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Several researchers have proposed that drivers do not just respond to the vehicle directly 
ahead, but also to the second, and even the third, fourth or fifth vehicle ahead. Little empiri-
cal evidence for this hypothesis has however been presented so far.  
We provide empirical evidence showing that drivers are not only reacting on the vehicle di-
rectly ahead, but also the ‘second leader’. This is achieved by analyzing vehicle trajectory 
data collected by observing a motorway traffic flow from a helicopter. These microscopic 
data enable estimation of individual car-following models.  
The extent to which this multi-anticipatory behaviour occurs turns out to be considerable: on 
average, the sensitivity with respect to stimuli coming from the second vehicle is half the sen-
sitivity of the first vehicle ahead. For some vehicle triples, even higher sensitivities to the be-
haviour of the second leader than to the behaviour of the first have been observed. The esti-
mation results show large differences in car-following behaviour between the different driv-
ers. These differences can in part be explained by the vehicle-type composition of the consid-
ered vehicle triples. Trucks drivers show different behaviour than person-car drivers; drivers 
following a truck show dissimilar car-following behaviour than drivers following a person-
car.  
Although not being a benchmarking study aimed at providing the best model of car-following 
behaviour, the research presented in this article shows that including multiple leaders can 
improve modelling of driving behaviour considerably. 
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1. Introduction 

In the last years, research has focused on development, calibration and validation of models 
capturing the way in which drivers interact with other vehicles in the traffic flow. Despite the 
increased complexity of the models, few have succeeded in providing a real improvement 
over the simple models developed in the fifties and sixties. For instance, a recent benchmark-
ing study revealed that the most complex traffic flow models were not able to predict car-
following behaviour more accurately than the relatively simple ones (Brockfeld et al., 2004).   
There are many research directions in which improvements of driving models can be found. 
For one, Ossen and Hoogendoorn (2005) established that the inter-driver differences of the 
parameters describing car-following behaviour are considerable, which need to be incorpo-
rated correctly for a microscopic model to accurately predict driving behaviour. For two, it 
has been suggested that driver behaviour adapts to the prevailing traffic conditions (Dijker 
and Bovy, 1998; Daganzo, 2002 and Zhang and Kim, 2001). Drivers who have been driving 
in congestion for a long time may loose motivation to efficiently follow the vehicle directly 
ahead. From a modelling perspective, this would imply that the car-following parameters are 
changing according to the history of the driver.  
Thirdly, several researchers have suggested that driving behaviour cannot be described ade-
quately by just considering the vehicle directly in front. Rather, drivers anticipate on traffic 
conditions further downstream by considering not only the vehicle directly ahead, but also the 
vehicle in front of its ‘leader’. For instance, the well known car-following model of Gazis et 
al. (1961) was extended by Bexelius (1968) to include multi-leader stimuli in the equations 
describing the response behaviour of a driver. More recently, Lenz et al. (1999) extend the 
model of Bando et al. (1995) to include multiple vehicle interactions. In doing so, they show 
how the reaction to multiple vehicles stabilizes the dynamic behaviour of the model, while 
retaining the fundamental macroscopic properties of the traffic flow. Moreover, the multi-
anticipative car-following model is able to describe synchronized traffic flow conditions. 
Treiber et al. (2004) take a similar view and extend the Ideal Driver Model (IDM) with multi-
vehicle interaction behaviour.  
The aforementioned studies are generally based on rather non-scientific arguments: “... from 
everyday experience one knows that drivers often observe two ore more vehicles ahead.” 
(Lenz et al., 1999). Empirical evidence showing that these models indeed provide a better de-
scription of car-following was however lacking.  
Recent innovations in the field of data collection have made it possible to collect detailed, 
microscopic vehicle data. Hoogendoorn and Schreuder (2005) describe a system enabling 
automated collection of vehicle trajectory data from an airborne observation platform. The 
collected data consist of vehicle trajectories having a temporal resolution of 0.1 s and a spa-
tial resolution of a few centimetres.  
This contribution focuses on specifying and estimating parameters of a simple two-leader car-
following model using empirical vehicle trajectories collected from two busy motorways. In 
doing so, we investigate if drivers also react to the second leader (i.e. two vehicles ahead). 
We study whether the prediction error reduces, and whether the estimated car-following pa-
rameters (sensitivity and reaction time) are plausible. It is emphasized here that we do not 
aim to establish the most realistic model describing car-following behaviour, but only aim at 
empirically investigating multi-anticipatory car-following behaviour.  
In section 2, a short introduction of car-following theory will be given. This section is fol-
lowed by a description of the methodology used to identify the parameters of the multi-leader 
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model of Bexelius (section 3) and the data that are used to this end (section 4). Section 5 dis-
cusses the estimation results, which is followed by the conclusions and a description of the 
future research directions (section 6).  

2. Car-following theory and modeling 

A microscopic model provides a description of the movements of individual vehicles. These 
movements are the result of the characteristics of drivers and vehicles, the interactions be-
tween drivers, and between the driver and road characteristics, external conditions and the 
traffic regulations and control. In general, two types of driver tasks are distinguished: longi-
tudinal tasks (acceleration, maintaining speed, distance-keeping relative to leading vehicle) 
and lateral tasks (lane changing, overtaking). This contribution considers the former.  
The term car-following model is used here for the general class of dynamic microscopic 
models describing the longitudinal behaviour of a driver in relation to the driver(s) in front. 
Driver i, following driver i+1, may for instance react on (changes in) the spacing between the 
vehicles, or his or her relative speed. Many models have been proposed to describe this longi-
tudinal behaviour.  
It is beyond the scope of this contribution to provide a comprehensive overview of all mod-
els. We will focus upon so-called stimulus response models (GHR models to be specific) and 
the multi-anticipatory generalizations of these models towards multiple vehicle interactions 
due to (Bexelius, 1968). The latter is done for the sole purpose of gaining more insight into 
the car-following process by statistical analysis of microscopic trajectory data. 

2.1 Gazis-Herman-Rothery models 

Despite the fact that many researchers correctly argue that more realistic descriptions of car-
following behaviour exist, in this manuscript we focus on so-called stimulus response models. 
The main reasons for doing so is the straightforward statistical analyses that can be used to 
establish the parameters of the model, and the fact that these models are easily interpreted and 
understood.  

2.1.1 GHR model specification 
A well-known car-following model is given by the following equation (Gazis et al., 1961): 

( )1 1( ) ( ) ( ) ( )i i i r i r

d
a t v t v t T v t T

dt −= = κ − − −  (1) 

where κ1 denotes the so-called sensitivity and Tr > 0 denotes the reaction time. Equation (1) is 
generally referred to as the Gazis-Herman-Rothery (GHR) model, and describes the retarded 
or delayed reaction to the relative speed vr

(1) = vi-1 – vi with respect to the vehicle ahead. The 
sensitivity κ1 is generally described as a function of speed, and the distance headway: 
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For the data used in the ensuing of the manuscript, empirical analyses have so far shown no 
evidence that a non-constant specification of the sensitivity provides a considerably better 
description of the car-following data (Ossen and Hoogendoorn, 2005). In the remainder we 
therefore assume that the sensitivity is constant (i.e. m = l = 0). It is recognized here that this 
assumption may not be valid when considering varying traffic regimes (free-flow, conges-
tion, saturated flow, etc.), as argued plausibly by (Brackstone and MacDonald, 1999). In the 
remainder, data collected during a period of stop-and-go traffic (with average speeds of 5.7 
m/s) are used.  

2.1.2 Empirical analyses 
The GHR model has been analyzed thoroughly using empirical data. In many cases, macro-
scopic data was used to identify the model parameters. Amongst the more reliable studies 
(Brackstone and MacDonald,1999) were those using microscopic data for model calibration 
and validation (see Chandler et al., 1959; Herman and Potts, 1959; Hoefs, 1972; Treiterer and 
Myers, 1974 and Ozaki, 1993).  
The calibration of Chandler et al. (1959) model was performed using data collected from 
wire-linked vehicles to examine the responses of 8 test subjects to a ‘realistic’ speed profile 
of a lead vehicle (which varied from 10 to 80 mph), over 30 min on a test track. The analysis 
of the resulting data, assuming the presence of terms linear in both the relative speed and the 
distance headway led to two conclusions. Firstly that the distance headway contributed little 
to the following relationship and hence could be rejected (producing a sub case of the GHR 
model with l = m = 0), and secondly, that the sensitivity κ1 showed a high variation between 
subjects (0.17±0.74 s) as did Tr (1.0±2.2 s).  
Wire-linked experiments were also performed by Herman and Potts (1959) to calibrate an-
other special case of the GHR model (with m = 0 and l = 1). The experiment was conducted 
in 3 tunnels in New York. They found a reaction time of 1.2 s, and a sensitivity value of 
19.8 ft/s.  
Treiterer and Myers (1974) used airborne film footage of a flow breakdown to monitor the 
paths of a large number of vehicles, from which they extracted the required measurements. 
Again assuming that behaviour may in some way be different according to what the driver is 
required to do, they split their analysis to separately consider the acceleration and decelera-
tion phases of car-following, determining that two differing relationships could exist (accel-
eration and deceleration); for deceleration, m = 0.7 and l = 2.5, for acceleration m = 0.2 and 
l = 1.6 were found to be optimal. 
Lastly, Ozaki (1993) used 90 min of data extracted from video film taken of a motorway 
from the 32nd floor of a city office building. This gave a 160-m field of view, and data were 
obtained on the passage of a total of 2000 vehicles. It should be noted that with such a small 
field of view it would only have been possible to extract a time-series for each vehicle of less 
than 10 s. 

2.2 Bexelius multi-anticipatory car-following model 

Several researchers have proposed that follower i may not only respond to vehicle i-1 directly 
ahead, but may also respond to other drivers or conditions further upstream or in other traffic 
lanes. Following this line-of-thought, a straightforward model incorporating this assumption 
is (Bexelius, 1968): 



Hoogendoorn and Ossen 

European Journal of Transport and Infrastructure Research 

233

 
( ) ( )1 1 2 2

(1) (2)
1 2

( ) ( ) ( ) ( ) ( )

( ) ( )

i i r i r i r i r

r r r r

a t v t T v t T v t T v t T

v t T v t T

− −= κ − − − + κ − − −

= κ − + κ −
 (3) 

In equation (3), κ1 and κ2 describe the sensitivity with respect to leader 1 (vehicle directly 
ahead) and leader 2 (two vehicles away). Note that we have assumed that the reaction time Tr 
is equal for both stimuli. The motivation for this is two-fold: for one, using one reaction time 
yields a model that is in line with traditional car-following models. For two, in estimating the 
model, problems may be avoided since the second term would in fact be conveying the re-
sponse of leader 1 to leader 2 (i.e. serial correlation between lagged signals). This is shown 
by the model estimation approach verification in the next section.  

2.2.1 Multi-vehicle generalization 
Equation (3) can be easily generalized to include the reaction to multiple vehicles ahead as 
follows: 

( ) ( )

1 1

( ) ( ) ( ) ( )
n n

j
i j i j r i r j r r

j j

a t v t T v t T v t T−
= =

= κ − − − = κ −∑ ∑  (4) 

For the present study, this generalization is not pursuit further. This holds equally for includ-
ing driver response to vehicles in adjacent lanes or stimuli coming from behind, although it is 
generally believed that the latter will be only minor due to the anisotropic nature of a traffic 
flow. 

2.2.2 Model stability 
The stability of the two-leader model was analyzed by Bexelius (1968). For the linear model, 
it can be proven that the car-following is (asymptotically) stable if it satisfies the following 
condition Bexelius (1968):  

( )
1 2

2

1 2

4
2

2
rT

κ + κ≤
κ + κ

 (5) 

This means that small disturbances tend to dissolve when propagating through a vehicle pla-
toon. In the remainder of the manuscript, we will briefly come back to these stability issues 
when assessing the parameter estimates.  

3. Model identification 

This section discusses estimation of the parameters of the two-leader model equation (3) by 
multivariate linear regression. The approach that is taken is similar to the estimation of the 
GHR model using microscopic data described in Ossen and Hoogendoorn (2005). The data 
used for model identification are time-series of relative speeds and accelerations during a cer-
tain time interval. Since the observations of successive instants will be correlated, the issue of 
serial correlation and its implications is discussed as well. Furthermore, verification of the 
approach is discussed briefly.  
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3.1 Multivariate linear regression and reaction time estimation 

The statistical analysis of model (3) using the empirical trajectory data (Hoogendoorn and 
Schreuder, 2004) is straightforward. First, the vehicle following triples (i,i-1,i-2) are deter-
mined from the data. Secondly, for each vehicle in the triple the location and speed is deter-
mined; for vehicle i (the follower), the acceleration ai is determined from the successive 
speed changes. We refer to figure 3 for a couple of examples. 
Next, we will fix the reaction time Tr to a fixed value and determine the data points used for 
multivariate regression 

(1) (1) (2) (2): ( ), ( ) : ( ), ( ) : ( )k k k r k r k r k ry a t x k v t T x k v t T= = − = −  (6) 

where tk = hk are the time instants at which the data is available. The next step is to determine 
the regression coefficients of the simple linear multivariate regression model: 

(1) (2)
1 2k k k ky x x= κ + κ + ε  (7) 

which can be achieved by standard regression tools. Note that the mean prediction error re-
sulting when using the estimates 1κ̂  and 2κ̂  

( ) ( )2 2(1) (2)
1 2

1 1
ˆ ˆ( )r k k k kk k

e e T y x x
n n

= = − κ + κ = ε∑ ∑  (8) 

is a function of the reaction time Tr. The remaining optimization problem is to find the reac-
tion time that minimizes the prediction error, i.e. 

0
ˆ arg min ( )

rr T rT e T>=  (9) 

This is achieved in a very straightforward way: the error is determined for all reasonable re-
action times and the one yielding the smallest prediction error e(Tr) is selected. Please note 
that due to the temporal resolution of 0.1 s, only multitudes of 0.1 s will be considered in this 
search, i.e. no data interpolation was considered in the analysis. 

3.2 Autocorrelation and its consequences 

Generally speaking, common sources for autocorrelation in multivariate regression are the 
omission of explanatory variables, misspecification of the mathematical model, interpolation 
of observations (e.g. due to smoothing) and misspecification of the error term. When data are 
auto correlated, the autocorrelation-coefficient 

1cov( , )k k−ρ = ε ε  (10) 

will generally not be equal to zero.  
Considering our model equation (7), the errors are not uncorrelated but satisfy the following 
expression: 

1   where  1k k k−ε = ρε + ν ρ ≤  (11) 

where νk is a random error fulfilling the classical linear model assumption.  
When the errors are auto correlated, the model will remain linear and the estimates of the 
model parameters will remain unbiased as long as E(εk) = 0. However, variance estimates of 
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the parameters are known to be biased and underestimated considerably. As a result, the t-
statistic will be inflated and the t and F tests will not be suitable.  
Since it is known that the parameter values are unbiased, the autocorrelation-coefficient ρ can 
be determined as follows (Cochrane and Orcutt, 1949):  

1. obtain the parameter estimates of the multivariate linear model equation (7); 
2. determine the errors (1) (2)

1 2ˆ ˆ
k k k ky x xε = − κ − κ ; 

3. determining ρ directly by equation (10).  
 

The Durbin-Watson test (see Durbin, 1970) can then be applied to test if the estimate of the 
autocorrelation-coefficient significantly differs from zero.  
If ρ ≠ 0 we need to transform the linear model to determine correct values for the parameter 
variance estimates. Without going into detail, we recall that the following model eliminates 
the autocorrelation from the statistical analyses (see Cochrane and Orcutt, 1949): 

(1) (2)
1 2k k k ky x x= κ + κ + νɶ ɶ ɶ  (12) 

with 

1k k ky y y −= − ρɶ  (13) 

( ) ( ) ( )
1  for  1,2i i i

k k kx x x i−= − ρ =ɶ  (14) 

Using the model equation (12)-(14), standard techniques from multivariate linear regression 
can be applied.  

3.3 Estimation approach verification 

The estimation approach was verified by using synthetic data. These data were established by 
applying the two-leader model using different parameter settings. Furthermore, white noise 
was added to the acceleration, affecting speeds and positions of the simulated vehicles. Fig-
ure 1 shows an example where the estimation approach has been applied to synthetic data. 
From the verification of the estimate approach it turns out that the estimates are unbiased. 
Table 1 depicts the results from this verification analysis. The table shows that the mean ab-
solute error is small, and depends on the variance of the added noise.  
At this point, let us note one might argue that an indirect multiple vehicle interaction effect 
may be present. This indirect effect would be caused by the fact that leader 1 reacts to leader 
2, and thus than the follower reacting to leader 1 thus reacts to leader 2 indirectly (i.e. by se-
quential application of equation (1)). The verification of the estimation approach shows that 
this is not the case, and that approach correctly estimates the parameter values also in the case 
the underlying data stems from a single-leader car-following model. 
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Figure 1. Results from application of the estimation approach to synthetic data. The data was 
generated by application of the two-leader car-following model with κ1 = κ2 = 0.25. White 
noise was added to the computed acceleration; the standard deviation of the noise equalled 
0.01 m/s2. 

 
Table 1. Mean absolute error for parameter estimates using synthetic data to which dif-
ferent levels of noise were applied. 

Parameter: Tr κκκκ1 κκκκ2 
Value used for simulation: 1.0 0.5 0.0 
Error standard dev. Mean absolute error 
0.01 0.000 0.008 0.005 
0.1 0.029 0.031 0.021 
0.4 0.082 0.060 0.041 
 
Table 2. Mean absolute error for parameter estimates using synthetic data to which dif-
ferent levels of noise were applied. 

Parameter: Tr κκκκ1 κκκκ2 
Value used for simulation: 1.0 0.25 0.25 
Error standard dev. Mean absolute error 
0.01 0.013 0.015 0.005 
0.1 0.067 0.037 0.015 
0.4 0.138 0.075 0.035 

4. Data collection 

To perform the data analysis, vehicle trajectory data was collected using a new data collec-
tion approach (Hoogendoorn and Schreuder, 2005) using an air-borne observation platform (a 
helicopter), mounted with a high-frequency digital camera and frame grabber. Using image 
processing software, vehicles are detected from the scene and tracked. This yields trajectory 
data covering approximately 500 m of roadway stretch; the spatial resolution is smaller than 
40 cm, while the temporal resolution is 0.1 s. Besides the trajectories of all vehicles present, 
the system also determined the vehicles’ lengths and widths that can for instance be used to 
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determine the vehicle type. Vehicles driving in both roadway directions were detected and 
tracked. Only one direction is considered in the remainder of this contribution.  
The data were collected during the afternoon peak hour at the three-lane A15 motorway to 
the South of the Dutch city of Rotterdam. Figure 2 shows a subset of the 935 collected vehi-
cle trajectories for a ninety second period. During the entire period in which data was collec-
tion, congestion was heavy.  
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Figure 2. Example subset of vehicle trajectories for data collected at A15 site. The small dots 
represent time instants which are 2.5 second apart. 

A total of 535 vehicle triples were selected for further statistical analyses. These triples satis-
fied certain criteria. For one, only triples have been considered the composition of which did 
not change during the observation period. For two, the triples have been observed for at least 
15 seconds (150 observation points). The triples have been observed for periods ranging from 
the aforementioned 15 seconds up to 54 seconds. Figure 3 shows some examples of trajecto-
ries of vehicle triples.  
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Figure 3. Examples of trajectories of vehicle triples. Only trajectories of fixed triples are 
considered, i.e. triples of which the composition does not change. 

5. Estimation results 

This section discusses the results of parameter estimation of both the single-leader model 
equation (1) and the two-leader model equation (3).  

5.1 Statistical testing and autocorrelation 

The Durbin-Watson test revealed that autocorrelation could not be neglected. On average, the 
autocorrelation-coefficient ρ was 0.9. As a result, the modified model equation (12)-(14) was 
used to test the statistical significance of the model estimates. The results discussed in the en-
suing pertain to models for which the parameter estimates κ1 and κ2 turned out to be statisti-
cally different from zero at 95% confidence. Of the 535 vehicle triples deemed useful for es-
timation purposes, for 518 vehicle triples statistically significant parameter estimates could be 
established.  

5.2 Example estimation results 

Figure 4 shows an example of the model after model identification. The figure depicts both 
measured and predicted acceleration as a function of the relative speed with respect to the 
leader directly ahead.  The figure clearly shows the differences between the predictions 
stemming from the one-leader car-following model (left) and the two-leader car-following 
model (right). Studying the estimation results shows that the sum of the sensitivities of the 
two-leader model is approximately equal to the sensitivity of the single-leader model. Fur-
thermore, the sensitivity estimate κ1 is smaller than the sensitivity κ2, meaning that the reac-
tion to the second leader is even stronger than to the vehicle directly ahead. Please note that 
the latter is rather uncommon; for most triples, κ1 is larger than κ2. 
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Figure 4. Estimation results for traditional single-leader car-following model (left) and pro-
posed two-leader car-following model (right). The latter is in fact a projection for all values 
of the relative speed of the second leader. 

Figure 5 shows more examples of model estimation results. Looking at the parameter esti-
mates provides some insights into possible parameter values as well as their variability. There 
are clear differences in the optimal values of the sensitivities κ1 and κ2; in some cases, the 
sensitivity κ2 with respect to the second leader is even larger than the sensitivity κ1 with re-
spect to the first. Also note that different values for the reaction times are found. 
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Figure 5. Other examples of model estimation for three car-following triples.  

5.3 Parameter distributions 

To gain more insight into the inter-driver differences, let us consider the distributions of the 
parameter estimates. Table 3 shows an overview of model estimation results. The estimates 
of the standard deviation of the parameters (both the one-leader and the two-leader models) 
show the large variability in parameter values. This is an interesting and important observa-
tion, since it may indicate an important direction in which microscopic simulation models can 
be improved, i.e. by more effectively include differences between drivers into the micro-
scopic simulation. 
From table 3 we can furthermore conclude that the proposed two-leader model outperforms 
the one-leader model, with an average improvement of 9% in terms of the mean absolute er-
ror. Also recall that the parameters in the two-leader car-following model appeared to be sig-
nificant at 95% confidence. 
We see that the parameter values appear to be consistent. The sum of the sensitivities κ1 and 
κ2 of the two-leader model is comparable to the sensitivity κ1 of the one-leader model. Re-
garding the two-leader model, we see that the sensitivity κ1 to the relative speed with respect 
to the leader is two times larger than the sensitivity κ2 with respect to the second leader. The 
correlation between the two parameters estimates κ1 and κ2 is -0.31 (not shown in table). 
 
Table 3. Overview of model estimation results. 

Reaction time Sensitivity Model Sample 
size 

Error 

Tr (st.dev) κκκκ1 (st.dev) κκκκ2 (st.dev) 
One-leader 518 0.051 1.36 (0.28) 0.278 (0.139)  
Two-leader 518 0.047 1.54 (0.49) 0.180 (0.126) 0.087 (0.086) 
    0.267 (0.127) 
 
Another interesting observation can be made with respect to the reaction time. From table 3 
we can conclude that the reaction time in the two-leader model (1.54 s) is larger than the re-
action time in the one-leader model (1.36 s). At this point, it is interesting to note that the in-
clusion of multiple vehicle interactions has a stabilizing effect on the traffic flow dynamics 
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(Lenz et al., 1999). The stability reducing effect of the increased reaction time is hence coun-
teracted by the inclusion a driver’s response to the second leader. The extent to which this 
occurs can be determined via stability analysis.  
Figure 6 shows that the averages of the parameter estimates yield a stable system. This can be 
seen by substituting the parameter estimates depicted in table 3 into the stability criterion 
equation (5).  
 

T = 1.5 sr
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sensitivity k1
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T = 1.0 sr

T = 2.0 sr

 
Figure 6. Stability regions for different reaction times Tr. The figure shows that the mean pa-
rameter estimates (one-leader and two-leader model) both yield an asymptotically stable sys-
tem. The figure also shows how the stable region increases when the reaction time reduces. 

Figure 7 shows the distributions of the sensitivity parameters for the two models. Note that 
the distribution of the sensitivity parameter of the one-leader model is similar to the sum of 
the sensitivities of the two-leader model. Again also notice the large variability in the pa-
rameter estimates. 
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Figure 7. Distributions of parameter estimates for one-leader car-following model (Gazis et 
al,1961) and the two-leader car-following model (in line with the model of (Bexelius,1968)). 

5.4 Analysis of vehicle triple composition 

To gain more insight into the reasons for the large inter-driver differences in car-following 
parameters, the dependence of the estimates on the composition of the vehicle triples was 
studied. More specifically, we consider: 

1. Driver behaviour of person-cars and trucks; 
2. Driver behaviour in case the first leader is either a person-car or a truck. 

With respect to the first case, we investigate if we can determine statistical differences in the 
car-following behaviour of the two vehicle types, which would reflect the differences in vehi-
cle characteristics and driver behaviour. The second case is interesting since it would reveal if 
drivers following a truck are to a lesser extent reacting to the vehicles in front of the truck 
(second leader) than drivers following a person-car. This is expected, since drivers will gen-
erally not be able to look beyond a truck when being directly behind it. Table 4 shows the re-
sult of both analyses.  
Let us first consider the case where the first leader is either a person-car or a truck. From the 
parameter estimates, we see that on average, the sensitivity κ2 is larger when the first leader is 
a person-car (0.094) compared to the situation that the first leader is a truck (0.054). As men-
tioned before, this result is as expected, since drivers are more likely to look beyond a person-
car than beyond a truck. At the same time, the sensitivity κ1 with respect to the first leader is 

One-leader model Two-leader model 

Two-leader model Two-leader model 

sensitivity κ1 sensitivity κ2 

sensitivity κ1 sensitivity κ1+κ2 
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somewhat larger when the first leader is a truck than in case the first leader is a person-car. 
Also notice that the sum of both sensitivities is slightly smaller when the first leader is a 
truck, which may be explained by the drivers’ awareness of the lesser deceleration capabili-
ties of the truck in front of him or her. Also note that the reaction time is slightly less in the 
case of following a truck, which can be explained along the same line of thought.  
Secondly, we compare the differences between following person-cars and trucks. As it turns 
out, the reaction time of truck drivers is smaller than the reaction time of person-cars. This 
can be explained by differences in driver experience between the two driver types. At the 
same time, the relative sensitivity κ2/(κ1 + κ2) to the second vehicle ahead is much larger in 
case of truck drivers (0.37) than in case of person-cars (0.29); the total sensitivity κ1 + κ2 is 
nevertheless much smaller, which can be explained by smoother driving of the truck drivers.  
 
Table 4. Overview of model estimation results for different compositions  

Composition of vehicle triple Reaction 
time 

Sensitivity 

Follower 1st leader 2nd leader 

Sample 
size 

Error 

Tr (st.dev) κκκκ1 (st.dev) κκκκ2 (st.dev) 
* * * 518 0.047 1.54 (0.48) 0.190 (0.127) 0.089 (0.088) 
* P * 426 0.049 1.53 (0.44) 0.185 (0.129) 0.094 (0.090) 
* T * 67 0.033 1.57 (0.64) 0.219 (0.116) 0.054 (0.068) 
P * * 428 0.047 1.54 (0.46) 0.198 (0.128) 0.090 (0.086) 
T * * 65 0.043 1.51 (0.56) 0.138 (0.110) 0.082 (0.101) 
 

* mixed 
P person-cars 
T trucks (articulate and non-articulate) 
 
Note that the results are in line with earlier work pertaining to the headway distributions 
(Hoogendoorn and Bovy, 1998). Here, it was also found that the car-following behaviour (in 
terms of headway distributions) depends on the composition of the vehicle pair. 

6. Conclusions and future work 

This manuscript presents new estimation results of stimulus-response car-following models 
based on empirical vehicle trajectories. The main contribution of the work is the empirical 
evidence of the much argued assumption that drivers are not only considering the vehicle di-
rectly ahead, but also the ‘second leader’ (two vehicles ahead). The extent to which this oc-
curs is considerable. On average, the sensitivity with respect to the first leader is only two 
times larger that the sensitivity with respect to the second leader. For some vehicle triples, we 
even observe a higher sensitivity to the behaviour of the second leader than to the behaviour 
of the first (strong anticipation behaviour). Comparison the estimation results from the differ-
ent vehicle triples shows large differences in driving behaviour between the vehicles.  
These observations indicate interesting directions in which microscopic simulation models 
may be substantially improved. For one, an improvement is anticipated upon including multi-
ple vehicle interactions into the microscopic modelling. This has been argued by several re-
searchers before, but using the empirical trajectory data, empirical evidence is now provided. 
For two, inclusion of the large differences in driving behaviour may improve accuracy of mi-
croscopic simulation considerably. 
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In this contribution it is also shown that the extent to which drivers react to the second leader 
depends on the type of vehicle that is following as well as the type of vehicle that is followed. 
For instance, drivers following a truck on average show a weaker reaction to the second 
leader than drivers following a person-car, which can be explained by noticing that drivers 
cannot easily look beyond a truck. In a similar way, truck drivers show a relative strong reac-
tion on the second leader. This is explained by the high vantage point of truck drivers and the 
increased ability to look further ahead. 
The next step in the research entails a further analysis of the properties of the resulting traffic 
flow model, yielding insight into the impact of differences in individual car-following behav-
iour in the properties of the traffic flow. Future research is also directed towards benchmark-
ing different single leader and multi leader car-following models as well as developing more 
advanced ones. Additionally, the research will focus on changing driving behaviour (behav-
ioural adaptation) when different traffic conditions are experienced using the microscopic 
traffic data.  
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