose between these different plans in MATSim, which also 
performs traffic flow simulation. While this approach presents a complete integration of activity 
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and agent-based modeling through all model stages, this experiment does not include a complete 
calibration, as CEMDAP parameters for Los Angeles are combined with MATSim parameters for 
Berlin, Germany. 
 
Moeckel et al. (2019) developed the MITO model for Munich, Germany, combining MATSim with 
an activity-based demand model which simplifies the construction of activity schedules. It 
explicitly uses travel time budgets as constraints of destination choice. 
 
Briem et al. (2019) combine the activity-based model mobiTopp with MATSim. They limit the use 
of MATSim to traffic flow simulation, without using the MATSim features of mode and time choice 
adaptation, but agent-based learning is successfully combined with a genuine activity-based travel 
demand model. 

1.3 Objectives and contributions 
The model effort presented in this article is agent-based and applied at a large scale. It simulates 
24 hours of a weekday and covers the entire population of Switzerland. It uses a combination of 
two major approaches mentioned above: First, activity-based modeling with discrete choice 
models (day pattern approach) is used to generate initial day plans at the individual level. Next, 
network-wide agent-based traffic simulation with MATSim is performed. This allows the agents 
to learn from their individual travel experience and to adjust mode and time of travel accordingly. 
To integrate the two approaches, a new methodology is presented to build 24-hour day plans for 
each agent. These day plans are consistent in time and space. Time consistency is imposed using 
time budgets. A novel plan-building heuristic is developed for this purpose. The objective of this 
methodology is that all elements of an agent’s plan are responsive to changes in network level of 
service and to constraints in the transport system. Consequently, the overall agent-based 
simulation obeys more realistic constraints to inform real-world transportation planning decisions. 

2. SIMBA MOBi: model architecture and methodology 

2.1 The context of travel modeling at SBB 
Travel demand modeling at SBB (Swiss Federal Railways) is aimed at supporting management 
decisions about future service concepts and investments in infrastructure and rolling stock (Scherr 
et al., 2018; Scherr et al., 2019). For over 15 years, the SBB passenger division has used a macroscopic 
rail-only model. SBB has developed the agent-based model “SIMBA MOBi” – complementary to 
this existing macroscopic model over the past three years (2016 to 2019). SIMBA MOBi is presented 
in this article. It has been developed to analyze future mobility schemes, including disruptive 
changes, new technologies and new intermodal services. The model is sensitive to changes in 
transport supply across all modes and can thus be reliably applied in corporate decision-making. 
SIMBA MOBi applies standard software tools (MATSim, Biogeme, PTV Visum), but many software 
extensions and workflow tools have been programmed in Python and Java, where standard 
solutions where not available. 

2.2 General model architecture 
SIMBA MOBi has three major behavioral modules (see Figure 1). The first module, MOBi.synpop 
generates a resident population for the existing state and allows modeling future synthetic 
populations. The synthetic population, including households, persons, businesses and other 
institutions is the starting point of the demand model. The methodology is well described in 
Bodenmann et al. (2019) and hence not discussed in more detail. The focus of this article are the 
other two modules.  
 
The second module MOBi.plans constructs 24-hour activity and travel plans for each agent in the 
synthetic population during the following choice steps:  
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• Long-term decisions (Section 2.3): Mobility tool ownership and primary locations. 

• Daily mobility preferences (2.4): Number and type of activities a person wishes to perform 
during a day, and the sequence of tours and the pattern of the activities within each tour. 
Also, destinations of the secondary activities, preliminary modes for each tour and 
durations for each activity. 

• Rule-based plan-building (2.5): Confrontation of the daily preferences with time- and space-
constraints based on time budgets and building of a time- and space-consistent 24-hour 
day plan for each agent. 

The rule-based plan-building step is the key to success in the overall model structure as it brings 
together the individual preferences of the activity-based methodology with the agent-based 
methodology which requires time- and space-consistent agent plans. 
 
The third module is MOBi.sim, which simulates 24-hour dynamic network flows of cars and public 
transport using the agent-based software MATSim (2.6). In MOBi.sim, the agents choose their final 
modes, route and departure times for each trip based on traffic condition and a full-day public 
transport schedule. 
 
A feedback loop from MOBi.sim back to MOBi.plans then informs agents’ decisions about travel 
conditions and service quality experienced across the transport network. This makes – for example 
– destinations in heavily congested areas less attractive for car-oriented persons. 

 
Figure 1. The main behavioral modules of SIMBA MOBi 
 

SIMBA MOBi is a person-based model. Interaction between household members is not modeled 
explicitly. However, household properties, such as size, presence of children or car ownership, are 
included into the person-based decision models. Hence, linkages between household members are 
modeled implicitly. 

2.3 Long-term mobility preferences in MOBi.plans 
 
Car availability and public transport subscription 
A first model step determines car availability and public transport subscriptions (i.e. yearly or 
monthly public transport passes) for each person in the population. Both are important person 
attributes and have a strong impact on mode choice and destination choice. In the existing case, 
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these attributes are determined by choice models and then corrected based on small-area control 
variables. At the time of the publication of this article, the model by Danalet et al. (2018) is applied. 
It will soon be replaced by a more advanced model by Hillel et al. (2020), which will include 
accessibility as an explanatory variable of mode and subscription ownership making these choices 
responsive to transport supply and capacity constraints in the transport network. 

Location choice 
Location choice is defined as a choice of permanent or long-term locations of activities such as work 
or school of each individual agent. This decision is mainly constrained by the home location, person 
specific preferences and transport supply such as travel times, parking costs, and public transport 
schedule (Table 2). In a first step, location choice probabilities are computed at an aggregate level, 
i.e. on traffic analysis zones. SIMBA MOBi uses 8’000 zones defined by the Federal Office for Spatial 
Development (2020), averaging 1’000 inhabitants per zone. Zone-based location choice has the 
advantages of simplicity and of allowing for the use of established calibration methods. It also 
obviates the need for sampling of alternatives. In a second step, each individual agent chooses a 
specific zone based on the aggregated probabilities. In a third step, a specific facility is selected for 
the corresponding activity type in the chosen zone based on a weighted random draw (with the 
weight being the attraction of the facility, e.g. the number of jobs). 
 
Sensitivity to changes in the transport supply is a crucial requirement of the model. Hence, a nested 
model structure informs the location choice about the resulting “logsum” (or maximum expected 
utility) of the trips-based mode choice, capturing effects of the network supply. One major 
challenge is the replication of the nonlinear decrease with travel distance with the exponential form 
of the LOGIT model. As done in earlier studies, a piecewise-linear form of the distance term is used 
to capture this nonlinear effect more accurately. The LOGIT formula of location choice is identical 
to the one used in destination choice (Section 2.4). Additional additive utility terms (shadow prices) 
in the higher level of the location choice explain preferences, which cannot be explained by physical 
attributes of travel nor by the transport supply. In Switzerland, a classic example is the language 
barrier which presents a substantial barrier in traveling as well. Lastly, a shadow price at the target 
allows considering capacity constraint (e.g. number of jobs in a zone). 

2.4 Daily mobility preferences in MOBi.plans 
The methodology to determine daily mobility choices follows the North American approach of 
activity-based models as described by Castiglione et al. (2015). 
 
Tour and stop frequency - activity choices 
The aim of tour- and stop frequency generation in combination with activity choice is to determine 
how many and which activities an agent performs during the day, as well as how those activities 
are combined in tours. A tour is a sequence of activities and trips that begin at home and end at 
home. A stop is an intermediate activity, that is performed during a tour.  
 
Table 1 gives an overview of the tour- and stop frequency models used in MOBi.plans. Tour and 
stop frequency choices are organized as a sequence of multinomial LOGIT models (MNL). The 
dependent variable in the LOGIT model is the number of tours, subtours or stops, respectively. 
The endogenous variables are socio-economic variables plus spatial and accessibility measures. 
The MNL coefficients were estimated using Biogeme (Bierlaire, 2016), based on data of the national 
travel diary survey (Federal Statistical Office, 2017). The most important property of the generation 
models is their ability to forecast changes in the mobility of individuals based on mode availability, 
changes in transport supply (by means of accessibility) and demographic shifts (by means of the 
age variable). 
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Four different types of tours are modeled, the first two being considered primary tours (main tour 
purpose is a primary activity) and the latter two secondary tours (tour consists of secondary 
activities only): 
 

1. Work tour (primary tour) 

2. Education tour (primary tour) 

3. Business tour (secondary tour) 

4. Other tour (secondary tour) 

 

Table 1. Overview: Multinomial LOGIT models of Tour- and Stop Frequency 

 Tour frequency Subtour 
frequency 

Stop frequency 

No. of prim. 
Tours 

No. of sec. 
tours 

Has 
subtour 

No. of stops prim. tour No. of 
stops sec. 

tour 
Work Educ. Bus. Other  Outbound Inbound  

Constant X X X X X X X X 
Employment level X X X X X X X X 
Main occ. is in education  X  X X    
Age X X X X X X X X 
Is in management   X      
Children in HH X   X X X X X 
Car available X  X X X X X X 
Public transp. Subscript. X X X X X X X X 
Dist. to primary location X X X   X X  
No. of tours     X X X X 
No. of primary tours    X     
Is a work tour     X X X  
Is a business tour        X 
Accessibility home loc. X X  X  X X X 
Accessibility primary loc.   X  X    

 

The stop frequency choice model determines the number of activity stops made within a tour, in 
addition to the primary activity. For primary tours, stop frequency is segmented into: 

1. An outbound stop model, which predicts the number of stops made between leaving home 
and the first primary activity (work or education). 

2. A subtour frequency model, that predicts whether there is a primary location-based 
subtour or not. A subtour is a sequence of trips that begins and ends at the primary location 
without going home. An example of a subtour is “work – leisure – work”. 

3. An inbound stop model, that predicts the number of stops made on the way back home 
from the primary location. 

For secondary tours (“other tours”), there is only a single stop frequency model that predicts the 
total number of stops.   
 
Once the number of tours and their stops are calculated, the type of activity is added by applying 
probabilities segmented by person groups from travel diary observations. The following activity 
types are considered: 
 

• Leisure (L) 

• Shopping (S) 
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• Business (B) 

• Education as secondary activity (EC) 

• Accompany (A) 

• Other (O) 

 
After having made all the choices about number of tours as well as the number and type of stops 
during one tour, every person has a desired activity pattern containing a set of activities as well as 
their order within the tours. In the following steps, the activity patterns are assigned destinations, 
modes and time of day. Also, the order of the tours is defined when the day plan is built for each 
agent. 
 
Destination and mode choice 
Knowing the number and type of activities each agent performs in each tour, the next step is 
choosing the destination of each secondary activity and the mode for each trip between activities. 
For this purpose, destination probability matrices for each activity type and different person 
groups are estimated following the same method as in the location choice (Section 2.3). 
The probability of choosing mode m on OD pair ij is: 

   𝑃𝑃(𝑚𝑚|𝑖𝑖𝑖𝑖) =  
𝑒𝑒𝑒𝑒𝑒𝑒�𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖�
∑ 𝑒𝑒𝑒𝑒𝑒𝑒�𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖�𝑖𝑖

 (1) 

Where Vijm is the utility of mode m on OD-pair ij 

 
The “logsum” or expected maximal utility (EMU) of mode choice is then: 

   𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  𝑙𝑙𝑙𝑙 ���𝑒𝑒𝑒𝑒𝑒𝑒 (𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖/𝜃𝜃)�
𝑖𝑖

� (2) 

Mode choice depends on various variables such as travel time, distance and other level of service 
measures (Table 2). To inform destination choice about the level of service of all modes, mode 
choice is nested into destination, by including EMUij (the expected maximal utility of mode choice) 
into the destination choice utility: 

   𝑉𝑉(𝑖𝑖|𝑖𝑖) = 𝑙𝑙𝑙𝑙�A𝑖𝑖�+  𝜃𝜃 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑖𝑖 + 𝜆𝜆𝑖𝑖𝑖𝑖 (3) 

Where:  
• Aj: the socio-economic attraction of zone j 

• λj: shadow price of destination j 

• λij: shadow price of OD-pair ij 

 
In contrast to home-based location choice, choosing destinations for each intermediate stop is not 
as straight forward. Since an intermediate tour stop lies between two pre-defined locations, “rubber 
banding” is used to consider both trip origin i and primary location k (work or school place) in the 
choice of intermediate destinations. This is done with the aim of minimizing out of way travel. The 
rubber banding formula uses weights to balance the influence of primary locations and secondary 
destinations: 
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   𝑉𝑉(𝑖𝑖|𝑖𝑖) = 𝑙𝑙𝑙𝑙�A𝑖𝑖�+  𝛼𝛼 ∙ �𝜃𝜃 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑖𝑖 + 𝜆𝜆𝑖𝑖𝑖𝑖�+ β ∙ �𝜃𝜃 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑖𝑖 + 𝜆𝜆𝑖𝑖𝑖𝑖� (4) 

Where:  
• α: weight of the trip origin 

• β: weight of the trip destination 

 
Finally, the probability of choosing destination j under the condition of starting in origin i is: 

   𝑃𝑃(𝑖𝑖|𝑖𝑖) =  
𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉(𝑖𝑖|𝑖𝑖))

∑ [𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉(𝑘𝑘|𝑖𝑖))]𝑖𝑖
 (5) 

This approach does not include the interaction between the destination choice decisions of multiple 
tours. This might result in unrealistically high travel time which violates time budgets and hence 
plan integrity. This issue will be faced in the plan-building step (Section 2.5). 
 

Table 2. Level of service measures used in mode choice utility 

Mode const. travel 
time 

parking 
search time 

service 
frequency 

no. of 
transfers 

parking 
cost 

distance 

walk X X      
bicycle X X      
public 
transport 

X X X X X  X 

car - driver X X X   X X 
car - passenger X X X   X X 

 
The mode choice parameters calibrated for the nested mode and destination choice are trip-based. 
Parameters are estimated for the variables as depicted in Table 2. In the mode choice step, the 
constraints of mode used along the whole tour are considered. A mode is assigned to each tour and 
subtour based on the zonal level of service measures in MOBi.plans. The mode choice later informs 
the plan-building step (2.5) about the expected travel times. It is important to note that the tour-
based mode calculated in this step is the starting point for the agent-based traffic flow simulation 
(2.6). In MOBi.sim, the agents can adjust their tour-based modes depending on the individual 
travel conditions. 
 
Desired activity durations 
In a similar approach to the one taken by Hörl (2017), the activity durations are determined with 
probability distributions derived from the national travel diary survey (Federal Statistical Office, 
2017) as shown in Figure 2. The choice is then a weighted random draw for each activity based on 
the distribution. The distributions distinguish between multiple demand segments that are defined 
by type of activity, by socio-economic attributes of the person, and by the frequency of the activity 
in one plan (e.g. the workplace is visited once or twice). Figure 2 shows the distributions for a 
selection of market segments. Full-time employees with one work tour have the longest activity 
durations at the workplace. The duration is shorter for agents working part-time as well as for 
agents going to work twice per day. 
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Figure 2. Probability distributions of desired activity duration (e.g. work) 
 

2.5 Rule-based plan-building in MOBi.plans 
The plan-building step is a novel method developed for SIMBA MOBi. It is the crucial link between 
the activity-based demand model and the agent-based network simulation.  Up to this step, each 
agent has determined preferences including all daily choices. These preferences are now 
transformed into a full day plan, which is consistent with natural time and space constraints: All 
activities and travel must be performed within 24 hours in an order where none of the episodes 
must overlap. The plan-building procedure is subdivided into three steps:  
 

1. Generation of alternative preferences for destinations and activity durations. 

2. A random combination of secondary activity destinations and activity durations is chosen 
while considering time budgets. If no satisfying combination has been found, agents redo 
all daily choices to be consistent with time budgets. 

3. Finally, the starting time for each activity is chosen. In this final step, travel times and 
activity duration are no longer changed. 

 
Generation of destination and activity duration alternatives 
The plan-building procedure tries to find a combination of destinations and activity duration based 
on time budgets. Given a fixed set of activities 𝐴𝐴 for each individual agent, alternatives for 
destinations and durations are generated. 𝐴𝐴 contains information about number and type of 
activities each agent has chosen based on the daily preferences. We call the set of destination 
alternatives 𝐷𝐷 and the set of duration alternatives 𝑃𝑃. Each element 𝑑𝑑 ∈ 𝐷𝐷 represents an array 
containing information about the destinations of each activity 𝑎𝑎 ∈ 𝐴𝐴. Each element 𝑒𝑒 ∈ 𝑃𝑃 represents 
an array containing information about the duration of each activity 𝑎𝑎 ∈ 𝐴𝐴. 
 

Choosing destination and duration alternatives based on time budgets 
This step targets to find a reasonable combination of destinations and activity durations based on 
travel time (𝑏𝑏𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), activity performing (𝑏𝑏𝑏𝑏𝑑𝑑𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝) and total out-of-home (𝑏𝑏𝑏𝑏𝑑𝑑𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑝𝑝ℎ𝑜𝑜𝑖𝑖𝑡𝑡) budgets.  
 
The algorithm is defined as follows: 
 

1. Calculate the sum over all activity durations for each array of durations 𝑒𝑒 ∈ 𝑃𝑃. Each 
element in 𝑃𝑃𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 is a duration-related number and |𝑃𝑃| = |𝑃𝑃𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝|:  
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             𝑃𝑃𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 = ∀𝑒𝑒 ∈ 𝑃𝑃, � 𝑑𝑑𝑏𝑏𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑎𝑎
𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑎𝑎∈𝑝𝑝

 (6) 

2. Reduce set 𝑃𝑃 based on 𝑏𝑏𝑏𝑏𝑑𝑑𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝. Only alternatives are retained which fulfill the budget 
constraint. Otherwise, the element with the minimal total duration is retained in 𝑃𝑃𝑡𝑡𝑡𝑡𝑟𝑟:  

             𝑃𝑃𝑡𝑡𝑡𝑡𝑟𝑟 = �
{𝑑𝑑𝑏𝑏𝑑𝑑 |𝑑𝑑𝑏𝑏𝑑𝑑 ∈  𝑃𝑃𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝,𝑑𝑑𝑏𝑏𝑑𝑑 < 𝑏𝑏𝑏𝑏𝑑𝑑𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝}, min�𝑃𝑃𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝� < 𝑏𝑏𝑏𝑏𝑑𝑑𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝

{min�𝑃𝑃𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝�}, 𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑑𝑑𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
 (7) 

3. Calculate the sum over all trip travel times towards each destination in the array of 
destinations 𝑑𝑑 ∈ 𝐷𝐷. Each element in 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a travel-time-related number and |𝐷𝐷| =
|𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|: 

             𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∀𝑑𝑑 ∈ 𝐷𝐷, � 𝑑𝑑𝑑𝑑𝑎𝑎𝑡𝑡𝑒𝑒𝑙𝑙𝑑𝑑𝑖𝑖𝑚𝑚𝑒𝑒𝑡𝑡𝑡𝑡𝑖𝑖𝑝𝑝_𝑡𝑡𝑜𝑜_𝑟𝑟𝑡𝑡𝑑𝑑𝑡𝑡𝑖𝑖𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖𝑜𝑜𝑑𝑑
𝑟𝑟𝑡𝑡𝑑𝑑𝑡𝑡𝑖𝑖𝑑𝑑𝑡𝑡𝑡𝑡𝑖𝑖𝑜𝑜𝑑𝑑∈𝑟𝑟

 (8) 

4. Reduce set 𝐷𝐷 based on 𝑏𝑏𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡:  

             𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟 = �
{𝑑𝑑𝑑𝑑𝑎𝑎𝑡𝑡 |𝑑𝑑𝑑𝑑𝑎𝑎𝑡𝑡 ∈  𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑑𝑑𝑑𝑑𝑎𝑎𝑡𝑡 < 𝑏𝑏𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}, min(𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) < 𝑏𝑏𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

{min(𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)}, 𝑑𝑑𝑑𝑑ℎ𝑒𝑒𝑑𝑑𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒  (9) 

5. Repeatedly (max. N times) try a combination of a random destination plan 𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 ∈ 𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟 
and a random duration plan 𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 ∈ 𝑃𝑃𝑡𝑡𝑡𝑡𝑟𝑟 until out-of-home time is lower than 
𝑏𝑏𝑏𝑏𝑑𝑑𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑝𝑝ℎ𝑜𝑜𝑖𝑖𝑡𝑡. Out-of-home time is defined as: 

             𝑑𝑑𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑝𝑝ℎ𝑜𝑜𝑖𝑖𝑡𝑡(𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 ,𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟) = 𝑑𝑑𝑑𝑑𝑑𝑑_𝑑𝑑𝑑𝑑𝑎𝑎𝑡𝑡𝑒𝑒𝑙𝑙_𝑑𝑑𝑖𝑖𝑚𝑚𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎𝑑𝑑_𝑑𝑑𝑏𝑏𝑑𝑑𝑎𝑎𝑑𝑑𝑖𝑖𝑑𝑑𝑙𝑙𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (10) 

Note that this is not minimization problem. Using pure random combinations, original 
preferences are maintained as much as possible 

6. The final plan is the combination of 𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 and 𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑𝑟𝑟 if the total out-of-home time of the 
chosen plan is lower than 𝑏𝑏𝑏𝑏𝑑𝑑𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑝𝑝ℎ𝑜𝑜𝑖𝑖𝑡𝑡 after max. N repetitions. Otherwise, the agents 
must repeat their full daily mobility preferences. That means these agents must go back to 
the tour generation step and redo all their daily choices while not changing their 
preferences. Long-term locations are not adjusted. 

 
In SIMBA MOBi, we use |𝐷𝐷| = 3 and |𝑃𝑃| = 10. It is a trade-off between gaining information and 
increasing computational cost for an additional alternative in one of the sets. In this version of the 
model, time budgets are the same for all agents but depend on how many times the agents went 
through the loop of choosing daily mobility preferences and trying to build a plan within the 
defined budget. The following parameters are derived from calibration and resulted in the best 
model quality: 

Table 3. Time budgets 

Budget [h] Iteration 1 Iteration 2 Iteration 3 Iteration 4 
𝑏𝑏𝑏𝑏𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡    12.0 5.0 4.0 3.0 
𝑏𝑏𝑏𝑏𝑑𝑑𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝 14.0 12.0 11.0 10.0 
𝑏𝑏𝑏𝑏𝑑𝑑𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑝𝑝ℎ𝑜𝑜𝑖𝑖𝑡𝑡  13.5 14.0 15.0 16.5 

 
Using the time budgets as given in Table 3, over 99% of all agents found a valid plan after their 
choosing their daily preferences for the first time (𝑑𝑑𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑝𝑝ℎ𝑜𝑜𝑖𝑖𝑡𝑡 <  𝑏𝑏𝑏𝑏𝑑𝑑𝑜𝑜𝑜𝑜𝑡𝑡𝑜𝑜𝑝𝑝ℎ𝑜𝑜𝑖𝑖𝑡𝑡). The <1% remaining 
agents will repeat the choice of their daily preferences. After iteration 4, only few agents (<0.1 ‰) 
have not found a valid plan considering the defined time budgets. 
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Activity start-time choice 
Input for the activity start-time choice are activity chains with complete information about activity 
and trip durations. Travel times between activities are looked up for each individual trip 
depending on its mode. Hence, each tour has a fixed duration at this stage. Another input are 
distributions representing activity start-time preferences. A selection of these distributions for 
some market segments is shown in Figure 3. Work and education show a strong morning peak 
while secondary activities like shopping and leisure are likely to start later in the morning without 
significant peaks.  
 

 
Figure 3. Probability distributions of activity start-times for selected activities 
 
With these inputs given, the scheduling procedure then follows the principle of the “outward” 
approach described in Castiglione et al. (2015), with the rationale that priority is given to the 
primary activities and their durations, and that secondary activities and travel episodes are added 
before and/or after the primary activities. As the start-times for secondary activities are only 
chosen implicitly, we implemented an iterative algorithm that scores the start-times of the 
secondary activities. The score is based on the probability curves as shown in Figure 3. In the case 
of a badly scored choice, the agents make an alternative start-time choice for their primary 
activities. If they achieve a higher score, they might then take the new plan. 
 
The above algorithm discards tours from the schedule if they do not fit into the 24 hours of the day 
after a certain number of iterations. This is the last resort to assure integrity of the plans. But these 
cases are extremely rare (0.06‰ of all trips), the step of plan-building is effective in assuring that 
the timing constraints are met by the scheduling procedure. At the end of the MOBi.plans 
procedure, each agent has a synthetic day plan that meets the strong plan integrity requirement of 
MATSim. This strong integrity distinguishes the model presented in this article from most other 
activity-based models, which feed only individual trips into aggregated assignment models and 
often ignore this requirement. 

2.6 Agent-based network simulation in MOBi.sim 
The aim of MOBi.sim is to connect supply and demand in an agent-based network simulation using 
the software MATSim (Horni et al., 2016). Starting with pre-defined day plans (as generated by 
MOBi.plans), individual travelers (agents) iteratively update routes through the network and 
adapt choices of travel mode and time of day. These decisions are based on individual travel 
conditions during an iteration which are computed with high resolution in both time and space 
(fully disaggregate multimodal assignment). The decisions are compared to a memory of 
several plans from previous iterations. While discarding plans with bad decisions and keeping 
plans with good scores, the simulation converges to a network equilibrium. 
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The following strategies are used in MOBi.sim to update the plans during the simulation: 
 

• Subtour-based mode choice: Random choice of a mode for each subtour in the plan. 
Includes all five modes of travel that are defined in MOBi (Table 2). 

• Activity start-times: Choice of new start- and end times for each activity. This choice is 
limited to a range of ±30min compared to the original decision made in MOBi.plans. 

• Route choice: Choice of a route in the network depending on the network condition. By 
updating their routes, agents can bypass heavily congested areas.  

 
MOBi.sim was built based on the experience of earlier MATSim models of Switzerland (Meister et 
a., 2008), then calibrated in-house by SBB (Scherr et al., 2018) and improved with several new 
software features: 
 

• Routing and simulation algorithms for public transport (Rieser et al., 2018).  

• A parking cost and access time model for cars, which is included in the algorithms of car 
routing as well as in traffic flow simulation. 

• A mode and route choice model (“scoring model” in MATSim terms) that is differentiated 
by multiple socio-economic groups. 

 
To obtain comprehensive traffic on the networks, we added exogenous demand to the network 
simulation in MOBi.sim as MOBi.plans produces the travel demand of the resident population of 
Switzerland only. The exogenous demand includes international rail travel, border crossing road 
traffic, airport travel by non-residents, travel by tourists and visitors (both road and rail). The 
exogenous demand is derived from either internal SBB data sources (e.g. rail booking systems), 
from other travel models, and from specific surveys, e.g. the national border-crossing OD-survey. 
The exogenous travel demand consists of single trips only. MATSim allows for inclusion of such 
isolated trips to the traffic simulation. 
 
From the agent-based traffic flow model we also derive level of service indicators for all modes. 
These indicators are computed from/to discrete geo-codes, then aggregated as OD matrices 
from/to zones for MOBi.plans. This feedback loop from MOBi.sim to MOBi.plans is important as 
it informs the agents about congestion and guarantees that capacity constraints are considered by 
all agents in the choices taken in the MOBi.plans module. 

2.7 Calibration methodology 
This model includes a great number of behavioral parameters. Our approach to determine these 
parameters can be summarized as follows: 
 

• Statistical estimation was used whenever possible. Especially in MOBi.plans, which 
consists mainly of multinomial LOGIT models (MNL), the betas were either estimated by 
us or in other cases – for instance mode choice – existing parameters estimated for 
Switzerland were used (Weis et al., 2016). 

• Shadow prices for the destination choice models were determined using iterative fitting 
methods that are common practice in aggregated travel demand modeling. 

• In the case of MATSim, no estimation routines exist for the utility functions. Here, we used 
betas which originally were estimated for MNL models as the basis for calibration. These 
betas were then manually adjusted during calibration and differentiated by groups of 
agents. All manual adjustments were validated by verifying substitution rates, general 
reasonableness, and by watching the resulting elasticities in sensitivity tests. 
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3. Model validation 

The model was validated in comparison to comprehensive travel statistics that include the national 
travel diary survey (Federal Statistical Office, 2017), commuter matrices, the national rail OD-
survey, rail counts, other public transportation counts, road traffic counts, and SBB corporate data. 
Significant effort went into comparing, understanding and preparing all available empirical data 
sources. This section shows a small selection of validation statistics and different model quality 
measurements of the SIMBA MOBi 2.0 release. Much more validation results are available for this 
model but would exceed the limits of this publication. 

3.1 System-wide statistics of travel demand 
Table 4 shows system-wide validation of travel demand. The mean number of trips generated (3.76 
trips) is slightly lower than the empirical number reported in the national travel diary survey (3.87 
trips). This small difference is caused by differences in the socio-economic composition between 
the synthetic population and the survey sample. Time budgets play an important role in the plan-
building (Section 2.5) the get consistent travel times and activity duration times, resulting in the 
total out-of-home time. Table 4 shows that our rule-based approach works reasonably with the 
mean out-of-home time being slightly shorter than reported in the survey. It should be noted that 
we intentionally calibrated the durations of some secondary activity types shorter to ease the 
constraints for the plan-building procedure. The mean trip distances (overall, per activity type, per 
mode) were calibrated against survey data in combination with count data. In the case of public 
transport, we relied more on count data and hence allowed an error to the travel diary survey. 

Table 4. Key statistics of travel demand 

 SIMBA MOBi Travel diary 
survey 

Number of persons (observations) 7’979’430 39’075 
Mean number of tours 1.49 1.56 
Mean number of trips 3.76 3.87 
Mean number of work trips 0.51 0.53 
Mean number of leisure trips 0.72 0.74 
Mean travel time [h] 1.52 1.59 
Mean activity duration time [h] 5.92 6.38 
Mean out-of-home time [h] 7.44 7.97 
Mean trip distance [km] 36.63 38.65 
Mean work trip distance [km] 12.33 12.21 
Mean leisure trip distance [km] 6.79 8.50 
Share of public transport PKM1 [%] 29.8 31.4 
Share of car PKM1 [%] 51.8 51.3 
1) person distance (km) traveled 
 

  

3.2 Disaggregated mode choice results 
In addition to aggregated statistics, many disaggregated statistics of travel demand were compared 
as well. This was done by time of day, socio-economic groups, land used type, sub-regions and 
individual cities.  
 
The following Figure 4 shows mode shares depending on person groups according to their 
different public transport subscriptions. The mode shares shown are based on the total distance 
traveled. The results show that travelers without subscription show a very different mode choice 
behavior than persons who are subscribed. The most significant behavior is shown by persons 
owning a “General-Abo”, a yearly pass that entitles to use unlimited public transport nationwide, 
including rail and local services (bus, tram, boat, etc.). This group travels 80% of their daily distance 
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with public transport. “Verbund-Abo” means owning a regional pass, “Halbtax-Abo” means 
owning a half-price pass for public transport. It is an advantage of microscopic modeling that these 
different market segments can be distinguished in the evaluation, but more importantly, their 
specific behavior can be replicated by the model. It should be noted that it is not sufficient to have 
specific mode choice parameters for each group, but that also their home locations need to be 
realistic (subscription owners tend to live close to railway stations) and finally, destination choice 
needs to be calibrated such that subscription owners prefer destinations with high public transport 
accessibility.  
 

    
Figure 4. Mode shares, different types of PT subscriptions (in person km traveled) 
 

3.3 Destination and location choice 
As described in Section 2.3, location choice depends on network conditions (e.g. travel time), 
person specific attributes and the destination’s attraction (e.g. number of jobs in a zone). Figure 5 
shows the work commuter flows in SIMBA MOBi compared to empirical values as provided by 
the Federal Statistical Office.  
 

 
Figure 5. Commuter flows in SIMBA MOBi 
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To obtain a good calibration of location choice, shadow prices, both for OD pairs as well as for 
destinations, were added to the utility functions as described in Section 2.4. OD specific shadow 
prices help to match empirical commuter flows, and to represent the polycentric structure of 
Switzerland with regional characteristics such as locally spoken languages. Destination specific 
shadow-prices allow to meet boundary constraints (e.g. number of jobs at the destination). For 
secondary destinations (shopping, leisure, etc.), no empirical OD-data was available. The national 
travel diary survey (Federal Statistical Office, 2017) was used to calibrate trip length distributions 
for all secondary activities.  

3.4 Public transport network loads and quality assessment 
Figure 6 shows rail passenger volumes compared to counts. In most cases, the error is within a 
range of ± 5%. The main corridors of high demand match the empirical data very well. Calibration 
problems remain in touristic areas of the Alps. Even though the model includes touristic demand 
(as described in Section 2.6), we assume that non-resident demand is underestimated in the model, 
especially in cases where route choice is less dependent on travel time than on the natural beauty 
that can be watched while riding a train.  
 

 
Figure 6. Rail passenger volumes – model versus counts (“HOP” represents the counts) 
 

To assess the model quality for calibration criteria consisting of numerous count data, traditional 
error measures like %mean absolute error (%MAE) and %root mean square error (%RMSE) were used. 
Additionally, scalable quality value (short: SQV, see Friedrich et al., 2019) was also used. The SQV 
ranges between 0 (no match) and 1 (perfect match). It is expressed as: 

   𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆 =
1

1 + �(𝑚𝑚− 𝑎𝑎)2
𝑓𝑓 ∙ 𝑎𝑎

 
(11) 

Where m is the model value and c the counted value. f is a scale factor and depends on the type of 
the counts. The calibration objective was to maximize the number of counts with a good SQV. Table 
5 shows the error statistics for %MAE and %RMSE as well as the SQV for three model statistics 
(passenger volumes at railway stations, passenger link volumes and road counts). Clearly, the 
primary calibration objective was public transportation. In both boardings, alightings and 
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passenger volumes on links, more than 50% of all counts had an SQV higher than 0.9. A small 
percentage (<4%) had an unsatisfactory quality.  
 

Table 5. Error statistics and quality measures 

  boarding+alightings 
at rail stations1 

rail passenger  
volumes2 

road 
counts3 

N  1’143 3’848 2’455 
%MAE  22.2 11.4 20.7 
%RMSE  62.2 20.3 31.3 

SQV 

%excellent, SQV≥0.9 55.6 55.3 35.4 
%good, SQV≥0.85 17.2 22.3 16.8 
%satisfactory, SQV≥0.8 12.5 12.3 15.8 
%sufficient, SQV≥0.7 10.7 7.6 21.7 
%unsatisfactory, SQV<0.7 3.9 2.6 10.4 

1) f = 15’000; 2) f = 10’000; 3) f = 10’000   
 

3.5 Time-of-day dependent network volumes 
An important feature of agent-based simulation is high resolution of time. As a result, traffic 
volumes for any time of day over 24 hours is produced as output.  Figure 7 shows the time-of-day 
distribution of passengers entering a train at a selected (medium-sized) station. Simulation results 
are compared to actual rail counts. The comparison shows a good fit at this level with the peaks 
being slightly lower in MOBi than in the observed counts. Currently a calibration effort is 
underway to further improve time-of-day distributions but at the current calibration level, the 
model is already applied in public transport service planning. 
 

 
Figure 7. Time-of-day dependent travel demand on a selected train station 

4. Summary and conclusions 

A fully functional disaggregate multimodal travel model of Switzerland was developed. The 
model is microscopic through all model steps: from generation to network flow simulation. The 
travel demand module MOBi.plans uses an activity-based approach. It produces individual 24-
hour day plans with exact geographic locations for all activities. Full consistency of time and space 
along the sequence of activities and travel within the 24-hour day plans is achieved for each agent 
based on a novel approach of plan-building and activity scheduling, that uses time budgets. The 
plan-building procedure respects the natural time and space constraints: each trip starts at the 
location of the previous activity; any travel and activity episode in the same day plan can only start 
after the previous episode is finished. This consistency or integrity is a necessary condition to feed 
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the plans into the agent-based traffic flow simulation in the MOBi.sim module, which uses 
MATSim. Using this approach, activity-based demand has been successfully combined with agent-
based traffic simulation and as a result, we have a model stream where each agent reacts to changes 
in transport supply through all model steps: from activity generation, destination and mode choice, 
over tour construction and day planning, through route choice and network flow simulation. The 
model enforces capacity constraints in the traffic flow simulation and capacity-constraint travel 
times are fed back into the agents’ mode choice, destination choice and day planning. As shown 
with selected validation statistics, model calibration reached a level of quality that is expected of 
conventional macroscopic models at a national scale.  
 
We identified the following research areas as important in advancing the methods of agent-based 
simulation: 
 

• Increasing the speed of agent-based simulation using parallelization and high-performance 
computing. 

• A better understanding of simulation noise, variation of model results within ensemble 
runs and convergence of MATSim simulation.  

• The use of mathematical optimization to replace the plan-building heuristic which we 
apply in MOBi.plans. 

• Empirical mobility research of travel demand peaks and the reasons how and when they 
are developing over the day, and methodological improvement of agent-based simulation 
to reproduce the peaks. 

• Extending the idea of agents’ learning based on an individual memory to all steps of 
individual travel demand, especially to the early steps (activity and tour generation, 
destination and mode choice, time choice and plan-building), where the activity-based 
approach involves individual preferences but no yet agent-based learning. 

• Development of consistent mode choice models (trip- and tour-based) across travel 
demand and network simulation. 

 
While we have initiated research projects addressing the research areas enumerated above (Bruno 
et al., 2019; Pougala et al., 2020), our internal model development is also working on improvement 
of usability and work-flow automation, and on computational efficiency. Work is also underway 
on including rail access with car and bicycle to the model. In addition, model elasticities and 
forecasting ability are being tested and analyzed. 
 
SBB shares many software developments with the public in the open source environment. We also 
work with commercial software providers to advance the tools for agent-based modeling. Over the 
past three years, we have seen many improvements of software and methods and hope that these 
improvements will lower the threshold for other organizations to join us on the path towards 
putting agent-based simulation into real-world practice. 
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