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This paper considers car allocation choice behaviour in car-deficient households explicitly in the 

context of an activity-scheduling process, focusing on work activities. A decision tree induction 
method is applied to derive a decision tree for the car allocation decision in automobile deficient 
households using a large travel-and-activity diary data set recently collected in the Netherlands. 
The results show a satisfactory improvement in goodness of fit of the decision tree model 
compared to a null model. Overall, the probability of males getting the car for work is 
considerably higher than that of female in many condition settings. However, activity schedule, 
spatial and socio-economic variables appear to have an influence as well. An analysis of impacts 
of condition variables on car allocation decisions reveals that socio-economic variables have only 
a limited impact, whereas attributes of the transportation and land-use system have a relatively 
big impact. The propensity of men driving a car to the work place is higher than that of women. 
However, the relative accessibility of the work location by bike compared to car appears to have a 
relatively large influence on who gets the car for work. Household income and presence of 
children also appear to have significant effects. 
 
Keywords: travel demand modelling; activity-based modelling; decision tree induction; 
within-household interactions; car allocation 
 

1. Introduction 

One of the major indirect factors contributing to increasing traffic congestion in urban areas and 
highways is the increase of household automobile ownership. The vast majority of households 
own at least one car and an increasing number of households own more than one car. It is of no 
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surprise therefore that car ownership and vehicle fleet choice is one of the areas in transportation 
research that has received much attention. A complementary active area of research focuses on 
transport mode choice analysis and modeling to shed light on preferences of individuals in 
choosing one option among several modes available for the trips they make (Xie, et al., 2003; 
Miller et al., 2005). 

Despite the substantial amount of research on car ownership in general, the specific question of 
who is getting the car for which activities in car deficient households has received much less 
attention. In this context, car deficient households are households where the number of drivers 
exceeds the number of cars. Consequently, we know relatively little about the factors that play a 
role in this decision and about the decision process by which household members arrive at a 
choice on who should use a car (Hunt and Petersen, 2004; Vovsha and Petersen, 2007). A model 
of binary car-allocation choice (to use car or not) made by the household members for each tour 
in an integrated framework of intra-household car-use preferences has been proposed and 
estimated by Petersen and Vovsha (2005). They clearly showed that car-allocation decisions are 
inter-related with mode choice, joint travel arrangements, and schedule adjustments. 

Yet, the outcome of this decision does not only have a direct impact on transport mode choice, 
but also has potentially important ramifications for activity-travel schedules of individual 
household members. Action spaces allowed by different transport modes vary substantially and 
therefore the generation, location and timing of activities and the organization of trips into tours 
depends strongly on the transport mode. Critical questions in better understanding this decision 
process include: how do households make trade-offs between mobility needs of drivers and are 
there differences between households related to socio-economic and situational variables? 
Current travel demand models have paid little attention to address these car allocation decisions. 

The decision which person will use the car is a complex decision in car deficient households in 
the sense that many factors may influence this decision. For example, gender roles may imply 
that males are more likzely to use the car than women are. However, it may also be that in case 
the male is going to work for a long period of time in a day, while the female has many errands to 
complete, the flexibility of scheduling and rescheduling activities made possible by the car, may 
lead the household to decide that the female will use the car. As argued by Bianco and Lawson 
(1996), women are more dependent on the car than men because of their traditional 
responsibilities related to childcare and household maintenance as well as their concern for 
safety. On the other hand, due to a good provision of public transport and more dense cities, in 
Western European countries, we often see that women who do not participate in the labor force 
tend to use public transport or use slow modes. Apart from socio-demographic variables, the 
relative accessibility of locations for activities by car will have an influence.   

Surprisingly, car allocation decisions have also not received much interest in the activity-based 
(micro-simulation) modeling literature. To date, fully operational activity-based micro-simulation 
systems include ALBATROSS (Arentze and Timmermans, 2000; 2004; 2005), TASHA (Miller and 
Roorda, 2003), Florida’s Activity Mobility Simulator (FAMOS) (Pendyala, 2004), based on the 
Activity-Mobility Simulator (AMOS) (Kitamura et al., 1996), and the Prism Constrained Activity-
Travel Simulator (PCATS) (Kitamura and Fujii, 1998), and CEMDAP (Bhat et al., 2004),  and some 
projects that have been implemented in the US (Bowman, 2008; Vovsha, 2008). One of the reasons 
for developing activity-based models was that typical response patterns to transport demand 
management involved household decisions. Such responses could not be captured by trip-based 
models, at least not explicitly, as they were founded on individual as opposed to household 
behavior. In general, only few of the existing operational activity-based models are based on 
household decisions, and this statement also applies to the car allocation decision.   

In this paper, we examine this emerging issue. The study focuses on households which have 
fewer cars than drivers. Car allocation decisions are considered as an element of a more 
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encompassing activity scheduling process. A large number of factors that potentially influence 
car allocation decisions in car deficient households are considered. These factors relate to 
variables of the activity schedule and space-time setting as well as individual and household 
characteristics. In this study, we use ALBATROSS as a framework to investigate the car allocation 
decisions as part of an activity scheduling process. ALBATROSS is an operational activity-based 
model developed for the Dutch Ministry of Transportation, Public Works and Water 
Management for travel demand analysis. More specifically, the paper will report the 
conceptualization of the problem and present empirical results of a car allocation model for two 
household heads. It is assumed that before the car is allocated, participation in activities both at 
the household and person level is known. If one car is available in the household and both 
household heads are drivers, then the decision which person is going to use the car involves a 
household-level decision. For instance, if the two persons undertake a work activity during the 
same time slot, a decision needs to be made who can use the car for the trip to work. Note that 
the outcome could also be that both will use another transport mode for the work commute.  

The paper is structured as follows. First, the next section briefly explains the ALBATROSS 
scheduling process model that provides the framework for the car allocation model. The sections 
that follow describe the data used for the analysis and the proposed car allocation model. After 
this section, the results of empirical analyses will be considered focusing on some descriptive 
statistics and the empirical derivation of the model. The paper is concluded by drawing 
conclusions and discussing some possibilities for future research.  

2. ALBATROSS Process Model 

ALBATROSS stands for A Learning Based Transportation Oriented Simulation System. The 
model considers household and personal activities and travel performed on a particular day and 
generates a schedule for each household head. The model takes into account the presence of 
children as an independent variable, but their activities are not explicitly represented. Work 
activities are presumably primary fixed activities, whereas several household activities and work-
related activities, such as bring/get person, business, and others are assumed as secondary fixed 
activities. Shopping, social and leisure activities are called flexible activities. It should be noted that 
fixed activities are also predicted. 

ALBATROSS consists of four major components that together define a schedule for each 
household head for a certain day as displayed in Figure 1. It should be noted that this describes 
the computational process model underlying the system merely in main lines. The first 
component generates a work activity pattern consisting of one or two work episodes, if any, and 
the start time, duration and location. It also predicts the transport mode(s) used to travel to the 
work location(s). The second component determines the part of the schedule related to secondary 
fixed activities (bring/get person, business, and others). It determines which types of these 
activities are conducted that day and how many episodes and for each episode the start time, 
duration and location of each episode. Furthermore, it also determines whether particular trip-
linkages are made with the work activity, if any. 

The following component considers the scheduling of flexible activities. Almost similar to the 
previous component, it predicts activity types, number of episodes of each activity type and the 
start time, duration and location of each episode. The sequence of activities and possible trip-
chaining links between activities are also determined in this stage. The latter decisions relate to 
all activities in the schedule, not just the flexible activities. Finally, the last component predicts 
the transport mode used for each tour (except for tours that include a work activity; for the latter 
tours the transport mode is known as the outcome of a higher-level decision).  
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Generating Work Activity 
- number of episodes 
- start time 
- duration of each episode 
- location of each episode 
- transport mode to the work activity 

START 

Generating Secondary Fixed Activity 
- which type of activity (bring/get,business,other) 
- how many episodes of each activity 
- start time 
- duration of each episode 
- linkage to work activity 
- location of each episode 

Generating Flexible Activity 
- which type of activity (shopping,service,leisure,social,touring) 
- how many episodes of each activity 
- start time 
- duration of each episode 
- trip-chaining for all activities 
- location of each episode 

Transport Mode for Each Non-Work Tour 

STOP 
 

Figure 1.  Schematic Representation of Main Steps of the ALBATROSS Process Model 
 
The car allocation model developed in this study predicts who of the two household heads in car 
deficient households uses the car for a particular activity. As a case, we focus here on the work 
activity given that this activity usually is mandatory, conducted by one spouse individually (as 
opposed to jointly), tends to occupy a large part of the day and may serve as a second base 
location for other activities besides the home location. We emphasize, however, that car-
allocation decisions are not confined to the work activity. In the last step of the Albatross 
scheduling process (Figure 1), the trips required for non-work activities and the way they are 
organized into tours are known. In that stage, a mode choice is made for each non-work tour 
(chain of trips including one or more activities). These choices are preceded by a car allocation 
decision as well. Although we focus here on the work activity, the same methodology developed 
here is used to model car-allocation decisions involved for non-work tours. A car-allocation 
decision restricts a subsequent mode choice: if the car is allocated to an activity or tour no further 
decision is needed and if the car is not allocated, then a choice is confined to other modes then the 
car. Note that car sharing is still open as an option if the car has not been allocated to an activity 
or a tour. In ALBATROSS, car sharing is represented as a car-passenger option. In other words, 
the car allocation decision has implications for the possibility of choosing the car-driver mode 
only, but leaves open the car-passenger mode.  

Because ALBATROSS uses a sequential decision process, to generate a schedule for each 
household head, the information available for the car allocation model is limited. At the moment 
in the process when the car allocation model generates decisions, the schedules of the household 
heads regarding the work activity are known; the schedules regarding other activities then are 
still unknown. This does not mean, however, that the decisions cannot take requirements of other 
activities (which are scheduled in a later stage) into account. An outcome of the decision may 
well be that the car is not used for a work activity considering the household’s needs for other 
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activities. For example, presence of children is a condition variable the system can use to 
anticipate a possible escorting activity for which a car is needed and, hence, may inform the 
system not to allocate the car to a work activity (of one of the two partners). Due to the 
complexity of the scheduling problem it is inevitable that the decisions are made in a particular 
sequence.   

3. Data 

The data used in this study originates from the so-called MON survey (Mobiliteit Onderzoek 
Nederlands – Mobility Research Netherlands) held in 2004. The MON survey is conducted on a 
regular basis to obtain travel and activity information of residents in the Netherlands, and 
although it primarily uses a trip-diary it includes detailed data on activities (at destinations) as 
well. More specifically, it is a one-day travel diary of a sample of households that contains 
information about each household member. In addition, individual and household socio-
demographics such as age, household composition, education level, income level, vehicle 
availability, residential location, and information about all trips made within 24 hours as well as 
out-of-home activities at destinations of trips are collected. For each trip, respondents are asked 
to report information about several attributes including type and duration of the activity at the 
destination, departure time and arrival time, trip purpose, transport mode, and origin and 
destination location. Furthermore, trip-chains can be identified. All in all, this information 
provides a suitable source to analyze activity-travel behaviour of Dutch residents because activity 
and travel information are both revealed. In this data collection, 29221 households filled out a 
one-day travel/activity diary and 28600 of these households fit the criteria for being considered 
here (forms of group housing, such as for example student housing, are excluded). The data were 
transformed to an activity-diary data format for the present estimation purpose. 

4. Car Allocation Model Specification 

As said, the car allocation model focuses on car deficient households (i.e., more drivers than cars 
present) and a joint decision between the two heads (mostly, a female and male). The total 
sample extracted from the MON data includes 28600 households. Given the purpose of this 
study, only the following households and days are relevant: (1) there are two heads in the 
household; (2) there is one car in the household; (3) both heads are drivers and (4) at least one of 
the heads has a work activity on the day considered. As it appears, 3523 households (and days) 
fit these criteria. 

The car allocation decision model is schematically shown in Figure 2. A car-allocation decision is 
needed not only if the two heads in a household both have a work activity. Also, if only one of 
them performs a work activity, it is still necessary to identify whether the worker uses the car or 
not. Furthermore, the model includes the option that none of the household heads uses the car, 
but some other means of transport. Hence, the decision options are male, female, or none. 
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Figure 2. The process of car allocation model 
 
In order to determine how many times such car allocation decisions should be made in a 
household on the day considered, we need to identify the number of work episodes performed 
by male and female heads. Table 1 shows the car-allocation cases that can be distinguished in that 
respect. Case A represents the situation that only one of the heads conducts one work episode, 
leading to only one car allocation decision in the household.  In this case, one head may use the 
car, but also there is an option that he/she may not use the car. In Case B, two work episodes are 
included for only one of the household heads (for example, he/she returns home for lunch). This 
situation thus involves two car allocation decisions when the break is long enough to allow for 
traveling back home and back to work again. 

In case C, both heads have one work episode, implying that one or two car allocation decisions 
have to be made by the two persons. One car allocation decision is to be made if the work 
episodes of the two heads overlap in time (taking travel times into account). On the other hand, 
when there is no overlap in time, 2 car allocation decisions have to be made.  

The same principle of overlapping episodes also applies to Case D and Case E, leading to 
maximally 3 and 4 car allocation decisions respectively. For example, in Case D, when the male 
worker has 2 episodes and female worker has 1 episode, there are 1, 2, or 3 car allocation 
decisions involved. In case both the first and second work episode of the male are overlapped 
with the work episode of the female, then there is only 1 car allocation decision required. If the 
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first episode of the male worker and the episode of the female worker are overlapped while the 
second episode of the male worker is not overlapped with the episode of the female worker, this 
would imply 2 car allocation decisions. Furthermore, if none of the two work episodes of the 
male are overlapped with the female’s one, then 3 car allocation decisions are needed. The similar 
reasoning applies to Case E. In the stage of the activity-scheduling processes where the work-
related car allocation decisions are made, other activities have not yet been scheduled. Therefore, 
other activities that, in the end, are possibly attached to the work activity are not considered in 
this model.  

Table 1. Defining Car Allocation Decisions in Households 

No. 
Number of 
male’s work 
episodes 

Number of 
female’s work 
episodes 

Cases 
Number of 
Cases  

Number of car 
allocation 
decisions 

1 0 1 520  
2 1 0 

A 
1437  

1  

3 0 2 132  
4 2 0 

B 
520  

2  

5 1 1 C 1047  1 or 2 
6 1 2 144  
7 2 1 

D 
228  

1, 2, or 3 

8 2 2 E 68  1, 2, 3, or 4 

Total Sample 4096   

 
In determining whether or not there is an overlap in time, the travel time has to be taken into 
account as well. The travel time by car mode (across the road network) is relevant here. First, the 
timing and duration of work episodes of the household heads are derived and then the type of 
overlap is determined. Note that, travel time by car is used because that is relevant for car 
allocation decisions. Further details are provided in Section 5. 

M 

F 

 M 

F 

 

M 

F 

 

 

A B 

C 

 

D 
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E 

M 

F 

 

 

 

 

 

 

Figure 3. Examples of Distinguished Cases 

5.     Empirical Analyses 

In this section we describe the results of deriving a decision tree model for car allocation choice. 
Before discussing these results, we will first consider some descriptive analyses carried out to get 
a better understanding of the characteristics of the sample after selecting car deficient 
households. Next, we briefly discuss CHAID, which is the decision tree induction method we use 
to derive decision rules from the MON data. To facilitate interpretation of decision tree results, 
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we use a post-processing technique called impact tables. The impact table technique will be 
briefly discussed in the section that follows. Finally, in the last section, we discuss the results of 
the induction of the car allocation decision tree model and the corresponding impact table. 

5.1 Descriptive Analyses  

As discussed above, only a subset of households is relevant for the car allocation model, because 
the problem concerns car allocation to work activities in car deficient households. A total of 3,523 
households were selected from the MON data, yielding 4,096 relevant cases of car allocation 
decisions. To describe the final sample, some further descriptive analyses were conducted.  

Table 2.  Distribution of households across household composition and SEC (%) 

    SEC 
Household Composition 

Low Mid-Low Mid-High High 
     Total 

Double, One Worker  3.2 13.3 12.3 11.6 40.3 
Double, Two Worker  0.8 11.7 19.7 23.9 56.1 
Double, No Worker  0.9 1.2 1.0 0.5 3.6 

Total Sample (4096) 4.9 26.2 32.9 35.9 100 

 
Table 2 displays the frequency distribution of households across household composition and 
socio-economic class combinations after selection. High-level income households are in the 
majority (35.9%) and consist most frequently of double-two-worker households. Double means 
two adults (male-female adult) household. This is followed by mid-high income (32.9%), mid-low 
income (26.2%) and low income households (4.9%).  

Table 3. Distribution of household heads across household composition and work status of 
household heads by gender (%) 

Work Status, Male Work Status, Female 
Household 
Composition Non- 

worker 
Part-
time 

Full- 
time  

Total 
Non-

worker 
Part-
time 

Full- 
time  

Total 

Double, One Worker  10.8 1.9 27.6 40.3 29.5 3.2 7.6 40.3 
Double, Two Worker  0 8.4 47.7 56.1 0 31.2 24.9 56.1 
Double, No Worker  3.6 0 0 3.6 3.6 0 0 3.6 

Total Sample (4096) 14.4 10.3 75.3 100 33.1 34.4 32.5 100 

 
The distribution of household heads across household composition and work status by gender is 
presented in Table 3. Over 75% of males are full-time worker. Females are approximately equally 
distributed across the work-status categories (33.1%, 34.4% and 32.5% for no, part-time and full-
time worker respectively). This suggests that gender still plays an important role in work 
commitments and task allocation.   

Table 4. Work duration statistics by work status and gender 

Male Female 
Working 
Status 

Average duration 
of work activity 
(min) 

Standard 
Deviation 
(min) 

Freq. Average duration of 
work activity (min) 

Standard  
Deviation 
(min) 

Freq. 

Part-time 293.78 245.20 422 207.09 219.70 1412 
Full-time 373.63 235.71 3085 257.88 245.47 1331 

Total 364.02 238.26 3507 231.73 233.90 2743 
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Table 5. Work duration statistics by day of the week and gender 

Male Female 
Day of the 
Week 

Average duration 
of work activity 
(min) 

Standard 
Deviation 
(min) 

Freq. Average duration 
of work activity 
(min) 

Standard  
Deviation 
(min) 

Freq. 

Monday 373.84 237.49 708 239.32 235.01 576 

Tuesday 381.85 228.92 663 249.10 238.62 513 
Wednesday 384.33 233.22 623 230.87 229.94 485 
Thursday 367.19 235.38 683 226.62 231.05 541 
Friday 356.01 241.31 635 223.60 236.36 461 
Saturday 237.96 242.12 135 211.68 228.38 114 

Sunday 172.83 230.95 60 155.15 219.24 53 

Total 364.02 238.26 3507 231.73 233.90 2743 

 
Table 4 shows the distribution of duration across work activities for male and female heads by 
work status. Note that persons may conduct more than one work activity a day; the figures 
presented refer to durations on a per-activity basis (as opposed to a per-episode basis). As we can 
see, males on average work approximately one and a half times as long hours than females per 
work activity. Furthermore, in each work status group, the average duration of males’ work 
activity is higher than that of female. The frequency of work activities conducted by full-time 
male worker is leading among its class, as a result of the fact that 75% of the males work full-
time. This also suggests that gender still plays a significant role in household task allocation. 

Finally, Table 5 describes the household heads work activity duration split up by day of the 
week. As can be seen, on average, working hours of males is similar from Monday through 
Friday, about 6 hours. Meanwhile, working hours of females is on average about 3-4 hours 
during working days. Again, this result shows that on average males work longer hours than 
females per work activity. 

5.2 Decision Tree Induction 

We applied a CHAID-based tree induction method to identify the decision rules that can describe 
car allocation choice behavior. CHAID (Kass, 1980) generates non-binary trees, i.e., trees where 
more than two branches can be attached to a single root or node, based on a relatively simple 
algorithm that is particularly well suited for the analysis of large datasets and probabilistic action 
assignment. Other commonly used decision tree induction systems are C4.5 (Quinlan, 1993) and 
CART (Breiman et al, 1984). All these methods use a recursive process of splitting the sample 
based on condition variables into partitions that are as homogeneous as possible regarding the 
action variable (i.e., the car allocation choice in this case). CHAID relies on the Chi-square test to 
determine the best next split at each step. To determine the best split at any node, it merges any 
allowable pair of categories of the condition variable if there is no statistically significant 
difference within the pair with respect to the action variable. This is done for each candidate 
condition variable. The split having the highest significance value (after Bonferroni correction for 
multiple tests) across condition variables is selected and implemented. The process is repeated 
until no more significant splits are found also taking into account a pre-defined minimum 
number of cases requirement at leave and parent nodes. This process of extracting rules is the 
same as the one used in the ALBATROSS model. In order to develop the decision tree, 75% of the 
cases were used for training and the remaining cases were used for validation. Generally, in 
deriving ALBATROSS decision models, attributes of the household, person, space-time setting 
and schedule as far as known in the stage considered of the assumed decision process are used as 
condition variables. Observations of condition variables and action variables (car allocation 
choice) in each case are extracted from the diary data. 
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The CHAID decision tree induction method allows one to define the threshold for splitting in 

terms of a significance level for the Chi-square ( 2χ ) measure and a minimum number of cases at 

leaf nodes. Alpha was set to 5% and the minimum number of cases to 50. The number of leaf 
nodes gives an indication of the complexity of the resulting tree. As a measure of prediction 
accuracy, the expected hit ratio is used. The expected hit-ratio represents the expected proportion 
of cases predicted correctly when a probabilistic action assignment rule is used. It is calculated as: 

∑ki
k

ki

N

f

N

2)(1
 where fki is the frequency of the ith action at the kth leaf node, N is the total 

number of cases and Nk is the number of cases at the k-th leaf node. Note that the expected hit 
ratio is comparable to a likelihood measure and, generally, yields lower scores than the 
deterministic counterpart of the measure.  

5.3 Deriving Impact Tables 

Decision trees derived from data may become very large and complex and, consequently, 
difficult to interpret. This holds true particularly for the present application where the number of 
choice observations is very large. Arentze and Timmermans (2003) developed a method to derive 
elasticity information from rule-based models to facilitate interpretation, which we will use here 
to describe the results of tree induction. The principle of the proposed method is straightforward. 
After having derived a rule-based model from training data, the model is used to predict for each 
condition variable a frequency cross table with the levels of the condition variables in rows and 
the frequency distribution across the levels of the target variable (i.e., the action variable) in 
columns. The frequency table for a given condition variable is generated by applying the model 
as many times as there are levels of the condition variable. In each run, each training case is 
assumed to take on the level considered on the condition variable. The frequency distribution 
across actions of the action variable predicted under that setting is recorded. Repeating this 
process for each level of the condition variable yields a frequency cross table of the condition 
variable against the action variable. The impact of the condition variable is then measured as the 
Chi-square for this frequency table. Formally: 

( )s sIS D= F  (1) 

where D  is a Chi-square measure of the frequency table generated (Fs) for condition variable s. 
This measure can be decomposed into a measure of impact on each level of the action variable, as 
follows: 

( )si siIS D= F  (2) 

where again D is a chi-square measure and Fsi is the vector of predicted frequencies of the i-the 
action under the levels of the s-th condition variable.  
Apart from impact size, we also use a measure of the direction of impact proposed by Arentze 

and Timmermans (2003) defined as:                           

∑

∑

=
−

=
−

−

−
=

J

j
jiij

J

j
jiij

si

ff

ff

MS

2
1,

2
1,

||

)(

 (3) 

where fij is the predicted frequency of action i under the j-th level of condition variable s and J is 
the number of levels. This measure can be interpreted as a measure of monotonicity. If the 
condition variable has a monotonically increasing impact on the frequency of action i across the 
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levels of the condition variable, then MSsi equals 1 and if it has a monotonically decreasing 
impact it equals -1. Any value in between these extremes indicates that the impact is non-
monotonous in the direction indicated by the sign across the range of the condition variable. We 
emphasize that the monotonicity measure is meaningful only for variables that are naturally 
enumerated; it is not informative for variables that are purely nominal. 

5.4 Condition and Action Variables 

Table 6 portrays the condition variables that were used as input to the tree-induction algorithm. 
The condition variables concern household level (including accessibilities), individual level, and 
activity level variables (note that in this stage of the scheduling process only work activities are 
known). Continuous condition variables, such as travel time, duration, and parking price, are 
discretisized by using an equal-frequency interval method which divides a continuous variable 
into n parts, in which each part contains approximately the same number of cases.  

The presence of young children in a household is taken as a condition variable as well as other 
household and individual attributes, such as work status, socio-economic class (in Euro), urban 
density (number of home addresses per area unit in the zone where the household lives classified 
on a 5-point scale) and the day of the week (no. 1-8 in Table 10). The number of work activity 
episodes that is performed by male or female is 0, 1 or 2 episodes (no. 9-11).  Accessibility 
variables, such as travel time, train and bus connections, parking price and free-paid parking 
place ratio were also used (no. 12-29, except no. 18-19). They are calculated based on national 
datasets of the transport system (car, bike/walk and public transport). They all relate to the trip 
to the work location. If there is no work activity conducted by the person on a particular day, the 
variables are set to zero for that person. If a work activity is conducted in the same postcode area 
as where the person lives, then travel time is set to zero too. Travel time by car is included as a 
direct measure of accessibility. Travel time ratios between modes are used as indicators of 
relative accessibility by particular modes. Ratios are used to allow the algorithm to identify 
impacts of modes more easily. 

Work duration is an attribute of the activity for which a car allocation decision is made (no.18-19). 
The definition of this variable takes the overlap pattern into account. To explain this, consider for 
example, a case where the male has a work activity of 9 hours and the female has two work 
episodes of 4 hours each with a one hour break in between. In this case, there are two allocation 
decisions if the overlap concerns only one of the female’s work episodes. For both decisions the 
considered work duration for the male is 8 hours and for the female 4 hours. On the other hand, 
if the male’s work activity overlaps with both female’s work episodes, just one allocation decision 
needs to be made. For that decision the considered work duration for the male is 9 hours, as 
before, but for the female it becomes 8 hours.  

Note that some of the variables relate to the schedule level (a day of the household), whereas 
others are defined at the level of the activity which involves a car-allocation decision (i.e., a work 
activity of one or both of the heads). The variables that correspond to the schedule level are 
number of work episodes of male and female respectively and number of car-allocation-decision 
cases in a household (no.31). The number of car allocation cases occurring in a household can be 
1, 2, 3, or 4 cases (see Table 1 and Figure 3). The variables at activity level are the following. For 
each car allocation case, the timing of work activities of both persons have to be considered to 
determine whether or not there is an overlap in time (no. 30). Obviously, if only one person 
performs a work activity in a particular time period, then there is no overlap in time, and 
otherwise there might be. Variable no.32 indicates the type of overlap in terms of all possible 
combinations of number of work activities (none, one or two) by male and female. In Cases (1) 
and (2) only the male or female has a work activity in a particular time period. In contrast, in 
cases (3) to (6) there is a time overlap between their work activities. 
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Table 6. Condition Variables for Car Allocation Model 

No Variable Classification Acronym 
1 
2 
3 
4 
5 
6 
 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
 
28 
 
29 
30 
31 
32  
 

Urban Density 
Household Composition 
Presence of the youngest children 
Day of the week 
Age of person 
Socio-economic class 
 
Working status –  M  
Working status – F  
Number of work episodes – M 
Number of work episodes – F 
Number of work episodes in household 
Travel time by car – M (in minute) 
Travel time by car – F (in minute) 
Travel time ratio between PT and car – M 
Travel time ratio between PT and car – F 
Travel time ratio between car and bike – M 
Travel time ratio between car and bike – F 
Duration of work episode – M (in minute) 
Duration of work episode – F (in minute) 
Train accessibility – M 
Train accessibility – F 
Bus accessibility – M 
Bus accessibility – F 
Work conducted by male 
Work conducted by female 
Ratio # paid parking places to total #  
parking places – M 
Ratio # paid parking places to total #  
parking places – F 
Average price of parking – M 
Average price of parking – F 
Overlapping between two persons’ episodes 
Number of car allocation cases in household 
Type of case for allocating the car  
 

0=most densely , 4= least densely 
2=DONEWORK, 3=DTWOWORK, 4=DNOWORK 
0=no children, 1=<6, 2=6-11, 3=12-17 yrs 
0=Monday to 6=Sunday 
0=<35, 1=35-<55, 2= 55-<65, 3= 65-<75, 4= 75+ yrs 
0=0-16,250 (low), 1=16,251-23,750 (low-mid), 
2=23,751-38,750 (mid-high), 3=38,750+ (high) 
0= non-worker, 1= part-time, 2= full-time 
0= non-worker, 1= part-time, 2= full-time 
0, 1, 2 
0, 1, 2 
1,2,3,4 
0=0; 1=≤8; 2=9-14; 3=15-22; 4=>22 
0=0; 1=≤6; 2=7-11; 3=12-18; 4=>18 
0=0; 1=≤1.00; 2=1.01-1.98; 3=1.99-4.11; 4=>4.11 
0=0; 1=≤1.00; 2=1.01-2.14; 3=2.15-4.49; 4=>4.49 
0=0; 1=≤0.25; 2=0.26-0.37; 3=0.38-0.81; 4=>0.81 
0=0; 1=≤0.30; 2=0.31-0.42; 3=0.43-1.00; 4=>1.00 
0=0; 1=≤275; 2=276-520; 3=521-565; 4=>565 
0=0; 1=≤240; 2=241-380; 3=381-540; 4=>540 
0= no, 1= yes 
0= no, 1= yes 
0= no, 1= yes 
0= no, 1= yes 
0= no, 1= yes 
0= no, 1= yes 
0=0; 1=≤0.09; 2=0.10-0.15; 3=0.16-0.28; 
4=>0.28 
0=0; 1=≤0.07; 2=0.08-0.14; 3=0.15-0.24; 
4=>0.24 
0=0; 1=≤9; 2=10-25; 3=26-66; 4=>66 
0=0; 1=≤8; 2=9-22; 3=23-44; 4=>44 
0=no, 1=yes 
1=1, 2=2, 3=3, 4=4 
1=Male only, 2=Female only, 3=M&F (each 1 ep), 
4=M (2 ep) & F (1 ep), 5=M (1 ep) & F (2 ep), 6=M&F 
(each 2 ep)   

Urban 
Comp 
Child 
Day 
Age 
SEC 
 
WstatM 
WstatF 
NworkM 
NworkF 
NworkHH 
TTcM 
TTcF 
TTptM 
TTptF 
TTcbM 
TTcbF 
DurM 
DurF 
TrAcM 
TrAcF 
BusAcM 
BusAcF 
Mwork 
Fwork 
RParkM 
 
RParkF 
 
PParkM 
PParkF 
overlap 
NcarAl 
cases 

 

Note: M = Male; F = Female; PT = Public Transport; ep = episode 

 
As a result, a total of 32 condition variables were defined. The action variable, as the output of the 
car allocation model, involves assigning the car to male, female, or none of the two household 
heads.  

5.5 Results 

For deriving the car allocation model for work activities, a total of 4,096 observations could be 
derived from the data set. 75% of these cases (3,114) were used for training and the remaining 
cases were used for validation. Of 4,096 cases, the probabilities of the car being allocated to male 
and female are 37.28% and 17.77% respectively. In the remaining cases, 44.95%, the male and 
female heads use other modes to the work place.  

Table 7 shows the frequency distribution of allocation decision outcomes over household types in 
terms of work status of the heads. In households where male is a non-worker, in about 50% of the 
cases household heads choose some other mode to travel to the work place. In households where 
male is a part-time worker and the female is a non-worker, the car is allocated to the male in 
about 43.59% of the cases. However, if both male and female are part-time workers, about 50.75% 
of the cases they use some other mode than car. In households where male is a full-time worker 
and female is a non-worker, the car is allocated to the male in 43.67 % of the cases. In sum, the 



EJTIR 8(4), December 2008, pp 301-319 
Anggraini, Arentze and Timmermans 
Car Allocation between Household Heads in Car Deficient Households: A Decision Model 
 
 

  

313

figures show that the male gets the car more often than the female even in two-worker 
households. 

Table 7. Frequency Distribution of Work Status across the Action Variables 

Work status % of getting the car 
No 

Male Female Male Female None 
Total 

1 Non-worker 32.88 15.75 51.37 146 
2 Part-time 9.23 40.00 50.77 130 
3 

Non-worker 

Full-time 36.10 13.74 50.16 313 

4 Non-worker 43.59 16.67 39.74 78 
5 Part-time 38.81 10.45 50.75 67 
6 

Part-time 

Full-time 25.99 25.99 48.01 277 

7 Non-worker 43.67 7.26 49.07 1129 
8 Part-time 35.88 20.91 43.21 1215 
9 

Full-time 
Full-time 36.98 27.13 35.90 741 

  Total   1508 747 1841 4096 

 
Given a minimum group size of n=50 cases at parent nodes and a 5% alpha level, the tree 
generated by CHAID consists of 29 leaf nodes (decision rules). The hit ratio (based on a 
probabilistic assignment rule and the training set) of the model, compared to a null-model (a 
root-only decision tree) indicates a significant improvement achieved by the tree: the hit-ratio of 
the null-model of 0.374 is significantly increased to 0.540. 

Figure 4 shows the resulting car allocation tree model graphically by branch from the root note. 
The first split is implemented on travel time ratio between car and bike for the work activity 
performed by female (TTcbF). Recall that the variable is set to zero if the person has no work 
activity or the work activity takes place in the same post code area as the home location. This 
results in five branches from the root. 

Branch #1 represents the condition where the female has no work activity or a zero travel time to 
the work place. Within this node a split is implemented on travel time by car for the male work 
activity (TTcM), and so on. The probability distribution across male, female and none options is 
shown in italic font at each leaf node. Each path from the root to a leaf node represents a decision 
rule. For example, the path printed in bold (Figure 4) represents the rule: 
 
IF: TTcbF = 0 ∧  TTcM = 1 ∧  TTcbM = 0-2 ∧  DurM = 3-4 
THEN:  Male = 35.1%, Female = 0%, and None = 64.9% 
 
This rule denotes that IF female either does not have a work activity or the work and home 
location are in the same zone AND travel time (by car) of male is 8 minutes or less AND the 
travel time ratio between car and bike for the male is less than 0.37 (traveling by car is at most 2.7 
times as fast as the bike) AND male’s work duration is at least 521 minutes (8.68 hours), THEN 
the probability that the male gets the car is 35.1%. Thus, the propensity of not using the car to 
work by male is as high as 64.9% under these circumstances (where the male’s work location is 
relatively well accessible by bike). 
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Figure 4. Car Allocation Tree Model with 5 Major Branches 
 
As another example, in branch #2, the rule printed in bold indicates that IF travel time ratio 
between car and bike for female is less than 0.30 (relatively good accessibility by car) AND the 
travel time ratio between car and bike for male is at least 0.26 (relatively good accessibility by 
bike), THEN the probability of female getting the car (26.2%) is yet lower than that of male 
(58.4%). This rule indicates that even if the male’s work place is well accessible by bike, the 
propensity of the male to use the car is considerably higher than that of female. Furthermore, in 
branch #3, as another example, the rule printed in bold indicates that IF the female and male both 
have a work activity and the travel time ratio between car and bike for the female is in between 
0.31 and 0.42 (the car is between 3.2 and 2.4 times faster than bike) AND travel time ratio between 
public transport and car of male is greater than zero AND there is a train connection between 
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home and the female’s work location, THEN the female’s probability of getting the car is 
substantially higher than the male’s, namely 57.4% and 29.8% respectively. 

The results of a performance analysis are shown in Table 8 in the form of a confusion matrix for 
the training and validation set. A confusion matrix describes the model performance in terms of a 
distribution of predicted choices for each observed choice category in the data set. The confusion 
matrix shown is based on probabilistic model predictions. The diagonal will have high numbers 
in case of good prediction. Off-diagonal elements of the matrix indicate the probabilities of 
predicting wrong actions for each observed choice category.  

Table 8. Confusion matrix for the training and validation sets 

Training set (N=3114) Validation set (N=982) 

Predicted  Predicted  Observed 

Male’ Female’ None Total’ Male’ Female’ None Total’ 

Male 0.543 0.092 0.365 0.377 0.524 0.099 0.378 0.360 
Female 0.197 0.471 0.332 0.176 0.166 0.478 0.356 0.184 
None 0.307 0.130 0.563 0.448 0.321 0.113 0.566 0.455 

Total 0.377 0.176 0.448 0.540 0.365 0.175 0.459 0.534 

 
Table 8 shows that the model achieves a substantial improvement compared to a null-model as 
diagonal cells have higher percentages. For example, as it appears in the training set, in 37.7% of 
the cases we observe males using the car for the work activity. In 54.3% of these cases the model 
predicts car allocation correctly, while for the remaining cases the model predicts incorrectly that 
the female will use the car (9.2%) and none of the heads use the car (36.5%).  Note also that, due 
to the probabilistic assignment rule used, the predicted distribution exactly matches the observed 
distribution overall cases. In that sense the predictions are bias free. Comparing the diagonals of 
the training and validation set suggests a small decrease in accuracy. As the bottom-right cell 
shows, the overall accuracy on the validation set is slightly decreased from 0.540 to 0.534. We 
consider the small decrease in accuracy as acceptable. 

To evaluate the quantitative impacts of each condition variable on the action variable, Table 9 
displays the impact table for the car allocation model. The condition variables are listed in order 
of decreasing impact on the action variable overall (the IS column). Note that ISmale, ISfemale, 
and ISnone show the size of the impact for each action separately.  

Table 9. Impact Table of Condition Variables of Car Allocation Model 

No. Variables IS ISmale ISfemale ISnone MSmale MSfemale MSnone 

1 TTcbF 3719.77 120.71 2376.06 1223.00  -0.16   0.33  -0.38 

2 TTcM 948.75 519.71   0.01 429.02   1.00  -1.00  -1.00 
3 TTcbM 446.41 257.61  87.46 101.34   0.09  -0.20  -0.03 
4 TTcF 58.58   0.14  43.07  15.37  -1.00   1.00  -1.00 
5 PParkM 50.8  28.82   0.00  21.99  -1.00 -   1.00 
6 TTptM 45.57  25.64   0.20  19.74   1.00  -1.00  -1.00 

7 SEC 8.2   2.15   2.02   4.02  -1.00  -1.00   1.00 
8 Day 5.69   3.10   0.00   2.59   0.33 -  -0.33 
9 DurM 5.11   2.79   0.00   2.32  -1.00 -   1.00 
10 TrAcF 4.66   0.54   3.79   0.33  -1.00   1.00  -1.00 
11 Mwork 3.41   2.02   0.92   0.47   1.00  -1.00  -1.00 

12 Child 2.42   1.33   0.00   1.09  -1.00 -   1.00 

 
When we look at the differential impacts of types of condition variable, we see that socio-
economic variables have only a limited impact, whereas attributes of the transportation system 
have a relatively big impact. Especially, travel time ratios and parking tariffs for the work 
location emerge with substantial impacts. The variable that gives by far the biggest impact is the 
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travel time ratio between car and bike for female (TTcbF). The monotonicity measure (MSfemale 
= 0.33) clarifies that with increasing ratio of this variable, the probability that the female gets the 
car increases. At first sight, this seems implausible as the ratio indicates the relative accessibility 
by bike. However, note that a value of zero of this ratio means that the female has no work 
activity or a work activity in the home postcode area. Hence, an increase of the ratio from a zero 
value means a change in condition from no travel to positive travel for the female and, hence, an 
increase in the probability of getting the car. The fact that the impact is non monotonous indicates 
that the probability does not increase in the higher range, i.e. where an increase indicates an 
improvement of relative accessibility by bike. Logically, zero value should be taken out from the 
classification level. However, the software does not feasible to allow it. Then, this may be the 
shortage of this approach. 

The monotonicity measure for the variable that gives the second biggest impact, TTcM, indicates 
that as travel time (by car) of male goes up, the frequency of allocating the car to the male 
increases monotonically (MSmale = 1), as expected. In sum, travel time and parking price variables 
have a big influence on car allocation decisions between the two household heads in a car 
deficient household, as indicated by the results of the first six variables. 

In terms of socio-economic variables, we find that the most influential variable is socio-economic 
class (SEC). Interestingly, the probability of getting the car decreases monotonically for both male 
and female (MSmale dan MSfemale = -1.00) as income rises. This result is somewhat counter-intuitive, 
given that car possession tends to be higher among high income groups. It should be noted, 
however, that since we consider car-deficient households we have corrected for number of cars 
available in the household (we consider only double-adult households having one car). Within 
this group, third variables such as education level and availability of public transport at the work 
place may exert an influence. Income is correlated with education level and possibly urban 
density at the location of employment (larger cities) and the latter variables are correlated with 
use of public transport. As a consequence, increasing income may lead to decreasing car 
allocation to work activities. The probability of male getting the car increases when the male has 
a work activity on the day concerned (Mwork). The presence of young children in the household 
(Child) is the last socio-economic variable that has an impact on car allocation decisions. Again 
interestingly, the tendency of not using the car by male increases monotonically (MSnone = 1.00) 
when the value of this variable increases, i.e. going from no children to presence of children with 
increasing age. Since there is at the same time no influence on the probability that the car is 
allocated to the female, it indicates that the car stays at home more often (possibly, for non-work 
activities of the female). 

As for the situational variables, day of the week (Day) is the most influential variable. There is a 
non-monotonous tendency (MSmale = 0.33) of increasing probability of allocating the car to the 
male as the week proceeds from Monday to Sunday (the lowest value on this variable is 
Monday). Day of the week has no influence on the probability of allocating the car to the female. 
Another variable that has no influence on the probability of allocating the car to the female is 
work duration of the male (DurM). The probability of the male getting the car decreases 
monotonically as his work duration goes up (MSmale = -1.00). The presence of a train connection 
between home and the female’s work location (TrAcF) increases the probability of the female 
getting the car and decreases the probability that the male gets the car. Probably, the existence of 
a train connection acts as a proxy for distance and urban density: a train connection generally 
exists only between locations with relatively high density and far enough apart. 

6. Summary and Conclusions 

This paper considered car allocation choice behavior in car-deficient households explicitly in the 
context of an activity-scheduling process. Focusing on work activities, a car allocation model 
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based on rules derived from a large travel diary data set using a CHAID-based induction 
algorithm was presented. The face-validity of the decision tree model is good in the sense that the 
derived rules and impacts of condition variables are readily interpretable. The overall goodness-
of-fit of the model is satisfactory. Although the performance on a validation set decreased 
slightly, the set of decision rules seems stable across training and validation set to a satisfactory 
extent.  

The propensity of men driving a car to the work place is higher than that of women in car 
deficient households, particularly, when women have no work activity or women’s work place is 
in the same zone as the home location. This finding is consistent with a common notion that 
women use a slow or public transport mode more often to travel to activity locations. Similar to 
that, women tend to use the car when men have no work activities or men’s travel time to work 
place is zero. When the female’s work location is relatively well accessible by car, women are 
prevalent in getting the car.  

In terms of decision rules results, in 43.1% of the rules men get the highest probability to use the 
car while in only 20.7% of the rules women have the highest probability to use the car.  In the 
remaining of the rules (36.2%) none of the heads using the car gets the highest probability. Note 
that, the percentage rules are unweighted. 

As the impact table analysis showed, travel time variables and, in particular, the relative 
accessibility of the work place by car compared to bike by far plays the most important role in 
car-allocation decisions in two-driver, single-car households. Work duration, day of the week and 
the existence of a train connection between home and work location also has an impact on the 
decisions. Although socio-economic variables appear to have only small effects on the decisions, 
presence of young children and household income has an influence too. 

As we showed, car allocation decisions can be modeled as an element of a more encompassing 
activity scheduling process. ALBATROSS proved to be a suitable framework for this. This focus 
of our approach meant at the same time that only a limited set of explanatory variables at the 
level of the individual and household was taken into account. From an analytical perspective, it is 
interesting to extend the set of explanatory variables and investigate what the effects are of 
additional attributes such as job characteristics and car characteristics on these decisions. 
Furthermore, given that attributes of transportation systems appear to be significant, it is worth 
while to include even more detailed descriptors of the transportation system, e.g. public transport 
services and parking facilities. Finally, the present study focused on car allocation decisions in 
relation to the work activity. Clearly, car allocation decisions may also occur at the level of non-
work activities in a scheduling process.  The same approach as developed in this study can be 
applied for that purpose. 
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