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Several researchers have proposed that drivers atojust respond to the vehicle directly
ahead, but also to the second, and even the tfutdth or fifth vehicle ahead. Little empiri-
cal evidence for this hypothesis has however beesepted so far.

We provide empirical evidence showing that drivemes not only reacting on the vehicle di-
rectly ahead, but also the ‘second leader’. Thiséhieved by analyzing vehicle trajectory
data collected by observing a motorway traffic flimm a helicopter. These microscopic
data enable estimation of individual car-followingdels.

The extent to which this multi-anticipatory behavioccurs turns out to be considerable: on
average, the sensitivity with respect to stimuingw from the second vehicle is half the sen-
sitivity of the first vehicle ahead. For some véhitiples, even higher sensitivities to the be-
haviour of the second leader than to the behavajuhe first have been observed. The esti-
mation results show large differences in car-foilogvbehaviour between the different driv-
ers. These differences can in part be explainethéyehicle-type composition of the consid-
ered vehicle triples. Trucks drivers show differeabaviour than person-car drivers; drivers
following a truck show dissimilar car-following baiour than drivers following a person-
car.

Although not being a benchmarking study aimed avigiing the best model of car-following
behaviour, the research presented in this artidleves that including multiple leaders can
improve modelling of driving behaviour considerably
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1. Introduction

In the last years, research has focused on develuproalibration and validation of models
capturing the way in which drivers interact witthet vehicles in the traffic flow. Despite the
increased complexity of the models, few have sutegean providing a real improvement
over the simple models developed in the fifties amtles. For instance, a recent benchmark-
ing study revealed that the most complex traffMlmodels were not able to predict car-
following behaviour more accurately than the reklf simple ones (Brockfeld et al., 2004).
There are many research directions in which impreamss of driving models can be found.
For one, Ossen and Hoogendoorn (2005) establistegdhe inter-driver differences of the
parameters describing car-following behaviour ayasaerable, which need to be incorpo-
rated correctly for a microscopic model to accuyapeedict driving behaviour. For two, it
has been suggested that driver behaviour adaptetprevailing traffic conditions (Dijker
and Bovy, 1998; Daganzo, 2002 and Zhang and Kiri1RMrivers who have been driving
in congestion for a long time may loose motivatiorefficiently follow the vehicle directly
ahead. From a modelling perspective, this wouldyntipat the car-following parameters are
changing according to the history of the driver.

Thirdly, several researchers have suggested thanhgibehaviour cannot be described ade-
quately by just considering the vehicle directlyfiont. Rather, drivers anticipate on traffic
conditions further downstream by considering ndy dine vehicle directly ahead, but also the
vehicle in front of its ‘leader’. For instance, thell known car-following model of Gazis et
al. (1961) was extended by Bexelius (1968) to idelmulti-leader stimuli in the equations
describing the response behaviour of a driver. Meoently, Lenz et al. (1999) extend the
model of Bando et al. (1995) to include multipldate interactions. In doing so, they show
how the reaction to multiple vehicles stabilizes ttynamic behaviour of the model, while
retaining the fundamental macroscopic propertiesheftraffic flow. Moreover, the multi-
anticipative car-following model is able to deseribynchronized traffic flow conditions.
Treiber et al. (2004) take a similar view and egtére Ideal Driver Model (IDM) with multi-
vehicle interaction behaviour.

The aforementioned studies are generally baseatbemrnon-scientific arguments: “... from
everyday experience one knows that drivers oftesede two ore more vehicles ahead.”
(Lenz et al., 1999). Empirical evidence showing thase models indeed provide a better de-
scription of car-following was however lacking.

Recent innovations in the field of data collectitave made it possible to collect detailed,
microscopic vehicle data. Hoogendoorn and Schre(@@®5) describe a system enabling
automated collection of vehicle trajectory datanfran airborne observation platform. The
collected data consist of vehicle trajectories hg\a temporal resolution of 0.1 s and a spa-
tial resolution of a few centimetres.

This contribution focuses on specifying and estintpparameters of a simple two-leader car-
following model using empirical vehicle trajectaieollected from two busy motorways. In
doing so, we investigate if drivers also reacthe second leader (i.e. two vehicles ahead).
We study whether the prediction error reduces,anéther the estimated car-following pa-
rameters (sensitivity and reaction time) are plaeasilt is emphasized here that we do not
aim to establish the most realistic model descglwar-following behaviour, but only aim at
empirically investigating multi-anticipatory carlfmwing behaviour.

In section 2, a short introduction of car-followitigeory will be given. This section is fol-
lowed by a description of the methodology usediemtify the parameters of the multi-leader
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model of Bexelius (section 3) and the data thatugesl to this end (section 4). Section 5 dis-
cusses the estimation results, which is followedhsy conclusions and a description of the
future research directions (section 6).

2. Car-following theory and modeling

A microscopic model provides a description of thevements of individual vehicles. These
movements are the result of the characteristicdrioers and vehicles, the interactions be-
tween drivers, and between the driver and roadachenistics, external conditions and the
traffic regulations and control. In general, twpeyg of driver tasks are distinguished: longi-
tudinal tasks (acceleration, maintaining speedadee-keeping relative to leading vehicle)
and lateral tasks (lane changing, overtaking). Thigribution considers the former.

The termcar-following modelis used here for the general class of dynamic asampic
models describing the longitudinal behaviour ofrieat in relation to the driver(s) in front.
Driver i, following driveri+1, may for instance react on (changes in) theispdmetween the
vehicles, or his or her relative speed. Many motaige been proposed to describe this longi-
tudinal behaviour.

It is beyond the scope of this contribution to pdeva comprehensive overview of all mod-
els. We will focus upon so-called stimulus respomselels (GHR models to be specific) and
the multi-anticipatory generalizations of these eledowards multiple vehicle interactions
due to (Bexelius, 1968). The latter is done for sbke purpose of gaining more insight into
the car-following process by statistical analydisnacroscopic trajectory data.

2.1 Gazis-Her man-Rothery models

Despite the fact that many researchers correctjyeathat more realistic descriptions of car-
following behaviour exist, in this manuscript we@s on so-calledtimulus response models
The main reasons for doing so is the straightfodwstatistical analyses that can be used to
establish the parameters of the model, and theHatthese models are easily interpreted and
understood.

2.1.1 GHR model specification
A well-known car-following model is given by thellmving equation (Gazis et al., 1961):

a()= SO =K (V.(- D= W+ D) )

wherek; denotes the so-callegnsitivityandT, > 0 denotes the reaction time. Equation (1) is
generally referred to as tl&azis-Herman-Rothery (GHR) modahd describes the retarded
or delayed reaction to the relative spegt =vi.; —v; with respect to the vehicle ahead. The
sensitivityk, is generally described as a function of speed tlaadlistance headway:

K, =K’ V(Y 2)
(X (t-T) = x(t=T))
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For the data used in the ensuing of the manus@&ippirical analyses have so far shown no
evidence that a non-constant specification of #wesiivity provides a considerably better
description of the car-following data (Ossen andgendoorn, 2005). In the remainder we
therefore assume that the sensitivity is consiamtng = | = 0). It is recognized here that this
assumption may not be valid when considering varynaffic regimes (free-flow, conges-
tion, saturated flow, etc.), as argued plausiblyBrsackstone and MacDonald, 1999). In the
remainder, data collected during a period of stag-go traffic (with average speeds of 5.7
m/s) are used.

2.1.2 Empirical analyses

The GHR model has been analyzed thoroughly usingreral data. In many cases, macro-
scopic data was used to identify the model paramsiefemongst the more reliable studies
(Brackstone and MacDonald,1999) were those usirggascopic data for model calibration
and validation (see Chandler et al., 1959; HernmzhRotts, 1959; Hoefs, 1972; Treiterer and
Myers, 1974 and Ozaki, 1993).

The calibration of Chandler et al. (1959) model vwasformed using data collected from
wire-linked vehicles to examine the responses t&s8 subjects to a ‘realistic’ speed profile
of a lead vehicle (which varied from 10 to 80 mphyer 30 min on a test track. The analysis
of the resulting data, assuming the presence ofstéinear in both the relative speed and the
distance headway led to two conclusions. Firstht the distance headway contributed little
to the following relationship and hence could beated (producing a sub case of the GHR
model withl = m=0), and secondly, that the sensitivityshowed a high variation between
subjects (0.17+0.74 s) as digd(1.0£2.2 s).

Wire-linked experiments were also performed by Hemnand Potts (1959) to calibrate an-
other special case of the GHR model (with= 0 andl = 1). The experiment was conducted
in 3 tunnels in New York. They found a reactiondirof 1.2 s, and a sensitivity value of
19.8 ft/s.

Treiterer and Myers (1974) used airborne film fgetaf a flow breakdown to monitor the
paths of a large number of vehicles, from whichytbe&tracted the required measurements.
Again assuming that behaviour may in some way fferdint according to what the driver is
required to do, they split their analysis to sefgyaconsider the acceleration and decelera-
tion phases of car-following, determining that tdiffering relationships could exist (accel-
eration and deceleration); for decelerations= 0.7 and = 2.5, for acceleratiom= 0.2 and

| = 1.6 were found to be optimal.

Lastly, Ozaki (1993) used 90 min of data extradredn video film taken of a motorway
from the 32nd floor of a city office building. Thgave a 160-m field of view, and data were
obtained on the passage of a total of 2000 vehittlstiould be noted that with such a small
field of view it would only have been possible tdract a time-series for each vehicle of less
than 10 s.

2.2 Bexelius multi-anticipatory car-following model

Several researchers have proposed that followety not only respond to vehiald directly
ahead, but may also respond to other drivers adiions further upstream or in other traffic
lanes. Following this line-of-thought, a straightfard model incorporating this assumption
is (Bexelius, 1968):
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a () =K, (VLu(t=-T) = y(t= )+, (v (= D= M & D)
= K1Vr(l)(t_Tr)+ Kz\[Z)(t_ T)

In equation (3)k;1 andk; describe the sensitivity with respect to leaddwdhicle directly
ahead) and leader 2 (two vehicles away). Notewahave assumed that the reaction tifne
is equal for both stimuli. The motivation for théstwo-fold: for one, using one reaction time
yields a model that is in line with traditional €aflowing models. For two, in estimating the
model, problems may be avoided since the secomad wesuld in fact be conveying the re-
sponse of leader 1 to leader 2 (i.e. serial cdiogidbetween lagged signals). This is shown
by the model estimation approach verification ie tiext section.

®3)

2.2.1 Multi-vehicle generalization
Equation (3) can be easily generalized to includereaction to multiple vehicles ahead as
follows:

a0=3 K (v, (t=T)=v(t= ) =X 6 ¥(+ D @

For the present study, this generalization is mosyit further. This holds equally for includ-
ing driver response to vehicles in adjacent lamestimuli coming from behind, although it is
generally believed that the latter will be only mirdue to the anisotropic nature of a traffic
flow.

2.2.2 Model stability

The stability of the two-leader model was analybgdexelius (1968). For the linear model,
it can be proven that the car-following is (asyntigtdly) stable if it satisfies the following
condition Bexelius (1968):

K, +4K,

2T < .
(K, +2K,)

(5)

This means that small disturbances tend to dissshen propagating through a vehicle pla-
toon. In the remainder of the manuscript, we wilefly come back to these stability issues
when assessing the parameter estimates.

3. Mod€l identification

This section discusses estimation of the paramefetise two-leader model equation (3) by
multivariate linear regression. The approach thabaken is similar to the estimation of the
GHR model using microscopic data described in OssehHoogendoorn (2005). The data
used for model identification are time-series ddtige speeds and accelerations during a cer-
tain time interval. Since the observations of sasi instants will be correlated, the issue of
serial correlation and its implications is discusses well. Furthermore, verification of the
approach is discussed briefly.
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3.1 Multivariate linear regression and reaction time estimation

The statistical analysis of model (3) using the eitgl trajectory data (Hoogendoorn and
Schreuder, 2004) is straightforward. First, theislehfollowing triples (i-1,-2) are deter-
mined from the data. Secondly, for each vehicléhatriple the location and speed is deter-
mined; for vehiclei (the follower), the acceleratioa is determined from the successive
speed changes. We refer to figure 3 for a coupkxamples.

Next, we will fix the reaction tim&; to a fixed value and determine the data pointsl fise
multivariate regression

ye=at), X(W=¥(-1, (8= V(- D (6)

wherety = hk are the time instants at which the data is avi@lakhe next step is to determine
the regression coefficients of the simple linealtivariate regression model:

Yo = Kl)<t(<l) + K2X¢(<2) +tE (7)

which can be achieved by standard regression tblote that the mean prediction error re-
sulting when using the estimat&s and K,

e=dM=1\%,(y-k £ +&, ) =T, () ®

is a function of the reaction timk. The remaining optimization problem is to find tie&ac-
tion time that minimizes the prediction error, i.e.

T, =argmin, ,, e(T) (9)

This is achieved in a very straightforward way: #reor is determined for all reasonable re-
action times and the one yielding the smallest iptieah errore(T,) is selected. Please note
that due to the temporal resolution of 0.1 s, aniytitudes of 0.1 s will be considered in this
search, i.e. no data interpolation was considarekd analysis.

3.2 Autocorrelation and its consequences

Generally speaking, common sources for autocorogldh multivariate regression are the
omission of explanatory variables, misspecificatddrihe mathematical model, interpolation
of observations (e.g. due to smoothing) and misBpation of the error term. When data are
auto correlated, the autocorrelation-coefficient

P =COV(E, &) (10)

will generallynot be equal to zero
Considering our model equation (7), the errorsrexteuncorrelated but satisfy the following
expression:

€, =PE, +V, Where|p|< ! (11)

wherevy is a random error fulfilling the classical lineandel assumption.
When the errors are auto correlated, the model rneittain linear and the estimates of the
model parameters will remain unbiased as long ag EQ. Howeveryariance estimatesf
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the parameters are known to be biased and undeegst considerably. As a result, the
statistic will be inflated and thieandF tests willnot be suitable
Since it is known that the parameter values aréagek, the autocorrelation-coefficigmtan
be determined as follows (Cochrane and Orcultt, 949

1. obtain the parameter estimates of the multivatiaéar model equation (7);

2. determine the errors, =y, =K, X" =K, X2;

3. determiningp directly by equation (10).

The Durbin-Watson tesfsee Durbin, 1970) can then be applied to testafdstimate of the
autocorrelation-coefficient significantly differsoim zero.

If p#0 we need to transform the linear model to deteengiorrect values for the parameter
variance estimates. Without going into detail, weatl that the following model eliminates
the autocorrelation from the statistical analyses (Cochrane and Orcutt, 1949):

Y = le(}) + sz(f) TV, (12)
with

Y = Y = PYu (13)
%O = X0 —pxX) for i=1,2 (14)

Using the model equation (12)-(14), standard teques from multivariate linear regression
can be applied.

3.3 Estimation approach verification

The estimation approach was verified by using sstithdata. These data were established by
applying the two-leader model using different paggen settings. Furthermore, white noise
was added to the acceleration, affecting speedgpasitions of the simulated vehicles. Fig-
ure 1 shows an example where the estimation apiprioas been applied to synthetic data.
From the verification of the estimate approachuins out that thestimates are unbiased
Table 1 depicts the results from this verificataomalysis. The table shows that the mean ab-
solute error is small, and depends on the variahtiee added noise.

At this point, let us note one might argue thatiradirect multiple vehicle interaction effect
may be present. This indirect effect would be cdusethe fact that leader 1 reacts to leader
2, and thus than the follower reacting to lead#rus reacts to leader 2 indirectly (i.e. by se-
quential application of equation (1)). The veritioa of the estimation approach shows that
this is not the case, and that approach correstlynates the parameter values also in the case
the underlying data stems from a single-leadefaéwing model.
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a(t+0.5) = 0.8048v (1) a(t+1) = 0.2485v(t) + 0.25584v?
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Figure 1. Results from application of the estimatapproach to synthetic data. The data was
generated by application of the two-leader cardwaling model withvy = & = 0.25. White
noise WZS added to the computed acceleration; tdwedsrd deviation of the noise equalled
0.01 m/s.

Table 1. Mean absolute error for parameter estimates using synthetic data to which dif-
ferent levels of noise were applied.

Parameter: T, K1 K>
Value used for simulation: 1.0 0.5 0.0
Error standard dev. Mean absolute error

0.01 0.000 0.008 0.005
0.1 0.029 0.031 0.021
0.4 0.082 0.060 0.041

Table 2. Mean absolute error for parameter estimates using synthetic data to which dif-
ferent levels of noise wer e applied.

Parameter: T, K K>
Value used for simulation: 1.0 0.25 0.25
Error standard dev. Mean absolute error

0.01 0.013 0.015 0.005
0.1 0.067 0.037 0.015
0.4 0.138 0.075 0.035

4. Data collection

To perform the data analysis, vehicle trajectoriadmas collected using a new data collec-
tion approach (Hoogendoorn and Schreuder, 2006y wsi air-borne observation platform (a
helicopter), mounted with a high-frequency digitaimera and frame grabber. Using image
processing software, vehicles are detected fronstle@e and tracked. This yields trajectory
data covering approximately 500 m of roadway slkretibe spatial resolution is smaller than
40 cm, while the temporal resolution is 0.1 s. Besithe trajectories of all vehicles present,
the system also determined the vehicleagths and widthshat can for instance be used to
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determine the vehicle type. Vehicles driving intbobadway directions were detected and
tracked. Only one direction is considered in thmamder of this contribution.
The data were collected during the afternoon peak fat the three-lane A15 motorway to
the South of the Dutch city of Rotterdam. Figureh®ws a subset of the 935 collected vehi-
cle trajectories for a ninety second period. Dutimg entire period in which data was collec-
tion, congestion was heavy.
450
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250
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200

150

100

50

810 820 830 840 850 860 870 880 890
time (s)

Figure 2. Example subset of vehicle trajectorigstfata collected at A15 site. The small dots
represent time instants which are 2.5 second apart.

A total of 535 vehicle triples were selected fortlfier statistical analyses. These triples satis-
fied certain criteria. For one, only triples haweeh considered the composition of which did
not change during the observation period. For te triples have been observed for at least
15 seconds (150 observation points). The triple® een observed for periods ranging from
the aforementioned 15 seconds up to 54 secondsieFgyshows some examples of trajecto-
ries of vehicle triples.
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Figure 3. Examples of trajectories of vehicle tegpl Only trajectories of fixed triples are
considered, i.e. triples of which the compositioesinot change.

5. Estimation results

This section discusses the results of parametenatsdn of both the single-leader model
equation (1) and the two-leader model equation (3).

5.1 Statistical testing and autocorrelation

The Durbin-Watson test revealed that autocorretatmuld not be neglected. On average, the
autocorrelation-coefficierg was 0.9. As a result, the modified model equatidt)-(14) was
used to test the statistical significance of theleh@stimates. The results discussed in the en-
suing pertain to models for which the parametamedesk; andk, turned out to bstatisti-
cally different from zer@at 95% confidence. Of the 535 vehicle triples degmseful for es-
timation purposes, for 518 vehicle triples statety significant parameter estimates could be
established.

5.2 Example estimation results

Figure 4 shows an example of the model after matditification. The figure depicts both
measured and predicted acceleration as a funcfidheorelative speed with respect to the
leader directly ahead. The figure clearly shows thifferences between the predictions
stemming from the one-leader car-following modeftfl and the two-leader car-following
model (right). Studying the estimation results skdhat the sum of the sensitivities of the
two-leader model is approximately equal to the gty of the single-leader model. Fur-
thermore, the sensitivity estimate is smaller thanthe sensitivityk,, meaning that the reac-
tion to the second leader is even stronger thaheorehicle directly ahead. Please note that
the latter is rather uncommon; for most triplesis larger tham..
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Figure 4. Estimation results for traditional singleader car-following model (left) and pro-
posed two-leader car-following model (right). Tladter is in fact a projection for all values
of the relative speed of the second leader.

Figure 5 shows more examples of model estimatisnlt® Looking at the parameter esti-
mates provides some insights into possible paramatees as well as their variability. There
are clear differences in the optimal values of gbasitivitiesk; andky; in some cases, the
sensitivity K, with respect to the second leader is even latgan the sensitivitk; with re-
spect to the first. Also note that different val@i@sthe reaction times are found.

a(t+1.7) = 0.42622v (1) a(t+1.7) = 0.20085v(t) + 0.20577v?

r
r

acceleration a(t+T) (m/sz)
acceleration a(t+T) (m/sz)

-1  -05 0 0.5 1 15 -1  -05 0 0.5 1 15
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Figure 5. Other examples of model estimation foeehcar-following triples.

5.3 Parameter distributions

To gain more insight into the inter-driver diffecers, let us consider the distributions of the
parameter estimates. Table 3 shows an overviewoafeirestimation results. The estimates
of the standard deviation of the parameters (bo¢hone-leader and the two-leader models)
show the large variability in parameter values.sTisian interesting and important observa-
tion, since it may indicate an important directiorwhich microscopic simulation models can
be improved, i.e. by more effectively include difaces between drivers into the micro-
scopic simulation.

From table 3 we can furthermore conclude that ttopgsed two-leader model outperforms
the one-leader model, with an average improvemie@®woin terms of the mean absolute er-
ror. Also recall that the parameters in the twadgacar-following model appeared to be sig-
nificant at 95% confidence.

We see that the parameter values appear to bestamisiThe sum of the sensitivitiesand

K, of the two-leader model is comparable to the seitgi K, of the one-leader model. Re-
garding the two-leader model, we see that the seihsik; to the relative speed with respect
to the leader is two times larger than the serisitiks with respect to the second leader. The
correlation between the two parameters estimatesdk;is -0.31 (not shown in table).

Table 3. Overview of model estimation results.

M odel Sample Error Reaction time Sensitivity

Sze T, (st.dev) K, (st.dev) K, (t.dev)
One-leader 518 0.051 1.36 (0.28) 0.278 (0.139)
Two-leader 518 0.047 1.54 (0.49) 0.180 (0.126) 0.087 (0.086)

0.267 (0.127)

Another interesting observation can be made wisipeet to the reaction time. From table 3
we can conclude that the reaction time in the t®adér model (1.54 s) is larger than the re-
action time in the one-leader model (1.36 s). Ad thoint, it is interesting to note that the in-

clusion of multiple vehicle interactions has a 8iaing effect on the traffic flow dynamics
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(Lenz et al., 1999). The stability reducing effetthe increased reaction time is hence coun-
teracted by the inclusion a driver's response & dbcond leader. The extent to which this
occurs can be determined via stability analysis.

Figure 6 shows that the averages of the paramstienages yield a stable system. This can be
seen by substituting the parameter estimates @epiat table 3 into the stability criterion
equation (5).

0.5
0.45

0.4r

UNSTABLE REGION

o

©w

a
T

T.=10s

g 03r
g «, = 0.180 and «, = 0.087
2 0.25
"
= «, =0.278 and «, = 0.0
®  02F
0.15

o
e

STABLE REGION
0.05F

0 011 0‘2 * 0‘3 O‘.4 0.5
sensitivity «,
Figure 6. Stability regions for different reactibmesT,. The figure shows that the mean pa-
rameter estimates (one-leader and two-leader mdut#h yield an asymptotically stable sys-
tem. The figure also shows how the stable regioreases when the reaction time reduces.

Figure 7 shows the distributions of the sensitiyigrameters for the two models. Note that
the distribution of the sensitivity parameter of thne-leader model is similar to the sum of
the sensitivities of the two-leader model. Agaisoahotice the large variability in the pa-
rameter estimates.
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Figure 7. Distributions of parameter estimates éore-leader car-following model (Gazis et
al,1961) and the two-leader car-following modell{ire with the model of (Bexelius,1968)).

5.4 Analysis of vehicletriple composition

To gain more insight into the reasons for the larger-driver differences in car-following
parameters, the dependence of the estimates ooothposition of the vehicle triples was
studied. More specifically, we consider:

1. Driver behaviour of person-cars and trucks;

2. Driver behaviour in case the first leader is eith@erson-car or a truck.
With respect to the first case, we investigateaf @an determine statistical differences in the
car-following behaviour of the two vehicle typediiah would reflect the differences in vehi-
cle characteristics and driver behaviour. The sé@ase is interesting since it would reveal if
drivers following a truck are to a lesser exterscteng to the vehicles in front of the truck
(second leader) than drivers following a person-tars is expected, since drivers will gen-
erally not be able to look beyond a truck when gelimectly behind it. Table 4 shows the re-
sult of both analyses.
Let us first consider the case where the firstéeasl either a person-car or a truck. From the
parameter estimates, we see that on average,ribigiaéy K is larger when the first leader is
a person-car (0.094) compared to the situationttigfirst leader is a truck (0.054). As men-
tioned before, this result is as expected, sinned are more likely to look beyond a person-
car than beyond a truck. At the same time, theitbé@hs K; with respect to the first leader is
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somewhat larger when the first leader is a truetim case the first leader is a person-car.
Also notice that the sum of both sensitivities lightly smaller when the first leader is a
truck, which may be explained by the drivers’ amass of the lesser deceleration capabili-
ties of the truck in front of him or her. Also ndteat the reaction time is slightly less in the
case of following a truck, which can be explainkihg the same line of thought.

Secondly, we compare the differences between fatigywerson-cars and trucks. As it turns
out, the reaction time of truck drivers is smallean the reaction time of person-cars. This
can be explained by differences in driver expegebetween the two driver types. At the
same time, theelative sensitivityk,/(K1 + K2) to the second vehicle ahead is much larger in
case of truck drivers (0.37) than in case of pexsams (0.29); the total sensitiviig + Ky is
nevertheless much smaller, which can be explaigesirtoother driving of the truck drivers.

Table 4. Overview of model estimation resultsfor different compositions

Composition of vehicletriple Sample Error Reaction Sensitivity
size time
Follower 1¥leader 2" leader T, (st.dev) ki (st.dev) K2 (st.dev)
* * * 518 0.047 154 (0.48) 0.190(0.127) 0.089 (0.088)
* P * 426 0.049 1.53 (0.44) 0.185(0.129)  0.094 (0.090)
* T * 67 0.033 1.57 (0.64) 0.219 (0.116)  0.054 (0.068)
P * * 428 0.047 1.54(0.46) 0.198(0.128) 0.090 (0.086)
T * * 65 0.043 1.51(0.56) 0.138(0.110) 0.082 (0.101)
* mixed
P person-cars
T trucks (articulate and non-articulate)

Note that the results are in line with earlier warbrtaining to the headway distributions
(Hoogendoorn and Bovy, 1998). Here, it was alsmébthat the car-following behaviour (in
terms of headway distributions) depends on the asitipn of the vehicle pair.

6. Conclusions and futurework

This manuscript presents new estimation resultstiofulus-response car-following models
based on empirical vehicle trajectories. The maintribution of the work is the empirical
evidence of the much argued assumption that draversiot only considering the vehicle di-
rectly ahead, but also the ‘second leader’ (twaaclek ahead). The extent to which this oc-
curs is considerable. On average, the sensitivith vespect to the first leader is only two
times larger that the sensitivity with respecthte second leader. For some vehicle triples, we
even observe a higher sensitivity to the behaviduhe second leader than to the behaviour
of the first (strong anticipation behaviour). Comgpan the estimation results from the differ-
ent vehicle triples shows large differences inidgwehaviour between the vehicles.

These observations indicate interesting directiong/hich microscopic simulation models
may be substantially improved. For one, an imprasmeinns anticipated upon including multi-
ple vehicle interactions into the microscopic médgl This has been argued by several re-
searchers before, but using the empirical trajgadata, empirical evidence is now provided.
For two, inclusion of the large differences in dhiy behaviour may improve accuracy of mi-
croscopic simulation considerably.
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In this contribution it is also shown that the etteo which drivers react to the second leader
depends on the type of vehicle that is followingvedl as the type of vehicle that is followed.
For instance, drivers following a truck on averai®w a weaker reaction to the second
leader than drivers following a person-car, whiem ©e explained by noticing that drivers
cannot easily look beyond a truck. In a similar wayck drivers show a relative strong reac-
tion on the second leader. This is explained byhigh vantage point of truck drivers and the
increased ability to look further ahead.

The next step in the research entails a furthelysisaof the properties of the resulting traffic
flow model, yielding insight into the impact of fifences in individual car-following behav-
iour in the properties of the traffic flow. Futuresearch is also directed towards benchmark-
ing different single leader and multi leader cdlefiwing models as well as developing more
advanced ones. Additionally, the research will ®om changing driving behaviour (behav-
ioural adaptation) when different traffic conditiomre experienced using the microscopic
traffic data.
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