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This paper considers bicycle route choice for commuter trips. Bicycle route preferences are 

analysed using a dataset from a GPS-assisted household travel survey conducted in the Tel Aviv 
metropolitan area. Different choice set generation methods were applied to generate alternative 
routes for each observation, and the matching with the actual route is discussed. Model 
estimation is performed for different route choice sets to test the sensitivity of the parameter 
estimates. The results obtained are quite consistent, and indicate an expected tendency to ride in 
longer routes, but with separated bike lanes. In the absence of such lanes, riders prefer to use 
local streets and avoid riding on busy arterial streets and highways. 
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1. Introduction 

1.1 Motivation 
There has been an increasing interest in bicycle network planning, in particular as a sustainable 
transportation mode in urban areas. In several European cities, bicycle is treated as an essential 
transportation mode. In contrast, transportation planning studies conducted in Israel consider 
bicycle as part of non-motorized modes, often joined with pedestrian. An effective planning 
requires a clear understanding of the preferences of its users. Therefore, this paper focuses on 
bicycle route choice in urban areas, which is an essential planning component.  

Most existing studies on bicycle route choice models assumed a two-stage approach, meaning 
that first a choice set is generated (using one or a combination of methods), followed by model 
estimation using the generated choice set. The need to generate a representative choice set is 
challenging, because of the very large number of possible alternative routes in a dense network. 

There are several methods to generate a route choice set, most of them developed for motorized 
travel modes. These methods are generally based on variations of the shortest path search. For 
example, the labelling approach, which minimizes generalized cost functions according to link 
attributes (Ben-Akiva et al., 1984); link penalty, which gradually increases the impedance of all 
links on the shortest path (De la Barra et al., 1993); link elimination, which removes shortest paths 
from the network in sequence to generate new routes (Azevedo et al., 1993); simulation method, 
which produces alternative paths by drawing link impedances from probability distributions 
(Bekhor et al., 2006). These and other approaches are relatively well known in the literature 
(Prashker and Bekhor, 2004; Prato, 2009). 
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1.2 Bicycle route choice studies 
Broach et al. (2012) applied different methods to generate routes in Portland, such as labelling 
method, link penalty, and simulated shortest paths. The coverage results reported in the paper 
indicated that only 25% of the generated routes replicated the actual routes, and 42.3% coverage 
assuming 80% overlap. They found that cyclists chose a route that is 11% on average longer 
than the shortest route for commute trips.  

Hood et al. (2010) applied the simulation method to generate routes (the doubly stochastic 
method) in San Francisco. In contrast to other studies, they added to the cost 
function environmental and socio-economic variables, such as crime record areas, lighting and 
weather conditions. However, as with Broach et al. (2012), coverage rates were very low 
(approximately 30%).  

Menghini et al. (2009) used the link elimination method to generate routes in Zurich. The cost 
function used was limited to travel distance. In Halldórsdóttir et al. (2014) study in Copenhagen, 
cost functions included land use and road type. They added a random component to these 
values to create a representative route choice set. The coverage results (70%) were superior in 
comparison to the previous studies.  

In the above studies, planning road networks were used as a basis for route choice set generation. 
These networks did not include small local streets with low density traffic (as is often the case for 
planning networks). This is because of the need to have a simpler network for planning purposes. 
Such a planning network is not suitable for bicycle route set generation, precisely because there is 
an advantage in these roads for cycling (related to the small traffic volume in these streets).  

In Los Angeles (2014), a detailed transportation network was used to generate routes. Sensitivity 
tests indicated that a choice set consisting of five bicycle paths appears to be a practical size of 
choice set.  The Cross-Nested Logit (CNL) choice model was used for model estimation.   

Recently, Chen and Shen (2016) examined built environment factors (land use characteristics and 
roadway design features) that affected cyclists’ route choices in Seattle. Data was collected from a 
smartphone application, and the labelling approach combined with the k-shortest path method 
was applied to generate the route choice set for the 543 observations. The results indicated 
that cyclists preferred bicycle routes of shorter distances, lower speed limits, and flatter roads. 
Furthermore, routes surrounded by mixed land use, waters or parks were preferred.  

Choice set composition is known as a difficult issue to resolve in the context of modelling 
revealed choice behaviour. Biased model parameters and statistical inconsistency of parameter 
estimates are related to mis-specification of the choice set. There are recent modelling approaches 
that avoid the bias induced by generated choice sets. Frejinger et al. (2009) developed a correction 
term for route sampling, using random walk as the generation method. Fosgerau et al. (2013) 
proposed the recursive logit (RL) model where path choice is modelled as a sequence of link 
choices using a dynamic discrete choice framework. The RL model was extended to the Nested 
RL by Mai et al. (2015). Recently, Zimmerman et al. (2017) estimated bicycle route choice models 
without the need to generate routes a priori. The estimation is based on the recursive logit model 
developed by Fosgerau et al. (2013). 

Accuracy and efficiency of model estimates for MNL and Mixed Logit have been tested 
empirically by reducing randomly the size of a synthetic dataset (Nerella and Bhat, 2004). 
Recently, Faghih-Imani and Eluru (2017) examined the impact of sample size on hourly usage 
and users’ destination choice preferences employing data from New York City’s CitiBike. Both 
studies show that parameter estimates significantly change with respect to the sample size. 

 

1.3 Objectives 
In most studies described above, the sample used as basis for model estimation was not 
representative of the entire population. This is because the studies collected data from specific 
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population segments (e.g. students). The present paper investigates bicycle route choice from a 
general purpose survey, which includes bicycle riders from different areas and socio-economic 
characteristics. 

This paper investigates bicycle route choice characteristics, using a dataset from a GPS-
assisted household survey and mapped to a detailed urban network. The paper estimates bicycle 
route choice models, taking into account different network characteristics and land use 
variables. In contrast to previous papers, this is one of the first attempts to use data from a 
general-purpose household survey for bicycle route choice modelling. Since we are interested in 
the analysis of the choice set composition, the present paper will first generate routes, and use the 
generated routes for model estimation. 

2. Methodology 

This section describes the methodology and the research steps, consisting of: (i) survey and 
dataset description, (ii) application of the path generation techniques to the urban network, 
(iii) choice set composition with special emphasis in defining the overlap measure, and (iv) route 
choice models estimated.  

2.1 Survey Data 
A household survey was carried out in 14 major cities of the Tel Aviv metropolitan area between 
December 2013 and June 2014. Only weekdays were surveyed. The survey method was similar to 
the Jerusalem household travel survey (Oliveira et al., 2011), and it is briefly outlined as 
follows.    

The survey was composed of two main phases, both of them with surveyor in-home visits. The 
first (recruiting) phase, in which a surveyor visited the household, collected general information 
and provided household members older than 14 with a GPS data logger. They were instructed to 
carry the device on their pockets or purses for 24 consecutive hours. The GPS tracker has enough 
battery for 24 hours. 

In the second phase, the interviewer returned to the household to retrieve the GPS readings and 
complete the questionnaire about the activities recorded by the GPS logger. The GPS data was 
retrieved with the use of laptop computers, which assisted the surveyor and the household 
members to identify their trips and activities. 

The overall sample included 8,515 persons living in 2,896 households (average household size 
2.94). On average, there are 1.04 cars per household.  A total of 39,952 trips were recorded, an 
average of 4.7 trips per person. The trips are distributed by main mode as follows: 49.7% car 
(either driver or passenger), 35.4% walk, 11.6% public transport, 1.7% motorcycle and only 1.6% 
bicycle (618 trips). Table 1 presents selected characteristics of bicycle riders in comparison to car 
users in the sample. 

Table 1. Tel Aviv household survey 2014 - Selected individual characteristics 

 Bicycle riders Car users 

Average household size 3.6 2.9 

Motorization rate 290 354 

Average age 33 47 

% over age 40 30% 63% 

Male proportion 73% 61% 

Female over age 40 7% 23% 

 

The table shows significant differences between bicycle and car users. Clearly, the difference in 
the average age is related to the fact that driver’s license is issued only to those over the age 17 
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years, and also because bicycle riders characterize younger population. Note that the proportion 
of women over the age of 40 traveling by bicycle is much lower in comparison to car users. These 
results are similar to those reported by Plaut (2005), which analysed bicycle commuters in the US. 

The GPS device recorded the position every 3 seconds on average, and the raw data file included 
over 45 million readings. After performing logical checks and deleting observations with gross 
errors in GPS, there were 151,392 points related to 545 bicycle trips performed by 221 persons. 
The logical checks included the time that elapsed between two consecutive data points, and the 
correspondent speed. The GPS points were map matched to a detailed network of 
the Tel Aviv metropolitan area, which contains 92,670 nodes and 127,053 links, with a total length 
of 8384 km. The network data source is from a private company (Mapa), and the matching was 
performed using the ArcGIS software. Figure 1 displays the matched GPS points to the map. 

 

 
Figure 1. Tel Aviv area – GPS track points of bicycle trips 

2.2 Path Set Generation  
The methods used to generate routes in this paper are variants of selective generation methods 
using shortest path algorithm, which may include bias in the estimation results (Frejinger et al., 
2009). Special care is placed in generating representative routes to form the choice set for model 
estimation. 

Path generation techniques were applied to the detailed network of the Tel Aviv metropolitan 
area. 2% of the network roads were omitted, corresponding to freeway links, in which bicycle 
ride is prohibited. Bikeway facilities (dedicated lanes, bikeways and walking paths that also 
allow cycling) comprise 3.8% of the Tel Aviv city network. Although this is a relative small 
proportion, it is significantly higher in comparison to only 0.8% on average for the neighbouring 
cities.   



EJTIR 18(2), 2018, pp.158-177  162 
Ghanayim and Bekhor 
 

In this paper, bicycle routes are generated by three main methods: link elimination, link penalty, 
and simulation method. All these methods essentially change one or more network variables 
and calculate the correspondent shortest route. The following paragraphs describe the 
assumptions of each method.  

Link elimination method  
The link elimination method is applied by successively performing the following procedure: (i) 
calculation of the shortest path; (ii) deleting a link from the shortest path; (iii) computation of the 
next shortest path and comparison with the existing routes in the path set. If the generated route 
is similar to a route in the path set, then an additional link of the shortest path is deleted from the 
network. In total, up to 10 different routes were generated for each origin-destination pair.  

Link penalty method  
The link penalty method is applied by successively performing the following procedure: (i) 
calculation of the shortest path; (ii) increasing travel times on the shortest path links by a factor of 
1.10; (iii) computation of the next shortest path and comparison with the existing routes in the 
path set. In total, up to 5 different routes were generated for each origin-destination pair.  

Simulation method  
The simulation method is implemented by calculating the shortest path for each draw of link 
impedances from a log normal distribution (to prevent negative values), with mean equal to 
the actual link length and variance equal to 50% of the mean. For each generated route, 
the program compared it to the previously generated routes in the set. In case the generated route 
was approximately (80%) equal to a route in the choice set, it was not added to the set.   

Note that if a strict tolerance is imposed (that is, only removing routes that overlap completely 
with previous routes), the resulting set will include many similar routes. On the other hand, if 
only disjointed routes (no links in common) are included, the resulting choice set will be 
relatively small. The best results were obtained assuming 80% tolerance.  

All three methods above were independently run in the network. After removing routes that 
overlap more than 80% with other routes in the choice set, a total of 20 routes per each origin-
destination pair formed the path set for model estimation.  

2.3 Choice Set Composition 
The objective of the choice set formation is the maximization of the coverage of the collected 
routes and the consequent composition of choice sets behaviourally consistent with the observed 
behaviour. Choice sets may correspond to path sets generated by single methods with good 
performance indexes, or to the combination of path sets produced by different methods with 
poor individual performances.  

The following measures were discussed in Prato and Bekhor (2007) and in more details by 
Halldórsdóttir et al. (2014) and are presented here for completeness. The coverage measures the 
percentage of observations for which a path generation technique reproduces the actual 
behaviour according to a certain overlap threshold, which expresses the degree of similarity 
between generated and collected routes.  
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where I(•) is the coverage function, equal to one when its argument is true and zero otherwise, 
Onr is the overlap measure for technique r and observation n, δ is the overlap threshold. 
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Where Lnr is the overlapping length between generated and observed routes, Ln is the length of 
the observed path for driver n. 

The index of behavioural consistency compares a path generation method to the ideal algorithm 
that would replicate link-by-link all the routes reported in the survey, with a 100% resulting 
coverage for a 100% overlap threshold. 
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Where CIr is the consistency index of algorithm r, Onr,max is the maximum overlap measure 
obtained with the paths generated by algorithm r for the observed choice of each driver n, Omax is 
the 100% overlap over all the N observations for the ideal algorithm. 

The overlap measure indicated in Equations (2) and (3) accounts for the physical common path 
length. For bicycle route choice, it is important to account also for other path characteristics, such 
as the overlap in specific bikeways or other dedicated places. Therefore, a generalization of the 
overlap measure 𝑂𝑛 (the technique r is omitted for simplicity) is proposed in the following 
equation: 

         𝑂𝑛 =   maxi=1,I ∑ α ∗ (1 − |
Mnki−Mnk

max(Mnk,Mnki)
|) + (1 − α) ∗ 𝑂𝑛𝑖  

K

k=1
         (4) 

 

Where 𝑀𝑛𝑘𝑖 represents the measure of characteristic k for alternative route i of observation n. 𝑀𝑛𝑘 
is the measure of characteristic k for the chosen route of observation n. Oni is the overlap measure 
of generated route i of observation n (similar to equation 2). K is the number of characteristics 
and I is the number of routes in the choice set. The parameter α (0 ≤ α ≤ 1) indicates a weighting 
factor between the two overlap measures. In this paper, we assume that α is equal to 0.5. 

2.4 Model Specification 
Model specifications that account for correlation among alternatives are preferable than the 
Multinomial Logit (MNL) model to represent route choice behaviour. MNL modifications, such 
as C-Logit (Cascetta et al., 1996) and Path Size Logit (PSL), include a correction term in the 
deterministic part of the utility function and maintain a simple logit structure (Ben-Akiva and 
Bierlaire, 1999; Ramming, 2001). Generalized Extreme Value (GEV) specifications, such as Cross-
Nested Logit (CNL) and Generalized Nested Logit (GNL), relate the network topology to model 
parameters in the stochastic term of the utility function and present a more complex structure 
(Bekhor and Prashker, 2001). Probit and Logit Kernel (LK) assume that the covariance of path 
utilities is proportional to overlap lengths (Yai et al., 1997; Bekhor et al., 2002). 

In line with previous papers, this paper estimates models using 3 simple model forms: the 
multinomial logit (MNL), C-logit, and Path Size-logit (PSL). C-Logit and PSL maintain the MNL 
structure and present very similar functional forms, but each model interprets differently the 
correction term that measures the degree of similarity of each route with respect to all the other 
routes in the choice set (Prashker and Bekhor, 2004). In the C-Logit, the commonality factor 
indicates that the utility of a path must be reduced because of the similarity with other routes, 
and is always greater or equal to one, as can be seen in the following equation (Cascetta et al., 
1996):  
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Where CFk is the commonality factor of route k, Lk is the length of route k, Ll is the length of each 
route l in the choice set Cn; Lkl is the common length between routes k and l. 

In the PSL, the path size presents the fraction of the path that constitutes a “full” alternative, and 
is always less or equal to one. This paper calculates the path sizes are calculated according to the 
following formulation (Bovy et al., 2008): 
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where PSk is the path size of route k, Γk is the set of links belonging to route k, La is the length of 
link a, δal is the link-path incidence dummy (equal to one if route l uses link a, and zero 
otherwise), γ is a positive parameter that accounts for different size contributions due to routes 
with different lengths. 

Since the dataset is composed of 545 trips performed by 221 individuals, the choice data is of 
panel type. Therefore, the mixed logit versions of the MNL, C-Logit and PSL models are used as 
basis for model estimation. The detailed network representation enables the testing of additional 
variables to the route length. After performing several tests, the utility function for an individual 
n choosing an alternative k is specified as follows: 

            𝑢𝑛𝑘 = 𝛽1𝐿𝑒𝑛𝑔𝑡ℎ𝑘 + 𝛽2𝐿𝑒𝑛𝑔𝑡ℎ_𝐴𝑘 + 𝛽3𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑘 + 𝛽4𝑆𝑡𝑟𝑒𝑒𝑡𝑘 + 𝛽5𝐷𝑤𝑒𝑙𝑙𝑘 + 𝛽6𝑁𝑒𝑎𝑟_𝑆𝑒𝑎𝑘 +
              𝛽7𝑁𝑒𝑎𝑟_𝑃𝑎𝑟𝑘𝑘 + 𝜉𝑛                 (7) 

 

Where: 

Lengthk - Total length of route k (km) 

Length_Ak - Length of route k in category A streets (bike paths) (km) 

Length_Ck - Length in route k in category C streets (urban arterials and highways) (km) 

Streetk – Average street length, defined as the ratio between the route length and the number of 
intersections (m) 

Dwellk – Number of dwelling units per meter along the streets of route k  

Near_Seak – Length of route k passing along or up to 100 m of the sea shore (km) 

Near_Parkk – Length of route k passing along or up to 100 m of a green land use (km) 

ξn – random variable with zero mean and standard deviation σn 

Note that most variables interact with the route length, which increases the correlation of the 
coefficients. The variables included in the utility function exhibit correlation less than 0.6.  

3. Results 

3.1 Choice Set Generation 
As indicated in the methodology section, a total of 20 routes were generated for each observation 
between origin and destination. The first quality test for the choice set routes is the coverage, 
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since the actual (observed) route may not be exactly replicated by the 20 routes generated. Figure 
2 shows the results of the coverage for different overlap thresholds. 

 

Figure 2. Coverage distribution for different overlap thresholds  
 

The overall coverage for the 3 methods together, for an overlap threshold of 80% of the route 
length, is 83%. If a strict threshold of 100% overlap is imposed, the coverage drops to 70%. It is 
noticeable that with only 5 routes generated by the simulation method, the coverage is superior 
in comparison to both link penalty and link elimination methods. Figure 3 shows an example of 
the generated routes for a specific origin-destination pair. The dark points correspond to the 
actual chosen route, along the seashore. 
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Figure 3. Route choice set example 
 

As discussed in Halldórsdóttir et al. (2014), there is a trade-off between the number of generated 
routes (in terms of computational costs) and the coverage. Figure 4 shows the overlap progress 
with the least matched route in the dataset as a function of the number of generated routes. As 
can be seen, a choice set of 20 routes are sufficient to reach 80% overlap for all actual routes in the 
dataset. 
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Figure 4. Overlap progress with respect to the number of generated routes 
 

3.2 Choice Set Composition 
Ideally, the choice set generation procedure should be able to cover 100% of the actual chosen 
routes. In practice, even after generating a large number of alternative routes, the coverage will 
not be perfect. In addition, it is important to analyse the composition of the choice set not only 
with respect to the overall length, but also with respect to other relevant attributes. 

In contrast to previous papers that defined overlap as the route with the maximum common 
length (equation 3), this paper uses an additional definition (equation 4) that checks the overlap 
not only with respect to the overall length, but also with respect to other route attributes. After 
performing several tests in the dataset with a smaller number of observations, the attribute that 
added most to the overlap explanation is the length of bike paths. 

Figure 5 compares the overall coverage between the two methods: the standard method (based 
on equation 3) and the proposed method (based on equation 4). Similarly, Figure 6 compares the 
coverage between two methods for the bike path sections of the chosen routes. 
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Figure 5. Comparison of the coverage between the two methods 
 

 

 

Figure 6. Comparison of the coverage between the two methods – bike path sections 
 

As shown in Figure 5, it is clear that using an additional variable to measure overlap will 
decrease the overall coverage (in terms of total length). However, the small coverage decrease is 
largely compensated by the bike path overlapping, as can be seen in Figure 6. Therefore, the 
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proposed method (equation 4) to measure overlap is more appropriate to evaluate the quality of 
the choice set (in this case, in terms of the coverage in bike paths).  

3.3 Deviation from Shortest Path 
According to the literature, commuter cyclists prefer to ride in dedicated lanes, despite of the 
increase in the route distance. Table 2 shows the ratio of the actual route with the shortest route, 
and a comparison with results found in the literature. 

Table 2. Average ratio of actual route and the shortest route 

 Overall sample Regions with bicycle lanes 

Tel Aviv survey 2014 1.13 1.18 

Winters et al.  (2011) (Vancouver) 1.09  

Broach et al. (2012) (Portland) 1.11  

Mekuria et al. (2012) (San Jose) 1.11 1.16 

Hyodo et al. ( 2000) (Japan) 1.08  

 

The results presented in Table 2 indicate that the ratio found in the Tel Aviv survey is close to 
results reported in the literature. Further inspection on the results indicate that this ratio increases 
to 1.18 in the city of Tel Aviv, which has a higher proportion of bicycle facilities relative to other 
cities, for which the ratio is equal to 1.07. The above result is consistent with findings by Mekuria 
et al. (2012).  

3.4 Model Estimation Results 
The paper reports the model with the explanatory variables that were found significant at the 
0.05 level. Variables that were not significant in most runs were not included in the estimation 
results presented here. Table 3 presents the results for 3 Mixed Logit models (with respectively 
MNL, PSL and C-Logit as the choice model structure) with 20 alternative routes for each 
observation. The Mixed Logit model parameters were estimated using Biogeme software with 
1,000 Halton draws (Bierlaire, 2003). The explanatory variables are defined in model specification 
section above. 
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Table 3. Model estimation results – 20 alternative routes 

Variable Mixed MNL Mixed PSL Mixed C-Logit 

 Coeff. t-stat Coeff. t-stat Coeff. t-stat 

Total route length (km) -6.83 -5.2 -8.04 -14.2 -10.0 -13.8 

Route length in category A (km) 1.9 2.1 2.23 7.3 2.78 5.1 

Route length in category C (km) -5.1 -1.7 -4.59 -9.3 -5.9 -6.6 

Average street length (m) 0.068 2.1 0.0543 9.0 0.082 2.1 

Dwelling units / m 1.21 2.4 2.12 10.7 2.74 2.1 

Route length “near sea” (km) 0.56 2.1 1.28 7.5 1.65 4.4 

Route length “near park” ( km) 2.14 1.3 1.72 5.1 2.24 3.1 

PS factor 
 

1.77 9.3  

C-Logit factor   -0.33 -3.7 

Sigma ( σ ) 2.24 4.8 1.14 5.6 1.28 6.34 

Hit-ratio 22% 69% 61% 

Initial Log-likelihood 1420.5-  

Final Log-likelihood -1087.0 -970.5 -1060.0 

Likelihood Ratio 367 900 721 

Rho-bar squared 0.235 0.316 0.253 

Number of observations 545 545 545 

Number of individuals 221 221 221 

 

As expected, the results presented in Table 3 above show that both Mixed PSL and Mixed C-logit 
outperform the Mixed MNL model. Note that the Mixed Logit structure accounts only for the 
panel data and not correlation across alternatives. The PSL and C-Logit models take into account 
the overlap between routes. The PS correction factor (equation 6) is superior in comparison to the 
commonality factor (equation 5), and this explains the better performance of the PSL in 
comparison to the C-Logit.  

In line with previous studies, the estimation results show that on average, bicycle riders prefer to 
ride on shorter routes (recall that the sample is mostly composed of commuter trips). However, 
riders are willing to extend their trip in order to ride on bike paths (as indicated from the positive 
coefficient of the category A variable). In contrast, cyclists avoid riding on busy streets with large 
car traffic (as indicated by the category C variable). 

Two variables that are related to the building environment were found significant: the average 
street length and the number of dwelling units. The first variable indicates that cyclists prefer 
riding on longer streets, in the sense that there are fewer junctions. The second variable indicates 
that cyclists prefer to ride along routes passing through residential areas, which are mostly 
composed of local streets. 

Two additional variables found significant are related to a pleasant environment: “near sea” and 
“near park” variables. These variables indicate the tendency to ride along the seashore or riding 
close to parks. Similar to the category A variable (bikeways), these variables indicate the 
tendency to extend the ride in order to ride in pleasant regions.  
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Note that a variable indicating slope or gradient was not found significant in the present study, 
which is surprising. In most regions of the Tel Aviv area there is not much variation in the slope, 
but the region is not completely flat. We have also tried variables related to bicycle speeds, but 
the estimation results did not improve, as with the slope. 

3.5 Choice Set Sensitivity Tests 
As indicated in the previous section, the choice set generation methods applied in this paper 
created up to 20 different routes for each observation. It is interesting to examine the impact of 
choice sets (in terms of size and composition) on the calibration results, following Prato and 
Bekhor (2007). 

In order to examine the sensitivity of the parameters with respect to the choice set, we estimated 
Mixed Logit models according to a variable choice set size, using the PSL model structure for 
each test. The reference case is the “original” set composed of 20 routes (presented in Table 3). 
Two alternative choice sets were tested: the first was formed by drawing 10 routes from the 20 
set, and the second by including 10 routes that were generated by link penalty and simulation 
methods only (that is, not including the routes generated by elimination). Table 4 summarizes the 
results for the two choice sets. 

Table 4. Model estimation results for variable choice sets 

Variable Mixed PSL (set 1) Mixed PSL (set 2) 

 Coeff. t-stat deviation Coeff. t-stat deviation 

Total route length (km) -7.94 -12.1 -1% -8.24 -8.8 +2% 

Route length in category A (km) 2.05 4.8 -8% 2.13 6.8 -4% 

Route length in category C (km) -4.42 -5.9 -4% -4.61 -5.1 -1% 

Average street length (m) 0.06 4.7 +10% 0.058 3.9 7% 

Dwelling units / m 2.1 3.3 -1% 2.31 8.1 9 % 

Route length “near sea” (km) 1.3 6.4 +2% 1.23 7.25 -4% 

Route length “near park” ( km) 1.61 5.1 -6% 1.66 4.66 -4% 

PS factor 1.68 9.1 -5% 1.7 8.79 -1% 

Sigma ( σ ) 1.68 7.61 47% 1.4 6.71 23% 

Hit-ratio 72%   76%   

Initial Log-likelihood -1254.9 

Final Log-likelihood -914 -903 

Likelihood Ratio 681 704 

Rho-bar squared 0.27 0.28 

Number of observations 545 545 

 

The results presented in Table 4 show that the coefficients do not significantly differ between the 
models, which indicate the robustness of the results with respect to different choice sets.  

The evaluation of model robustness with respect to the choice set composition was further 
investigated for additional reductions of the choice set (35%, 50%, 65% and 80% of the original 20 
routes). A total of 15 models are estimated and successively applied to the initial data sets to 
assess the impact over choice probabilities and likelihood values. Different levels of comparison 
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are available from this numerical experiment: across choice sets, across sample sizes, and across 
model specifications. Figure 7 and Figure 8 respectively present the computational results for 
Root Mean Square Error (RMSE) and Mean Average Percentage Error (MAPE) of the coefficient 
estimates. 

 

 

Figure 7. Ability to Replicate Parameter Estimates (RMSE) 
 

 

Figure 8. Ability to Replicate Parameter Estimates (MAPE) 
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The results presented in Figure 7 and Figure 8 indicate that if the choice set is reduced by half 
(that is, up to 10 routes per observation), the parameter estimates are still quite similar to the 
original choice set.  

Following Nerella and Bhat (2004) and Faghih-Imani and Eluru (2017), we present the results of 
the standard deviation of the coefficients for the smaller samples. Figure 9 and Figure 10 
respectively present the computational results for Root Mean Square Error (RMSE) and Mean 
Average Percentage Error (MAPE) of the standard deviation of the coefficient estimates. 

 

Figure 9. Ability to Replicate the Standard Deviation of the Parameter Estimates (RMSE) 
 

 

Figure 10. Ability to Replicate the Standard Deviation of the Parameter Estimates (MAPE) 
 

As can be inferred from Figure 9 and Figure 10, the choice set size has a bigger impact in the 
standard deviation of the coefficient estimates, in comparison to the average coefficients. For 
example, if the choice set is composed of 10 routes, the standard deviation of the coefficients, the 
average percentage error is 0.65, more than double in the case of the average coefficient estimates. 
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3.6 Equal Utility Routes 
The equivalent value of each parameter with respect to the total route length (calculated similarly 
to value of time) provides interesting insights. Table 5 presents the results for selected models. 

 

Table 5. Equivalent values of selected variables with respect to route length 

Variable Mixed C-Logit Mixed PSL Mixed PSL 
(set 1) 

Mixed PSL 
(set 2) 

Route length in category A (km) -0.278 -0.277 -0.26 -0.258 

Route length in category C (km) 0.59 0.571 0.56 0.6 

Average street length (m) -0.008 -0.007 -0.00756 -0.00704 

Dwelling units / m -0.274 -0.264 -0.265 -0.28 

Route length “near sea” (km) -0.165 -0.159 -0.163 -0.15 

Route length “near park” ( km) -0.224 -0.214 -0.2 -0.21 

 

The model estimation results indicate that the utility of a bike route is equivalent to a route 38% 
longer than the shortest route. Similarly, the cyclist is willing to ride a route 57% longer than the 
shortest path to avoid riding routes with high level of stress. 

Figure 11 below exemplifies the willingness to ride on longer routes. It shows 2 equal utility 
routes: the brown route (shortest path) with 1650 m, and the green route (with 60% length in a 
bikeway and the seashore) with 2235 m. In this specific example, the chosen route was the one 
close to the seashore. 

 

 

Figure 11. Two equal utility routes 
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4. Summary and Outlook 

The choice set created with up to 20 routes per observation achieved high coverage, compared 
with reported results from the literature. The high resolution network provides rich information 
about street characteristics (including pedestrian and bike paths), which enables the formation of 
alternative routes that cover not only in terms of total length, but also in terms of additional 
variables, such as the length of bikeways. 

Note that for a realistic network, the number of possible routes between each origin-destination 
pair may be very large. The results presented in this paper, estimated using data from a 
household survey and high resolution network, indicate that a relatively small number of 
generated routes can provide a robust choice set for model estimation. 

As indicated in the introduction section, the two-stage approach was used in this paper, similar 
to most studies. The methods used to generate routes are variants of selective generation 
methods using shortest path algorithm, which may include bias in the estimation results 
(Frejinger et al., 2009). To overcome in part this problem, we have performed several sensitivity 
tests, in order to check the robustness of the parameter estimates. Further research will compare 
the estimation results presented in this paper with the recursive logit method proposed by 
Fosgerau et al. (2013), and recently applied in Zimmerman et al. (2017). 

This paper purposely selected bicycle route observations from a general purpose survey. Survey 
results indicate a small share of bicycle trips, which are in part related to the lack of dedicated 
bicycle infrastructure. The model estimation results support this hypothesis, as exemplified in the 
equal utility route example. 

It is possible to extend the model by including multi-modal trips (e.g. bike to train), but in this 
case there is a need to collect detailed data about the transit network and level of service 
variables. This is left for further research.  
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