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The knowledge of travel times on road networks is of vital importance for network operators as 
well as for drivers. Operators can use travel time information to improve control on their 
networks. Drivers or transport companies can choose their optimal route based on the traffic 
information available and their individual preferences. The presented approach focuses on travel 
time estimation. The method only requires the time stamps and vehicle lengths captured at 
subsequent detector stations. The distance between the stations is up to 13 km. The examined 
network is a two-lane freeway with three unobserved on- and off-ramps each. In order to 
investigate the influence of measurement errors and to have true data for comparison, simulated 
detector data based on an existing Swiss freeway section equipped with loop detectors was used. 
The method shows very good performance for the investigated scenarios. All relevant 
characteristics of the travel time process were detected and estimation errors were within a well 
acceptable range.  Compared to existing travel time estimation methods, the presented approach 
considerably extends the maximum distance for which travel time estimations can be carried out. 
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1. Introduction 

Travel time is well accepted as a measure to assess road conditions. The knowledge of travel 
times on road networks is of vital importance, for network operators as well as for drivers. 
Operators can use travel time information (current and/or predicted) to improve control on their 
networks as part of Advanced Traffic Management Systems. Drivers can choose their optimal 
route, either pre-trip or en route, provided that traffic information from an Advanced Traveller 
Information System is available together with the drivers’ individual preferences. For transport 
companies the knowledge of travel time can help to improve their service quality. Moreover, they 
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can choose their routes dynamically according to the current and predicted state of traffic and 
thus increase their efficiency and reliability. 

Before discussing travel time estimation, we need to explain the terms “travel time estimation” 
and “travel time prediction”. Definitions of these topics can be found in van Lint (2004) or in Bovy 
and Thijs (2000). Based on these definitions we can say that travel time estimation calculates travel 
times based on known quantities up to the current point in time. Travel time prediction forecasts 
travel times up to a defined point in time in the future. 

In this research, we focus on travel time estimation, i.e. we estimate how long it takes vehicles to 
traverse a defined freeway route when they arrive at the downstream station. However, we do 
not know the traffic conditions between the detector stations, but we measure vehicle lengths and 
passage times at the detector stations. 

Travel time estimation on a freeway route can be performed either by direct or indirect 
estimation approaches. Introductions on travel time estimation are provided by Bovy and Thijs 
(2000), Lindveld et al. (2000) or van Lint (2004). 

The techniques of direct travel time estimation can generally be divided into three major groups. 
Firstly, vehicles that are equipped with a GPS module and a transmission interface (e.g. GSM) 
can send information regarding their position, speed etc. to a service centre (e.g. Quiroga and 
Bullock (1998), Yim and Cayford (2001), Li and McDonald (2002) or Brockfeld et al. (2007)). The 
advantage of this approach is that accurate vehicle positions and, provided an appropriate 
sampling rate, accurate travel time estimates become available. However, due to expensive car-
side investments and data transmission costs, the diffusion rate of this technology is still very 
limited. Secondly, vehicles equipped with a cellular phone or module can be tracked by cell 
location (e.g. Yim (2003), Yim and Cayford (2006), Pathirana et al. (2006), Bar-Gera (2007)). 
Although the accuracy of determining the position depends, amongst other things, to a large 
extent on the size of the cellular phone network cell and the transmission quality, the high 
diffusion rate of GSM together with the low transmission costs makes this technology an 
attractive alternative. However, the accuracy of the position and thus of the travel time is usually 
lower than by using GPS/GSM technologies. A third way is provided by local detection of 
unique vehicle features (e.g. ID, license plate number). Common technologies in this area are AVI 
(Automatic Vehicle Identification; e.g. Dion and Rakha (2006)), license plate recognition (e.g. 
Anagnostopoulos et al. (2006)) or communication technologies like tag reading (e.g. RFID) or 
Bluetooth (e.g. c.c.com (2006)). AVI technologies have usually low error rates in vehicle 
identification and thus are well applicable for travel time estimation. However, due to expensive 
additional investments in road- and/or car-side infrastructure they have limited use so far. 
Furthermore, especially for the license plate recognition (but also for other technologies), there 
exist privacy issues, which additionally limit its widespread use.  

Indirect travel time estimation approaches can be subdivided broadly in three groups: estimation of 
section travel times by means of local measurement of aggregated data (e.g. flow, speed), 
reidentification approaches, which make use of individual vehicle features (e.g. length), and, as a 
third approach, determining vehicle positions from a sequence of captured aerial images. Once 
the vehicle positions are available from the images one can compute the travel times of the 
vehicles. 

Firstly, if the distance between detector stations is not too large (i.e. in the range of a few hundred 
metres), the estimation of section travel times is very common. They usually rely on aggregated 
data (e.g. speed, flow, cumulative number of vehicles) collected at local detector stations. 
Examples can be found in Bovy and Thijs (2000), Lindveld et al. (2000), Nam and Drew (1996), 
Westerman and Immers (1992) or Oh et al. (2002). The major advantages of this method are that it 
makes use of already existing infrastructure and that it works fully anonymous. However, as 
already mentioned, one drawback is the relatively small length of the sections.  
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Secondly: As loop detectors are in many regions still the most widely used detector technology, 
many of the published reidentification approaches deal with data from loop detectors. In the 
following we consider two groups of approaches in detail: methods that are based on voltage 
signatures (or other physical quantities) and especially procedures that are based on noisy length 
measurements. There is a variety of other detector technologies that provide vehicle features. A 
number of surveys can be found in Nam and Drew (1996), Michalopoulos and Hourdakis (2001) 
or van Lint (2004). Furthermore, the industry together with research institutions is currently 
making endeavours to develop alternatives to loop detectors, e.g. wireless magnetic sensors (see 
Haoui et al. (2008)).  

The raw (sampled) voltage signatures (or other physical quantities) from a loop detector provide 
an “electro-magnetic characterisation” of the vehicles passing a detector. Pfannerstill (1984), 
Kühne and Immes (1993), Abdulhai and Tabib (2003) or Kwon (2006) made use of these 
signatures to classify and/or reidentify single vehicles. The advantages of this technology are 
that it uses the raw signature information and thus provides valuable information that 
characterises a vehicle. This information can be used subsequently by matching algorithms. At 
the same time, the approach works fully anonymous. However, such signatures are usually not 
available from standard loop detectors. Moreover, depending on the sampling rate, a 
considerable amount of data is generated, which requires additional and fast transmission 
equipment as well as external storage capacities. A potential drawback is that the signatures can 
be distorted if a vehicle changes lanes while crossing the loops. 

Vehicle length measurements provided by detectors rely, amongst other things, on the signatures 
discussed before. Their accuracy is often very limited due to low sampling rates. In this field, 
Coifman and co-workers (e.g., Coifman (1998a, 1998b, 2002), Coifman and Cassidy (2002), 
Coifman and Ergueta (2003), Coifman and Krishnamurthy (2007)) have made important 
contributions during the last decade with the development of algorithms to estimate travel times, 
trajectories and road conditions by using vehicle length.  

The method presented in this paper makes also use of the vehicle lengths provided by double 
inductive loop detectors. The only information required is the vehicle length for every vehicle at 
the upstream and downstream detector station together with the corresponding time stamp. The 
major difference of the proposed method in comparison to existing reidentification algorithms is 
that we do not strictly want to reidentify single vehicles but rather try to find groups (platoons) 
of vehicles with similar arrival times and at the same time similar travel times over the road 
network. 

The presented approach has the following pros and cons: Provided that single car data are 
available online and in sufficient quality (i.e. small length measurement error, no or small bias), 
no additional infrastructure investments are required. Another advantage of this method is that it 
works fully anonymous, i.e. no conclusions can be drawn on a particular vehicle. Moreover, the 
presented approach considerably extends the maximum distance for which travel time 
estimations can be carried out. In addition, the method can be easily extended to new 
technologies or even use data from mixed sources, provided again, that the data fulfil some 
quality requirements. Finally, extensions to more sophisticated detection technologies that 
provide additional vehicle features are straightforward, but will not be investigated in this work. 
However, as for the use of the vehicle signatures, one potential drawback is that lane changes can 
distort the measured vehicle length and thus might lead to wrong estimates.  

We want to mention here, that the proposed approach is on estimating mean travel times and not 
on estimating individual travel times. Furthermore, in this work we focus on estimating mean 
arrival travel time, i.e. travel times related to arrival times at the destination. The step from mean 
arrival travel times to mean departure travel times is, however usually not straightforward. As 
mentioned also in section 6 (Conclusions and future work), one of the next steps is thus to derive 
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mean departure travel time estimates, which are an important basis for travel time prediction 
algorithms.  

The third group of indirect travel time estimation includes approaches to determine the vehicle 
position on a sequence of aerial images and from this to compute the travel time (e.g. Coifman et 
al. (2006), Toth and Grejner-Brzezinska (2006), Reinartz et al. (2006)). One of the advantages of 
this approach is that not only a few equipped vehicles are detected (tracked) but a whole traffic 
situation can be captured. This is of great importance when it comes to determine the traffic state 
within a long freeway section or network area. The drawbacks of this technology are, that the 
data collection task is usually very costly, that the quality depends to a large extent on the 
sensing technology (incl. camera system) and that the technology can not be applied to non-
visible areas (e.g. tunnels). 

The final part of the document is structured as follows: In section 2 we present the different steps 
of our approach and in section 3 we briefly explain the settings of the application. In section 4 we 
introduce two investigated scenarios, in section 5 we present and discuss the results, and in 
section 6 we conclude with a summary of the main achievements and give an outlook on further 
research. 

2. Estimation approach 

The method presented here aims to estimate the travel time between subsequent detector stations 
under the assumption that only noisy length measurements of individual vehicles and the 
associated time stamps as the vehicles pass the detectors, are available. The error of the length 
measurements is assumed to be known and constant over time. Section 2.1 gives a rough 
overview on the method and its steps, whereas section 2.2 describes the single steps more 
detailed. 

2.1 The overall procedure 

Given the noisy length measurements from the loop detectors together with the time stamps of 
the vehicles, we first compute the so-called scores for all possible vehicle-pairs (upstream and 
downstream). These scores can be regarded as a similarity measure of the lengths between two 
vehicles. Afterwards, the scores are written into the score matrix, with the idea to cumulate the 
scores of pairs of vehicles with similar downstream arrival time and similar travel time.  
The subsequent post-processing steps together with the filtering step all intend to reveal the 
travel time information from a noisy environment. The successive computation of the most 
feasible path, i.e. the path with maximal costs, within the image finally leads to the travel time 
estimate.  

 
Figure 1. Overall procedure of the method.  
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The raw data stem either from real detector stations or, as in our case, are generated artificially by the microscopic 
simulation environment AIMSUN®. The four major steps are processed sequentially resulting in the travel time 
estimates. The final comparison with true data allows for an assessment of these travel time estimates. 

 
Figure 2 below shows the score matrix at some important stages during the information 
extraction process. This shall highlight how we get from only little information (Figure 2a) to the 
final travel time estimate (Figure 2e). In section 2.2 we will explain this procedure in more detail. 
 
(a) 

 
(b) 

(c) 

 
(d) 
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(e) 

 
Figure 2. A graphical representation of the score matrix at some important steps within the travel time 
estimation procedure: (a) Raw score matrix (b) Score matrix after convolution, (c) Score matrix after 
weighting of the diagonals, (d) Score matrix after resizing and filtering, (e) Estimated travel time after 
finding the path with maximum costs from (2d), and comparison of estimated travel times (black line) with 
true travel times (red crosses).  
The colour code for Figures 2a and 2d is in the range from yellow (0) to light blue (1). This implicates that yellow 
areas contain no information whereas red to light blue areas represent relevant travel time information. In Figure 
2e, the red crosses indicate true travel times of individual vehicles and the black line represents the estimated 
travel times as a function of the downstream arrival time. 

2.2 The steps in detail 

2.2.1 The scores and the score matrix 

In a first step, we compute the score for each vehicle-pair between the downstream and upstream 
vehicle combination. This means that for the investigated time window, the length of every 
vehicle that passed the downstream detector station is compared with the length of every vehicle 
at the upstream station. 

A score sij is calculated for each combination of vehicles i and j observed at the up- and 
downstream station, respectively, as follows:  

max 1 ,0
2

i j
ij

L L
s

L

 −
 = −
 ⋅∆
 

 (1) 

where Li and Lj denote the measured vehicle lengths at the upstream and downstream detector 

stations, respectively, and ∆L is the assumed measurement error (for details see section 3). 

Once we have the scores available for each combination of vehicles i and j, we use them to fill a 
so-called score matrix S. In the score matrix each cell includes the cumulated scores of pairs of 
vehicles, which fall into the same time-bin according to their arrival time and travel time, 
respectively.  

The score matrix is of size X × Y (width × height), where X and Y denote the number of columns 
and rows and correspond to the number of time bins in the arrival and in the travel time 

direction, respectively. Each row represents a travel time bin by = [ty − ∆t, ty) and each column 
represents an arrival time bin  bx = [tx − ∆t, tx). ∆t represents the time resolution in both directions, 
i.e. the size of the bins. Detailed explanations on the size of the bins and its implications can be 
found in the section ‘Post-processing of the score matrix – Convolution’ below. 

Furthermore, ti and tj denote the points in time, where vehicles i and j pass the upstream and 
downstream station, respectively. Thus, if a vehicle j arrives at the downstream station within 
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time bin bx and if at the same time the difference of the arrivals (tj − ti) is within the time bin by, 
then the score sij is added to cell S(x,y). Formally written, this leads to 

( ), , , ,
j x

j i y

ij
t b

t t b

S x y s i j x y
∈

− ∈

= ∀∑  (2) 

where {1,..., }i I∈ , {1,..., }j J∈ , {1,..., }x X∈ , and {1,..., }y Y∈ . I and J represent the total 

number of vehicles that passed the upstream and downstream detector station within the 
considered time window, respectively.  

2.2.2 Post-processing of the score matrix 

Convolution 

High scores sij indicate that the compared vehicles have similar lengths. From this follows, that 
cells with high values within the score matrix indicate that several vehicles with similar arrival 
time and similar travel time have passed the downstream detector station. This score matrix is 
visualised in Figure 2a according the specified colour code: yellow cells correspond the low 
scores whereas red to light blue cells correspond to high scores. Since the travel time develops 
over time in a continuous manner, in the best case we expect to see some light blue curve 
corresponding to the travel time development in Figure 2a. However, at this point we have only 
rough information on how the true travel time curve will look like. To make the curve more 
visible, we firstly perform a smoothing procedure resulting in Figure 2b. This is done by 

convolution of the score matrix S with a box-kernel, i.e. matrix B = 1[b×b], where B is a matrix with 
all ones and a boundary length b. In our case we set b = 2. Given a time resolution in both 

directions of ∆t = 15 seconds, this results in a boundary time length of b⋅∆t = 30 seconds. Matrix T 
is computed according to  

BST ∗=  (3) 

where ∗ denotes the convolution of two matrices. 

Vehicle speeds are correlated for traffic densities ρ ≥ 10 vehicles per kilometre (e.g. Helbing 
(2001), Helbing et al. (2002)). Following Neubert et al. (1999, fig. 15), for congested traffic, the 

speed auto-covariance is ≥ 0.4 for up to N = 17 consecutive vehicles. However, even a lower auto-
covariance could be considered, leading to a higher number of correlated vehicles. The 
maximum, meaningful  number of correlated vehicles according to Neubert et al. (1999) is around 
35-40. 

Together with the fundamental diagram according to Helbing (1997, p. 159; with a maximum 
velocity of 120 km/h), with N = 17 and densities between 12 and 50 vehicles per kilometre,           

τ (N,ρ) for correlated speeds is in the range of 30 to 50 seconds. This is well in accordance with the 
dimension of our convolution matrix, which has a boundary length of 2 time intervals ∆t, i.e. 30 
seconds, since ∆t = 15 seconds. It is important to mention that ∆t and b can vary in quite a wide 
range, i.e. 3 sec. ≤ ∆t ≤ 15 sec. and  2 ≤ b ≤ 18 as long as their product, i.e. b⋅∆t, is within a range of 
24 to 54 seconds. Below and above this range the travel time estimates can deviate significantly 

from the true travel time. As long as b⋅∆t is constant (and within the allowed range), the travel 
time estimates are more or less identical. 

In the explanations so far we worked with ∆t = 15 seconds and b = 2. Besides that, we also made 
some tests with ∆t = 3 seconds, mainly because the range for b⋅∆t could be investigated in smaller 
steps than with larger ∆t. In general, increasing ∆t while keeping b constant leads to more blurred 
images and, by exceeding the upper boundary for b⋅∆t, to less accurate travel time estimates. 
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Besides the use of a simple two-dimensional box-kernel we also performed tests with a two-
dimensional Gaussian-kernel. However, the results were almost similar to those with the box-
kernel and thus we decided to choose the box-kernel for further investigations because it is 
simpler and requires less computational performance.  

By carrying out the convolution, we “connect” areas within matrix S whose speed, and hence 

travel time, is correlated up to a certain degree. The “interaction” time τ (N,ρ) is defined by 

( ) ( ),
e

N
N

V
τ ρ

ρ ρ
≈  (4) 

where N denotes the number of correlated vehicles, ρ represents the density and Ve(ρ) denotes 
the equilibrium velocity against ρ. Please note, that N considers all vehicles, independently of 
their length. By contrast, the method presented here considers only vehicles with length L ≥ 6m. 
However, this does not influence the idea of “connecting” areas within S as, given τ (N,ρ), there 
are simply less vehicles to “connect”. 

As we shall see below in the two scenarios in section 4, the densities are around 15 to 20 vehicles 
per kilometre in normal, i.e. uncongested traffic states and up to 70 vehicles per kilometre during 
congestion. 

Weighting 

From Figure 2a, but mainly after convolution, i.e. from Figure 2b, we see that some of the 
diagonals contain substantially more high scores than others. This is due to the fact, that some 
vehicles at the upstream station have an individual length that has more possible counterparts at 
the downstream station. Thus there are more possible matches and therefore more red to light 
blue cells on the diagonal. The same holds for vehicles at the downstream station (see vertical 
lines in Figure 2b): Some vehicles at the downstream station have an individual length, which has 
more possible counterparts at the upstream station.  

Since especially the diagonals with high scores can disturb the subsequent filtering step, we 

weight them leading to matrix T′′′′ as follows (see equation (5)): First, the mean of the diagonal 
elements is computed, i.e. the sum of all diagonal elements is calculated and divided by the 
number of elements on the diagonal. Since for some diagonals this can lead to very low sums (or 

even zero), a constant γ  is added to prevent the weights from becoming infinite. A value of γ = 
0.05 has led to good results. However, the estimation results are not very sensitive on γ. The 
second term on the r.h.s. of equation (5) is the weight for the diagonal that includes element 
T(x,y). Subsequently each element T(x,y) is multiplied by its appropriate weight, which leads to   

T ′(x,y). Formally this can be written as 

( ) ( )
( )max

min

1

min min

max min

,
' , ,

1

x

x x
T x x x y

T x y T x y
x x

γ

−

′=
 ′ ′ − +
 = ⋅ +
 − + 
 

∑
 (5) 

where xmin = xmin(x,y) = max[1, x−(y−ymin)] and xmax = xmax(x,y) = min[X, x+(Y−y)] denote the 
minimal and maximal value considered in x-direction, respectively, X and Y represent the 
number of cells in x- and y-direction, respectively (see also explanations on the computation of 

score sij), ymin = ceil(τmin / ∆t) denotes the number of cells in y-direction that represents the 
minimum travel time with τmin being the minimal travel time for the considered origin-
destination pair. The resulting image, i.e. matrix T′′′′ (again of size X×Y) is shown in Figure 2c.  
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Resizing 

Normally matrix T′′′′ comprehends a large number of columns that corresponds to X time bins. 
With the aim to enable an efficient computation of the subsequent steps, we need to reduce the 

number of columns. This is done as follows: We consider matrix T′′′′ as an image and resize it by 
bicubic interpolation to image G with dimension M (columns) times N (rows), while preserving the 
image information. For further details on the implementation of the bicubic interpolation we refer 
to Press et al. (2007). 

2.2.3 Filtering 

The goal of the filtering step is to extract structures of relevant size from image G (see Figure 2c). 
Furthermore, it is also an important step as it provides a better basis, i.e. a slightly smoothed 
image, for the subsequent step that determines the path with maximum costs, which is key in the 
estimation of the travel times. The filtering procedure includes three steps and is implemented as 
follows:  

First, we apply a two-dimensional Discrete Fourier Transform (2D-DFT) on image G, which can 
be written as  

( ) ( )
1 1

0 0

1
, , exp 2

M N

p q

mp nq
D m n G p q i

M NMN

− −

= =

  = − π +  
  

∑ ∑  (6) 

where M (width) and N (height) are the dimensions of the image after the resizing (see above) 

and D represents the image in the frequency domain, with the image coordinates p ∈ {1,…,M} 
and q ∈ {1,…,N} and the spectral coordinates m ∈ {1,…,M} and n ∈ {1,…,N}. 
Once we have transformed the image into the frequency domain we perform a pointwise 

multiplication with the filter function HBP, which leads to the filtered image D′(m,n) in the 
frequency domain. This is done as follows: 

( ) ( ) ( )BP, , ,D m n D m n H m n′ = ⋅  (7) 

The filter function HBP that we use is a second-order two-dimensional Butterworth band-pass, 
composed of the difference between the two first-order low-pass filters. It is defined as:  

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( ) ( )( )

BP BP 1 2

2 1
2 1LP LP

2 2
2 1

, , ; , ,

, ; , , ; ,

1 1

1 , 1 ,
p p

H m n H m n p

H m n p H m n p

m n m n

ω ω ω

ω ω ω ω

ω ω ω ω

=

= −

= −
+ +

 (8) 

where the frequency ω(m,n) is defined by 

( )
2 2

2 2
,

m n
m n

M N
ω    = +   

   
 (9) 

with - M/2 ≤ m ≤ (M-1)/2 and - N/2 ≤ n ≤ (N-1)/2. 

The three parameters used in equation (8), p, ω1 and ω2 have the following meaning (see also 
Figure 3 below): 2⋅p is an exponent, e.g. (ω(m,n)/ω2)2p, and in this case determines the slope of the 
transfer function in the "non-passing range", i.e. above around three times the cut-off frequency. 

In our application, we have set p = 1, accounting for the constraint p ≥ 1. ω1 and ω2 are, as already 
mentioned, the cut-off frequencies of the two low-pass filters, i.e. the frequencies at which the amplitude of 
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the transfer function is half of its maximum. We determined ω1 = 1e-4 and ω2, = 1.5e-2 as optimal for 
our application. For the cut-off frequencies the following constraints must always be met: 0 <  ω1 
< ω2 < 0.5. 

 
Figure 3. Transfer functions of the two low-pass filters and the band-pass filter.  
The cut-off frequencies ω1 and ω2 define the frequency range of the band-pass. 

 

In the last step, we transform the filtered image D′(m,n) back to the spatial domain by applying 
the two-dimensional Inverse Discrete Fourier Transform (2D-IDFT), which leads to image G′′′′: 

( ) ( )
1 1

0 0

1
, , exp 2

M N

m n

mp nq
G p q D m n i

M NMN

− −

= =

  ′ ′= π +  
  

∑ ∑  (10) 

Good general introductions on image processing and specifically on filtering procedures can be 
found in Burger and Burge (2006) or in Pitas (2000). Detailed information on the Discrete Fourier 
Transform and its applications can be found in Burger and Burge (2006), pp. 331 to 354. 

2.2.4 Determination of the path with maximum costs 

Although the travel time development is already well visible in Figure 2d (see red to light blue 
areas), we require an additional step to automatically find the path that connects the relevant areas 
(indicated by red to light blue colours) and forms an estimate for the travel time. Hence, we 
implemented an algorithm that searches for the path with the maximum costs, within a given 

image. The associated pseudo code is shown in Figure 4 below. Therein φ1 and φ2 determine the 
maximum meaningful change of travel time in positive and negative direction, respectively. M 
and N denote the width and height of the image and matrix P comprehends the travel time 
estimation. 
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Figure 4. Pseudo code of the procedure to find the path with maximum costs in image G′′′′. 

3. Application  

The examined network corresponds to an existing part of the Swiss National freeway network, 
from which single car data are available. It was implemented with the micro simulation tool 
AIMSUN NG (v5.1.7) and has dimensions according to Figures 6a/7a. To feed the simulation 
with a vehicle mixture that is close to reality, distributions of the lengths at real detector stations 
were analysed (see Figure 5). From this, we derived vehicle classes together with appropriate 
properties (e.g. maximum speed, vehicle length, driving characteristics of the driver (reaction 
time) and the vehicle (maximum acceleration)) as part of the simulation input. 

 

Figure 5. Normalised frequency of real vehicle lengths detected at a station on the Swiss  National freeway 
network at a typical weekday.  
This formed the basis for the definition of the implemented vehicle types and numbers. The maximum frequency 
is 0.03 at a length of around 450 cm.  

 
Many freeway stretches are equipped with double inductive loop detectors. This holds also for 
the Swiss National freeway network: The detectors used are mainly ‘Marksman M660’, 
manufactured by Golden River Ltd. According to Taxomex (1999) and Rubin (2007), the accuracy 

of the length measurements is ∆L < ± 20 cm. To investigate the influence of the random 
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measurement error on the travel time estimation, we performed simulations with measurement 
errors of ± 20 cm, ± 30 cm, and ± 40 cm, respectively. In addition, simulations were performed for 
five different values of structural errors (bias) in the length measurement: -20 cm, -10 cm, 0 cm, 
+10 cm, and +20 cm. 

To simulate the random length measurement errors that are experienced in practice, for each 

vehicle generated by the AIMSUN simulation environment, a random error ∆L was added to its 
true length, independently at the upstream and downstream detector station, respectively. Based 
on the assumptions made above regarding the accuracy, the simulated errors are i.i.d., uniformly 

distributed between ± ∆L. To additionally consider the structural errors, values for the bias 
within the range defined above were added to each downstream vehicle length Lj. 

4. Investigated scenarios 

To assess the presented method, we investigated two different scenarios with both of them 
having congestion situations, caused either by demand overload or by an accident.  
A third scenario, which we considered, was a test scenario, which shows that the algorithm also 
performs well under normal conditions, i.e. with low demand and neither congestion nor 
incident. This is important as it represents a standard operating case. However, due to the limited 
space, we do not elucidate this here. 

4.1 Scenario 1 – Congestion due to overload  

The first scenario has high volumes flowing into the system at origin O1. The mean flow over 
both lanes was around 1500 veh/hour/lane together with densities around 15 to 20 
veh/km/lane. At 10:00 a.m., the flow at the second on-ramp (position 8.60 km; see Figure 6a) was 
increased during 60 minutes (see Figure 6b). This had the effect, that the flow exceeded the 
maximum capacity of the network around this position, which immediately led to congestion. 
Although the higher inflow lasted only for one hour, it has taken the system almost 2½ hours to 
operate normally again. Figure 6b shows the time-space view of the average speed over both 
lanes. We see, that the average speed is around 80 to 90 kilometres per hour in normal condition 
and breaks down to around 20 kilometres per hour during congestion. We also see, that around 
the on- and off-ramps, velocities are slightly lower than before and after (horizontal patterns 
around the positions of the on- and off-ramps). This is caused by the fact, that even in normal 
operation the inflows are relatively high, which in some cases leads to small temporal 
bottlenecks.  
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(a)       (b) 
Figure 6. (a) The examined network displays the detector positions (origin O1; destinations: D2, D4 and 
D6) together with the relevant distances. (b) Time-space view of the average speed (over both lanes) for 
scenario 1 and the whole simulation period.  
The spatial resolution is 50 meters, the temporal resolution is 1 minute. The colour bar on the right side indicates 
the scale for the average speed in kilometres per hour.  

 
4.2 Scenario 2 – Congestion due to an incident  

Scenario 2 has the same high volumes flowing into the system at origin O1 as in scenario 1. The 
average flow over both lanes was again around 1500 veh/hour/lane together with densities 
around 15 to 20 veh/km/lane. Unlike scenario 1, we do not have a congestion due to a network 
overload but one caused by an incident. At 10:00 a.m., an accident happened at position 8.62 km. 
i.e. right after the second on-ramp (see Figure 7a). The accident caused a full blocking of both 
lanes for 20 minutes. In Figure 7b this is represented by the dark blue area starting its 
propagation at 10:00 a.m. in the opposite direction of the vehicle flow. Within this area the speed 
is zero, i.e. full congestion.  
Although the two lanes are reopened after 20 minutes, due to the high volumes even in normal 
mode, the back-propagation of the congestion queue causes a secondary congestion around the 
first on-ramp (at position 3.70 km). In Figure 7b we see, that this “second congestion” has also a 
very high impact. Although the incident lasted for twenty minutes only, it has taken the system 
almost 2 hours to return to normal conditions. We see again the horizontal patterns around the 
positions of the on- and off-ramps, caused in some cases by small temporal bottlenecks (see 
comments on Figure 6). 
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(a)       (b) 
Figure 7. (a) The network under investigation displays the detector positions (origin O1; destinations: D2, 
D4 and D6) together with the relevant distances. (b) Time-space view of the average speed (over both lanes) 
for scenario 2 and the whole simulation period.  
The spatial resolution is 50 meters, the temporal resolution is 1 minute. The colour bar on the right side indicates 
the scale for the average speed in kilometres per hour. 

5. Estimation results 

5.1 Qualitative assessment 

In this section, a first assessment of the quality of the estimation results is done by comparing the 
estimated graphs visually with the true travel times for the two scenarios and for three OD-
combinations considered. The measurement noise is assumed to be i.i.d. and uniformly 

distributed within ∆L = ± 20 cm (see also section 3). For these investigations it was assumed that 
no additional structural errors exist. The travel time estimates were performed here for the right 

lane and for vehicle lengths ≥ 6 m only.    
 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Figure 8. Travel time estimates and residuals for scenario 1: (a) origin O1 to destination D2 (4.8 km), (b) 
residual of estimates in Figure 8a, (c) origin O1 to destination D4 (9.3 km), (d) residuals of estimates in 
Figure 8c, (e) origin O1 to destination D6 (12.8 km), (f) residuals of estimates in Figure 8e.  
In Figures 8a, 8c, and 8e the red crosses indicate true travel times of individual vehicles and the black line 
represents the estimated travel times as a function of the downstream arrival time. In Figures 8b, 8d, and 8f the 
blue crosses indicate the residuals of the travel times, i.e. estimated minus true travel times.  

 
In Figure 8 we see, that for all three OD-combinations the estimated travel time (black line) 
matches the true travel times (red crosses) well, almost independently of the distance between 
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origin and destination. As can be seen, especially in Figures 8c/d and 8e/f, there are some travel 
times below/above the others. These are travel times of vehicles, which travelled for a substantial 
part of their journey between origin and destination on the left lane and therefore were a little 
faster than the vehicles travelling mainly on the right lane. Besides that we see from the residual 
plots (8b, 8d and 8f) that there is no systematic structural error (bias). 
 
 
(a) 

(b) 

(c) 

 
(d) 

 
(e) 
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(f) 

 
Figure 9. Travel time estimates and residuals for scenario 2: (a) origin O1 to destination D2 (4.8 km), (b) 
residual of estimates in Figure 9a, (c) origin O1 to destination D4 (9.3 km), (d) residuals of estimates in 
Figure 9c, (e) origin O1 to destination D6 (12.8 km), (f) residuals of estimates in Figure 9e.  
In Figures 9a, 9c, and 9e the red crosses indicate true travel times of individual vehicles and the black line 
represents the estimated travel times as a function of the downstream arrival time. In Figures 9b, 9d, and 9f the 
blue crosses indicate the residuals of the travel times, i.e. estimated minus true travel times. 

 
In Figure 9 we see again, that for the three considered OD-combinations the estimated travel time 
(black line) matches the true travel times (red crosses) quite well, almost independently of the 
distance between origin and destination. Due to some fast travel time changes (at arrival times 
between 10 and around 11 a.m.), we observe some slightly larger differences as in the other areas. 
Besides that we see from the residual plots (9b, 9d and 9f) that there is no systematic structural 
error (bias).  

We can conclude that the above assessments of both scenarios lead to very satisfying results. 

5.2 Quantitative assessment 

In addition to the investigations of the plots discussed in the previous section, we now carry out 
some quantitative assessments of the scenarios. For this we considered again the same three OD 
pairs as in the previous section. In a first step, we analysed the dependency of the ‘Mean 
Absolute Percentage Error’ (MAPE) on random measurement errors. In a second step, we 
investigated the effects of some structural errors (bias) of the lengths. For each case we performed 
R = 30 simulation runs to get statistically meaningful values for the mean of the MAPE. The 
MAPE is defined as follows:  

( )
( , ) ( , )

( , )
1

ˆ1
r i r iN od odr

od r i
i od

MAPE
N

τ τ

τ=

−
= ∑  (11) 

where N is the number of individual travel times available for vehicles i = 1,…,N, 
( , )ˆ r i
odτ  and 

( , )r i
odτ  denote the estimated and true travel time, respectively, for origin o to destination d, 

simulation run r ∈ {1,…,R}, and vehicle i. The computation of the mean of the MAPE from the R 
simulation runs is straightforward and hence is not explained in detail here.  

5.2.1 Scenario 1  

The results (MAPE) for random measurement errors (with no bias) for scenario 1 are graphically 

represented by Figure 10a. The MAPE for different structural errors (with a random error of ∆L = 
± 20 cm) is shown in figure 10b. 
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Random error influences Structural error influences 

  
(a) (b) 
Figure 10. (a) Mean of the MAPE as a function of the measurement error for the three investigated OD-
combinations, (b) Mean of the MAPE as a function of the structural error for the three investigated OD-
combinations.   
 
From Figures 10a and 10b we can conclude that the travel time estimates for scenario 1 are for all 
investigated cases very satisfying (MAPE well below 4%). This holds for the dependency on the 
random measurement errors as well as for the dependency on the structural errors. 

As we see from Figure 10a, the MAPE varies with the distance between origin and destination, 
e.g. it is higher for origin O1 to destination D2 than for origin O1 to destination D4. This is due to 
the fact that the different origin-destination pairs face quite different traffic conditions during the 
time period considered (see figure 6b), which has a strong influence on the travel time and thus 
on the MAPE (computed according to equation (11)). 

5.2.2 Scenario 2  

The results (MAPE) for random measurement errors (with no bias) for scenario 2 are graphically 

represented by Figure 11a. The MAPE for different structural errors (with a random error of ∆L = 
± 20 cm) is shown in Figure 11b. 
 
Random error influences Structural error influences 

  
(a) (b) 
Figure 11. (a) Mean of the MAPE as a function of the measurement error for the three investigated OD-
combinations, (b) Mean of the MAPE as a function of the structural error for the three investigated OD-
combinations.   
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From Figures 11a and 11b we see that the travel time estimates for scenario 1 are for most cases 
satisfying. However, in Figure 11a we see, that there are in general larger MAPE for 

measurement errors ≥ ± 30 cm. In addition, the dependency of the MAPE on the structural errors 
is slightly higher than for scenario 1 but still well acceptable. 

As we see from Figure 11a, the MAPE also varies with the distance between origin and 
destination as it was the case for scenario 1 (see Figure 10a). However, due to the fact that for 
scenario 2 the traffic conditions during the time period considered (see Figure 7b) differ 
substantially from those in scenario 1, the dependencies of the MAPE on the OD-distance are also 
different from those for scenario 1.  

5.2.3 Summary  

As one could expect, larger random or structural errors lead to larger travel time estimation 

errors (MAPE). At the current stage for random measurement errors up to ± 20 cm together with 
structural errors up to ± 10 cm one can expect very good estimation results for both investigated 
scenarios, independent of the OD-combination. If either the random measurement error or the 
structural error exceeds the above values, the MAPE usually deviates from its optimal values (see 
Figures 10 and 11). 

6. Conclusions and future work 

In this paper we presented a novel travel time estimation method, which relies only on vehicle 
lengths (e.g. from double inductance loops) and the corresponding time stamps at the detector 
stations. We performed tests with simulated single vehicle data, for origin-destination distances 
between 4.8 and 12.8 kilometres. Furthermore, depending on the OD-combination, up to three 
unobserved on- and off-ramps each were part of network under investigation. Only vehicles on 

the right most lane and with lengths ≥ 6 m were considered for the procedure. 

We could show that for the investigated origin-destination combinations all relevant 
characteristics of the travel times were captured. For practically meaningful values of random 
measurement errors and structural errors, the travel time estimates were well within satisfying 
error boundaries.  

Besides these results, some practical benefits of the method are: (i) Provided that single car data 
are available at the detector stations with sufficient accuracy, no additional infrastructure 
investment is required; (ii) The method works fully anonymously, i.e. no privacy issues arise; (iii) 
extensions to use more sophisticated detection technologies that provide additional vehicle 
features, are straightforward; and (iv) the computational speed (the travel time estimation for 7 
hours takes about 5 seconds) allows for an efficient processing of historical data and as such, can 
provide valuable additional input data for subsequent algorithms. 

As mentioned already in section 1, we focussed in this paper on the estimation of mean arrival 
travel times. Thus, one of the next steps will be the extension of the procedure such that it allows 
for the estimation of mean departure travel times, which forms a basis for travel time prediction 
algorithms.  

Besides that, the next steps will also include the application of the method on real data sets and 
various distances together with some adjustments/optimisations of the algorithm.  

In addition, we will test the applicability of the method on other than the right most lane. First 
attempts for the left lane at distances of 4.8 km were very promising, even though there are 
significantly less longer vehicles available. Furthermore, we plan to perform tests with larger 
random errors for short distances with the intention, that even detectors with lower sampling 
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rates could be used (down to 60 Hz). As a final step it is intended to integrate the method to field 
applications. 
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