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In recent times there has been increasing interest in modelling policies to limit impacts of air
pollution due to motor vehicles. Impacts of air pollution on human health and comfort
depend on the relationship between the distribution of pollutants and the spatial distribution
of the urban population. As emissions, weather conditions and the location of the population
vary with time of day, day of month and season of the year, the problemis complex.

Travel demand models with activity-based approaches and a focus on the overall structure of
activity/travel relations, not only spatially, but temporally can make a valuable contribution.
They are often used to estimate emissions due to the travel patterns of city populations but
may equally be used to provide distributions of urban populations during the day. A case
study for Melbourne, Australia demonstrates the use of activity data in the estimation of
population exposure. Additionally the study shows some marked differences in activity
between seasons and even greater the differences in effect of that activity on exposure to air
pollution. Numbers of cities will have seasonal pollutant patterns similar to Melbourne and
otherswill benefit from exploring such patterns.

1. Introduction

Motor vehicles contribute heavily to the urban air pollution load in developed countries.
Estimates for Melbourne Australia, a city of 3.5 million people suggest that, 83% of CO, 63%
of SO,, 41% of VOC and 16% of PMyp emissions in 1996 were due to motor vehicles.
Numbers of policies to limit emissions and guidelines for permissible emission levels have
been proposed or put in place over time. For example, European air quality guidelines
specified a threshold of 150 micrograms per cubic meter of NO, from urban traffic per day
(WHO, 1987). Transport planners and modellers are increasingly called upon to assess the
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effectiveness of such policies. Models have been used directly to measure the implications of
a variety of demand management strategies to lower emissions due to motor vehicles. Even
where studies have had some other major purpose, emission implications are frequently also
produced due to the degree of interest in such environmental impacts shown by both
community and government. An Australian survey in 1997 showed urban air pollution as the
environmental issue of greatest concern to urban citizens.

The majority of such studies consider the efficiency of policies in limiting emissions; they do
not usually address effectiveness in limiting air pollution. Nor do they go on to measure the
impacts of pollution. It is assumed that less emissions will mean less pollution and in turn
less impacts. However these relationships are neither direct nor linear. The aternative with
the lowest resulting emissions may not have the lowest impact on the population. Pollution is
related to emissions via the mechanisms of the urban air shed. Concentrations vary across the
city dependent upon the weather. As concern about air pollution relates to its effects on the
natural, built and, in particular, the human environment, the spatial distribution of pollutionis
very important.

Urban air pollution can damage buildings, limit growth of city vegetation and impact on city
amenity for both residents and visitors. Economic consequences range from lowering housing
values to discouraging tourism (Smith, 1997). However of major concern is the impact of air
pollution on the health of the population. Health effects which arise from exposure to air
pollution can be classified as (1) irritation and annoyance, (2) loss of organ functions, such as
reduced lung capacity, and (3) morbidity and mortality (Stanners and Bourdeau, 1995). Some
of these effects can be minor and reversible, while others develop gradually into irreversible
chronic conditions. The respiratory system and the eyes are the main organs affected by air
pollution, while systemic effects may also result. Where interest in human health and comfort
is uppermost, the spatial distribution of the urban population must be considered in
conjunction with the pollutant distribution for proper assessment. As emissions, weather
conditions and the location of the population vary with time of day, day of month and season
of the year, the problem is complex.

While transport researchers have been developing emissions models, researchers in other
disciplines have been devel oping various exposure models. These combine microenvironment
concentrations with individual time-activity patterns and extrapolation to the entire
population to give population exposure distributions (Sexton and Ryan, 1988). This paper
begins by considering issues in modelling exposure with reference to such models. It then
addresses modelling city-wide activity patterns with reference to the Victorian Activity and
Travel Survey (VATS). VATS collects information on daily travel and out-of-home activity
of household members in the Melbourne metropolitan area. It is based on a survey of 20,000
households and complements the census data collected by the Australian Bureau of Statistics
(ABS). A case study for Melbourne is presented to show the advantages of jointly modelling
emission rates and distribution across the city, then distribution of air pollution, via an urban
airshed model, and finally population exposures based on activities.

Seasonal, as well as time of day, differences in impacts of air pollution are also considered.
Most travel models whether activity-based or using traditional approaches consider time of
day differences in travel and a few distinguish weekend. However there has been less
attention to modelling differences across seasons of the year.

Y et in the great magjority of the worlds cities, weather, and hence the airshed, differs with time
of year and most also see changes in the activities of the urban population with season. More
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significant than the changes in activity are the differences in effect of that activity and the
resulting emissions. The mgjor pollutant hazards vary markedly between summer and winter.
Thus seasonally sensitive models can be of value in aternative measures to limit pollutant
impacts.

2. Estimating exposure

Exposure as a general term has been used in a variety of ways to indicate the degree of
contact between atarget object and a pollutant (Duan, 1991). In the context of the impacts of
air pollution to humans, exposure is normally defined in terms of an individual, a population
or an area.

The potential exposure concentration E([x,y], t) of an individual is equal to the concentration
of a specific pollutant which may vary in time t and in space [x,y]. The potential exposure
concentration E([x,y], t) is normally expressed in ppm (parts per million), ppb (parts per
billion) or mg / m®. If each person p moves through space and time such that the location of
person p can be defined as a function of timet, [x,y], = location ,, (t). If this function can be
specified, the actual exposure experienced by person p during a time period T can be defined
as

E, = jT E(location, (t), t)dt O
An extended way of analyzing exposure is to define a threshold concentration 7 such that only
levels exceeding this threshold are considered. This measure magnifies the risk associated
with levels that exceed the alowable threshold. Thus, the modified equation appears as

E, = L iff (E(location, (t),t) > 7, E(location, (t),t),0)dt @
Both the preceding equations assume that the full dosage of the pollutant enters the recipients

body. If we take into account the intake rate i, (t) of person p expressed as a function of time
then the actual total pollutant uptake of a person p can be expressed as

U,= Lip(t) x E(location, (t), t)dt ©)

If exposure of a population in a given area A is desired, then the population in A at any point
in time can be expressed as P(A, t). As a consequence, the measure of the impact of an air
pollutant to the people in area A changes to

|, = ” P(At)x E(A t)dtdA
AT (4)
For grid-based data sets, the equivalent formulation is

I,=>. Y population, x concentration,
geAteT (5)
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For example, the total daily exposure to ozone received by the population of a city can be
estimated by computing the 24-hour sum of the product of the hourly ozone concentration and
hourly population distribution.

Unfortunately, the above exposure metric suffers from two practical problems:

1. Thefunction locationy(t) is difficult to specify without actually tracking the movements of
asignificant sample of the total city population. The habitual use of a static residential
population oversimplifies the exposure value which should reflect the movement of
people to and from a given area;

2. The potential exposure concentration E, the pollutant concentration in a specific
microenvironment (i.e. inside a car, inside a bedroom or office, on the pedestrian strip,
etc.) may be related to, but not necessarily equal the more readily available ambient air
pollution concentration. Thus, most estimates of outdoor pollution exposure fail to
account for the fact that up to 95% of activities are held indoors.

Models have addressed these issues in a number of ways. Jensen (1998) describes a model for
estimating population exposure based on hourly time series of ambient pollution levels for
three microenvironments separately: residences, workplaces, and streets. For the residential
environment, differences in exposures between various population groups categorised by
gender and age can also be estimated. The model adds a geographic dimension by taking
advantage of GIS, digital maps, and administrative databases. A selected urban area of 1150
inhabitants and 550 addresses was used for a case study. This model addresses the second
issue but requirements of ambient pollution measurements preclude application over a large
city with varying pollution levels.

Freijer et. al. (1998) describes AirPEXx (air pollution exposure), a mathematical model that
estimates the inhalatory exposure of humans to air pollution. It is used to assist in assessing
the impacts of proposed hedth policies. The model quantifies individual population
exposures using data from air quality time series and activity pattern surveys. A sample
application studied the exposure to ozone of the Dutch population in the summer of 1991.
This study models area wide exposure addressing issue one but times series air quality data
did not provide the detailed variations in concentration required by issue 2.

The US-EPA’s Hazardous Air Pollutant Exposure Model for Maobile Sources (HAPEM-MYS)
was used to show the effect that emission controls have had in reducing CO exposures in the
US in recent years (EPA, 2000). The HAPEM-MS calculates exposures on a seasonal basis,
for different demographic groups, for each hour of the day, for a single calendar year. The
HAPEM-MS is important to the EPA's Office of Mobile Sources for evaluating human
exposures to motor vehicles. Some of the results show that reductions in both ambient
concentrations of CO and average personal exposure in Denver, Colorado have occurred over
the last ten years. This model differs from the two mentioned above, and most exposure
models, by actually linking exposure to motor vehicle use. Exposure models usually just
measure exposure to pollution. However HAPEM-MS is designed to link measured broad air
quality outcomes resulting from broad changes in vehicle travel. It does not directly link
impacts of specific policy on travel, through to exposure.
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2.1 An activity-based approach

Activity data, analysis and models should be considered for addressing the two issues
identified above in relation to exposure. Additionally such models were designed to estimate
travel demand. The mechanics behind the scheduling and sequencing of activities and trips
have benefited from activity-based approaches and a focus on the overall structure of
activity/travel relations, not only spatially, but temporally as well. Activity models are thus
particularly suited to linking activities leading to emissions, such as using a car to make a
morning trip, with exposure to pollution later in the day due to the sum of individual
activities.

While in the context of exposure studies the term activity data is used for average time use
data for population, the discussion here addresses the application of disaggregate activity data
following individuals throughout the day. The Victorian Activity and Travel Survey (VATS)
provides such data. Since the survey covers all 365 days of the year seasonal variations in
travel and activity patterns can be observed. On average, about 5,000 households respond to
the survey each year. Household details, personal details and the activities undertaken at
“stops’ during aday of travel are recorded. Thisyields atotal of approximately 12,000 person
records and 50,000 stop records per year (TRC, 1997).

VATS data has already been applied to modelling daytime populations, see, for example,
Roddis and Richardson (1998). This has been done in response the need for a more realistic
description of population distributions. Applications requiring these include: more accurate
transportation planning, environmental impact analysis, disaster planning and economic
development planning (Fulton, 1984). For many urban planners and transport professionals,
the perception of population distribution is home-based. That is, the distribution is assumed
static and is described by where people live based on the census data. While this may be
adequate in some contexts it is particularly unsuitable in others. Census data gives the late
night urban population: “people staying under your roof the night of ...”. This is a
particularly bad time for pollution exposure estimates since late night pollution is usualy low
and the population is indoors. The stop records collected in the VATS can be used to provide
more accurate population distribution estimates.

As depicted in Figure 1, the data gives the exact locations, as well as the times of departure
and of arrival, where a respondent has, in travel terms, stopped. The information allows the
estimation of a movement trajectory over time and space for each respondent. The vertical
lines indicate the times during which the respondent has remained stationary, whereas the
dotted lines represent the estimated routes that the respondent has taken to traverse between
locations. The actual paths which the respondent takes to travel between these locations are
not known, but they can be either approximated by straight lines, the shortest paths or more
sophisticated network models. There are two major issues involved in estimating the
population distribution from the set of sample trgjectories. One is how the distribution is
measured. The other is how the population isinferred from the sample.
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Figure 1. An Indicative Daily Movement Trajectory for two VATS respondents

Measuring the Population Distribution

For exposure estimation, the measurement of interest is the number of people in aregion at a
given instance in time. In the ideal situation where the actua trajectories of the entire
population were available, such a measurement would be very straight foreword and involve
counting the number of trgjectories intersecting the plane of interest in the time-space system
as shown in Figure 2. Furthermore, the measurement could be made for spatial regions of any
size and delineation. However, the redlity is that only the trajectories of a relatively small
portion of the population are available. That number becomes still smaller when data is to be
segmented by season. Any estimates drawn for the population from the sample implies
Inaccuracy. In addition, the uncertainty in people's travel paths also introduces errors into the
result. These sources of inaccuracies need to be taken into consideration when choices are
made about the level of spatial scale to measure the population distribution. A suitable level
of aggregation will smooth out the variances in the distribution and thus reduce the effect of
the inaccuracies inherited in the methodol ogy.
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Figure 2. Plane of Interest from Time Instance of Interest and Spatial Division of Interest

Inferring from Samples

As each year the respondents in VATS represent only less than 0.5% of the population,
estimating the movements of the remainder of the population becomes difficult. One way isto
model and to simulate all the travels made by all individuals. The approach would require a
large amount of data, which can not be provided by VATS aone, and, more importantly,
established theories and models of activity patterns. However, as research in activity-based
modelling has been very fragmented and a unifying framework remains missing (Ettema and
Timmermans, 1997), this approach to estimating population distributions has yet to become
applicable.

A much simpler approach is to expand the sample directly to the population size using
weighting factors (Roddis and Richardson, 1998). The approach is equivalent to multiplying
the movement tragjectory of each respondent to many copies to represent the trgjectories of the
un-surveyed population. The sample and the multiplied trajectories together form the basis of
the population measures. This approach thus assumes that each respondent represents a group
of population and that the group has the same activity-making behaviour as the respondent.
VATS holds weighting factors of the type typically used to expand the sample date to produce
population estimates (Richardson et a., 1995). This approach was used in the case study
below with a further refinement of alowing variations in choices of destinations in the
multiplied trajectories.
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3. A Melbourne case study

VATS data was used to create snapshots of the population count in each census collection
district (CCD) in Metropolitan Melbourne. These snapshots were taken at every mid-hour of
a 24-hour day. Aggregation to smooth accuracy in the distribution, as described above,
resulted in initial analyses along spatial and temporal lines providing estimates of hourly
population at local government areas level. Melbourne has 74 local areas. It should be noted
that the results reported are early findings from a suite of models being built to link the
activities of the population with urban air pollution due to emissions from mobile and
stationary sources. household, industrial and biogenic. The emissions data come from a
traditional land use transport model, calibrated using season emissions data rather than the
planned activity model. Future analyses are expected to relate the types, duration and location
of activities and the generation of travel hence emissions. Time-of-day, day-of-week and
season-of-year emissions would then be available for pollution distribution estimation.
Extended activity analysisis also expected to identify the proportion of the population that are
actually exposed to the different pollutants at any given time. This process may require more
detailed activity data. In the meantime, bounds on the indoor-outdoor ratios based on other
studies are used to adjust exposure levels. For example, smog pollution indoors is expected to
be significantly lower than outdoors so numerical estimates will have to be adjusted
accordingly. However, it is unclear whether relative estimates would change significantly.

To incorporate indoor-outdoor variations, two parameters can be introduced. First, let o be
the probability that a person isindoors and let 3 be the ratio of the indoor concentration of the
pollutant to its corresponding outdoor concentration. Note that the effective correction factor
for exposureissimply ofy +1 - .

In genera, the values of oo and B varies with each individual, as well as time and location.
Values of observed 3 for ozone have shown variations between 0.1 to 0.65 (Freijer et. d.,
1998; Isukapalli et. a., 1999). Jensen (1998) reports that the probability that a person is
indoors is between 80% to 90%. Without additiona information, there is no aternative but to
apply a constant . and 3 for all individuals, at al times and locations. Thus two bounding
conditions can be defined, (1) where oo = 0.8 and B = 0.65, and (2) where . = 0.9 and B = 0.1.
This would result in correction factors of 0.72 and 0.19, respectively. Equally important to
indoor-outdoor variations are seasonal variations athough there has been far less research
emphasis on these.

3.1 Seasonality and weather

In the great majority of the worlds cities, weather, and hence the airshed, differs with time of
year and most also see changes in the activities of the urban population with season. Even
Melbourne, with a temperate climate subject to neither winter snows nor summer monsoons
displays differences. Seasonality would then be an important consideration in assessing the
air pollution implications of travel demand management strategies.

Two of the three mgjor air pollution situations that occur in most European cities are:
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* Winter-type smog by sulfur dioxide (SO,) and particulate matter (PM) measured by the
black smoke or by gravimetric methods, and

* Summer-type smog by ozone (O3) resulting from emissions of VOCs and nitrogen oxides
(NOX) (Stanners and Bourdeau, 1995).

Numbers of cities will have seasonal pollutant patterns similar to Melbourne and others will
benefit from exploring such patterns. It is hoped that this work will stimulate discussion of
this extremely complex problem among the travel modellers now charged with assessing air
pollution.

Weather conditions, particularly temperature, wind speed and wind direction, influence
ambient pollution levels. During summer, increased 0zone concentrations are associated with
warm temperatures and stable atmospheric conditions. Temperature inversions usually occur
in winter and autumn and can last a few hours or a few days. These inversions can lead to
episodes of high airborne particle pollution (EPAV, 1998a).

o i
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Figure 3. Monthly temperature extremes for Melbourne

Melbourne enjoys a pleasant maritime temperate climate with warm summers and chilly
winters. Summers have very few hot days with respite coming from cooler evenings and 7 to
9 days of rain each month. Winter brings some frost but no snow and ice. Winter
temperatures can drop 2 to 5 degrees Celsius over night. There are about 10 to 16 days of rain
bringing 50-60 mm of rain each month. Figure 3 shows the average monthly temperature as
recorded by the Bureau of Meteorology for 1999 (BOM, 1999a). The chart shows that the
highest temperatures occur in December-January while the lowest are in June-July. Small
variations in the monthly minimum temperatures and large variations in the maximum
temperatures mean that summer months can still be cold while winter months are rarely very
warm. This difference has special significance in the emission of carbon monoxide, volatile
organic compounds and particulates and in the production of ozone and smog.
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Figure 4. Summer and winter wind patterns for Melbourne
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Winds are the main method of removing or dispersing air pollutants from an area. Under calm
conditions, with low wind speeds, this dispersion does not occur and pollution concentration
builds up. Figure 4 shows the wind roses for Melbourne at 9 am and 3 pm of a typical
summer and winter day (BOM, 1999b). Wind roses summarise the occurrence of winds at a
location, showing their strength, direction, and frequency. The percentage of cams is
represented by the size of the centre circle. Each branch represents wind coming from that
direction, with north to the top of the diagram. The branches are divided into segments of
different thickness, which represent wind speed ranges from that direction. For example, the
thinnest segment may represent winds between 1 and 10 km/h. The length of each branch
segment is proportional to the percentage of winds in that speed range, blowing from that
particular direction.

Summer mornings are usually calm with light winds expected from virtually all directions
while in the afternoon, moderate to strong winds are expected from the south and southwest.
During winter, days are usually calm with moderate winds expected to come from the north in
the morning, and from the north and west in the afternoon. These wind patterns imply that
pollution tends to remain more stationary during winter than in summer increasing the health
risk for the population of Melbourne.

3.2 Seasonal pollution

The major pollutant hazards vary markedly between summer and winter. The major sources
affected by seasonal variations are domestic and commercia fuel combustion, lawn mowing
and barbecues (EPAV, 1998b). In summer, a major concern is volatile organic compounds
(VOC) concentration. Summer smog produced in this manner presents dangers to both health
and amenity. In contrast, in winter, particles in the atmosphere are the major concern. PM g
emission could be doubled and PM,5 tripled in a typical winter day compared to a typical
summer day. These increase susceptibility to lung disease and cause deaths in the vulnerable
sections of the population, the very old and the very young. Additionally there are significant
costs in lost productivity dueto illness in the working population.

Table 1. Seasonal variation in total daily emissions (tonnes per day)

Pollutant Summer Winter
Carbon monoxide 1689.0 2164.0
Oxides of nitrogen 227.0 246.0
Particulates (PM 1) 216.0 266.0
Particulates (PM ) 90.1 124.0
Sulfur dioxide 45.0 459
Volatile organic compounds 392.0 654.0

The winter months also produce significantly higher daily emissions of carbon monoxide,
oxides of nitrogen, particulates (PM1o and PM;s) and volatile organic compounds (VOC)
compared to summer, as shown in Table 1 (EPAV, 1998b). Thisis primarily due to increased
wood burning for heating and cooking, lawn mowing, and other domestic activities. The
seasons appear to have no significant effect on the emissions of sulfur dioxide (SO,).
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Figure 5. Seasonal comparison of hourly average NO2 concentration

Figure 5 shows the hourly average concentration of NO, for the months of January (summer)
and July (winter). The chart shows significantly higher levels of NO, in July from 6 am to 9
pm. The troughs occur during the day, between 7 am to 7 pm for winter and 5 am to 9 pm in
summer. Thus, between 10 pm and 3 am, summer and winter levels remain relatively the
same. The lowest levels are achieved at around 1 pm while the highest levels occur at around
7 pminwinter and 9 pm in summer.
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Figure 6. Seasonal comparison of hourly average ozone concentration in Melbourne

As mentioned earlier, the warm temperatures in summer correlate with increased
concentrations of ozone and stable atmospheric conditions. Figure 6 shows a 24-hour
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comparison of the average ozone concentration again for the months of January and July. The
chart shows relatively equal levels of ozone between 12 midnight and 6 am. With the warmer
temperatures in January, the ozone levels reach significantly higher levels, about 30% more
than their July counterparts. While NO, had troughs during the day, ozone had crests between
6 am and 11 pm in summer and between 8 am and 7 pm in winter. In addition, the maximum
levels are again achieved around noontime.

3.3 Activity patterns

As noted Melbourne has a temperate climate. Thus activities are not unduly curtailed by
extremes of weather. Car or public transport travel is not effected by weather events. Even so
there are some marked differences in activities between seasons as evidenced by changes in
the resulting emission levels.
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Figure 7. Seasonal variation in hourly population of Bayside

Using VATS data, a comparison can be made between the seasonal exposure levels between
local government areas with different population movement patterns. Bayside is a
predominantly residential area along Port Philip Bay 14 kms south of the CBD with popular
areas for dining and evening social activities. Figure 7 shows the hourly distribution of
population in Bayside. Dandenong, on the other hand, is aso a residential area aside from
being an important centre for commercial and industrial activities. It lies about 30 kms
southeast of the CBD aong one of the major radial arterials. Figure 8 shows the hourly
distribution of population in Dandenong. Bayside has a residential population of around
80,000 while Dandenong’ s residents number about 126,000.

For Bayside, the significant change in the hourly population occurs at 6 am when the
population starts to decrease because of residents leaving for work. In summer, this decline
continues until 9 am when the population reverses direction with the arrival of vistiors to
Bayside's beach facilities and parks. This increase continues until about 4 pm when the
visitors start leaving Bayside. At 5 pm, the visitor departures are offset by the arrival of
returning residents as well as the dining public. At around 9 pm, the population declines again
with departure of evening visitors. In winter, the morning decline continues until about 2 pm
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with the arrival of the residents. The increase continues well into the night with more evening
visitors staying longer than during summer.
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Figure 8. Seasonal variation in hourly population of Dandenong

While the hourly population of Bayside attains its peak numbers in the evening hours between
7 pm and 3 am, the city of Dandenong has its crest during the day between 4 am and 6 pm
when most stores, factories and businesses are open and workers and customers flock to the
city. After 7 pm, the population returnsto its residential levels. The highest hourly population
reaches 157000 in summer but only 144000 in winter, again in contrast with Bayside which
obtains its highest population in winter.
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Figure 9. Seasonal ozone exposure for Bayside and Dandenong

Figure 9 gives a comparison of the seasonal exposure (in thousands of persons - parts per
billion) to ozone of the hourly populations of Bayside and Dandenong. The trends are fairly
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similar although Dandenong exhibits significantly higher exposure levels at al times. Thisis
due to the fact that Dandenong’s period of increased population coincides with the period of
highest ozone concentrations. Summer levels consistently exceed winter levels for much of
the day.
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Figure 10. Seasonal NO, exposure for Bayside and Dandenong

In asimilar fashion, Figure 10 provides a comparison of the seasonal hourly NO, exposure (in
thousands of persons - parts per billion) in the two cities. Both cities exhibit troughs during
the day following the pattern set by NO, in Figure 5. However, Bayside achieves its highest
levels on winter evenings while Dandenong peaks on winter mornings. Bayside's minimum
levels occur around noon while Dandenong bottoms out in the late afternoon. Winter values
are considerably higher than their summer counterparts for much of the day.

So far, the full hourly population has been used in the computation of exposure. As noted
earlier, the results overestimate the actual exposure levels since a large proportion of the
population are actually indoors for most of the time. Bounds for the correct exposure levels
can be obtained by using indoor/outdoor variation parameters based on recent studies. For
ozone, these parameters have resulted in effective correction factors of 0.72 and 0.19. Applied
to the accumulated daily exposure for Bayside of 24.5 (million persons — ppb) for winter and
31.1 for summer, the bounds are (3.3, 17.6) for winter and (4.2, 22.4) for summer. Figure 11
shows a comparison between the levels of estimated and adjusted daily exposure to ozone for
the city of Bayside.
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Figure 11. Adjusted ozone exposure for Bayside (millions of persons-ppb)

Figure 12 shows the daily ozone levels for Dandenong. The estimated daily exposure in
winter is 46.0 (million persons — ppb) and 54.8 for summer. The correction factors produced
bounds of (6.3, 33.1) for winter and (7.5, 39.5) for summer. As in the case of Bayside, the
bounds produced need to be refined to be of greater use in policy assessment applications.
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Figure 12. Adjusted ozone exposure for Dandenong (millions of persons-ppb)
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4. Conclusion and futurework

4.1 New findings

The results reported are early findings from a suite of models being built to link the activities
of the population with urban air pollution due to emissions from mobile and stationary
sources. In order to obtain accurate estimates of exposure for a dynamic population, the type,
location and timing of the activities performed by the population need to be identified to
determine the particular pollutants involved and the conditions of intake. A comparison of the
temporal distribution of population between a residential/recreational area versus an
industrial/commercial location showed that activities not only determine the generation and
timing of trips but aso the participants who are made most susceptible to the resulting
emissions.

Seasonality then adds a new dimension by affecting the frequency and duration of activities
and by changing the weather patterns which provide the mechanism for transforming the
emissions into pollutants and for distributing pollution spatially and temporally. Thus, an
activity-based model of travel demand supported by geographic and demographic data could
provide guidance on issues such as periodic movement of population, indoor versus outdoor
emissions, indoor versus outdoor exposure, and the heath impacts of exposure on age,
gender, and economic status.

Many of the results and techniques described in this paper require further refinement
Additionally there are some fundamental research challenges in progressing the area
Recommendations for further research fall into two broad categories. extending the scope and
accuracy of the work and demonstrating the value of the work.

4.2 Extending scope and accuracy

Dis-aggregation of the population data by activity by time would be needed to allow
appropriate outdoor correction factors to be calibrated and applied. It will be important to
also consider exposure of commuters while traveling. Variations due to seasonality could be
expanded to distinguish monthly, weekday/weekend, and even daily variations in emission
and exposure levels. However such extensions are challenging.

Micro-simulation techniques, which have been widely used to model traffic at the vehicle
level, might be adopted to extend the estimation of exposure to individual-person level and
this research could progress in that direction but all models can only be as good as the data
underpinning them. There are difficulties in obtaining data at sufficient detail for this type of
study from activity surveys, the usual source of activity data.

The problem of obtaining detailed information from surveys is not new but it is possible that
new requirements for detailed activity over a wide area pose sampling problems that cannot
be resolved. The sample size is dependent upon variation in behavior and when the range of
possible activities and their location is expanded that variation calls for larger sample sizes.
When the added requirements for place sensitive information, tied to days of week and
months of year, is added, the sample becomes too large for practical collection of survey
information, even if an unlimited budget was available. Study of sample error and sizing
techniques will be helpful in better understanding the limitations of available information. At
the same time new methods for obtaining activity data or augmenting survey information are



388 Activity Patterns and Pollution Exposure

needed. Tracking broad populations using information from telecommunications systems
such as cell phones or payment systems has been mooted, see for instance Limoges et al.
(2000), but significant difficulties in implementation, including issues of privacy, will need to
be resolved. Meanwhile modeling of the type presented here could play an important role in
pollution impact assessment.

4.3 Spatial and temporal modeling of exposure

Demonstrating the value of spatial and temporal modeling of population exposure is a more
urgent research task than improving model accuracy. Simple results such as those derived in
this study should be sufficient to show the value of measuring variability. While average
exposure across the city, across the day, may be low, people in particular areas, at particular
times, may be exposed to very high levels of pollution. Exposure based on place of residence
underestimates impacts. Estimates using whereabouts during the day are higher because, on
average, work locations are in more polluted aress.

Health threats due to pollution are known to vary with season. Health research studies
incidence of illnessin the population to assess pollution impacts. Measures of exposure levels
may add value to these studies. Including consideration of exposure by season in
epidemiological studies may help in targeting populations at risk.

Governments would like to predict the relative effectiveness of pollution amelioration
measures to best target funding. Unfortunately this is much more difficult than measuring the
effectiveness of greenhouse gas amelioration measures. GHG emissions have the same effect,
no matter where in the city, or indeed where in the world, the source may be. In contrast
pollution varies spatially as does exposure to pollution and the links of exposure to health
outcomes are not yet completely understood. More accurate measures of exposure may help
in establishing links.

It is hoped that this work will stimulate discussion among the travel modelers now charged
with assessing the air pollution implications of travel demand management strategies.
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