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In recent years, many concepts have been developed on how to build a sufficient charging 
infrastructure to satisfy the demand of Battery Electric Vehicle (BEV) users. However, the focus of 
these approaches often lies on the spatial distribution of charging stations and the amount of 
charging demand is often given beforehand. In this paper, we describe a model to estimate the 
future private charging demand at public charging stations for different regions. Several aspects 
that influence the needed amount of charging stations are considered, e.g. a growing range of 
BEVs and the behavior of different user groups. For example, we distinguish between BEV users 
with or without a home charging possibility. The spatial distribution of these user groups is 
modeled using an agent-based approach, respecting sociodemographic properties. Forecasting 
the spread of BEVs strongly depends on the assumptions made regarding these influencing 
factors, where different current studies obtain deviant results. Therefore, in a case study for the 
city of Munich, we consider three different scenarios assuming a pessimistic, a realistic and an 
optimistic spread of BEVs in the year 2020. Additionally, we present a sensitivity analysis of the 
influencing factors and identify the ones that have the highest impact on the future charging 
demand: the overall adoption rate of BEVs is the parameter that influences the output the most. 
In fact, an adoption rate that is 10% higher than expected leads to an increase in charging 
demand of about 16%. This means, that our model strongly depends on reliable input data. The 
output of our model is the expected number of charging events requested in a certain region on 
an average day. Together with the average parking time and the temporal distribution of car 
arrivals at public charging stations, it is possible to obtain the necessary size of the charging 
infrastructure such that the demand can be satisfied even during peak hours. These results can be 
used as an input to existing optimization algorithms for the allocation of charging stations. 
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1. Introduction 

In the last years, Battery Electric Vehicles (BEVs) gained in importance and came more and more 
to the fore of the general public. Many countries announced milestones and programs to 
promote electric mobility. The Federal Government of Germany, for example, set up the research 
program "Modellregionen Elektromobilität" to identify existing barriers for the diffusion of 
BEVs. One reason why many countries promote electric mobility is that BEVs are locally 
emission free. This fact is especially important for big cities with a lot of car traffic. These cities 
have serious problems with air pollution partly caused by traditional Internal Combustion 
Engine Vehicles (ICEVs). To make living in these cities more comfortable, the shift from ICEVs 
to BEVs is preferable. Additionally, many countries have ecological problems, especially when it 
comes to particular matter pollution (PM 10 and PM 2.5). Another reason in favor of BEVs is the 
fact that the stock of worldwide crude oil is finite. To diminish the dependency on oil, it is 
necessary to substitute ICEVs by vehicles with alternative power trains. This only makes sense if 
the electricity is generated from renewable energy sources. Additionally, the higher the share of 
renewable energies in the total energy mix, the better the overall ecological advantage of BEVs. 

But there are also some advantages of ICEVs over BEVs. Firstly, BEVs are more expensive than 
ICEVs. For example, the electric VW Golf costs about 16% more than the comparable 
conventional VW Golf because of the high cost of the lithium ion battery. The battery is also a 
problem considering range and charging. Whereas ICEVs are able to drive up to a thousand 
kilometers without refueling, most BEVs have to be recharged after at most two hundred 
kilometers. Additionally, the refueling takes at most ten minutes whereas the charging takes 
from 30 minutes up to 8 hours depending on the type of charging. 

To overcome these difficulties of the adoption of BEVs, research has to be done in a variety of 
fields. Battery and charging research is necessary to increase the range of future BEVs as well as 
the charging speed. Another important issue is the design of the future charging infrastructure. 
Where should public charging stations be built considering the future charging demand? 
Regarding this problem, different aspects have to be considered. Where and to which extent 
should charging infrastructure be offered? What would be a perfect environment for a charging 
station? What is the influence of the charging infrastructure on the electric grid? Which 
technology should be used (AC charging, DC charging)? 

This paper aims to model the future number of charging events performed by private users at 
public charging stations on an average day. In combination with an assumption or a model 
about daily charging supply per charging stations, it is possible to determine the perfect size of 
the future charging infrastructure for private users. Afterwards, a decision maker can use an 
existing charging station location model to design the layout of the charging infrastructure. The 
focus of this estimation model lies on BEVs as these vehicles rely more on the public charging 
infrastructure compared to plug-in hybrid electric vehicles (PHEVs). Nevertheless, it is possible 
to easily adapt the model to PHEVs. 

In Section 2, we present a short literature review on charging infrastructure, where we especially 
analyze the prediction of charging demand in the different papers. In Section 3, we explain our 
model to predict the future public charging demand. We state and justify our assumptions and 
introduce the considered influencing factors of the charging demand. In Section 4, we explain 
the general estimation of the input parameters of the model. This estimation is applied to real-
world data in Section 5, where we conduct a case study. We choose the metropolitan area of 
Munich as the test site. Three different future charging demands are estimated based on three 
scenarios: a maximal, a median and a minimal one. Afterwards, we conduct a sensitivity 
analysis of the different influencing factors to analyze their impact on the amount and 
dispersion of public charging demand. In Section 6, we give a short conclusion of the paper as 
well as an outlook. 
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2. Literature review - charging demand modeling 

There exist many approaches on how to tackle the problem of planning a public charging 
infrastructure. These are often set up as optimization models searching for an optimal 
distribution of charging stations regarding different constraints. The focus of this literature 
review (see Table 1) lies on the modeling of the charging demand which is considered in many of 
these papers. The study area is often modeled as a graph or it is divided into different regions. 
The optimization algorithms then decide which region or node/edge should be selected as a 
charging station location. 

Table 1. Summary of Literature Review 

Previous studies Charging demand assumptions 
Baouche et al., 2014 • OD matrices are considered 

• Consumption of BEVs is considered 
• Plug-in Electric Vehicle (PEV) adoption rate is a parameter 

Cavadas et al., 2015 • Probability, that a BEV is charged at a certain location depends on the time it 
remains parked there 

• Demand can be transferred between locations 
• Range of BEVs and distance traveled are not considered 
• Time intervals with higher and lower demand are considered 
• No difference between people with or without a home charging probability 

Chen et al., 2013 • Parking duration is seen as probability for charging, independent of travel 
distances 

Dong et al., 2014 • Home charging considered  
• All cars are BEVs 
• Using GPS-based travel survey data 

Frade et al., 2011 • Distinguishes between day and night demand 
• Day demand: number of vehicles related to jobs per region 
• Night demand: number of vehicles in the region 
• 0.33 charge-ups per day per BEV 

Ghamami et al., 2014 • Charging demand associated with number of workers driving to work by BEVs 
or PHEVs 

• PEVs market penetration rate is considered 

Lam et al., 2013 • Modelled by population size 

He et al., 2014 • All cars are BEVs 
• Route choices of BEV users depend on available charging infrastructure 

Mehar and Senouci, 2013 Modelled by 
• Traffic volume during peak hour and daily driving trip lengths 
• Rate of electric vehicles 
• Charging demand rate 

Shao-yun et al., 2012 • OD matrix adjusted by assumed share of PEVs 

Wirges and Linder, 2012 • Spatial and temporal diffusion of BEVs considered 
• Different user groups (private and business) are taken into account 
• Number of public charging stations estimated by consumed energy of BEVs in 

public 
• Commuter matrix between different regions considered 

 

With the exception of Wirges and Linder (2012), demand modeling is not the focus when it comes 
to charging infrastructure planning. The focus lies more on the spatial distribution of charging 
stations than on the realistic sizing of a public charging infrastructure. Therefore, we are going to 
introduce a model on how to estimate private charging demand. Our model does not include an 
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optimization program, as our aim is not to select suitable charging station locations, but to 
predict the future charging demand in different regions. This demand forecast can then be used 
as input for a charging station allocation algorithm. Our demand model is unique in the sense 
that results of recent studies about BEV users are included. We consider all available information 
about different user groups and their charging behavior in everyday life, found out by the 
authors of the cited surveys. 

3. Charging demand estimation model 

In the present paper, we develop a model to estimate the number of daily charging events at 
public charging stations carried out by private BEV users. To do so, we consider a study area 𝑈𝑈 
which is divided into 𝑚𝑚 regions 𝑟𝑟1, … , 𝑟𝑟𝑚𝑚. As people do not only travel within the study area 𝑈𝑈, 
but also drive into the zone from outside, we cannot examine 𝑈𝑈 as an isolated area, but need to 
consider the surroundings as well. Therefore, we analyze an overall study zone 𝐺𝐺 composed of 𝑈𝑈 
and its surroundings, i.e. 𝑈𝑈 ⊆ 𝐺𝐺. The size of 𝐺𝐺 is chosen according to the average range of BEVs. 
We divide the overall area 𝐺𝐺 into n regions 𝑟𝑟1, … , 𝑟𝑟𝑛𝑛 with the m inner regions being part of them, 
i.e. 𝑚𝑚 ≤ 𝑛𝑛, 𝑟𝑟1, … , 𝑟𝑟𝑚𝑚 ⊆ 𝑈𝑈 ⊆ 𝐺𝐺 and 𝑟𝑟𝑚𝑚+1, … , 𝑟𝑟𝑛𝑛 ⊆ 𝐺𝐺\𝑈𝑈. Like this, we can take both sociodemographic 
characteristics within and commuter movements between the regions into account. Public 
charging stations are defined as charging stations that are generally accessible. This means, that, 
for example, charging possibilities provided by companies to their employees on their premises 
are not public. Private BEV users are private persons who own or lease a BEV and use it for 
private trips. We do not consider charging demand induced by companies, e.g. by car sharing 
providers or haulage companies in this paper.  

3.1 Assumptions: 
In our model, we make some simplifying assumptions that are justified by existing studies 
analyzing the charging behavior of BEV owners. For example, it was observed in previous 
studies, that the charging behavior of private BEV owners varies depending on them having the 
opportunity to charge at home or not. To be more specific, in the studies by Krems at al. (2011) 
and Trommer (2014), BEVs were distributed to private users. In Krems at al. (2011), the authors 
distinguished between private users with a home charging opportunity (PWCs) and private users 
without a home charging opportunity (PWOCs). They found out, that PWOCs charge their BEV 
much more often at public charging stations than PWCs, because PWCs prefer to charge their 
BEV at home. This is quite reasonable, as charging at home is normally both cheaper and more 
comfortable. PWOCs do not have this opportunity; however, PWOCs normally use a preferred 
public charging station close to their home analogously to the home charging possibility of 
PWCs. This was observed in the same study (Krems et al., 2011), where PWOCs charged at a 
primary public charging station with a probability of 73%. Consequently, we assume that a high 
share in PWOC charging demand occurs in their home region, whereas the home charging 
possibility leads to no public charging demand in the home region of a PWC. In our model, we 
hence distinguish between the two user groups mentioned here (PWCs and PWOCs).  

In the study by Trommer et al. (2013), a changing charging behavior could be observed over time. 
In the beginning, users recharged their BEV at almost every opportunity whereas after a short 
while they got used to the range of BEVs and charged less. As public charging is more expensive 
than home charging because of the investment and operation costs the infrastructure provider 
has to account for, it is assumed that BEV users only charge at public charging stations because of 
their personal range anxiety. Charging stations nearby their homes were stated as preferred 
locations for charging by PWOCs. This leads us to Assumption 1: BEV users charge at public 
charging stations away from their home only if they feel it is necessary because of their personal 
range anxiety. 
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Trommer et al. (2013) also found out, that BEV owners prefer to charge at private charging 
stations, not only at home. When going to work, for example, users charge at charging stations 
provided by their employer only available to the staff of the company. They do not have the time 
and patience to look for a public charging station when going to work during rush hour. This 
leads us to assuming that a trip to work is not relevant for public charging demand, as drivers 
will use a private charging station there or not charge at all. 

In his dissertation, Badrow states, that in general most trips covered by car either start or end at 
home (Badrow, 2000). This means, by considering only trips starting or ending in the home 
region of a user, we already consider most of the undertaken trips. 

All in all, the studies mentioned above lead us to assuming the following conditions: 

Assumption 1. Every PWC only charges in public, if he is forced to because of his                                                                                       
personal range anxiety. Every PWOC only charges in public in a region distinct to his 
home region, if he is forced to because of his personal range anxiety. 

Assumption 2. Some trips are not relevant for public charging: 

a. Both PWCs and PWOCs do not charge in public if a trip ends at work, 
because they either have the possibility of charging their BEV at their 
workplace or they are not willing to search for a free public charging station 
every day during rush hour. 

b. PWCs do not charge in public if a trip ends at home, because they have the 
possibility to charge at home. This is both cheaper and more comfortable. 

c. PWOCs charge with high probability at a charging station in their home 
region, because they have a preferred one there. 

Assumption 3. Every trip starts or ends in the home region of the user. 

3.2 Definition of necessary input parameters 
For the charging demand estimation model, we need some data available, as for example the 
number of privately owned BEVs in each region or the number of trips carried out by the citizens. 
Figure 1 shows a flowchart of the presented model.  

The calculation of the parameter values shown in Figure 1 follows several steps. The values 
shown in blue circles are the data that are available from surveys or governmental data 
collections, i.e. Origin-Destination matrices, the share of electric vehicles in the study area (𝑝𝑝𝐺𝐺), 
the range of BEVs (𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵), etcetera. The values in the green rectangles show the share of BEVs 
owned by PWCs and the share of BEVs owned by PWOCs in different regions, these values are 
obtained from an agent-based simulation presented in Subsection 4.1. The parameters in the 
orange rectangles are Origin-Destination matrices of charging relevant trips according to the 
assumptions presented above. Finally, the values in the purple and yellow rectangles show the 
probability of charging a BEV inside and outside of the home region of the owner. All of these 
probabilities are calculated for the two user groups, PWCs and PWOCs, separately. 

In the following, all parameters needed for the model are presented in detail. For a better 
overview, the parameters are additionally listed in Table 2, where the abbreviations are 
explained. In Section 4, we explain how the values of the parameters are estimated.  

First of all, let 𝑁𝑁𝑖𝑖 be the total number of privately owned cars in region 𝑟𝑟𝑖𝑖. Similarly, 𝑁𝑁𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃 shall be 

the number of BEVs owned by persons with a home charging opportunity (PWCs) in region 𝑟𝑟𝑖𝑖 
and  𝑁𝑁𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 the number of BEVs owned by persons without a home charging opportunity 
(PWOCs) in region 𝑟𝑟𝑖𝑖. With these parameters, we can easily calculate the share of BEVs owned by 
PWCs as compared to the total number of privately owned cars in any of the regions:  𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 = 
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𝑁𝑁𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃

𝑁𝑁𝑖𝑖 
  (in region 𝑟𝑟𝑖𝑖). All the same,  𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑁𝑁𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑁𝑁𝑖𝑖 
 defines the share of BEVs owned by PWOCs as 

compared to the total number of privately owned cars in region 𝑟𝑟𝑖𝑖. 

 
Figure 1. Flowchart of the model. 
 

Secondly, 𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃  shall be the origin-destination matrix of relevant trips for the charging model of 
PWCs, i.e. the entry 𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 of the matrix shows the number of relevant trips of PWCs from the 
region 𝑟𝑟𝑖𝑖  in 𝐺𝐺 to the region 𝑟𝑟𝑖𝑖 in 𝑈𝑈. Equivalently, 𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  shall be the origin-destination matrix of 
model relevant trips of PWOCs, i.e. the entry 𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 of the matrix shows the number of relevant 
trips of PWOCs from the region 𝑟𝑟𝑖𝑖 in 𝐺𝐺 to the region 𝑟𝑟𝑖𝑖 in 𝑈𝑈. As we analyze the charging demand 
only in the study area 𝑈𝑈 and not in the overall area 𝐺𝐺, we exclusively consider trips that end 
within 𝑈𝑈. However, the starting point of these trips can also lie in the surrounding regions as 
explained above. Recall that not every trip carried out by a car owner is relevant for our charging 
demand model. For example, we assume that if a trip ends at the workplace of the customer, he 
will have the possibility to charge his car there and will not look for a public charging station 
(Assumption 2a). Moreover, trips with destination home are not taken into account here, as the 
charging probability in the home region is independent of the undertaken trips but depends only 
on the property, if the user is a PWC or a PWOC (Assumption 2b and 2c). All in all, the origin-
destination matrices 𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 represent only trips that are relevant for our charging 
demand model.  

Because of the assumptions made, the public charging probability in a region 𝑟𝑟𝑖𝑖 other than the 
home region of the BEV owner only depends on the distance 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  of the trip he realized to get to 
zone 𝑟𝑟𝑖𝑖 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is calculated as the shortest path distance using the road network from the center 
of 𝑟𝑟𝑖𝑖 to 𝑟𝑟𝑖𝑖. Let 𝑓𝑓: ℝ → [0,1] be a function matching the covered distance to the probability of 
charging after the respective trip. Then it is possible to derive 𝑞𝑞𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 (the probability that a PWC 
charges his car after driving from region 𝑟𝑟𝑖𝑖 ∈ 𝐺𝐺 to 𝑟𝑟𝑖𝑖 ∈ 𝑈𝑈, where 𝑟𝑟𝑖𝑖 is not his home region) and 
𝑞𝑞𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (the probability that a PWOC charges his car after driving from region 𝑟𝑟𝑖𝑖 ∈ 𝐺𝐺 to 𝑟𝑟𝑖𝑖 ∈ 𝑈𝑈, 
where 𝑟𝑟𝑖𝑖 is not his home region) based on 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. How the function 𝑓𝑓: ℝ → [0,1] is chosen will be 
explained in Section 4.  
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The parameter 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻 shows the daily probability of a PWOC of charging at a public charging 
station in his home region. This parameter does not exist for PWCs, as they are assumed to 
charge at home but not at a public charging station nearby. 

Table 2. Input data for our model 

Input data Possible values Explanation 
U ; G with U ⊆G  Study Area 𝑈𝑈 and overall area 𝐺𝐺 consisting of 𝑈𝑈 and its surroundings  

𝑟𝑟1, … , 𝑟𝑟𝑚𝑚; 𝑟𝑟1, … , 𝑟𝑟𝑛𝑛                              Regions that the study area 𝑈𝑈 and the overall area 𝐺𝐺 are divided into:  
𝑟𝑟1, … , 𝑟𝑟𝑚𝑚 ⊆ 𝑈𝑈 ⊆ 𝐺𝐺, 𝑟𝑟𝑚𝑚+1, … , 𝑟𝑟𝑛𝑛 ⊆ 𝐺𝐺\𝑈𝑈, 𝑚𝑚 ≤ 𝑛𝑛  

𝑁𝑁𝑖𝑖                   ∈ ℕ     Total number of privately owned cars in region 𝑟𝑟𝑖𝑖, 𝑑𝑑 ∈ {1, … , 𝑛𝑛}          

   𝑁𝑁𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃        ∈ ℕ Number of BEVs belonging to PWCs in region 𝑟𝑟𝑖𝑖, 𝑑𝑑 ∈ {1, … , 𝑛𝑛}          

   𝑁𝑁𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃                       ∈ ℕ Number of BEVs belonging to PWOCs in region 𝑟𝑟𝑖𝑖, 𝑑𝑑 ∈ {1, … , 𝑛𝑛}          

   𝑝𝑝𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃   =  𝑁𝑁𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃

𝑁𝑁𝑖𝑖
   ∈ [0,1] Share of BEVs owned by PWCs as compared to the total number of 

privately owned cars in region 𝑟𝑟𝑖𝑖, 𝑑𝑑 ∈ {1, … , 𝑛𝑛} 

   𝑝𝑝𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑁𝑁𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑁𝑁𝑖𝑖
  ∈ [0,1] Share of BEVs owned by PWOCs as compared to the total number of 

privately owned cars in region 𝑟𝑟𝑖𝑖, 𝑑𝑑 ∈ {1, … , 𝑛𝑛} 

   𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃                               ∈ ℕ𝑛𝑛𝑛𝑛𝑚𝑚             Origin-Destination Matrix of relevant trips for charging of PWC  

(i.e. 𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃 = # of relevant trips for charging of PWCs from 𝑟𝑟𝑖𝑖 ∈ 𝐺𝐺 to 

𝑟𝑟𝑖𝑖 ∈ 𝑈𝑈) 

   𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃                    ∈ ℕ𝑛𝑛𝑛𝑛𝑚𝑚 Origin-Destination Matrix of relevant trips for charging of PWOC (i.e. 
𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = # of relevant trips for charging of PWOC from 𝑟𝑟𝑖𝑖 ∈ 𝐺𝐺 to 
𝑟𝑟𝑖𝑖 ∈ 𝑈𝑈) 

   𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖       ∈ ℝ Distance from the center of the region 𝑟𝑟𝑖𝑖 ∈ 𝐺𝐺 to the center of the  

region 𝑟𝑟𝑖𝑖 ∈ 𝑈𝑈, 𝑑𝑑 ∈ {1, … , 𝑛𝑛}, 𝑗𝑗 ∈ {1, … , 𝑚𝑚}          

   𝑞𝑞𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃   = 𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖) ∈ [0,1] Probability, that PWC charges after a relevant trip for charging from 

region 𝑟𝑟𝑖𝑖 ∈ 𝐺𝐺 to region 𝑟𝑟𝑖𝑖 ∈ 𝑈𝑈, 𝑑𝑑 ∈ {1, … , 𝑛𝑛}, 𝑗𝑗 ∈ {1, … , 𝑚𝑚}, depends on 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 

   𝑞𝑞𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖) ∈ [0,1] Probability, that PWOC charges after a relevant trip for charging from 

region 𝑟𝑟𝑖𝑖 ∈ 𝐺𝐺 to region 𝑟𝑟𝑖𝑖 ∈ 𝑈𝑈, 𝑑𝑑 ∈ {1, … , 𝑛𝑛}, 𝑗𝑗 ∈ {1, … , 𝑚𝑚}, depends on 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 

𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻  ∈ [0,1] Daily charging probability of a PWOC at a public charging station in 
the “home” region 

𝑆𝑆𝐷𝐷𝑖𝑖  Sociodemographic information about region 𝑟𝑟𝑖𝑖 
 

3.3 Definition of the private charging demand at public charging stations 
We now define the private charging demand at public charging stations as follows: Let 𝑑𝑑𝑖𝑖

𝑆𝑆 be   the 
total number of daily charging events carried out by all private users in region 𝑟𝑟𝑖𝑖. This number is 
divided into the demand generated by PWCs and the demand generated by PWOCs. This means, 
we have that 

𝑑𝑑𝑖𝑖
𝑆𝑆 = 𝑑𝑑𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃                                                                      ∀ 𝑑𝑑 ∈ {1, … , 𝑚𝑚}, (1) 

where 𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃 is the daily public charging demand in region 𝑟𝑟𝑖𝑖 induced by private users with home 

charging opportunity (PWCs) and 𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the daily public charging demand in region 𝑟𝑟𝑖𝑖 

induced by private users without home charging opportunity (PWOCs). One big difference 
between PWCs and PWOCs is that PWOCs generate public charging demand in their home 
regions, whereas PWCs have the possibility to charge at home. Therefore, we divide the public 
charging demand of PWOCs (𝑑𝑑𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) into the public charging demand inside (𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻) and 
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outside of their home region (𝑑𝑑𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴). This means, that altogether we get the following 
components of the total private charging demand at public charging stations in region 𝑟𝑟𝑖𝑖: 

𝑑𝑑𝑖𝑖
𝑆𝑆 = 𝑑𝑑𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻 + 𝑑𝑑𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴                                             ∀ 𝑑𝑑 ∈ {1, … , 𝑚𝑚}. (2) 

3.4 Calculation of the private charging demand at public charging stations 
We distinguish between the charging demand that occurs at public charging stations within the 
home region of a BEV owner, which is the case only for PWOCs, and the charging demand that 
occurs in other regions, which are the destinations of BEV owners (both PWCs and PWOCs) 
distinct from their home regions. 

Let us first look at the demand occurring in the home region of PWOCs. This depends highly on 
the number of BEVs belonging to PWOCs in the respective region (𝑁𝑁𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). In combination with 
the daily charging probability 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻 of a PWOC in his home region, we get: 

𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻  =     𝑁𝑁𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻                                                  ∀ 𝑑𝑑 ∈ {1, … , 𝑚𝑚}. 
 

(3) 

As explained in Subsection 3.2, the charging demand in a region away from the home region 
depends on the number of arriving trips in this particular region and the distance BEV users 
cover to get there. 

𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃   =     ∑ 𝑂𝑂𝐷𝐷𝑘𝑘𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘𝑖𝑖)𝑛𝑛
𝑘𝑘=1         

 
              =     ∑ 𝑂𝑂𝐷𝐷𝑘𝑘𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛
𝑘𝑘=1 ⋅ 𝑞𝑞𝑘𝑘𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃                                                  ∀ 𝑑𝑑 ∈ {1, … , 𝑚𝑚},   
 

𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  =     ∑ (𝑂𝑂𝐷𝐷𝑘𝑘𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘𝑖𝑖)) + 𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻𝑛𝑛

𝑘𝑘=1                         

                              =     ∑ (𝑂𝑂𝐷𝐷𝑘𝑘𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ⋅ 𝑞𝑞𝑘𝑘𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴) + 𝑑𝑑𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻𝑛𝑛

𝑘𝑘=1                ∀ 𝑑𝑑 ∈ {1, … , 𝑚𝑚}.          

(4) 

4. General parameter estimation 

The design of the introduced model requires that the values of the parameters shown in Table 2 
are available. In this section, we explain how these values are estimated. We are going to 
introduce estimation models for certain parameters and use results from existing studies. 

4.1 Estimation of the spatial diffusion of BEVs (𝑝𝑝𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) 
We assume that the total share of BEVs 𝑝𝑝𝐺𝐺 in the overall area 𝐺𝐺 is given, for example by data 
collections of the local administration. However, from these data, we do not know the dispersion 
of electric mobility over the considered regions. In some regions, more people are expected to 
buy BEVs compared to other regions, e.g. because of differing sociodemographic attributes and 
transport connections in the various regions of a city or area. 

One approach on how to model the electric vehicle distribution is given by McCoy and Lyons 
(2014). In their study, the authors describe an agent-based simulation, which assigns BEVs to 
agents over different time-steps. This concept can be adopted to a synthetic household 
population, where each household of the synthetic population is modeled as an agent. During the 
simulation, different characteristics are assigned to the agents based on the related household 
characteristics. The household characteristics are chosen due to different studies about “early 
adopters”, i.e. about people who quickly adopt a newly presented technology (Wietschel, 2012; 
Campbell et al., 2012; Rasouli and Timmermans, 2013), and a survey about buyers of BEVs in 
Germany (Trommer, 2014).  

The BEV adoption process is modeled in almost the same way as in McCoy and Lyons (2014). We 
will hence just briefly describe it here and refer the interested reader to the original paper. 
Additionally, a flow chart of the process is given in Figure 2. In the first step of the agent-based 
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simulation, we create a synthetic household population. This is done using the procedure 
presented by Müller and Axhausen (2011). Every household is seen as one agent with its 
respective attributes such as home region and income. In the beginning, i.e. at time step 𝑑𝑑 = 0, 
none of the agents in our simulation framework owns a BEV. During the simulation, in each step 
more agents adopt to the BEV technology. The agent’s decision to adopt to the BEV technology is 
affected both by its sociodemographic characteristics and by the share of BEVs in its home region, 
in the neighbor regions and in the overall area (see the table in Figure 2 and McCoy and Lyons, 
2014). After each time step, the overall adoption and the adoption in each neighborhood is 
updated. Let 𝑝𝑝𝐺𝐺� be the simulated total share of BEVs in the overall area. The agent-based 
simulation is conducted until 𝑝𝑝𝐺𝐺� meets the actual total share of BEVs in the overall area (𝑝𝑝𝐺𝐺), 
which was known beforehand. Like this, we can simulate the dispersion of BEVs over the 
considered regions of our overall area. 

To apply the procedure, household information about the type of housing needs to be available. 
We assume households living in detached or semi-detached houses to be PWCs, as they generally 
have the room for their own private car space. The other households are assumed to be PWOCs. 
Like this, we can distinguish between PWC and PWOC agents, and the values of 𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑝𝑝𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

can be derived for every region. 

 
Figure 2.  (a) Flow chart of simulation of agent-based BEV adoption; (b) Influencing factors on BEV 
adoption process for each agent. 

4.2 Determination of the public charging probability after one trip for PWC and PWOC 
In the following, we model the probability that a BEV owner decides to charge after a realized 
trip. In this model, we assume that the driver does not end his trip in his home region, as in the 
home region other charging probabilities apply according to the assumptions presented in 
Section 3. The charging probability we are analyzing here depends on the range of the BEV, the 
length of the trip and the personal range anxiety of the BEV user. 

Let 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵 be the range of a BEV and let 𝑌𝑌 ∈ [0, 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵] be the random variable which corresponds to 
the number of kilometers that a BEV user is willing to drive without charging. In this model, it is 
assumed that 𝑌𝑌 follows a general four parameter beta distribution (𝑌𝑌~𝐵𝐵(𝑝𝑝, 𝑞𝑞, 𝑎𝑎, 𝑏𝑏)), where the 
parameters 𝑎𝑎 and 𝑏𝑏 are the bounds of the interval of the beta distribution. As a trip length is 
always greater than zero, it follows that 𝑎𝑎 = 0. Furthermore, it is assumed that no BEV user tries 
to drive more than the remaining range of the BEV. Consequently, 𝑏𝑏 is set to the remaining range. 
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Finally, it is possible to estimate 𝑝𝑝 and 𝑞𝑞 if the expected value and the variance of 𝑌𝑌 are known. 
The estimation of the expected value and the variance is based on the analysis of the range 
anxiety by Franke (2014). In his dissertation, he states that BEV users normally feel comfortable to 
drive a distance of 75-80% of the remaining range of their BEV. This result is based on two 
different surveys about BEV users (Franke et al., 2012; Franke and Krems, 2013). In these studies, 
BEV users were asked how far they would feel comfortable to drive with a fully charged BEV but 
without having the possibility to charge along the way (official range of the BEV: 165 km). The 
test persons were already familiar with BEVs and hence already had a feeling about the actual 
range. The expected value 𝐸𝐸(𝑌𝑌) of the first study was 130 km (which equals 78% of the officially 
stated range) with a standard deviation σ(𝑌𝑌) of 22 km (Franke et al., 2012). This means, that the 
ratio of the standard deviation and the expected value, i.e. σ(𝑌𝑌) 𝐸𝐸(𝑌𝑌)⁄ , is 0.17 or, in other words, 
σ(𝑌𝑌) = 0.17 ⋅ 𝐸𝐸(𝑌𝑌). The authors of the second study arrived at a similar result with an expected 
value E(Y) of about 120 km (which equals 73% of the officially stated range) and a standard 
deviation σ(𝑌𝑌) of about 17 km, i.e. σ(𝑌𝑌) = 0.14 ⋅ 𝐸𝐸(𝑌𝑌) (Franke and Krems, 2013). In the following, 
we estimate the expected value 𝐸𝐸(𝑌𝑌) to be 77% of the remaining driving range, i.e. 𝐸𝐸(𝑌𝑌) = 0.77 ⋅ 𝑏𝑏 
and the standard deviation as σ(𝑌𝑌) = 0.15 ⋅ 𝐸𝐸(𝑌𝑌). With these assumptions, it is possible to 
determine a beta distribution 𝐵𝐵(𝑝𝑝, 𝑞𝑞, 𝑎𝑎, 𝑏𝑏) based solely on the remaining range 𝑏𝑏 of a BEV. This 
means, that the possibility that a user charges after a trip can be derived depending on the trip 
length (see Figure 3). 

 
Figure 3. Charging probability depending on kilometers to drive with remaining range of 165 km. 

As explained in Section 3.1, we assume that every charging relevant trip starts from the home 
location and the BEV is fully charged (so the remaining range 𝑏𝑏 equals the maximum driving 
range of the BEV 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵). Furthermore, it is assumed that the BEV user drives back home after the 
completion of the activity. Before the start of each charging relevant trip, the BEV user has to 
decide if he wants to charge at his destination or not. Therefore, the charging probability depends 
on twice the distance of the charging relevant one-way trip. 

The validity of the assumptions stated here can additionally be justified by further results of 
Franke et al., 2012; Franke and Krems, 2013; Krems et al., 2011. The authors examined not only 
the range anxiety, but also the actual charging patterns of BEV users. They found out that PWCs 
charge on average 2.9 times per week from which only 7% are conducted at public charging 
stations (Krems et al., 2011). This leads to a daily public charging possibility of 2.9%. We 
compared this value to the number and distances of trips per day per car derived from general 
travel diaries of Munich (MiD data - a national traffic survey conducted every 3-5 years; Follmer 
et al., 2008). The number of charging relevant trips per day per car is 0.78 and the possibility of 
charging after a trip is 3% assuming that 𝑌𝑌~𝐵𝐵(𝑝𝑝, 𝑞𝑞, 0, 165), 𝐸𝐸(𝑌𝑌) = 130, 𝜎𝜎(𝑌𝑌) = 22 and using the 
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information about average trip lengths. This leads to a daily possibility of public charging of 2.3% 
based on the MiD data which is near the empirical results. Therefore, the assumptions of the 
derivation of the probability of “charging away” can be accepted. 

4.3 Determination of the public charging probability of a BEV owned by a PWOC in his home region 
The study of Krems et al. (2011) also analyzes the charging behavior of private BEV users without 
the possibility of charging their car at home (PWOCs). The authors state that PWOCs charge on 
average 1.6 times per week. Moreover, they figured out that about 73% of the charging events of 
PWOCs happened on a primary charging station. Based on these results, a daily charging rate of 
a PWOC BEV in its home region of 𝑞𝑞�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻 = 16.7% can be derived for this study. As already 
mentioned, the BEVs considered in Krems et al. (2011) had a maximum range of 165 km. This 
means, that the daily charging probability has to be adapted according to the assumed maximum 
range (𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵):  

𝑞𝑞𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻 = 165
𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵

⋅ 𝑞𝑞�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝐻𝐻 .       (5) 

5. Case study 

In this section, we present a case study of the charging demand estimation model for Munich. It 
contains three scenarios, a minimal (MIN - few public charging events expected), a median 
(MED) and a maximal one (MAX - many public charging events expected). The goal of the case 
study is to depict the whole range of potential scenarios and to quantify the influence of the 
parameters. The minimal scenario illustrates the case that the share of BEVs does not increase 
eminently and BEVs are almost only bought by PWCs. The median scenario is assumed to be the 
realistic one based on different studies. For the maximal scenario, we assume that the share of 
BEVs highly increases during the next years.  

Firstly, the remaining input parameters are determined from studies and empirical analyses and 
afterwards, the results of these scenarios are given and compared with each other. Furthermore, a 
sensitivity analysis of different model parameters is conducted to quantify their influence on the 
public charging demand. 

5.1 Parameter estimation 
We apply the model to the city of Munich, Germany, i.e. we choose the study area 𝑈𝑈 to be the 
municipal area of Munich. Munich consists of 25 different city districts, such that we decide to 
partition the study area into 25 regions (𝑚𝑚 = 25). The overall area 𝐺𝐺 is bounded by a cycle drawn 
around Munich with a radius of approximately 100 kilometers. We use our model to estimate the 
charging demand in the year 2020.  

The overall share of BEVs (𝑝𝑝𝐺𝐺) in the year 2020 is estimated in different studies (e.g. Wietschel et 
al., 2013; Castro et al., 2012). There are big differences between the proportions determined in the 
several studies ranging from 0.3% to 3.1%. For the three scenarios in this case study, we assume 
𝑝𝑝𝐺𝐺 to be 0.3% in the MIN scenario, 1.3% in the MED scenario and 2.6% in the MAX scenario. 
These values are based on the three different scenarios presented by Wietschel et al. (2013). To 
determine the share of BEVs for PWCs and PWOCs, we generate a synthetic population 
according to Subsection 4.1. As input data, we use a household survey (Follmer et al., 2008) and 
sociodemographic data of the different regions of Munich (Infas, 2012). The proportion of 𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 
and 𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for each region 𝑟𝑟𝑖𝑖 depends on the emphasis of the influencing factors of adopting the 
BEV technology for each agent (see Figure 2). These weights are based on McCoy and Lyons 
(2014) as well as on the study about BEV buyers by Trommer (2014). Obviously, the weighting of 
the influencing factor “house owner” is correlated to the simulated number of PWOC adopting. 
To be precise, if the influencing factor “house owner” is high, an agent that is not a house owner, 
i.e. has no possibility to charge at home, most likely does not adopt the BEV technology. This 
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means that there will be more PWCs than PWOCs. On the other hand, if the influencing factor 
“house owner” is low, it is likely that there will be more PWOCs among the group of BEV 
adopters. As PWOCs have to charge at public charging stations more often, a higher share of 
𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 will lead to more public charging events. The weight of the influencing factor “house 
owner” is grounded on the study of Trommer (2014). For the MED scenario we choose the weight 
of the parameter based on Trommer’s survey, for the MIN scenario we double it (to provoke a 
lower share of 𝑝𝑝𝐺𝐺

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) and for the MAX scenario we halve it (to provoke a higher share of 𝑝𝑝𝐺𝐺
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). 

 
Figure 4. Given OD matrices differing in trip purpose.  

For the three scenarios, 14 OD matrices differing in trip purpose are given (see Figure 4): As 
explained in the assumptions in Section 3, 𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 are composed of OD matrices 
based on the purposes of trips 3, 4 and 5, i.e. 𝑂𝑂𝐷𝐷 = 𝑂𝑂𝐷𝐷𝐻𝐻𝐻𝐻𝑚𝑚𝐻𝐻−𝑆𝑆ℎ𝐻𝐻𝑜𝑜𝑜𝑜𝑖𝑖𝑛𝑛𝑜𝑜 + 𝑂𝑂𝐷𝐷𝐻𝐻𝐻𝐻𝑚𝑚𝐻𝐻−𝐿𝐿𝐻𝐻𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻 +
𝑂𝑂𝐷𝐷𝐻𝐻𝐻𝐻𝑚𝑚𝐻𝐻−𝑀𝑀𝑖𝑖𝐿𝐿𝑀𝑀. We then get the matrices 𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑂𝑂𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by multiplying the matrix 𝑂𝑂𝐷𝐷 by the 
share of the respective user group: 

𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃   =        𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃    ⋅ 𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖                                                       ∀ 𝑑𝑑, 𝑗𝑗 ∈ {1, … , 𝑛𝑛},          
(6) 

𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =        𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  ⋅ 𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖                                                       ∀ 𝑑𝑑, 𝑗𝑗 ∈ {1, … , 𝑛𝑛}. 
 

To determine the charging probability after a trip (𝑞𝑞𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑞𝑞𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) or the daily PWOC charging 
probability at home (𝑞𝑞𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), the maximum range has to be given as explained in Section 4.3.  
A study of Bloch (2014) claims a typical maximum range of about 140 km under perfect 
circumstances. Depending on the weather or the altitude difference of a trip, this maximum range 
can drop. On the other hand, it can be assumed that in the future, technical progress will go 
forward such that BEVs will have a higher maximum range. Based on these thoughts, for the 
three scenarios maximum ranges of 120 for MAX (a lower range leads to a higher charging 
probability), 140 for MED and 200 kilometers for MIN (a higher range leads to a lower charging 
probability) were chosen. 

The number of cars per region of the study area 𝑁𝑁𝑖𝑖 was provided by the city council of Munich. 
At the end of 2013, 497,332 private vehicles were reported in Munich (Statistik München, 2013). 
As it is expected that Munich will grow in the future (increase by 100,000 residents between 2009 
and 2020: Prognosis by Landeshauptstadt München, 2012), a 5% increase in privately owned 
vehicles for the MED scenario, an 8% increase for the MAX scenario and no increase for the MIN 
scenario is assumed. 

Table 3. Explicit assumptions for the base model 

  Input 
parameter 

Scenario MIN (Minimal) Scenario MED (Median) Scenario MAX (Maximal) 

𝑝𝑝𝐺𝐺 0.3 % 1.3 % 2.6 % 

Influence  
“house owner” 

Taken from Trommer (2014) 
and doubled 

Taken from Trommer (2014) Taken from Trommer (2014) 
and halved 

𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃 , 𝑂𝑂𝐷𝐷𝑖𝑖𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 OD-matrices bought from PTV Group (2013) and multiplied by 𝑝𝑝𝑖𝑖
𝑃𝑃𝑃𝑃𝑃𝑃 , 𝑝𝑝𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 accordingly 

𝑁𝑁𝑖𝑖 497,332 522,199 547,065 

𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵 200 km 140 km 120 km 
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In Table 3, an overview of the different parameters is given. A contradiction can be detected 
looking at the MAX (MIN) scenario with a short (great) range of BEVs and a high (low) adaption 
of BEVs. The results of the considered scenarios shall cover a corridor of the future development 
of private public charging demand in Munich, so the MIN and the MAX scenario are laid out as 
extreme scenarios.  

5.2 Scenario analysis 
In Figure 5, the spatial distribution of estimated charging events of the different scenarios are 
depicted (in the case of the MED scenario also solely for PWCs and PWOCs) as well as the overall 
amount of charging demand for all scenarios (also differed between PWCs and PWOCs). As we 
estimate the charging demand in the city of Munich, in Figure 5 you can see the 25 regions of the 
city, i.e. we depict the study area 𝑈𝑈 and not the overall area 𝐺𝐺. It can be seen that there is a high 
range of the results between the minimal, the median and the maximal scenarios. This means that 
the future size of the charging infrastructure highly depends on the assumptions of the input 
parameters. 

 
Figure 5. Results of charging demand estimation - Number of expected charging events. Shown is the 
study area 𝑈𝑈 in our case study, i.e. the city of Munich. 
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While there are big differences in the number of charging events of the three scenarios in the 
whole Munich area (see Figure 5f), there are almost no differences regarding the relative spatial 
distribution of the charging demand over Munich. In Figure 5a, you can see the spatial 
distribution of the total public charging demand assuming the median scenario. The spatial 
distribution of the demand looks similar for the maximum (see Figure 5b) and the minimum 
scenario (see Figure 5c), which means that the total number of charging events differs but not the 
relative size of the demand in each region. The highest charging demand occurs in the southwest 
and in the northeast of Munich, whereas in the northwest less public charging events are 
expected. Furthermore, the results show that most of the charging events are executed by PWOCs 
(see Figure 5f). Moreover, the spatial distribution differs between the two user groups. PWCs 
charge more often near the city center of Munich (see Figure 5d), whereas PWOCs are also 
dependent on a public charging infrastructure in the outer parts of Munich (see Figure 5e). 

Because of the high deviations in charging demand estimation based on differing assumptions, it 
is hard for decision makers to plan a public charging infrastructure that is suitable for future 
demand. Infrastructure planners should be aware of potential changes in reality compared to 
their assumptions. Before setting up an infrastructure plan, they should know the impacts of each 
input parameter to be able to adapt their plan whenever changes occur. Therefore, in a next step, 
we analyze the input parameters in more detail conducting a sensitivity analysis.  

5.3 Results of the sensitivity analysis 
In this section, we analyze the influencing factors “Overall BEV Adoption”, “PWOC BEV 
Adoption” and “Range of BEVs” in more detail. Each of the four input parameters is slightly 
changed within the range of 90% to 110% of the corresponding value that we expect in the 
median scenario. The result of this analysis is depicted in Figure 6.  

 
Figure 6. Sensitivity analysis of different influencing factors of public charging demand. The charging 
demand is measured as the number of private charging events at public charging stations in Munich per 
day. 

Small changes in the overall adoption 𝑝𝑝𝐺𝐺 influence the public charging demand the most. A BEV 
adoption that is 10% higher than expected leads to an increase in the number of charging events 
of about 16%. We can see in Figure 6 (red curve), that the charging demand increases much more 
if the deviation is higher. This is due to the fact that, if the adoption rate is high, PWOCs are also 
more likely to adopt to BEVs and PWOCs generate a higher charging demand. The black curve 
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shows the influence of the number of PWOCs buying a BEV. This curve is almost linear with a 
slope of almost one, such that a 10% increase in the number of PWOCs results in almost a 10% 
increase in the number of charging events. As expected, the sensitivity of the charging demand is 
inverse to the influencing factor “Range of BEVs” (blue curve), because a higher range of the BEV 
leads to less charging events that need to be carried out. As the range is expected to grow more 
than 10% in the near future (Bosch GmbH, 2015), less charging events per BEV will be executed. 

6. Summary and outlook 

In the beginning of the paper, we presented a literature review introducing the most important 
papers that deal with the planning of the future charging infrastructure. However, as most 
papers focus on the optimal allocation of charging stations, there is not much literature about 
estimating the future charging demand. Therefore, we introduced a new model considering 
different BEV user groups (PWCs and PWOCs), the future adoption of electric mobility 
respecting sociodemographic characteristics, the evolution of the range of BEVs and general 
traveling patterns. In a case study for Munich we applied the presented model assuming three 
different scenarios regarding the spread of BEVs.  

The output of the model is the expected number of charging events requested in a certain region 
on an average day. Together with the average parking time and the temporal distribution of car 
arrivals at public charging stations, it is possible to obtain the necessary size of the charging 
infrastructure such that the demand can be satisfied even during peak hours. Together with 
existing optimization algorithms for the allocation of charging stations, our model can help 
planners to design a reasonable and capable charging infrastructure, if reliable data for setting 
the parameters are given. 

As the results differed a lot between the three scenarios, a sensitivity analysis was conducted to 
detect the influence of each parameter. We found out, that the estimation of charging demand is 
not robust, i.e. it heavily depends on the quality of the input – mainly on the future share of 
BEVs. This dependency on correct input data is the main limitation of the model, as the future 
spread of BEVs is very difficult to predict and a wrong forecast leads to an incorrectly estimated 
charging demand. Therefore, it is necessary to consider small planning horizons to be able to 
adapt the model to changing situations. It is also important to monitor the utilization of existing 
infrastructure to identify misconceptions and avoid mistakes. However, the spatial distribution 
of the determined charging demand does not depend on a certain scenario. Therefore, if the 
planning horizon is bigger and data hence less reliable, our model can at least be applied for 
estimating the relative spatial distribution of the public charging demand.  

It is also possible to include other parameters into the model, like for example congestion. We 
consider the results of different studies saying that people feel comfortable to drive about 77% of 
the remaining range without charging. This means, people intuitively leave some kind of buffer 
for possible congestion and detours. However, if more emphasis should be put on congestion, it 
is possible to define the distance 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 between regions 𝑟𝑟𝑖𝑖 and 𝑟𝑟𝑖𝑖 considering the average 
congestion on this way. It is even possible to define the distance dynamically depending on the 
time the trip is done, yet this assumes that drivers are aware of the traffic situation on their trip 
and plan their charging events accordingly. Additionally, it is possible to apply the presented 
model to other cities. However, one must be careful as trip and charging behavior as well as the 
influence of sociodemographic attributes on the adoption of BEVs might be different in other 
regions of the world. The assumptions made in this paper are based on studies about mobility, 
the adoption of BEVs, and charging behavior in Germany.  Therefore, the assumptions made here 
would need to be checked and, if necessary, adjusted for the respective region. 
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