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Dynamic Traffic Management (DTM) is moving into a new era. Contemporary DTM focuses 
on the integrated (opposed to isolated) and coordinated (combination of different measures) 
deployment of measures, anticipating on future changes in traffic conditions. Controlling and 
guiding traffic flows by means using measures such as ramp-metering, variable speed limits, 
dynamic route guidance, opening shoulder lanes, providing route information, etc. are the 
core tasks of the Regional Traffic Management Centers (RTMC). In the RTMC, traffic 
operators decide when and which DTM measures are to be deployed in case of recurrent and 
non-recurrent conditions1 
Until now, these decisions are based on the information from available measurement systems, 
which pertain solely to the current state of the network. It turns out that the operators require 
support in order to come up with optimal control decisions, mainly due to the fact that 
prediction the effect of deploying different combinations of control measures to different 
parts of the network is very important, but also a very difficult task, especially (but not only!) 
under non-recurrent conditions such as incidents and special events. 
This is why the Traffic Research Center is developing a Decision Support System (DSS) 
called BOSS. In broad terms, the objective of BOSS is to provide the operators with 
conditional predictions on the future state of the traffic network under their supervision, given 
the current state of the network and conditional on the candidate control scenarios. Using 
these predictions, the operators can more efficiently intervene at the network level by 
deciding which control scenario is to be used. At the present time, two systems are being 
developed: 

1. BOSS on-line, which is actually implemented in the RTMC, and used real-time traffic 
data to provide decision support to the network operator, and; 

2. BOSS off-line, which is used by traffic engineers to prepare candidate control scenarios, 
which are in turn used by BOSS on-line. 

BOSS uses traffic predictions of 1 hour ahead. The system will become operational at the end 
of 2003 in the RTMC De Wijde Blik. 
Given the complexity of the networks to be controlled as well as the large number of control 
scenarios that may be used, using traffic flow models in the on-line simulation of these 
control scenarios will not be feasible due to limited computational resources. This is why on 
behalf of the Traffic Research Center, Delft University of Technology has developed an 
alternative method for the on-line evaluation of these control scenarios. This manuscript 
describes this approach. 
The method that has been developed is referred to as Fuzzy Multi-Agent Case-Base 
Reasoning (FMA-CBR). The system is based on generalizing examples (so-called cases) that 

                                                 
1 Such a scheme is referred to as a control scenario in the remainder of the article. 
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describe the effects of deploying control measures under specific recurrent or non-recurrent 
conditions. These cases may either be represented by real data or synthetic data (from 
simulation). The latter option was chosen in this article, due to the limited data availability at 
the time of writing. It is believed that the system will perform satisfactory with real-data (or 
data from a more refined traffic simulation model) as well. The resulting prediction method is 
called BSES (BOSS Scenario Evaluation System). 
This article is outlined as follows: the second section describes briefly the general problem of 
providing network operators with decision support; section 3 provides a rough overview of 
the different approaches to decision support, in particular focussing on operational systems. 
The remainder of the article focusses on explaining the developed approach and showing its 
workings. The final section discusses directions for future research. 

��	#��!�!��	�������	���	#
+	

This article considers decision support for operational Dynamic Traffic Management, and will 
thus not consider the planning and instalment of measures in order to solve recurrent local 
and network problems. In the Netherlands, these issues are resolved in the Architecture for 
Traffic Management, providing a framework prescribing different phases that eventually lead 
to deployment plans. The framework prescribes how policy related issues are translated into a 
so-called frame-of-reference, which described the desired traffic state (in terms of average 
speeds, queues, waiting times, etc.). The objective of operational traffic control is to control 
the state of the system towards this desired state. The frame-of-reference provides weighting 
factors indicating which parts of the network are to be prioritised, or if on certain parts of the 
network, congestion would be acceptable to the policy-makers. 
Before describing the approach to decision support considered in this article, an overview of 
the overall system architecture of which it is part is given briefly. An essential element is the 
traffic operator, who plays an essential role in regional Dynamic Traffic Management. An 
alternative approach would be the approach where the operator is out of the loop, i.e. where 
the operator only has a supervisory task. 

���	9�������	���:�	

In general, traffic operators in Regional Traffic Management Centres (RTMC’s) have a 
variety of task, amongst which are: 

1. Monitoring the functioning of the relevant subsystems and measures (e.g. is the ramp-
metering installation functioning properly?) 

2. Monitoring the state of the network, recognizing irregularities and other problems, and 
diagnosing their causes (is there congestion in the network that is unacceptable given 
management policies? What are the causes of these problems?). 

3. Setting up candidate solutions to solve the identified problems, choosing the optimal 
control scenario given current and future traffic conditions, and implementing the control 
scenario in practise (e.g. activating the ramp-metering installations in a particular part of 
the network). 
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4. Monitoring the developments in the system given the deployed control scenario: does the 
proposes solution solve the problems at hand? 

5. Informing other actors (operators in other RTMC’s, auxiliary services). 

It is noted that the RTMC operates in a multi-level control framework: at the lowest level, we 
have semi-autonomous local traffic controllers for, e.g., traffic lights or ramp metering. This 
implies that if a local controller is active, it operates locally using only local traffic 
conditions. At a higher level the operation of several local traffic controllers is coordinated 
and synchronized by the supervisory operators in the RTMC’s. 
For the list of operator tasks, especially the state-monitoring (identification of traffic 
problems and problem diagnosis), prediction and control tasks are complicated. This is 
caused by among other things the following issues: 

��Data interpretation problems cause by the large amount information received by the 
operator 

��Lack of insight into the network dynamics, in particular under non-recurrent 
circumstances 

��Diversity and complex interactions between the measures 

As a result of these complications, expert knowledge and experience are often not sufficient 
to adequately determine the cause of the problem at hand, or to determine the most efficient 
control scenario. This is why decision support is needed. 

���	
��:�	��	�	#��!�!��	&������	&*����	

The main tasks of a Decision Support System (DSS) are: 

1. /���	
�
��	
��. The identification task can be further divided into 
a. ���
	��
��. Monitoring describes automatic collecting and summarizing data 

from the monitoring system. The DSS may invoke a dialog with the operator 
to collect additional information. 

b. �
����


. Diagnosis pertains to identification of the cause of the problem, 
given the data collected during monitoring. 

2. %���
�	
��. Prediction or simulation pertains to the conditionally forecasting the 
traffic conditions in the network, given the prevailing traffic conditions, the predicted 
traffic demands, and the candidate control scenarios. The system described in this 
article in particular focuses on this task. 

3. ���

�. This task describes the fact that the DSS will present the operator with the 
control scenario that yields the optimal predicted traffic conditions, as determined by 
comparing the predicted situation with the frame of reference using weight factors. If 
only a limited number of control scenarios are available, this task will be limited to 
ordering the control scenarios given the relative important of the different network 
performance indicators. 

The remainder of the article will be focussed on a system that supports primary the prediction 
task and to a lesser extent advise tasks. First, however, a short overview of currently 
operational DSS’s will be presented in the following section. 
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Several authors have described decision support systems for traffic management, such as 
FRED (Freeway Real-Time Expert System Demonstration), (Ritchie, 1990, Ritchie, Prosser, 
1991, Zhang, and Ritchie, 1994) or the Santa Monica Smart Corridor Demonstration Project 
(Karimi, Gupta, 1993, Rosemann, Tvedten, 1997). Fuzzy decision support systems for traffic 
control have been developed in (Cuena, Hernandez, Molina, 1995, Krause, von Altrok, 1997, 
Molina, Hernandez, Cuena, 1998). 
The TRYS system described in (Cuena, Hernandez, Molina, 1995, Molina, Hernandez, 
Cuena, 1998). is an agent-based system for urban motorway control. The network is divided 
in overlapping regions and to each region an agent is assigned. These agents have to detect 
and diagnose traffic problems in their regions and subsequently suggest possible control 
measures to a higher-level coordinator, taking care of negotiations, and deciding which action 
will be taken. The decision process in the TRYS system is based on knowledge frames, and 
some of these frames use fuzzy logic. 
The paper (Krause, von Altrok, 1997) describes a fuzzy logic control architecture that can be 
applied in existing traffic control systems on a multi-lane motorway with VMS’s. This system 
uses fuzzy logic to incorporate the experience of human traffic operators. 
The main aim of the system presented in this article is to make the process of on-line, real-
time evaluation and selection of the traffic management measures more efficient. To this end, 
fuzzy case-based interpolation was used to evaluate the effects of traffic control measures. In 
that way, a large set of possible traffic control measures for a given traffic situation can be 
rapidly evaluated, and the best control scenarios can then be simulated in more detail using 
microscopic or macroscopic traffic simulation. 

���	����7(����	������!�$	

A common approach to decision support is so-called Case-Based Reasoning (CBR). Case-
based reasoning is the process of solving new problems based on the solutions of similar past 
problems. The main characteristics of CBR distinguishing it from other AI methods 
are(Aamodt, Plaza, 1994): 

��Actual knowledge describing what has happened in the past (domain knowledge) can be 
used directly, instead of using general knowledge of the considered system. 

��After implementing the control scenario, the resulting situation can be added to the case-
base. That is, CBR provides the means for continuous step-wise learning. 

It has been argued that case-based reasoning is not only a powerful method for computer 
reasoning, but also a pervasive behaviour in everyday human problem solving. Case-based 
reasoning (CBR) has been formalized as a four-step process: 

1. Retrieve (retrieve cases from memory that are relevant to solving it) 
2. Reuse (map the solution from the previous case to the target problem, for instance using 

fuzzy reasoning) 
3. Revise (test the new solution in the real world (or a simulation) and, if necessary, revise) 
4. Retain (learning, i.e. store the resulting experience as a new case in memory) 
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In general, CBR starts with a set of cases or training examples; it forms generalizations of 
these examples, albeit implicit ones, by identifying commonalities between a retrieved case 
and the target problem.  

���	����7(���	�!>�	���	��������	���!"��!��	

The advantages of using a case-based approach are clear. However, given the high-
dimensionality of the prediction problem addressed in this paper, setting up a case-base that 
has sufficient coverage is unfeasible. In illustration, the conditions in a network are typically 
described by the period of the day, densities of its links, traffic demands on the network 
boundaries, control measures that have been deployed, and the incident status.  
Consider for instance a situation where 3 periods are considered (morning and evening peak 
hour, and off-peak period); the network is divided into 25 links, and 3 density levels are 
considered (low, medium, and high). This holds equally for the demand levels, describing 
traffic entering the network at 8 locations. We assume that in total 10 control scenarios are 
possible (including no control). Furthermore, we consider the case that one incident may 
occur on any of the 25 links (in practise, incidents may have different levels of severity). The 
size of the case-base that will result from this specification (assuming that the case-base 
includes all combinations of possible states) then equals  25 8 25 243 3 10 2 1.86 10× × × = ⋅  
Clearly, it is impossible to collect and story such a number of cases. Even if the number of 
cases can be reduced, by considering less links, or applying some other form of aggregations, 
the standard case-based approach will thus yield considerable problems with respect to the 
high number of cases (maintenance when network is changed, ability to upgrade to larger 
networks, etc.). 
In this paper, we describe a novel approach which embodies the advantages of case-base 
reasoning while at the same time ensuring that we can cope with realistically sized networks. 
As is presented in the ensuing, this is achieved in two steps: by using fuzzy case-based 
reasoning and by partitioning the network into smaller, interrelated subnetworks. 

1�	3+ 7�%�	��������	��	������!�	�"�����!��	

For the problem at hand, a case (either simulated or measured on a real network) contains the 
following information: description of the situation, including both the state in the network at 
the initial time (average densities on a set of network links referred to as subsubnetworks in 
the remainder), and the conditions at the boundary (inflows and outflow restrictions) of the 
network during the considered time period; the control scenario that was used during the 
period, and finally the result of applying the control scenario in terms of traffic conditions 
(average flows, densities, speeds, etc.) and performance criteria (travel times, fuel 
consumption). 
Due to the characteristics of the control problem at hand, straightforward application of CBR 
to the decision support task sketched here is not feasible. The main reason for this is the 
exponential growth of the case-base, given the requirement that it should be representative for 
most cases that can occur in practical situations. For medium-sized networks, the number of 
possible situations (and thus the number of cases) that can occur is extremely large. 
 



� ������%��4����������0����	��������		��0�����4��"����������� 27�

Case-base 
subnetwork

Selection

Scenario + incident 
conditions

Current 
network 
situation

Selection

Situation 
subnetwork

S
ub

ne
tw

or
k 

�

S
ub

ne
tw

or
k

�

-1

S
ub

ne
tw

or
k

�

+
1

Interme-
diate pre-

diction 
iteration 

step �

Interme-
diate pre-

diction 
iteration 

step �

Intermediate prediction iteration �+1

Convergence?

Prediction

Network 
Boundary 
conditionscases

 

2
�����6�3�������
	���	
������������	��2�������

To resolve the problem described in the previous section, two aspects are introduced into the 
CBR-framework to enable the generalisation of the examples in the case-base. 

1. Fuzzy logic is used to combine different cases in the case-base (F-CBR: Fuzzy Case-
Based Reasoning). By doing so, a precise match between the current situation in the 
network and the example situations in the cases is not required. This approach has been 
successfully applied to small-scale networks (Hegyi et al., 2001). For larger networks, the 
dimensionality of the vector describing the situation in the network still yields too many 
similar combinations that need to be stored in the case-base. 

2. The network to be controlled is divided in � partially independent subnetworks for which 
the aforementioned F-CBR approach can be applied. That is, for each subnetwork C, a 
case-base is established. Except for the situation in the subnetworks itself (the state, 
described by prevailing and future densities), also the outflows to the other subnetworks 
are predicted using F-CBR. 

The � subnetworks are off course interdependent. As a result, the traffic conditions in 
subnetwork C will to a certain extent be dependent on the outflows from subnetworks C ���C. In 
turn, the traffic conditions in subnetworks C � ���� ��� ��	�
��
�� �
� �
�� ��������� �����
subnetwork C. To attain consistency between the predicted traffic conditions and the 
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subnetwork outflows, prediction of subnetwork conditions are iterated until a situation results 
in which all flows are consistent with each other. 
Figure 1 depicts an overview of the approach, depicting its key elements: the case-base, the 
input to the system (control scenario and incident conditions, current state, and boundary 
conditions), prediction for each subnetwork C, and iteration in order to get consistency of the 
flows.  
In the remainder of this section, the key steps to the approach are discussed subsequently. 
First, we will describe the case-base for a subnetwork C; next, the fuzzy case-base reasoning 
approach predicting the subnetworks’ traffic conditions will be described, followed by the 
iterative approach applied to assure consistency between the inter-subnetwork flows. Finally, 
we will discuss the approach to determine the network performance. 

1��	&���!�!���!��	��	�����	���	�	��(���'��:	

It was mentioned that for each of the subnetworks C = 1,...,� case-bases are determined. These 
case-bases contain specific situations that have occurred in the subnetwork, and describe the 
relation between the input of the subnetwork and the output of the subnetwork for these 
situations. These ’situations’ are determined either from real-data or from simulations 
pertaining to the entire network. 
Let ����� denote the prediction horizon. A case for subnetwork C is described by the following 
input characteristics ): 

��period of the day (morning-peak, evening peak, off-peak) 
��current state (i.e. average densities) on all subsubnetworks 1�D�60���01j of subnetwork C at 

time 	 
��average external traffic demands (traffic flowing into the network) and internal traffic 

demands (traffic flowing from the other subnetworks C  to the current subnetwork C) during 
period [	0	�E��pred) 

��average external supply restrictions (for traffic flowing out of the network) and internal 
supply restrictions (for traffic flowing from the current subnetwork C to other subnetworks 
C ) during period [	0	�E��pred) 

��local measures deployed in the current subnetwork C (e.g. ramp-metering, speed-limit 
control) and global measurements deployed in other parts of the network (route 
information) during period [	0	�E��pred) 

��average incident conditions in the subnetwork (location, duration, severity) during period 
[	0	�E��pred) 

and output characteristics *: 

��traffic conditions in the subnetwork and in particular on the boundaries (outflows, inflow 
restrictions) during the period [	0	�E��pred) 

��average performance expressed via Measures-of-Effectiveness (e.g. queue-lengths, travel-
times, delay-times, etc.) during period [	0	�E��pred) 

The case base for subnetwork C thus consist of cases 
 = 1,...,�� that link the input )(�) for 
subnetwork C to the output *(�) from subnetwork C. These cases can be written as rules ��, 
which look like 
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IF period =  AND currstate =  AND demand =  AND supplyrestr = 

AND controlscenario =  AND indicentscenario = 

THEN outflowspred =  AND inflowrestrpred =  AND performance = 

� � � �

� �

� � �

� � � �

� !

? & @

�� � �

��  

 
for 
 = 1,...,��. We have used the tilde-notation to show that the elements in the antecedent 
part of the rule are in fact fuzzy numbers, while the elements of the consequent part are crisp. 
The fuzzy numbers (period, densities describing the current state, demands, etc.) are 
determined based on the (crisp) examples in the case-base. These are fuzzified using either 
bell-shaped or triangular membership functions, the centre of which lie at the crisp values that 
describe a case. In illustration, case (or rule) 
 = 2 may be represented by a time-averaged 
density of 30 veh/km/lane on subsubnetwork C1 and of 20 veh/km/lane of subsubnetwork C2, 
and the average external traffic demand of 3000 veh/h flowing into the subnetwork during a 
specific time period. These values will then represent the centres of the bell-shaped or 
triangular membershipfuncties used to represent the current state and the demand. 
The width of the membership functions is chosen relative to the domain of the respective 
variable, and can be specified by the end-user. 

1��	3�>>*	����7%���	������!�$	��	������!�!�$	����!��!���	���	�	��(���'��:	

To determine which cases correspond best to the current situation, and to combine different 
cases in order to provide a prediction of the traffic conditions and performance indicators for 
subnetwork C, fuzzy inference is used to describe the similarity between the current state 
(period, state, demand, supply restrictions) and the fuzzy antecedent part of case 
, which can 
be reflected by rules as was shown in the previous section. 
For each subnetwork C, this entails the following two steps: 

1. Determining similarity ( )
�

µ )  of the current situation 1( ,..., ) ( )
��

  = =) ���������� !
 with 

each of the cases i in the case-base and 

2. Combining the consequences of the cases using these similarities ( )
�

µ )  to determine the 
total prediction. 

For each case 
, the similarity ( )
�

µ )  (or degree of membership) with the current situation 

(current period, state, demand, etc.) in subnetwork C is determined by considering the mean 
membership of the elements of the antecedent part of the rule, i.e. 

,
1

1
( ) ( )

��

� � � �

��

 
F

µ µ
=

= ∑)  (1) 

where F� denotes the number of elements in the antecedent part of rule 
 for subnetwork C. In 
other words, the mean fuzzy membership was used to quantify the fuzzy ’AND’ operator used 
in the rule-representation shown in the previous section. 
When ( )

�
µ )  has been determined for all rules c.q. cases i, the prediction * = (?,&,@) for the 

conditions in subnetwork C is determined by taking the weighted sum of the consequent part 
of all rules 
, using ( )

�
µ )  as the weights, i.e. 
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1
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�
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µ

µ
=

=

= ∑
∑

) *
*

)
 (2) 

where *��= (?�,&�,@�) denotes the crips consequent part of rule 
 (i.e. the output flows, inflow 
restrictions, and the performance); �� denotes the number of cases in the case-base of 
subnetwork C. In turn, this operator describes the fuzzy ’OR’ operator, used to aggregate 
consequences of the specific prediction rules. 
The approach will yield a conditional prediction of the output (outflow and performance) of 
subnetwork C. The prediction is conditional, since part of the state ) (and thus also the 
prediction) depends on the endogenous demands from other subnetworks C � ��� ����� ��� �
��
supply restrictions limiting the flows to these subnetworks C ���
��
����������
������������
��
approach used to determine consistency of the conditional flows between the subnetworks. 
There are a variety of approaches to determine the cases in the case-base of subnetwork C. For 
instance, real life measurements can be used where traffic demands and traffic conditions are 
monitored using for instance inductive loops. The case-base used in the prototype application 
have been determined using a simulation software. Using this software, network traffic 
conditions for the entire network (so not just the subnetwork) where determined using various 
prespecified input and control settings. For each subnetwork C, the traffic state was 
determined from the simulation results. 

1��	������!"�	��������	���	�!��!�$	����!�����	�����!��	

For each subnetwork, the approach discussed in the previous section computes among other 
things the conditional outflow and inflow restrictions. These predictions are condition on the 
internal traffic demands and supply restrictions for the other subnetworks. In turn, these may 
depend on the outflow and inflow restrictions of the current network. In the end, the solution 
is sought in which the internal traffic demands and the supply restrictions are consistent. 
To solve this fixed-point problem, an iterative scheme was developed. Figure 2 shows an 
overview of the iterative approach to prediction the conditions in the network. Without 
formally deriving scheme stability criteria, it turns out that in practice the scheme converges 
within only a few iterations (less than 10). 
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j < n?

Set iteration = 0, stop criterion ε > 0, relaxation par. 0<λ<1
Set y0 = {y0

(j)} = 0 for all internal demands
Set y0 = {y0

(j)} = c for all internal flow restrictions (c = capacity links)

j = 1

j = j+1

For subnetwork j, determine
• initial conditions x(j) (average densities at subsubnetworks)
• demands / flow restrictions at boundary subnetwork
• control scenario u(j) and incident conditions z(j)

Determine prediction for subnetwork j using fuzzy logic

Prediction output yi+1
(i) for subnetwork j using demands / inflow 

restrictions for networks j’ determined in iteration i

( )′
+ =( j) ( j) ( j) ( j) ( j) ( j )

i 1 j iŷ f x ,d ,u ,z ,y

Determine error between iterations i and i+1and update prediction

+= −i 1 iˆe y y
+ += λ + − λi 1 i 1 iˆy y (1 )y

e < ε?

j < n?

Set y = yi and  j = 1

j = j+1

Determine performance for each subnetwork

Prediction output yi+1
(i) for subnetwork j using demands / inflow 

restrictions for networks j’ determined in iteration i

( )=( j) ( j) ( j) ( j) ( j) ( j ’)
jp g x ,d ,u ,z ,y

Determined overall performance indicators for entire network
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The previous sections have described how the BSES determines predictions of the traffic 
conditions and the performance indicators for the different subnetworks C, as well as an 
iterative approach, which will is applied to ensure that the predictions for the different 
subnetworks are determined such that they are consistent with respect ot each other. 
Predicting the performance of the entire network is then a very easy task: the different 
indicator values determined for the subnetworks C are simply added or averaged in an 
appropriate manner. To do so correctly, the overlap between the different subnetworks is 
taken into account explicitly. With respect to the output, the system will provide both results 
pertaining to the different subnetworks and the entire network. 

2�	�)�����	%&�&	����!���!���	

To test the concept of the system described in this article, an off-line prototype BSES was 
implemented. The system was implemented for verification and demonstration purposes, and 
not for actual application in a RTMC. The prototype consists of the prediction model 
developed in line with the method described in this article, and a simple Graphical User-
Interface (GUI). 
The user of the system must first prepare a number of ’scenarios’ or situations, which he or 
she aims to evaluate. A scenario is defined by the following 

1. The current state in the network, generally determined by the monitoring system (e.g. 
inductive loops), consisting of the densities on the subsubnetworks of the network 
considered; 

2. The predicted network inflows (demands) and network outflow restrictions (i.e. the 
external boundary conditions), in general determined from historic traffic data; 

3. The control scenario (i.e. the settings of the different control / ITS measures available in 
the network, such as ramp-metering, speed homogenizing control, shoulder lanes opening, 
lane closures, etc.) ; 

4. The incident conditions (duration of the incident, severity of the incident, location). 

The GUI allows the user to study the evaluation results, to change the membership functions, 
and to show the network and subnetwork definition. Furthermore, the GUI warns the user 
when the predictions become unreliable because the examples in the case-base are not 
representative for the scenario the user wants to evaluate. If this occurs, the user is advised to 
extend the case-base with additional cases. 
In the remainder of this section, the development of the prototype system, in turns of setting 
up the case-base as well as the first results of verification, are discussed. Note that the 
verification is not intended to show the expected effects of incidents or of deploying DTM 
measures, but aims to show how the system is able to predict network conditions in line with 
the cases in the case-base (in this case stemming from METANET simulations); the 
predictions are at best as accurate as the off-line predictions in the case-base (which can be 
very accurate, when historic data is used!). 
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Amsterdam network

Subnetwork 1 Subnetwork 2

Subnetwork 3

Subnetwork 4

Subnetwork 5

N
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To test the BSES, a case-base was set-up using simulation results of the macroscopic 
simulation model METANET. METANET is a macroscopic traffic flow simulation package, 
primarily aimed at the simulation of large motorway networks (cf. Kotsialos et al., 1999). The 
initial case-base consists of 1464 cases describing different situations (e.g. control scenarios, 
incident conditions, etc.) in the motorway network around the Dutch city of Amsterdam (see 
Figure 3). The network is divided into 5 subnetworks, which are in turn split up into 3 or 4 
subsubnetworks. The definition of subnetworks and subsubnetworks was done manually by 
identifying which links belong to which (sub)subnetwork. The subsubnetworks were defined 
such that they contained at most one major link or a major node. A major link may contain 
several on-ramps, off-ramps, lane-drops, etc. A major node connects two or more major links. 
It is clear that the way in which the network is divided into sub- and subsubnetworks has an 
influence on the accuracy and reliability of the prediction results. Fine-grained divisions lead 
to more accurate results, at the expense of larger case-bases and computation time.  
METANET computes a number of performance indicators, examples of which are shown in 
table 1. It is emphasized that the use of a different simulation model would naturally lead to a 
different set of and values for the performance indicators.  
To make interpretation of the results possible, let us briefly discuss the definition of the 
indicators shown in table 1. The 	�	��� 	������ 	
��� (3) for subnetwork C� is defined as the 
cumulative instantaneous travel times for all links in the subnetwork during the entire 
simulation period. The 	�	���=���
���	
���(4) equals the total time vehicles wait at the origins 
(on-ramps) to enter the network The 	�	���	
���
���	�(2)�is the sum of the total travel time and 
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the total waiting time. The ���
������

�	
�� (1) is defined by the total time spent minus the 
total time spent in case all vehicles drive according to the prevailing speed limits. 
The average travel time is defined by the total time spent divided by the total number of 
vehicles that experience this travel time. For the average travel time, the �������� ���
����

���� (7) is determined. The ������
�"�
�����(6)�is the arithmetic mean speed for all links � 
in the network during the entire simulation period. The ����� =����� ����	�� (5) is defined 
according to the time-average length of the queues at the network origins, i.e. at the on-ramps 
of the network. The 	�	��� �

	����� 	��������� (8) is the sum of the instantaneous travelled 
distances for all time-sliced in the simulation. 
The 	�	��� 
����#� (9) and 	�	��� ��	���#� (10) of the network are defined by the sum of all 
inflows and outflows respectively during the simulation. The ���*��� ��� ���
���
� 
�� 	���
��	#��" (12) is defined by the time-average number of vehicles present during the simulation 
period. This is determined by multiplying the average density "� on a link � by the length of 
the link for each time slice. The ���*������ ���
���
� 
��=����
 (13) is defined by the time-
average number of vehicles at the queues at the origins during the simulation. The 	�	���
���*��� ��� ���
���
 (11) is simply the sum of both. Finally, METANET also computes the 
total fuel consumption (14). 
 

�(��	��	%&�&	����!��!��	�������	���	��(���'��:�	�72	���	���!��	���'��:	�����������	

�������	������!�	�	 ��(���'��:	 �����	
	 A�!�	 �	 �	 �	 1	 2	 ,	
!�
��	� �� ,�6>� ,�.+� ,�6>� ,�6+� ,�+;� 6�,,�
1. Vehicle loss time h 894 301 127 679 634 2108 
2. Total time spent h 3278 5215 2911 8811 8286 22847 
3. Total travel time h 2960 4983 2750 3492 3029 14837 
4. Total queuing time h 318 232 161 5319 5258 8011 
5. Mean queue length veh 19.55 9.78 6.78 202.62 221.38 81.06 
6. Mean link speed km/h 90.95 88.89 92.70 85.11 90.47 89.80 
7. Mean vehicle speed km/h 78.26 93.39 94.86 80.06 78.77 86.80 
8. Total distance travelled (× 103) km 231.2 465.2 260.7 279.5 238.5 1475.2 
9. Total inflow veh 22250 30411 19221 22809 17676 95552 
10. Total outflow veh 20897 35642 19546 24624 14165 98768 
11. Total number of vehicles veh 13111 20861 11643 35242 14165 98768 
12. Number of vehicles in network veh 11840 19931 10999 13967 12114 59346 
13. Number of vehicles in queues veh 1271 930 644 21275 21031 32042 
14. Total fuel consumption liter 20853 36302 20689 32394 29307 117858 

 
Table 1 shows the prediction results for regular circumstances, i.e. no incidents and no 
control measures. The table shows the predicted performance indicators for the different 
subnetworks 1-5, as well as for the total Amsterdam network. The table also shows the 
weights that are assigned to the different subnetworks. For instance, it shows how subnetwork 
2 is assigned a larger weight than the other subnetworks, indicating the (hypothesized) high 
importance of that part of the network. Subnetwork 4 has a lesser importance, which is 
reflected by the smaller weight. In practical applications, the weights will stem from the 
frame of reference discussed in the introduction. 
Another example is table 2, which shows the BSES prototype prediction results of applying 
ramp-metering on part of the Amsterdam network. In this particular case, the scenarios 11-14 
represent �
������	��������	��
���
�		
��
, i.e. which ramp-meters are operational in different 



� ������%��4����������0����	��������		��0�����4��"����������� 35�

parts of the network. In scenarios 11 and 12, all on-ramps to the main arterial of subnetwork 4 
(see figure 3) in respectively the North-bound direction and the South-bound direction are 
metered; scenario 13 describes the case where all on-ramps of subnetwork 4 are metered. 
Scenario 14 describes the case where only 1 on-ramp in the Northbound direction is metered. 
The results shown in table 2 pertain to the entire network. 
 

�(��	��	9"��"!�'	��	%&�&	����!��!���	�����!(!�$	���	�������	��	����7�����!�$	

������	������!��	 &�����!�	!���)	 	
@����������	��!���!�	 �	 ��	 ��	 ��	 �1	 	
@��!��	 BC��7DC��	 BC��7DC��	 BC��7DC��	 BC��7DC��	 BC��7DC��	 	
���!�(!�!�*	 ��B1=	 ��B�<	 ��=D�	 ��=<B	 ��=D1	 ��!�	
Vehicle loss time -1805 -1806 -1686 -1687 -1799 h 
Total time spent 18443 18463 18320 18340 18437 h 
Total travel time 11308 11316 11196 11204 11303 h 
Total queuing time 7134 7146 7123 7135 7133 h 
Time stamp 0.25 0.25 0.25 0.25 0.25 h 
Mean queue length 87.6 87.8 87.4 87.6 87.6 veh 
Mean link speed 89.8 89.8 90.1 96.1 89.8 km/h 
Mean vehicle speed 85.5 85.5 86.5 86.5 85.5 km/h 
Total distance travelled 966464 967171 967312 968018 966486 Km 
Total inflow 74691 74768 74722 74799 74692 Veh 
Total outflow 76208 73194 76216 76202 76208 Veh 
Total number of vehicles 73772 73852 73281 73361 73749 Veh 
Number of vehicles in network 45234 45266 44787 44819 45214 Veh 
Number of vehicles in queues 28537 28585 28493 28541 28535 Veh 
Total fuel consumption 93109 91389 91400 91479 91312 Liter 

 
 

�(��	 ��	#!��������	(��'���	 ������!�	 �	 �����������	 ���	 ������!�	 <	 �!��!����	 �!����!���	
���	��(���'��:�	�72	���	���!��	���'��:	����*	"�����	���E���	��	>���	���	���'��	

#!���������	������!��	�	���	<	 ��(���'��:	 �����	
	 ��!�	 �	 �	 �	 1	 2	 ,	
Vehicle loss time h   -556 1 1 -455 
Total time spent h  -4 -781 4 38 -276 
Total travel time h  8 -470 2 6 -179 
Total queuing time h  -12 -311 1 32  
Time stamp h  -0.5 -13.1 .0.05 1.35 -1.84 
Mean queue length veh  -0.02 4.01 -0.01 0.02 0.61 
Mean link speed km/h  0.01 16.39 -0.02 -0.01 2.02 
Mean vehicle speed km/h   94.86 80.06 78.77 86.80 
Total distance travelled km 3 833 8329 101 485 9751 
Total inflow veh  38 -31 -6 -4 22 
Total outflow veh  169 385 23 52 508 
Total number of vehicles veh  -15 -3123 14 152 -1818 
Number of vehicles in network veh  33 -1878 9 25 -1103 
Number of vehicles in queues veh  -48 -1245 5 128 -715 
Total fuel consumption liter  28 -278 7 90 -51 
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The table shows predictions of total loss-time, total travel time, average vehicle speed, 
average waiting times, etc. As mentioned earlier, the system also indicates the reliability of 
the predictions: when the situation to be predicted is too dissimilar from the cases in the case-
base, the system will warn the user and advise to add cases to the case base that better reflect 
the current situation. From table 3, it can be observed that in general, deployment of ramp-
metering has a beneficial effect on traffic conditions on the main-roads. Given the expected 
effects and the effects predicted by BSES, we conclude that the predictions are plausible.  
As a final example, table 3 shows the difference between the reference situation (see table 1) 
and a situation in which an incident occurred on one of the links on subnetwork 3. Clearly, 
the traffic conditions in subnetwork 3 worsen as a result of the incident as is shown by the 
different performance indicators. The incident also has a small effect on the other parts of the 
network, in particular on subnetwork 2, but also on subnetworks 4 and 5. 
It is finally mentioned that the different tests show that the system converges within only a 
few iterations (less than 10). As a result, it is able to compute a prediction within less than 
one second on a P-III (1GHz). 

2��	��������!"�	����*�!�	

The predictions determined by the BSES system have been compared to the results of a 
METANET simulation. It turns out that the predictions made by BSES are in line with the 
predictions of METANET. However, the time BSES needs to compute a prediction is much 
less than the time needed to do a METANET simulation (factor between 30 and 3000, 
depending on the mode of simulation of METANET), showing the potential for the system to 
be applied in an on-line system setting. 
It is clear that the accuracy of the BSES predictions is directly determined by the accuracy of 
the underlying METANET model simulation, and that in fact verification only proves that the 
system is able to reproduce the predictions of the METANET model. However, the results 
obtained so far indicate that the system work equally satisfactory if the case-base is filled with 
either real-life data or with results of more accurate simulation models.  

<	�������!���	���	������	��������	

This paper describes a new approach to the on-line prediction of the effect of control 
scenario’s under a variety of circumstances in the network. The paper describes the developed 
approach, which is based on combining fuzzy logic, case-based reasoning, and multi-agent 
approaches. The main advantages of the approach are the speed of computation (compared to 
using traffic flow models), the ability to use actual knowledge directly (rather than general 
knowledge or simulated data), and the ability to learn from previous experiences (���	
����
�

	���#

�� �����
��). The former is of paramount important to large-scale applications in 
Regional Traffic Management Centres.   
It turns out that the system is able to very quickly produce predictions on the impact of 
different control scenarios to the traffic operations in the network, and can thus support 
operators in their decision tasks in a real-time decision environment. These predictions appear 
to be in line with the expectations regarding the effects of traffic management measures as 
well as with the control simulations used to test the system. It can therefore be concluded that 
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the system indeed functions properly and provides useful information to the anticipated users, 
i.e. the operators in the RTMC’s, 
Future research will be aimed at more rigorous testing of the system and its reliability. When 
this test phase is finished, the system will be implemented in the decision support 
environment BOSS within due time. From that point onwards, experience will be gain with 
real-life decision support to operators in RTMC’s. 

 �:��'���$������	
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