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This paper presents the application and calibration of the recently proposed Restricted 
Stochastic User Equilibrium with Threshold model (RSUET) to a large-scale case-study. The 
RSUET model avoids the limitations of the well-known Stochastic User Equilibrium model (SUE) 
and the Deterministic User Equilibrium model (DUE), by combining the strengths of the 
Boundedly Rational User Equilibrium model and the Restricted Stochastic User Equilibrium 
model (RSUE). Thereby, the RSUET model reaches an equilibrated solution in which the flow is 
distributed according to Random Utility Theory among a consistently equilibrated set of paths 
which all are within a threshold relative to the cost on the cheapest path and which do not leave 
any attractive paths unused. 
Several variants of a generic RSUET solution algorithm are tested and calibrated on a large-scale 
case network with 18,708 arcs and about 20 million OD-pairs, and comparisons are performed 
with respect to a previously proposed RSUE model as well as an existing link-based mixed 
Multinomial Probit (MNP) SUE model. The results show that the RSUET has very attractive 
computation times for large-scale applications and demonstrate that the threshold addition to the 
RSUE model improves the behavioural realism, especially for high congestion cases. Also, fast 
and well-behaved convergence to equilibrated solutions among non-universal choice sets is 
observed across different congestion levels, choice model scale parameters, and algorithm step 
sizes. Clearly, the results highlight that the RSUET outperforms the MNP SUE in terms of 
convergence, calculation time and behavioural realism. The choice set composition is validated 
by using 16,618 observed route choices collected by GPS devices in the same network and 
observing their reproduction within the equilibrated choice sets generated by the RSUET model. 
Relevantly, the RSUET model is very successful in reproducing observed link.  
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1. Introduction and Motivation 

As the need for large-scale transport models has increased in recent years in coincidence with the 
development of metropolitan, regional and national models worldwide, the need for 
computationally efficient and behaviourally realistic traffic assignment models stands tall.  

Most traffic assignment models adopt variants of either the Deterministic User Equilibrium 
model (DUE, Wardrop, 1952) or the Stochastic User Equilibrium model (SUE, Daganzo and 
Sheffi, 1977) framework. The DUE has been widely applied in large-scale applications, mainly 
because of its computational attractiveness in that it distinguishes implicitly between potentially 
used routes and definitely unused routes, thereby circumventing the computationally intractable 
enumeration of the universal choice set. However, the drawback of the DUE is that it is based on 
an assumption of perfect traveller rationality and choice of only minimum cost paths, an 
implausible assumption especially in cases where there exist paths with costs only slightly 
greater than the minimum. The SUE removes this non-realistic assumption via the adaptation of 
Random Utility Maximisation (RUM) models. Under the commonly adopted assumptions on the 
perception errors, RUM models suffer from the theoretical need to allocate flow to all available 
alternatives (paths), no matter how non-sensible they may be (Watling et al., 2015). This not only 
constitutes a behavioural limitation, but also poses some distinct challenges for the theoretical 
consistent integration of state-of-the-art RUM models into practical large-scale traffic assignment 
problems. Moreover, the universal choice set may consist of millions of routes for each OD-pair 
and hence it becomes intractable to enumerate and assign traffic to the universal choice set. 
Consequently, SUE is usually calculated on a subset of the universal choice set in real-life 
applications, and this induces a theoretical inconsistency with the underlying model framework. 
The generation of the subset is not trivial, as the SUE does not provide any 
conditions/requirements to help distinguishing between relevant and irrelevant routes. Rather, 
the issue of sampling the choice sets in such a way that they are composed of all relevant 
alternatives, while leaving out non-relevant alternatives, is left to the modeller (Bovy, 2009; Prato, 
2009). 

The limitations of the DUE and SUE models have led to the development of alternative models. 
The Boundedly Rational User Equilibrium (BRUE) model relaxes the assumption of perfect 
rationality in the DUE, allowing for the use of some non-optimal paths within an excess cost 
within some often relative ‘indifference band’ to the cost of the minimum cost path. A recent 
review (Di and Liu, 2016) covers the BRUE from its original formulation (Mahmassani and 
Chang, 1987) to its most recent mathematical formulation (Di et al., 2013). The BRUE model 
assumption implies the possibility to obtain solutions using non-optimal paths, and typically the 
result is a space of possible flow solutions for possible path sets rather than a unique flow 
solution for a unique path set.  

More recently the Restricted Stochastic User Equilibrium model was proposed (RSUE, Watling et 
al., 2015), which removes the need to use all paths in SUE. The RSUE allows to determine 
consistently unused alternatives from the equilibrium conditions while allocating flow among 
used paths according to Random Utility Theory. Thus, a SUE-style flow solution is found, 
however among an internally equilibrated and consistent non-universal choice set.  

Motivated by the BRUE and RSUE, Watling et al. (2016) proposed the Restricted Stochastic User 
Equilibrium with Threshold (RSUET) model that combines the advantages of these two 
approaches, in terms of the behavioural realism they add. From the BRUE model, it uses the 
notion that there might be a tolerance on how large detours/deviations from the optimal 
equilibrium cost that route travellers would consider, and that routes outside the tolerance would 
not be used. From the RSUE model, it uses the possibility to integrate random utility theory (for 
splitting traffic between used alternatives) with the possibility to exclude some unreasonably 
costly routes from the equilibrated choice set in a consistent way. In this way, the RSUET model 
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can be viewed as either a stochastic version of the BRUE model or a bounded rationality inspired 
version of the RSUE model. 

The RSUET model is motivated not only from a behavioural perspective, but also from the need 
of traffic assignment models to be applicable to large-scale studies. The implicit treatment of the 
choice set plays a paramount role. Whereas the issue of distinguishing between used and unused 
paths are left to the modeller in the SUE, he/she can use the conditions underlying the RSUET 
model to ensure that the choice sets are consistently generated as the algorithm iterates and that 
they are equilibrated upon termination of the algorithm. This determination of the choice sets 
induces also some additional advantages compared to SUE approaches. Firstly, path-based 
approaches can be consistently applied. This allows the use of state-of-the-art choice models such 
as the path-size logit (Ben-Akiva and Bierlaire, 1999) and a more flexible specification of the cost 
function such that path-based reliability measures can be included. Secondly, simulation can be 
avoided in the generation of paths and allocation of flow. This not only improves computation 
time but also removes the stochasticity in the outputs, which may have a major implication in 
project appraisals for large-scale models (Manzo et al., 2015; Rich and Nielsen, 2015). Thirdly, 
convergence in both the allocation of flow among used paths and the generation of the final 
choice sets can be consistently evaluated. Watling et al. (2016) devised a companion generic 
solution method to the RSUET exploiting these advantages, where the algorithm is an extension 
of the algorithm presented for the RSUE (Rasmussen et al., 2015a).  

Watling et al. (2016) demonstrated the applicability of the RSUET algorithm on the Sioux Falls 
network, but did not pursue to demonstrate efficient and consistent large-scale applicability. The 
present paper contributes by demonstrating this by presenting the tests of the novel model 
framework and solution algorithm for a large-scale application, and using a dataset consisting of 
observed routes collected by GPS devices to validate and calibrate the model, thereby 
demonstrating one possible utilisation of the increasingly available large-scale data sources on 
individual behaviour. 

The remainder of the paper is structured as follows. Section 2 introduces the notation and restates 
the RSUET model and the solution algorithm proposed in Watling et al. (2016). Section 3 
introduces the different specifications of the algorithm and the evaluation criteria used in the 
present study. Section 4 presents the large-scale case-study and the results of the numerical tests, 
including the calibration of the parameters and the evaluation of the model performance at 
various network congestion levels. Last, section 5 draws the main conclusions and outlines future 
research directions. 

2. Notation and Model Definition 

Consider a network as a directed graph consisting of origin-destination (OD) pairs m (m=1, 2, …, 
M) and links a (a=1, 2, …, A). Define the demand for OD-pair m as dm composing a non-negative 
M-dimensional vector d, where dm refers to element number m in d.  
Define the index set Rm of all simple paths (without cycles) for each OD-pair m and the number 
Nm of paths in Rm. The union of the sets Rm is defined as R and the route index sets are 
constructed so that R = {1,2,…,N}, where 𝑁𝑁 = ∑ 𝑁𝑁𝑚𝑚𝑀𝑀

𝑚𝑚=1 . Denote the flow on path r ∈ Rm between 
OD-pair m as xmr and let x be the N-dimensional flow-vector on the universal choice set across all 
M OD-pairs, so that the notation xmr refers to element number 𝑟𝑟 + ∑ 𝑁𝑁𝑚𝑚𝑚𝑚−1

𝑘𝑘=1  in the N-dimensional 
vector x. The convex set of demand-feasible non-negative path flow solutions G is given by: 

𝐺𝐺 = �𝐱𝐱 ∈ 𝐑𝐑+
𝑁𝑁 ∶  ∑ 𝑥𝑥𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚
𝑚𝑚=1 = 𝑑𝑑𝑚𝑚,𝑚𝑚 = 1,2, … ,𝑀𝑀�                                     (1) 

where 𝐑𝐑+
𝑁𝑁 denotes the N-dimensional, non-negative Euclidean space.  
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Denote the flow on link a (a=1,2,...,A) as fa and let 𝐟𝐟 = (𝑓𝑓1,𝑓𝑓2, … , 𝑓𝑓𝑎𝑎 , … ,𝑓𝑓𝐴𝐴) be the A-dimensional link 
flow-vector where fa refers to element number a in f. Next, define δamr equal to 1 if link a is part of 
path r for OD-pair m and zero otherwise. Then the convex set of demand-feasible link flows is: 

𝐹𝐹 = �𝐟𝐟 ∈ 𝐑𝐑+
𝐴𝐴 ∶ 𝑓𝑓𝑎𝑎 = ∑ ∑ 𝛿𝛿𝑎𝑎𝑚𝑚𝑚𝑚 ∙ 𝑥𝑥𝑚𝑚𝑚𝑚 ,𝑎𝑎 = 1,2, … ,𝐴𝐴, 𝐱𝐱 ∈ 𝐺𝐺𝑁𝑁𝑚𝑚

𝑚𝑚=1
𝑀𝑀
𝑚𝑚=1 �                                   (2) 

In vector/matrix notation, let f and x be column vectors, and define ∆ as the A×N-dimensional 
link-path incidence matrix. Then the relationship between link and path flows may be written as
f = Δx . It is then assumed that the travel cost on path r for OD-pair m is additive in the link 
travel costs of the links used: 

𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱) = ∑ 𝛿𝛿𝑎𝑎𝑚𝑚𝑚𝑚 ∙ 𝑡𝑡𝑎𝑎(Δ𝐱𝐱)𝐴𝐴
𝑎𝑎=1              (r ∈ Rm; m = 1,2,…,M; G∈x )                       (3) 

Define t(f) (t : R+A → R+A) as the vector of generalised link travel cost functions, and c(x) (c : R+N 
→ R+N) as the vector of generalised route travel cost functions. The relationships between path 
and link flows, and between link and path costs, then become: 

𝐟𝐟 = Δ𝐱𝐱   and   𝐜𝐜(𝐱𝐱) = Δ𝑇𝑇𝐭𝐭(Δ𝐱𝐱)                                                   (4) 

For SUE-style models, Umr denotes the random utility for path r between OD-pair m:  

𝑈𝑈𝑚𝑚𝑚𝑚 = −𝜃𝜃 ∙ 𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱) + 𝜉𝜉𝑚𝑚𝑚𝑚      (𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚 ;𝑚𝑚 = 1,2, … ,𝑀𝑀)                                        (5) 

where 𝛏𝛏 = {𝜉𝜉𝑚𝑚𝑚𝑚 ∶ 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚,𝑚𝑚 = 1,2, … ,𝑀𝑀} are continuous random variables following some given 
joint probability distribution, and θ  > 0 is a given parameter. The following functions are then 
defined as the probability relations: 

𝑃𝑃𝑚𝑚𝑚𝑚�𝐜𝐜(𝐱𝐱)� = Pr(−𝜃𝜃 ∙ 𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱) + 𝜉𝜉𝑚𝑚𝑚𝑚  ≥  −𝜃𝜃 ∙ 𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱) + 𝜉𝜉𝑚𝑚𝑚𝑚,∀𝑠𝑠 ∈ 𝑅𝑅𝑚𝑚) 

 (𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚 ;𝑚𝑚 = 1,2, … ,𝑀𝑀)   (6) 

These relations express the probability that path r between OD-pair m will have a perceived 
utility greater than or equal to the utilities of all alternative paths in the universal set of routes for 
that OD-pair, when the random utilities are −𝜃𝜃 ∙ 𝐜𝐜(𝐱𝐱) + 𝛏𝛏 and the generalised path travel costs are 
c(x). for any non-empty subset 𝑅𝑅�𝑚𝑚of 𝑅𝑅𝑚𝑚 (m = 1,2,…,M), define also:  

𝑃𝑃𝑚𝑚𝑚𝑚�𝐜𝐜(𝐱𝐱)|𝑅𝑅�𝑚𝑚� = Pr�−𝜃𝜃 ∙ 𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱) + 𝜉𝜉𝑚𝑚𝑚𝑚  ≥  −𝜃𝜃 ∙ 𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱) + 𝜉𝜉𝑚𝑚𝑚𝑚,∀𝑠𝑠 ∈ 𝑅𝑅�𝑚𝑚� 

�𝑟𝑟 ∈ 𝑅𝑅�𝑚𝑚 ⊆ 𝑅𝑅𝑚𝑚 ;𝑚𝑚 = 1,2, … ,𝑀𝑀� (7) 

That is to say, whenever such a subset is not specified, Pmr refers to the universal set. The 
definition of the RSUET model is then as follows (Watling et al., 2016). 

Definition: Restricted Stochastic User Equilibrium with Threshold (RSUET(Φ ,Ω))  

The route flow x ∈ G is a RSUET(Φ ,Ω) if and only if for all r ∈ Rm and m = 1,2,…,M: 

 𝑥𝑥𝑚𝑚𝑚𝑚 > 0 ⇒ 𝑟𝑟 ∈ 𝑅𝑅�𝑚𝑚 ∧ 𝑥𝑥𝑚𝑚𝑚𝑚 = 𝑑𝑑𝑚𝑚 ∙ 𝑃𝑃𝑚𝑚𝑚𝑚�𝐜𝐜(𝐱𝐱)�𝑅𝑅�𝑚𝑚� ∧ 𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱) ≤ Ω�{𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱): 𝑠𝑠 ∈ 𝑅𝑅�𝑚𝑚}; 𝛓𝛓𝑚𝑚�       (8)  

 𝑥𝑥𝑚𝑚𝑚𝑚 = 0 ⇒ 𝑟𝑟 ∉ 𝑅𝑅�𝑚𝑚 ∧ 𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱) ≥ Φ�{𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱): 𝑠𝑠 ∈ 𝑅𝑅�𝑚𝑚}; 𝛏𝛏𝑚𝑚�                      (9) 

where Φ and Ω are exogenously defined functions which uniquely defines an ‘external reference 
cost’ and a threshold value (‘internal reference cost’) per OD movement, respectively. 

Watling et al. (2016) proposed a corresponding generic solution algorithm, and demonstrated its 
applicability to the Sioux Falls network. The algorithm consists of an initialisation step 
identifying an initial feasible flow solution, followed by 5 sequential steps which are iterated 
until convergence: (i) column generation phase; (ii) restricted master problem phase; (iii) network 
loading phase; (iv) threshold condition phase; (v) convergence evaluation phase. In the column 
generation phase, the choice sets are grown in a systematic way that ensures the fulfilment of the 
second RSUET condition (9) at convergence, and thus that no attractive paths are left unused. The 
search for paths may be done in several ways, but Watling et al. (2016) suggest to use a single 
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shortest path search for the RSUET(min, Ω) and a k-shortest path search for the RSUET(max, Ω). 
The restricted master problem phase allocates flow among the set of used paths according to the 
underlying choice model, to ensure that the part of the first RSUET condition (8) concerning the 
flow allocation are fulfilled at convergence. The flow allocation can be done by using traditional 
path-based SUE allocation methods, or, using the cost transformation functions introduced in 
Rasmussen et al. (2015a), by DUE methods. The network loading phase loads route flows to the 
network to obtain the resulting link flows, link costs and route costs. The threshold condition phase 
identifies and removes any paths which violate the threshold condition and redistribute the flow 
among the remaining paths. Thereby the second part of condition (8) is fulfilled at convergence, 
ensuring that no unattractive paths are used. Lastly, the convergence evaluation phase uses a two-
part gap measure and checks whether any violating paths have been removed to consistently 
evaluate whether the algorithm has converged to a solution fulfilling the underlying RSUET 
conditions.  

3. Application of the RSUET Model to large-scale problems 

The application of the RSUET model requires decisions about various specification and 
algorithmic details as described in the following. 

3.1 Algorithm specification 
The tests presented in the present paper focused on the RSUET(min, Ω) formulation rather than 
the RSUET(max, Ω). This was because (i) the corresponding RSUE(min) formulation was found 
promising in Rasmussen et al. (2015a), (ii) it ensures at least the minimum cost path to be used, 
but does not induce all paths with cost below the most costly used route to necessarily be used 
(e.g., multiple variants of routes repeatedly getting on and off motorways at ramps), and (iii) the 
RSUET(max, Ω) is a lot more computationally demanding than the RSUET(min, Ω) (Watling et 
al., 2016). In relation to the computational requirements, then if z refers to the number of zones 
(origins), then the max-formulation requires z2 k-shortest path searches to cover all OD-pairs, as 
opposed to z searches for the single shortest path method of the min-formulation. Additionally, 
the k-shortest path search algorithm has a calculation complexity of ( ( log( ) ))mO k V V V A⋅ ⋅ ⋅ +  

for each search, as opposed to ( log( ) )O V V A⋅ +  for the single shortest path search method (see 
Rasmussen et al., 2015a)5.   

Given the min-formulation of the Φ-function, the column generation phase was based on single 
shortest path searches (see Watling et al., 2016). The implementation allowed the evaluation of 
two approaches in the restricted master problem phase. The first approach (referred to as the Path 
Swap variant) utilised the cost transformation functions introduced in Rasmussen et al. (2015a) to 
identify an auxiliary solution using the pairwise path-swapping strategy described in Carey and 
Ge (2012). See Rasmussen et al. (2015a) for more information on the integration of the path-
swapping strategy and the cost transformation functions. The second approach (referred to as the 
Inner Logit variant) identified the auxiliary solution by directly using the closed-form MNL or 
PSL choice probability expressions.  

5 We implemented and did some initial tests of the k-shortest path algorithm. While managing to improve the 
computation time considerably compared to a first ‘non-optimised’ implementation, it still took approximately 2 
seconds to compute the k=100 shortest paths between Rome and Copenhagen in the TransTools road network for 
passenger cars (Rich et al., 2009). This has roughly the same size as the Danish National Transport Model 
network, and the calculation time is about 100,000 times longer than the time required to compute the single 
shortest path between the same OD-pairs. Consequently, we did not manage to reach sufficiently low 
computation time levels to facilitate implementation in the iterative RSUET(max, Ω) algorithm, and believe that 
there is a need for further research to make the RSUET(max, Ω) operational for large-scale cases. 
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The implementation facilitated the use of the Method of Successive Weighted Averages for the 
step-size strategy (MSWA, Liu et al., 2009). While being pre-defined, the MSWA allows giving 
more weight to auxiliary flow patterns found in later iterations, defining the step-size γn at 
iteration n as:  

𝛾𝛾𝑛𝑛 = 𝑛𝑛𝑑𝑑

1𝑑𝑑+2𝑑𝑑+...+𝑛𝑛𝑑𝑑
                                                  (10)  

where d≥0 is a real number.  

The tests of the RSUET(min, Ω) all utilise the threshold condition Ω�{𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱): 𝑠𝑠 ∈ 𝑅𝑅�𝑚𝑚}; 𝛓𝛓𝑚𝑚� =
Ω�{𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱): 𝑠𝑠 ∈ 𝑅𝑅�𝑚𝑚}; 𝜏𝜏𝑚𝑚� = 𝜏𝜏𝑚𝑚 ∙ min {𝑐𝑐𝑚𝑚𝑚𝑚: 𝑠𝑠 ∈ 𝑅𝑅�𝑚𝑚} for each m=1, 2,..., M. The implementation steps 
were outlined in Watling et al. (2016): (i) paths could only be removed from iteration 15 onwards; 
(ii) at most one violating path could be removed from the choice set for each OD-pair in each 
iteration; (iii) flows on violating paths were redistributed among the remaining paths according 
to the flow distribution on these. This setup is referred to as the RSUET(min, τ∙min) in the 
remainder of the paper. 

3.2 Evaluation criteria 
The MNL and PSL RSUET(min, τ∙min) solution algorithms have been evaluated in various ways. 
Firstly, convergence was evaluated by using the two-part convergence measure proposed in 
Rasmussen et al. (2015a), consisting of a first part measuring the convergence to satisfy the 
underlying choice model among the used routes and a second part measuring the convergence to 
fulfil the criteria on unused routes: 

𝑅𝑅𝑅𝑅𝑅𝑅.𝑔𝑔𝑎𝑎𝑔𝑔𝑛𝑛𝑈𝑈𝑚𝑚𝑈𝑈𝑈𝑈 =
∑ ∑ 𝑥𝑥𝑚𝑚𝑚𝑚,𝑛𝑛∙�𝑥𝑥𝑚𝑚𝑚𝑚,𝑛𝑛∙exp�𝜃𝜃∙𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱𝑛𝑛)�−𝑐𝑐�̃�𝑚,min(𝐱𝐱𝑛𝑛)�𝑚𝑚∈𝑅𝑅�𝑚𝑚
𝑀𝑀
𝑚𝑚=1

∑ ∑ 𝑥𝑥𝑚𝑚𝑚𝑚,𝑛𝑛∙𝑥𝑥𝑚𝑚𝑚𝑚,𝑛𝑛∙exp �𝜃𝜃∙𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱𝑛𝑛)�𝑚𝑚∈𝑅𝑅�𝑚𝑚
𝑀𝑀
𝑚𝑚=1

                    (11) 

𝑅𝑅𝑅𝑅𝑅𝑅.𝑔𝑔𝑎𝑎𝑔𝑔𝑛𝑛𝑈𝑈𝑛𝑛𝑈𝑈𝑚𝑚𝑈𝑈𝑈𝑈 =
∑ 𝑈𝑈𝑚𝑚∙�min∀𝑚𝑚∈𝑅𝑅𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚>0�𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱𝑛𝑛)�−min∀𝑚𝑚∈𝑅𝑅𝑚𝑚�𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱𝑛𝑛)��𝑀𝑀
𝑚𝑚=1

∑ 𝑈𝑈𝑚𝑚∙min∀𝑚𝑚∈𝑅𝑅𝑚𝑚,𝑥𝑥𝑚𝑚𝑚𝑚>0�𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱𝑛𝑛)�𝑀𝑀
𝑚𝑚=1

                   (12) 

where �̃�𝑐𝑚𝑚,min(𝐱𝐱𝑛𝑛) = min∀𝑚𝑚∈𝑅𝑅�𝑚𝑚�𝑥𝑥𝑚𝑚𝑚𝑚,𝑛𝑛 ∙ exp(𝜃𝜃 ∙ 𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱𝑛𝑛))�. 

It is important to note that the two gap-measures proposed above have been developed solely for 
closed-form logit-type choice models in the RSUE and RSUET. They can thus not be used to 
evaluate convergence of solution algorithms of a link-based multinomial probit (MNP) SUE or a 
mixed MNP SUE. There is not an equivalent consistent measure available for such algorithms, and 
most applications evaluate the convergence by using ‘stability’ measures that do not evaluate the 
convergence to equilibrium directly, but rather the stability in solutions from iteration to 
iteration. One such measure is the link flow stability, weighted by flow and length: 

𝑆𝑆𝑡𝑡𝑎𝑎𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑡𝑡𝑦𝑦𝑛𝑛 =
∑ 𝑓𝑓𝑎𝑎,𝑛𝑛(𝐱𝐱)∙𝑙𝑙𝑎𝑎∙

�𝑓𝑓𝑎𝑎,𝑛𝑛(𝐱𝐱)−𝑓𝑓𝑎𝑎,𝑛𝑛−1(𝐱𝐱)�
𝑓𝑓𝑎𝑎,𝑛𝑛(𝐱𝐱)

𝐴𝐴
𝑎𝑎=1

∑ 𝑓𝑓𝑎𝑎,𝑛𝑛(𝐱𝐱)∙𝑙𝑙𝑎𝑎𝐴𝐴
𝑎𝑎=1

= ∑ 𝑙𝑙𝑎𝑎∙�𝑓𝑓𝑎𝑎,𝑛𝑛(𝐱𝐱)−𝑓𝑓𝑎𝑎,𝑛𝑛−1(𝐱𝐱)�𝐴𝐴
𝑎𝑎=1

∑ 𝑓𝑓𝑎𝑎,𝑛𝑛(𝐱𝐱)∙𝑙𝑙𝑎𝑎𝐴𝐴
𝑎𝑎=1

                    (13) 

Moreover, it is also important to evaluate whether the different model setups generate route 
choice sets of reasonable sizes containing relevant routes and leaving out non-sensible routes. 
This evaluation can be performed by computing the overlap between any observed route r∈Robs 
and any corresponding generated route 𝑠𝑠 ∈ 𝑅𝑅� as follows (Ramming, 2002): 

              𝑂𝑂𝑚𝑚𝑚𝑚 = 𝐿𝐿𝑚𝑚𝑟𝑟
𝐿𝐿𝑚𝑚

= ∑ 𝛿𝛿𝑎𝑎𝑚𝑚∙𝛿𝛿𝑎𝑎𝑟𝑟∙𝑙𝑙𝑎𝑎𝐴𝐴
𝑎𝑎=1
∑ 𝛿𝛿𝑎𝑎𝑚𝑚∙𝑙𝑙𝑎𝑎𝐴𝐴
𝑎𝑎=1

 (14) 

where Lrs is the sum of length of overlapping elements between the observed path r and the 
generated path s. The overlap measure (14) can be computed for each generated path s for 
observation r, and let 𝑂𝑂max {𝑚𝑚} denote the highest overlap among the paths generated for 
observation r. Then the coverage using an overlap-threshold λ (e.g. 80%) can be computed as 
(Ramming, 2002): 
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                  𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆) =
∑ 𝐼𝐼�𝑂𝑂max {𝑚𝑚}≥𝜆𝜆�𝑚𝑚∈𝑅𝑅𝑜𝑜𝑜𝑜𝑟𝑟

|𝑅𝑅𝑜𝑜𝑜𝑜𝑟𝑟|  (15) 

where I(∙) is an indicator equal to 1 when the criteria is fulfilled and zero otherwise.  

Combining the development in the choice set size and coverage, an efficient algorithm should 
generate a few routes inducing a high coverage level within the first few iterations. The size of 
the choice sets should then stabilise, indicating that all relevant routes have been generated. 
Bekhor and Prato (2009) sought to combine these two components by proposing an efficiency 
index measure accounting for both behavioural consistency (coverage) and computational 
efficiency (choice set size). The measure thus supplements the two-part analysis above, and the 
efficiency index (EI) of an algorithm can be computed as: 

  𝐸𝐸𝐸𝐸 = 1
|𝑅𝑅𝑜𝑜𝑜𝑜𝑟𝑟| ∙ ∑ ��𝐸𝐸�𝑂𝑂max{𝑚𝑚} ≥ 𝜆𝜆�+ �1 − 𝑁𝑁�𝑚𝑚−𝑅𝑅𝑚𝑚𝑟𝑟𝑟𝑟,𝑚𝑚

𝑁𝑁�𝑚𝑚
�� 2� � = 1

2
∙ 𝐶𝐶𝐶𝐶𝐶𝐶(𝜆𝜆) + 1

2∙|𝑅𝑅𝑜𝑜𝑜𝑜𝑟𝑟| ∙ ∑
𝑅𝑅𝑚𝑚𝑟𝑟𝑟𝑟,𝑚𝑚
𝑁𝑁�𝑚𝑚𝑚𝑚∈𝑅𝑅𝑜𝑜𝑜𝑜𝑟𝑟𝑚𝑚∈𝑅𝑅𝑜𝑜𝑜𝑜𝑟𝑟  

 (16) 

where 𝑅𝑅𝑚𝑚𝑈𝑈𝑙𝑙,𝑚𝑚 is the number of relevant routes of observation r and 𝑁𝑁�𝑚𝑚 is the number of used routes 
for the OD-pair corresponding to observation r. The number of relevant routes is difficult to 
specify in real-life large-scale networks, but this study used 𝑅𝑅𝑚𝑚𝑈𝑈𝑙𝑙,𝑚𝑚=2 for all observations as this 
was also used in Bekhor and Prato (2009). Additionally, counts of observed flows on links in the 
case-study area could be used to analyse the realism of the link flow distribution generated by 
the different algorithm variants.  

Finally, the computational burden of the algorithms should also be evaluated. Other studies have 
found that the computational efforts required per iteration may vary greatly across different 
algorithm specifications and choice models (e.g., Rasmussen et al., 2015a). It is therefore 
important to not only evaluate the convergence as a function of the number of iterations, but also 
consider the computational burden per iteration when evaluating the performance of an 
algorithm. Therefore, the evolvement of the computation time per iteration across the algorithm 
variants and reported convergence etc. was also evaluated as a function of computation time 
rather than iteration number. 

3.3 Specification of choice function and parameters 
The model was implemented as a multi-class model that allows distinguishing between different 
trip purposes and vehicle classes (categories). The utility (cost) function considered several 
variables, and the cost of alternative r on OD movement m was specified as: 

𝑐𝑐𝑚𝑚𝑚𝑚(𝐱𝐱) = 𝛽𝛽𝐹𝐹𝑚𝑚𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇,𝑚𝑚 ∙ 𝑡𝑡𝐹𝐹𝑚𝑚𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇,𝑚𝑚𝑚𝑚(𝐱𝐱) + 𝛽𝛽𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑇𝑇𝑇𝑇,𝑚𝑚 ∙ 𝑡𝑡𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑇𝑇𝑇𝑇,𝑚𝑚𝑚𝑚(𝐱𝐱) + 𝛽𝛽𝑙𝑙,𝑚𝑚 ∙ 𝑅𝑅𝑚𝑚𝑚𝑚 + 𝜀𝜀𝑚𝑚𝑚𝑚                  (17) 

where 𝛽𝛽𝐹𝐹𝑚𝑚𝑈𝑈𝑈𝑈𝑇𝑇𝑇𝑇,𝑚𝑚, 𝛽𝛽𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑇𝑇𝑇𝑇,𝑚𝑚 and 𝛽𝛽𝑙𝑙,𝑚𝑚 are the respective parameters associated with the free-flow 
travel time, congestion travel time and driving distance for the category associated with OD 
movement m. The distributed error term 𝜀𝜀𝑚𝑚𝑚𝑚 expresses unobserved components and perception 
errors. The time-variables are measured in minutes, whereas all variables associated with length 
are measured in kilometres. 

For the link-based MNP SUE and mixed MNP SUE, the error-term and (relevant only for the 
mixed MNP SUE) parameters associated to travel time were simulated from the gamma and the 
log-normal distribution, respectively. The parameters were simulated at the OD-level to account 
for taste heterogeneity across individuals, whereas the error-term was simulated at the link level 
per OD-pair. The mean of the error-term was zero, and the variance was specified as proportional 
to the mean cost (using scale parameter βmε) to ensure consistent aggregation from link- to path-
level (see Nielsen and Frederiksen, 2006). 

The choice function consisted of an additional term for the PSL RSUET(min, τ∙min)-application, 
seeking to account for the effect of path overlapping. The term ( ), lnPS m mrPSβ ⋅  was added to the 
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cost function (17), where ,PS mβ  was a non-positive OD-specific parameter and PSmr was defined 
as proposed by Ben-Akiva and Bierlaire (1999): 

               𝑃𝑃𝑆𝑆𝑚𝑚𝑚𝑚 = ∑ 𝑙𝑙𝑎𝑎
𝐿𝐿𝑚𝑚𝑚𝑚

∙ 1
∑ 𝛿𝛿𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎∈𝑅𝑅�𝑚𝑚

𝑎𝑎∈Γ𝑚𝑚𝑚𝑚   (18) 

where la and Lmr are measures of impedance on link a and on route r on OD movement m, and 
can either be measured as distance or cost (la=ta(f) and Lmr=cmr(x)). Distance was used as a 
measure of impedance in the present application. 

The values of the parameters used in the cost function (17) were transferred directly from the 
multi-class link-based mixed MNP SUE model applied in the Danish National Model. No re-
calibration was done to fit these to each of the RSUET solution algorithms tested, as the issue of 
parameter estimation and how this might be done in a consistent way for the RSUET framework 
is beyond the scope of this paper6.  

Neither the parameters nor the error-terms are simulated in the RSUET(min, τ∙min) application. 
This not only ‘removes’ the need for simulation, but also requires less parameters, as variances do 
not have to be specified. However, there was a need to specify the scale parameter θm, the 
threshold values τm, and the step-size parameter d. The path-size parameter 𝛽𝛽𝑃𝑃𝑃𝑃 also needed to be 
specified when applying the PSL choice model.  

4. Case-study and numerical results 

The present study uses a case-study covering the Danish Zealand Area to evaluate the RSUET 
model framework and demonstrate the applicability of several variants of the solution algorithm. 
A main objective has been to evaluate how large an impact the addition of the threshold 
condition has on the computation time as well as the equilibrium solution for different 
configurations of the model and for different network conditions (congestion levels). Among 
others, the evaluation has used real life observed data to assess the realism of the solutions. 

4.1 Network, demand and observed data 
The case network covers the eastern part of Denmark (primarily Zealand) with approximately 2.5 
million inhabitants. The network consists of 12,451 links corresponding to 18,706 one-directional 
links in the network graph being a geographically limited subset of the network used in the 
Danish National Transport Model. The demand also stems from the Danish National Transport 
Model, and the demand matrices includes a total of 3.2 million daily trips categorised into 19 
different user classes and three vehicle types (car, van and lorry) with approximately 20 million 
OD-cells in total (Nielsen & Pedersen, 2016). The network and demand is the same as used in 
Rasmussen et al. (2015), which verified that levels and the locations of congestion are realistic. 

A total of 16,618 GPS traces from car trips within the study area were utilised to perform a 
disaggregate evaluation of the algorithms’ ability to reproduce observed route choices; the origin 
and destination of each trip were added to the network and corresponding trips were appended 
to the demand matrix (with zero demand to not cause additional congestion in the network). The 
GPS data stem from two data-sources: 554 observations were collected in a person-based data 
collection in which travellers carried the GPS unit with them during all their travels (across 
modes of transport, see Rasmussen et al., 2015b). The remaining 16,064 observations were 
collected in a vehicle-based data collection among a sample of employees of the Municipality of 
Copenhagen. While the second source is richer in the number trips, the first also contains 
information on the personal characteristics of the car drivers. 

6 For a discussion on calibration and estimation issues for the RSUE, see Watling et al. (2015). 
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4.2 Software implementation and configuration 

The solution algorithm outlined in section 2 was implemented into the C#-based Traffic Analyst 
software package (Rapidis, 2015) that also implements solutions to the link-based MNP SUE and 
the mixed MNP SUE models (Nielsen et al., 2002).  

Several variants of the implemented algorithm were tested on different configurations of the 
network demand. It was found that performing 100 iterations was sufficient to induce 
𝑅𝑅𝑅𝑅𝑅𝑅.𝑔𝑔𝑎𝑎𝑔𝑔𝑛𝑛𝑈𝑈𝑚𝑚𝑈𝑈𝑈𝑈 as well as 𝑅𝑅𝑅𝑅𝑅𝑅.𝑔𝑔𝑎𝑎𝑔𝑔𝑛𝑛𝑈𝑈𝑛𝑛𝑈𝑈𝑚𝑚𝑈𝑈𝑈𝑈 to reach a value below 1.3∙10-3 and 1.0∙10-12, respectively, for 
all applications. The analyses have been performed by using both the Path Swap as well as the 
Inner Logit variants for the determination of the auxiliary flow solution in the restricted master 
problem phase of the solution algorithm. Both approaches showed the same overall patterns, 
however the results of the Inner Logit variant are the only one reported because of the faster 
convergence. 

4.3 Threshold and choice set composition 
Routes were only allowed to be removed from a choice set if it contained at least 𝑁𝑁�𝑚𝑚𝑚𝑚𝑛𝑛=2 routes. 
Subsequently, it was verified that this did not give rise to unreasonably large fluctuations in 
flows when removing a route for any OD-pair. In order for the flows to stabilise in the initial 
iterations before removing any routes, routes were only allowed to be removed from iteration 
Kmin=15 onwards. 

Determination of threshold from revealed choices 
The threshold specifies the maximum route cost relative to the cheapest used path. Its value was 
specified by analysing the choice of non-optimal paths in real-life observed route choices and on 
the basis of a comparison between costs on observed paths and costs on the corresponding 
minimum cost path. Figure 1 illustrates the cumulative share of observations as a function of the 
ratio between the cost on the observed path (path obtained from GPS data) and the cost on the 
minimum cost path between the corresponding locations. The observed paths were constituted 
by the 16,618 routes obtained from the GPS data. For each GPS trip, the cheapest path was found 
by performing a shortest-path search in the congested network between the origin and 
destination of the corresponding GPS trip. It can be seen, for example, that 71% of the observed 
paths were less than 5% longer than the corresponding optimal path.  

 
Figure 1. Cumulative share of observations as a function of the ratio between the cost on the observed path 
r and the cost on the corresponding minimum cost path cr, min (x) 
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The distribution of the ‘non-optimality’ of the observed routes is assumed to be representative of 
how (relatively) expensive paths have to be in order for the travellers not to consider and use 
them. The threshold was specified by using a 95% interval induces a choice of τ=1.2 (i.e. the 
relative cost on 95% of all observed paths is within this threshold), which has then been used in 
the remainder of the paper. 

Example of route exclusion, threshold condition 
1,989 unique routes were removed by the threshold condition when using τ=1.2, d=4 and the 
MNL choice model with θ=0.2. Note, however, that the same unique path may have been 
generated and subsequently excluded several times during the iterations of the solution 
algorithm. This section presents an example of an OD movement (commercial business trip 
undertaken in van), for which a previously generated route was removed by the threshold 
condition at equilibrium. 

Figure 2 illustrates the four unique routes generated for the same OD-pair, where each of these 
has been the most attractive at some iteration of the solution algorithm. Table 1 reports the 
corresponding equilibrium cost components, generalised cost and route flow share on each of 
these. All four routes were however not included in the equilibrated choice set, as flow was only 
distributed among paths 1, 2 and 4. Path 3 is considerably more expensive than the others (32%), 
and the threshold condition therefore removed it from the final choice set. 

 
Figure 2. Example of excluded route: 4 paths generated, but 3 utilised at convergence, MNL RSUET(min, 
1.2∙min), Zealand application 
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Table 1. Specification of cost components, generalised costs, relative costs as well as flows at 
equilibrium. MNL RSUET(min, 1.2∙min), Zealand application. l1r, tFreeTT, 1r and tCongTT, 1r refer to 
the length, free-flow travel time and congested travel time of route r, respectively. c1r(x) and 
c1,min(x) refer to the cost on route r and the minimum cost across the used routes, respectively 

Path Category ID l1r [km] tFreeTT, 1r(x) [min] tCongTT, 1r(x) [min] c1r(x) c1r(x)/c1,min(x) Flow [%] 
1 6 13.80 12.85 16.39 81.40 1.01 32.23 
2 6 13.61 13.42 15.40 81.82 1.02 29.64 
3 6 18.02 17.09 20.24 106.07 1.32 - 
4 6 14.43 13.64 16.44 80.56 1.00 38.13 

4.4 Step-size strategy 
The step-size parameter d specifies the ‘trust’ in the auxiliary solution and may thus influence the 
convergence speed (Rasmussen et al., 2015a). Posing a higher trust in the auxiliary solution may 
also lead to higher fluctuations in the path-flows between iterations, which may possibly cause 
additional/other paths to be attractive. The choice of d may thus influence not only the 
convergence speed, but also the solution in terms of the composition of the choice sets. The 
converged solutions should however all be RSUET solutions.  

If the model parameters τ and θ are kept constant (τ=1.2, θ=0.2), the convergence measures for the 
flow distribution (11) and the choice set composition (12) can be directly compared across d-
values for the RSUET and RSUE. Figure 3 and Figure 4 illustrate the convergence pattern of the 
MNL RSUET(min, 1.2∙min) for different step-size strategies.  

 
Figure 3. Relative gap measure (12) for convergence of choice set composition as function of computation 
time, Zealand application. MNL RSUET(min, 1.2∙min) for various values of step-size parameter d as well 
as the MNL RSUE(min) with d=4. All with θ=0.2. Notice the log-scale on the vertical axis 
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Figure 4. Relative gap measure (11) for convergence of flow distribution among routes in the choice set as a 
function of computation time, Zealand application. MNL RSUET(min, 1.2∙min) for various values of step-
size parameter d as well as the MNL RSUET(min) with d=4. All with θ=0.2. Notice the log-scale on the 
vertical axis 
 

Initially, some fluctuations can be seen in both convergence measures. This is due to the 
introduction of new paths to the choice set – for 𝑅𝑅𝑅𝑅𝑅𝑅.𝑔𝑔𝑎𝑎𝑔𝑔𝑛𝑛𝑈𝑈𝑛𝑛𝑈𝑈𝑚𝑚𝑈𝑈𝑈𝑈 the increases arise because some 
currently unused paths become attractive to introduce into the choice set, and for 𝑅𝑅𝑅𝑅𝑅𝑅.𝑔𝑔𝑎𝑎𝑔𝑔𝑛𝑛𝑈𝑈𝑚𝑚𝑈𝑈𝑈𝑈 the 
increases arise due to the need to redistribute flow towards equilibrium in a ‘new’ choice set 
consisting of also the path recently introduced. The choice set composition converged fast for all 
step-sizes, however with d=0 (MSA) being somewhat slower. Also the distribution of the flow 
among the paths in the choice set converged to a stable low level of approximately 1.0-3.5∙10-7, 
except for low values of d (d=0 and d=2) which were far from reaching this level at termination. 
Using d=4 caused the fastest convergence, as the final choice sets were generated within less than 
30 minutes and the flow distribution converged within 35-40 minutes of calculation time. 
Consequently, the analyses presented in the remainder of the paper have been done using d=4. 

The convergence pattern of the RSUET(min, 1.2∙min) was identical to that of the corresponding 
RSUE(min) application during the first 15 iterations and seemed reasonable since Kmin=15. From 
iteration 15 onwards the convergence pattern was also very similar, converging to almost 
identical values of the relative gap measures. This is because only a very small share of the routes 
was removed by the threshold condition (e.g. 1,989 routes across 1,621,201 OD-pairs in the case of 
d=4). Consequently, Figure 3 and Figure 4 do not report the results for other applications of the 
RSUE(min) than the one using d=4. 

The relative gap associated with the distribution of flow among paths did not seem to converge 
to zero, but rather stabilised at approximately 1-3.5∙10-7. The stabilization to a very small non-zero 
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value is not an indication of the algorithm not converging, but rather an issue arising due to the 
limitations of the computer used7. 

4.5 Scale parameter 
The scale parameter reflects the dispersion in the perception of costs among drivers: a low value 
reflects large variation in the perception error of drivers (with complete ‘random’ allocation in 
the extreme case of θ0), and a high value reflects small variation in the perception error of 
drivers (with the limit of DUE when θ∞). Several different values of the scale parameter were 
tested, each application using the same value across all OD movements, i.e. θm=θ for m=1,2,…,M. 
The relative gap measures were used to verify that all tests converged within reasonable 
computation time. The convergence measures can however not be compared across applications, 
as the scale parameter influences the relative gap measure. Therefore, a series of alternative 
analyses was performed to evaluate the performance of the solution algorithm for different 
values of the scale parameter. This also facilitated the comparison to the link-based MNP SUE 
and mixed MNP SUE solution methods.  

1,169 observed daily link counts were available, and these were distributed throughout the case-
study area. Figure 5 reports the Root Mean Square Error (RMSE) between the modelled and 
observed link counts (normalised by range of observed flows). In general, very high 
correspondence was observed (all normalised RMSE<0.052), demonstrating that the 
RSUE/RSUET applications are successful in distributing the flow in a way that matches the 
observed counts. Noting the tight range of the vertical axis it can be seen that only minor 
differences are seen between corresponding RSUE/RSUET applications, and the best normalised 
RMSE was obtained when using θ=0.2. It is prevailing that both MNP SUE applications 
performed worse than all RSUE/RSUET applications in reproducing link counts, even though 
prior studies have invested large efforts into calibrating the MNP SUE models to the case study.  

 
Figure 5. Correspondence between modelled and observed daily link flows for various RSUE and RSUET 
configurations as well as the MNP SUE and mixed MNP SUE. Iteration 100, Zealand application 
 

The analysis above showed good performance of the RSUE/RSUET on an aggregate level, by 
showing that these distribute flow in a way that reproduces link counts accurately. Moving to a 
disaggregate level, the models should also be able to reproduce rational real-life route choices. 

7 The relative gap is computed using exponential functions of the costs, which causes very small deviations to be 
amplified into large numbers. We performed a disaggregate analysis of the changes in flow and costs on routes 
between iterations when d=4, which showed that the average/maximum change in absolute cost and flow on the 
paths across all OD movements is a very low 2.9∙10-12/2.3∙10-10 for cost and 6.2∙10-12/1.0∙10-9 for flow. These 
numbers are at the limit of the accuracy of computation of real numbers in the C# software used, and the non-
zero gap measure can be seen as a consequence hereof. 
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Their ability to do so was evaluated by comparing with 16,618 observed route choices collected 
via GPS, under the hypothesis that the observed routes should be represented in the 
corresponding choice sets generated. The coverage measure captures this, and this constitutes an 
important measure to use in the calibration of especially the scale parameter, as the scale 
parameter represents the heterogeneity in route choice. Figure 6 reports the coverage measure as 
a function of the overlap threshold λ, and shows a decreasing coverage with increasing λ, as 
expected. Also, it can be seen that the ‘relative’ performance of the different θ values was 
somewhat the same across λ values. 

 
Figure 6. Coverage as function of overlap threshold λ for various scale parameters in MNL RSUET(min, 
1.2∙min), iteration 100. Zealand application 
 

Table 2 reports various characteristics of the solution generated, including the coverage obtained 
at iterations 25 and 100 when using a 80% overlap threshold. In general, high coverage levels 
were produced for all θ. It can be seen that adding the threshold on the relative costs does not 
seem to reduce the coverage for any of the chosen θ. This indicates that the paths removed by the 
threshold condition are in general non-relevant. Furthermore, the coverage seems to increase 
with increasing scale parameter. This increase is probably related to the larger fluctuations in 
flow in the initial iterations caused by the larger scale parameter; more weight is put on 
differences in costs (closer to DUE), leading to more ‘extreme’ auxiliary flows and thereby also 
larger fluctuations. These fluctuations cause more routes to be generated (seen through larger 
average choice set sizes) but also more routes to violate the threshold at equilibrium (and thus be 
removed, see Table 2). The number of paths removed was however at a very low level, 
considering that the network contains 1.6 million OD-pairs. 
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Table 2. Coverage, choice set size, efficiency index and number of routes removed (when 
relevant) for various scale parameters in MNL RSUET(min, 1.2∙min) and the MNL RSUE(min). 
The relevant measures are also reported for the MNP SUE and the mixed MNP SUE. Zealand 
application 

  
Coverage, λ=0.8 Choice set size 

Efficiency index Excluded paths 
  

Ite 25 Ite 100 Min. Avg. Max. 

θ=0.05 
RSUE 0.8431 0.8431 1 2.364 10 0.9859 - 
RSUET 0.8431 0.8431 1 2.367 10 0.9859 1165 

θ=0.1 
RSUE 0.8452 0.8452 1 2.484 10 0.9733 - 
RSUET 0.8452 0.8452 1 2.484 10 0.9734 1180 

θ=0.2 
RSUE 0.8487 0.8487 1 2.696 13 0.9541 - 
RSUET 0.8487 0.8487 1 2.695 12 0.9543 1989 

θ=0.5 
RSUE 0.8535 0.8535 1 2.968 14 0.9335 - 
RSUET 0.8535 0.8535 1 2.967 13 0.9338 3784 

θ=1.0 
RSUE 0.8548 0.8548 1 3.059 13 0.9162 - 
RSUET 0.8548 0.8548 1 3.057 13 0.9165 4640 

MNP SUE 0.8959 0.8959 1 14.894 100 0.6540 - 
mixed MNP SUE 0.8959  0.8959 1 25.365 100 0.5460 - 
 

 
The MNP SUE and mixed MNP SUE produced coverage levels which were considerably better 
than those of the RSUE and RSUET applications. This was however at the cost of generating large 
choice sets, which continued to grow without any clear tendency towards stabilisation. An 
average size of 37.0 routes was seen at iteration 200 for the mixed MNP SUE. The RSUE and 
RSUET on the other hand produced choice sets having a very computationally reasonable size, 
and which are equilibrated. The equilibrated choice sets were generated within a few iterations, 
which is also indicated by non-changing coverage from iteration 25 to iteration 100 (Table 2). The 
flow distribution also converged within a few iterations, highlighting that there is no need to 
perform many iterations to obtain an equilibrated RSUE/RSUET solution. 

An efficient solution algorithm should produce a high coverage level while generating choice sets 
which are computationally attractive by containing only (a few) relevant routes. The efficiency 
index (16) captures this, and the RSUE/RSUET solution algorithms reached efficiency indexes 
ranging from 91.7% to 98.6%. The index for the RSUET is slightly better than the index generated 
by the corresponding RSUE formulations. This is due to the (slightly) smaller choice sets. The 
RSUE/RSUET solution algorithms generated significantly higher efficiency indexes than the 
MNP SUE and mixed MNP SUE. This highlights the weakness of the MNP SUE approaches, 
namely that they generated their high coverage levels at the cost of generating large choice sets. 

The convergence pattern cannot be directly compared across θ-values, as mentioned earlier. In 
order to facilitate comparisons, the measures reported in Table 2 were supplemented by analyses 
of the link flow stability and the ability to reproduce observed link counts. This also facilitated 
the comparison to the MNP SUE and the mixed MNP SUE. It is however important to note that 
stability in link flows does not necessarily induce that an equilibrated solution has been found.  

Figure 7 illustrates a very fast link flow stabilisation across iterations for all RSUE/RSUET 
applications. The effect of adding the threshold can clearly be seen, especially when θ≤0.2, 
through a destabilisation of link flows at iteration 15 (~20min of computation time). Using θ=0.1 
or θ=0.2 induces the best link flow stability. The stability of the MNP SUE and the mixed MNP 
SUE was considerably lower, indicating that convergence was not yet reached at iteration 100. 
This was also suggested by continuously increasing choice sets and is furthermore supported by 
a maximum relative deviation in link flow between iterations 99 and 100 of a very high 18.8%. 
This value was considerably lower for all the RSUET(min, 1.2∙min) applications, e.g. 2.14∙10-5 % 
when θ=0.2.  
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Figure 7. Link flow stability across iterations, Zealand application. Notice the log-scale  

Summarising, all tested values of θ produced good results for all evaluation criteria used. The 
best link count correspondence was however seen when using θ=0.2, and the analyses in the 
remainder of the paper have adopted this value.  

4.6 Path overlap correction 
The MNL choice model fails to account for path overlapping. Accordingly, this study applied 
also the PSL choice model to investigate the impact of accounting for this. This involved the 
specification of the parameter associated to the path-size correction factor. The identification of 
the optimal parameter value is not a one-dimensional problem, as e.g. the choice of a path-size 
parameter may influence the optimal value of θ and vice versa. The study did not seek to solve 
the resulting multidimensional optimisation problem. Rather, the PSL RSUET(min, 1.2∙min) was 
applied for both d=0 and d=4, using θ=0.2 and 𝛽𝛽𝑃𝑃𝑃𝑃,𝑚𝑚 = 𝛽𝛽𝑃𝑃𝑃𝑃 = −3. This parameter setting is 
assumed to be reasonable; section 4.5 found good performance when using θ=0.2 in the 
corresponding MNL RSUET, and Rasmussen et al. (2015a) tested different values of 𝛽𝛽𝑃𝑃𝑃𝑃 for the 
PSL RSUE(min) on the same network (also using θ=0.2, but with d=2) and found best 
performance when 𝛽𝛽𝑃𝑃𝑃𝑃 = −3.   

Equilibrated solutions were found, with convergence patterns almost identical to the pattern of 
the corresponding MNL application (and therefore not reported here). The same choice sets were 
generated across the choice models for almost all OD-pairs. This is supported by a difference in 
average choice set size of 0.001 and 0.002 routes when comparing corresponding applications 
across choice models for d=0 and d=4, respectively. The high similarity of choice sets seems 
reasonable, as the same path generation technique was used in the solution algorithm for the two 
choice models (deterministic shortest path search). The choice set composition however varied in 
a few cases. This was a consequence of the different flow distribution across the two choice 

1,0E-10

1,0E-09

1,0E-08

1,0E-07

1,0E-06

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15 02:30 02:45 03:00

R
el

at
iv

e 
lin

k 
flo

w
 ch

an
ge

, w
ei

gh
ed

 a
ve

ra
ge

 

Computation time [hh:mm] 

Link flow stability 

MNL RSUET(min, 1.2∙min), θ=0.05 MNL RSUET(min, 1.2∙min), θ=0.1 MNL RSUET(min, 1.2∙min), θ=0.2 

MNL RSUET(min, 1.2∙min), θ=0.5 MNL RSUET(min, 1.2∙min), θ=1.0 MNP SUE

MNL RSUE(min), θ=0.05 MNL RSUE(min), θ=0.1 MNL RSUE(min), θ=0.2 

MNL RSUE(min), θ=0.5 MNL RSUE(min), θ=1.0 mixed MNP SUE



EJTIR 17(1), 2017, pp.1-24  17 
Rasmussen, Nielsen, Watling and Prato 
The Restricted Stochastic User Equilibrium with Threshold model: Large-scale application and parameter testing 

 
models (due to the correction for path overlapping), which (in some cases) caused other routes to 
be attractive.  

The similarity of the choice sets also led to almost identical coverage levels. Accounting for path 
overlapping does not improve coverage, but allows the distribution of flow among routes in the 
choice sets to be more behaviourally realistic. 

Figure 8 reports the computation time per iteration of the application of the MNL and PSL 
RSUET(min, 1.2∙min) solution algorithms.  The computation time increased during the first 
iterations of the MNL RSUET(min, 1.2∙min) applications due to the path-based approach: the 
choice sets were generated within the first iterations, and storing an increasing number of paths 
in-memory and (re)distributing flow between these requires increasing memory and 
computational effort. The final choice sets were, generally, generated within the first 5-10 
iterations when d=0 and d=4, and computation times per iteration stabilised from this point on.  

The computation times in the initial iterations of the MNL and PSL applications were different: 
the computation time of the MNL was strictly increasing until a certain level, whereas the 
computation time of the PSL increased rapidly in the initial iterations and then reduced to the 
level of the corresponding MNL application. This is directly linked to the computation of the 
path-size correction factors. Since these were based on overlap in length, they only need to be 
recomputed when a route is added to or removed from the choice set. The choice sets were 
formed in the initial iterations, and the path-size correction term thus had to be computed for 
many paths in these (the choice set changed for many OD movements and the correction terms 
had to be recomputed for all routes in each of these choice sets). This is computationally 
expensive (especially as the number of routes in the choice sets grows) and explains the steep 
increase in computation time in the initial iterations. After a few iterations (iterations 4 and 6 for 
d=0 and d=4, respectively) new routes were generated for fewer OD movements, and fewer path-
size correction terms thus had to be (re)computed. This reduced the computational effort. After 
the final choice sets were (more or less) generated at iteration 11, no further recalculation of path-
size correction terms was needed. Therefore, the computation time reduced to that of the 
corresponding MNL formulation.  

 
Figure 8.  Computation time per iterations for the MNL as well as PSL RSUET(min, 1.2∙min) with d=0 
and d=4. Zealand application 
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4.7 Stability to congestion level 

The analyses above showed that the tested variants of the solution algorithm provide fast 
convergence to a stable solution which fulfils the RSUET(min, 1.2∙min) conditions. However, good 
performance in the Zealand application does not guarantee good performance when applied to 
other case-studies. One of the typical major challenges for solution algorithms is to also provide 
nice convergence patterns in high congestion real-life cases. The tested variant of the proposed 
solution algorithm with d=4 was applied to a variety of scaled versions of the original demand 
matrices (the scale-factors tested are 1.25, 1.5, 1.75 and 2.0). This was done to test the robustness 
towards the general congestion level in the network. Figure 9 illustrates the volume-capacity 
ratio in the network links for the different demand levels. 

 
Figure 9. Network congestion at various demand levels. Cumulative share of links as function of volume to 
capacity ratio, Zealand application 

Convergence 
Figure 10 and Figure 11 report the convergence measures for varying demand when performing 
100 iterations. There was a clear tendency for slower convergence as the demand increased, in 
terms of both the number of iterations needed as well as the calculation time. However, a nice 
convergence pattern was seen for all the tested levels of demand. The travel times in the network 
fluctuated more in the initial iterations due to the larger demand which caused the choice set 
composition to require more iterations to converge and larger choice sets to be generated. The 
higher fluctuations and travel time differences in the network also caused the distribution of flow 
among paths to require more iterations to converge for increasing demand levels, but even the 
highest congestion case (demand scale-factor 2.0) converged nicely once the final choice sets were 
generated. Longer calculation time to converge for increasing demand level is however not only 
due to the need for more iterations. The calculation time per iteration also increased, due to the 
larger choice sets and hence more paths to store in memory and assign traffic between. 
Consequently, the average calculation time per iteration was approximately 90/105/130/145/180 
seconds for scale parameters 1.0/1.25/1.5/1.75/2.0, respectively. 
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Figure 10. Development of relative gap (12) measuring convergence of the choice sets for various values of 
the factor scaling the demand, MNL RSUET(min, 1.2∙min) with d=4, Zealand application 
 

 
Figure 11. Development of relative gap (11) measuring convergence of the distribution of flow between 
paths for various ‘scaled’ demands, MNL RSUET(min, 1.2∙min) with d=4, Zealand application 
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Choice set size, route exclusion and cost distribution 
The analysis above showed that more iterations were required for the choice set composition to 
converge when increasing the demand. This indicates that more routes – larger choice sets – were 
generated as the demand increased, as verified by Figure 12. The average choice set size grew 
larger and required more iterations to stabilise when increasing the demand, but after iteration 
13-30 (depending on demand level) no major changes of the average and maximum choice set 
size occurred. Furthermore, it can be seen that the choice sets had a very reasonable and 
computationally attractive size across all demand levels. For some movements only one route 
was generated, even for a very high demand (the minimum choice set size was equal to 1 for all 
demand levels, and is thus not reported in Figure 12). This also seems justifiable, since for some 
movements, such as e.g. neighbouring zones in rural areas, only one alternative may be 
reasonable, even at a high congestion level. Even doubling the demand does not cause congestion 
on some (primarily rural) roads, as suggested by Figure 9. 
 

 
Figure 12.  Choice set characteristics for various values of the factor scaling the demand, MNL 
RSUET(min, 1.2∙min) with d=4, Zealand application 
 

Only a few routes violated the threshold condition by being more than 20% more costly than the 
cheapest path in the ‘unscaled’ Zealand application. Step 5 of the solution algorithm did thus not 
remove many routes8, at termination only 1,989 unique routes had been generated and removed 
again from the choice sets9. The corresponding numbers were 10,744, 34,519, 85,478 and 160,192 
routes when the demand scale factor was 1.25, 1.5, 1.75 and 2.0, respectively. The threshold 
condition thus removed more paths as the network congestion increased, and one route was, on 
average, removed for each tenth OD movement when using a scale factor of 2.0. At this demand 

8 Note on implementation: Paths to be removed are not discarded/flushed from memory but rather flagged as 
‘inactive’. This is done because these might again become attractive in a later iteration, and ‘reactivating’ an inactive 
path requires far less computational effort than assigning a new route to memory. 
9 The same unique route may however have been introduced and subsequently removed again several times as the 
algorithm progressed. 
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level the maximum number of unique paths removed for a single OD movement was 4 (this OD 
movement had 9 used paths in the resulting choice set at equilibrium). The increase in the 
number of paths removed for increasing demand seems reasonable, as link travel times fluctuate 
much more and thereby the route costs more ‘easily’ violate the threshold condition. The larger 
fluctuations in link travel times occur due to (i) the larger demand on OD-level, causing more 
flow to be reassigned in each iteration, and (ii) higher sensitivity to flow changes in the travel 
time functions when the general flow level is higher. One would therefore expect a larger 
variation on the relative costs among the routes left in the choice set at equilibrium. This is 
verified by Figure 13, where e.g. 7% of the routes were more than 4% more costly than the 
corresponding cheapest path in the ‘unscaled’ case, whereas it was 27% of the routes in the case 
where the scale-factor was equal to 2.0. 

 
Figure 13. Distribution of relative costs at convergence (iteration 100). Share of routes as a function of 
relative cost to the cheapest route in the corresponding choice set. MNL RSUET(min, 1.2∙min) d=4 for 
varying values of the factor scaling the original demand, Zealand application 

5. Conclusions 

The study tackles the challenge of obtaining equilibrated RUM flow solutions among choice sets 
which do not leave attractive paths unused and contain only attractive paths in large-scale 
problems. Several variants of the RSUET solution algorithm proposed in Watling et al (2016) 
were applied on the large-scale Zealand network and compared to real life observed route choice 
data, link counts and an existing MNP-based SUE model. 

The study found well-behaved and extremely fast convergence patterns to equilibrated solutions 
satisfying the underlying conditions across different scale parameters, step-sizes, and congestion 
levels. Comparisons to observed routes and observed link flows verified that the composition of 
the choice sets and the distribution of flow are very reasonable.  

The effect of adding the threshold was investigated under different conditions. It was found that 
the threshold condition did not cause any of the 16,618 observed paths to be removed. This 
documented that paths violating the threshold were not used of any real car drivers in the 
specific case, which seems to be a strong argument for adding a threshold to SUE models. 
Moreover, the importance of the threshold increased as congestion increased. A comparison to 
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two commonly adopted simulation-based SUE algorithms clearly highlighted the benefits of the 
RSUE/RSUET by showing that the SUE algorithms (i) generated choice sets which continued to 
grow in size without showing signs of stabilisation, and (ii) did not stabilise in link flows nearly 
as fast as the RSUE/RSUET, indicating much slower convergence. 

Numerous different specifications of the threshold can be formulated, but the focus of the present 
study was on a formulation which specifies the threshold as relative to the cost of the least costly 
used route(s). The rationale is that there must be a limit to how large detours travellers find 
reasonable. The RSUET model thereby provides a very behaviourally realistic interpretation of 
the mechanism which distinguishes attractive and non-attractive paths. Many other models do 
not provide such a plausible interpretation, for example models based on random walk with 
loops (e.g., Fosgerau et al., 2013) or simulation-based models, where the draws may induce the 
use of highly unattractive paths (e.g. multinomial Probit as in Sheffi, 1985). The algorithm of Dial 
(1971) does have a behavioural interpretation of the mechanism, namely that only efficient paths 
are used. The approach is however quite different from that of the present paper in that paths are 
not explicitly enumerated and it is only applicable for MNL choice models. Also, efficient paths 
correspond to paths including only links that take the traveller further away from the origin and 
closer to the destination, which induces the risk of excluding some potentially attractive paths 
(e.g., Si et al., 2010). 

If reformulated for dynamic rather than static assignment, the RSUET model framework and 
solution methods fit especially well in combination with disaggregate activity-based models. The 
activity-based models operate at an individual level and, when the utility functions become 
individual-based, this removes the need to account for taste heterogeneity in the assignment 
model and thereby enables the application of the proposed RSUET solution methods. Not only 
this allows a rich and consistent specification of the utility function that can improve significantly 
the behavioural realism, but also the extremely fast convergence of the RSUET solution algorithm 
allows for low computation times in the integrated model framework. An additional benefit is 
the absence of stochasticity in the output of the model as simulation is avoided. While the 
solution algorithm fits particularly well with individual-based approaches, they can also be used 
to approximate mixed logit models and, thereby, represent taste heterogeneity. This can be done 
by generating quantiles of the distribution of the preferences – e.g. of the value-of-time – and then 
consider each of these as separate user classes in the solution algorithm (parameters specified as 
mean value for the corresponding quantile). 

The current paper has thus demonstrated the applicability and behavioural realism of several 
variants of the RSUET model and solution methods in a highly complex network. The algorithm 
managed to reproduce link counts and observed routes and converged extremely fast to an 
equilibrated solution fulfilling the underlying conditions, even in large-scale case-studies and for 
high-demand cases. 
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