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Critical infrastructures vulnerability assessment involves understanding various socio-
technological aspects of modern day infrastructures. While vulnerabilities exist at different scales, 
failures of large-scale installations in infrastructures are significant because they lead towards 
widespread social and economic disruptions. There is growing awareness of the multiple 
potential causes of failure, including those due to dependence upon other infrastructures. This 
paper establishes a framework for national analysis of vulnerability of interdependent 
infrastructures. We present: (i) A mathematical formulation of the vulnerability assessment; (ii) 
Network models for infrastructures that take in account the geographic, physical and operational 
characteristics of connecting nodes and edges; (iii) Interdependency mapping models that 
establish relationships between different subsystems within and across infrastructures; and (iv) 
Methods for implementing failure and disruption calculations. The methodology is demonstrated 
for Great Britain’s railway infrastructure, for which we have built detailed interdependency 
mappings between critical assets and infrastructures that support railway operations. Two key 
vulnerability assessment results, produced to examine failure impacts of such assets on railway 
passenger trip flows, include: (i) Random failure outcomes; and (ii) Flood vulnerability outcomes. 
The results show which critical infrastructure interdependencies potentially have large impacts 
on railway operations, providing a useful analysis tool for further risk and adaptation planning.  

 
Keywords: critical infrastructures, interdependencies, vulnerability assessment, railway networks, transport 
disruptions. 

1. Introduction 

A nation’s critical infrastructures need to be of adequate quality standards to improve the living 
conditions of people and maintain economic growth (HM Treasury, 2013). Infrastructures are 
under continued stress because they are required to function within capacity and design 
limitations, while responding to changing demands and external perturbations. Breakdowns of 
critical infrastructures disrupt essential services, which have serious consequences including 
severe economic damage, grave social disruptions or even large-scale loss of life (Cabinet Office, 
2010; Homeland Security, 2013; ICE, 2009). However, it is not realistic to protect and adapt 
infrastructure networks so that they function in all conditions. For efficient risk management and 
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adaptation planning it is therefore important to assess vulnerabilities of infrastructures so that 
there is informed decision-making regarding risk reduction and control (Cabinet Office, 2010). 

This study addresses the need for a vulnerability assessment framework for infrastructures at the 
national scale. We are interested in assessing large-scale systematic or random external shock 
impacts, which include: (i) natural hazards such as floods, extreme winds, storms, and 
earthquakes; and (ii) man-made hazards such as industrial accidents and malevolent terrorist 
attacks. In recent years large economic losses and fatalities due to big disaster events, such as 
Hurricane Katrina in 2005 ($125 billion loss, 1833 deaths) (EM-DAT, 2014) and the Tōhoku 
earthquake and tsunami in 2011 ($210 billion loss, 15885 deaths) (EM-DAT, 2014), have provided 
evidence that critical infrastructures at the national scale can suffer widespread failures, thereby 
making societies vulnerable. The case study in this paper applies to Great Britain’s infrastructures 
that, like many others, have been prone to large-scale failures due to extreme weather events (Pitt 
2008). In a step towards pre-emptive vulnerability and risk assessment, Great Britain’s National 
Risk Register (NRR) identifies the most likely catastrophes over the next five years that could 
lead to civil emergencies (Cabinet Office, 2013). Responding to the need for better analysis tools 
for critical infrastructure risk assessment (HM Treasury, 2013; Cabinet Office, 2013), our objective 
is to develop and demonstrate a methodology that informs better systems analysis. Though the 
case study here has been developed for Great Britain, the methodology applies to critical 
infrastructure and vulnerability assessment applications elsewhere.      

Infrastructure vulnerability assessment is a well researched topic, mostly understood in the 
context of risk analysis (Haimes, 2006; Aven, 2007) and natural hazard assessment (Adger, 2006). 
In recent years an increasing number of approaches to critical infrastructure vulnerability 
assessment propose vulnerability indices for system protection and safety assessment (Ezell, 
2007; Lewis, 2006). Vulnerability is expressed through suitable vulnerability indices that measure 
the negative consequences of adverse impacts of extreme shock events (floods, storms, 
earthquakes, etc.) (Adger, 2006; Balica et al., 2012) or through targeted or random infrastructure 
component failures (Johansson and Hassel, 2010; Johansson et al., 2011). In several disaster risk 
assessment frameworks that apply to critical infrastructures such vulnerability assessment is part 
of the analysis that leads towards measuring risks in terms of extreme event probabilities and 
magnitudes of negative consequences (Hall et al., 2005; Douglas, 2007).  These vulnerability 
assessment frameworks represent critical infrastructures as complex social-technological systems 
that rely on other critical infrastructures to operate satisfactorily, making them interdependent, 
i.e., establishing connections between infrastructures where the condition of one is influenced by 
the other and vice-versa. Various interdependencies trigger failure propagation mechanisms 
(cascading, escalating and common cause) across systems thereby amplifying disruption impacts 
(Rinaldi et al., 2001; Rinaldi, 2004). With the exception of a few empirical studies (Zimmerman, 
2004), most interdependent infrastructure vulnerability assessment is done using modelling 
approaches such as Leontief input-output based models (Haimes et al., 2005), agent-based 
models (Brown et al., 2004), and network models (Lewis, 2006; 2011), among others (Pederson et 
al., 2006).  

In this study we adopt a networks approach to modelling interdependent critical infrastructures 
and building a vulnerability assessment framework. While it is possible to model infrastructures 
at different scales, we are interested in developing interdependent network representations of 
key critical components and their interactions at local and national-scales. We define a key critical 
component as an asset that has significant capital value and which, if damaged or disrupted, has 
a significant impact on the rest of the infrastructures’ capability to deliver services. As examples, 
key critical components for electricity infrastructures are power generation sites and substations; 
for railways they are stations, tracks and junctions; and for telecommunications they are cable 
networks and data centres. Several studies on critical infrastructure analysis resolve 
infrastructure properties at similar scales (Zio and Sansavini, 2011).  
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Within the context of this study, critical infrastructure vulnerability is defined as the measure of 
the degree of negative consequences suffered due to failures induced by a shock of particular 
magnitude. We suggest a two-dimensional infrastructure vulnerability metric for the degree of 
negative consequences when the network is in a failure state due to the shock. These are in terms 
of: (i) the loss of connectivity in the failure state; and (ii) the resulting amount of flow disruption 
in the failure state. It has been recognised that vulnerability is a multi-dimensional metric 
(Haimes, 2006), and especially in the networks approach both connectivity and flow measures 
should be considered as using only one would be inaccurate (Murray et al., 2008). Our two-
dimensional vulnerability metric can be used for vulnerability assessment of hazard impacts and 
also applies to vulnerability assessment of key critical infrastructure components, thereby 
providing a comprehensive evaluation of system performance.  

While there are several network-based vulnerability measures (Murray et al., 2008) similar to the 
ones suggested here, many of these are limited in their implementation. Since it is 
computationally very expensive to evaluate the negative consequences for the exhaustive set of 
all failure states, several network vulnerability studies suggest considering smaller strategic sets 
of failure scenarios (especially for transport systems (Taylor et al., 2006)). For large scale system 
analysis scenario-specific approaches miss several failure states and also ignore parts of the 
system, and hence are incomplete (Murray et al., 2008). The most widely used approaches to 
network vulnerability assessment are statistical physical-based techniques where the topological 
characteristics of the network are related to known degree distribution network models, which 
are then tested for random failures of the key critical components with high degree distributions 
(Albert et al., 2000; Wilkinson et al., 2012). The drawbacks of such approaches are several 
because: (i) in many cases the infrastructure network topology might not match any known 
degree distribution network models; and (ii) even if it does then vulnerability inferences based 
solely on topology are incomplete because several failure states are missed, parts of the system 
are ignored, and other properties (resource flows) are not considered. In this study our approach 
is to use simulation to generate multiple failure states providing a comprehensive vulnerability 
assessment, covering all perspectives discussed above. Such analysis is consistent with existing 
simulation-based frameworks that suggest vulnerability or risk analysis should be able to 
identify multiple possible failure states and their negative consequences (Johansson and Hassel, 
2010; Johansson et al., 2011; Zio, 2013). 

This study addresses some of the key challenges in large-scale network vulnerability assessment, 
which limit even simulation-based approaches. In doing so several unique contributions in 
methodology and implementation have been made in this study, and these can be summarised as 
follows:  

• We have provided a detailed procedure to build topological interdependent networks 
based on physical, spatial and functional characteristics. While sometimes recognised in 
theory (Lewis, 2006), this does not form a part of most demonstrative network 
approaches. In networks interdependency is usually interpreted in terms of a physical 
edge that connects adjacent nodes, whereas in our approach key critical component 
interdependencies are modelled in terms of the flows of resources across sets of assets, 
which provides a better understanding of relationships between assets beyond physical 
connectivity. The application of these methods on the railway network described here 
provides a useful template for similar studies.        

• The flow disruption-based vulnerability metric proposed in this study quantifies the 
negative consequences of service losses at appropriate spatial scales. For the Great Britain 
railway network we have proposed a model for estimating daily average network 
passenger flows, which is used for service loss estimation. There are very few network 
approaches where consequences are estimated in terms of customer usage, because it is 
generally difficult to develop and compute these models. For transport vulnerability 
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assessment it is obvious that vulnerability should be measured in terms of network-wide 
passenger disruptions, but doing so has always been challenging (Murray et al., 2008).     

• Before performing the failure analysis, we map out all possible interdependencies and 
flow relationships between smaller sets of assets. As such we do not have to traverse the 
entire network every time there is a failure, thereby reducing the computational expense. 
Due to this approach we can test the sensitivity of the results for a very large ensemble of 
failure conditions and infrastructure configurations. Hence our approach can handle very 
large networks, making it useful for national-scale assessment. 

The approach developed here provides a pragmatic solution for systems operators, utility 
providers and planners who are interested in comprehensive vulnerability assessment. Here we 
have compiled detailed knowledge of critical infrastructure components of the railway network, 
which is useful for Network Rail (who operate the Great Britain railway network) and train 
operating companies. Our analysis provides a proactive understanding of the capabilities and 
limitations of the railway infrastructure to withstand systemic and random failures, which can 
help Network Rail to identify emerging threats. Overall this study generates a highly relevant 
quantitative vulnerability analysis for the Great Britain railway network, which by enabling 
identification of the most severe failure scenarios and spatial impacts can inform future planning 
strategies. 

The rest of the paper presents the vulnerability assessment framework and results, and is 
organized as follows. In Section 2 we present infrastructure vulnerability metrics, spatial network 
assessment models, disruption analysis models, and conclude with an algorithm implementing 
the component models. Section 3 builds the case study for national scale analysis of Great 
Britain’s railway infrastructure network, highlighting the process of building appropriate key 
critical component interdependencies from data and models. We also present a railway trip 
assignment model that is used for vulnerability calculations. Section 4 presents some 
vulnerability assessment outcomes for the railway network, which include random failure 
analysis and flood vulnerability assessment. Finally Section 5 presents the key insights and 
conclusions from this study. 

2. Vulnerability Assessment Methodology 

The vulnerability assessment framework developed in this study is illustrated in Figure 1. The 
framework is divided into components that combine to provide coherent vulnerability 
assessment outcomes. As is evident, there exists a workflow of model implementation in the 
Figure 1 framework. Network disruption analysis in Component B is dependent on Component 
A network assembly models, and similarly Component C vulnerability assessment calculations 
follow from Component B disruption analysis. In the sections that follow we provide the 
mathematical formalization of the vulnerability calculations that produce this framework. We 
first discuss the vulnerability calculations in Section 2.1, which apply to any generalized 
understanding of an infrastructure network. Section 2.2 explains how we build and map spatial 
networks, and utilize their properties to build interdependency relationships that capture 
combinations of interactions. Following on from this, Section 2.3 describes the mathematical 
model for estimating disruptions in networks applicable to any generalized understanding of a 
network. Finally in Section 2.4 we present an implementation of the vulnerability assessment 
framework, based on the notations developed across Sections 2.1 – 2.3.  
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Figure 1. Vulnerability assessment framework for national infrastructure networks. 

2.1 Vulnerability calculations 
For vulnerability calculations we assume that an individual infrastructure asset’s state of 
operation is denoted with a state function 𝑟𝑟𝑖𝑖, which can take values in the range [0,1]. In the 
current analysis we assume only binary {0,1} values for 𝑟𝑟𝑖𝑖, indicating complete loss of operation 
when 𝑟𝑟𝑖𝑖 = 0 and all other states of operation when 𝑟𝑟𝑖𝑖 = 1. The binary assumption indicates that 
we are interested in quantifying catastrophic failure outcomes. For an infrastructure network 
comprised of 𝑎𝑎 assets, the state of operation is denoted by the state vector 𝐫𝐫 = (𝑟𝑟1, … , 𝑟𝑟𝑎𝑎). Since we 
have assigned two possible states of operation to each asset, there are 2𝑎𝑎 possible network state 
vectors of which 2𝑎𝑎 − 1 indicate failures. The comprehensive vulnerability assessment of the 
network would involve exploring all negative consequences for the 2𝑎𝑎 − 1 network states. Since 
2𝑎𝑎 could be a very large number, we could also use a sample 𝐫̅𝐫 = {𝐫𝐫1, … , 𝐫𝐫𝑏𝑏},𝑏𝑏 < 2𝑎𝑎 of possible 
states to inform vulnerability analysis. 

If the infrastructure network’s state is given by the vector 𝐫𝐫𝑗𝑗, where at least one asset state 𝑟𝑟𝑖𝑖
𝑗𝑗 = 0 

indicating failure, then the resulting amount of negative consequences give a measure of the 
vulnerability of the network. Since networks are complex systems we need to estimate physical 
and functional propagation effects of failures. Here physical and functional propagation effects 
signify the decrease in the level of network service due to the loss of physical interactions and 
functional relationships between connected assets in the infrastructure. At present we quantify 
the service flow disruption of an individual asset as 𝑆𝑆(𝑟𝑟𝑖𝑖 ) and assume the generalized network 
disruption metric 𝑆𝑆(𝐫𝐫𝑗𝑗) is expressed as 𝑆𝑆�𝐫𝐫𝑗𝑗� = 𝑓𝑓(𝑆𝑆�𝑟𝑟1

𝑗𝑗�, … , 𝑆𝑆(𝑟𝑟𝑛𝑛
𝑗𝑗)), where 𝑓𝑓() is a function that 

estimates the network disruptions from connected asset disruptions. In the next sections we will 
develop methods to estimate the function 𝑓𝑓() that take network properties into account. 

Network vulnerability is given as a two-dimensional metric that quantifies the following:  

• Degree of failure of the network – Measured as the proportion of network assets that have 
failed due to external shocks or have been randomly removed from the network. If the 
network state of operation is given by the vector 𝐫𝐫𝑗𝑗 = (𝑟𝑟1

𝑗𝑗 , … 𝑟𝑟𝑎𝑎
𝑗𝑗) then, under the 

assumption that each 𝑟𝑟𝑖𝑖
𝑗𝑗 is either 0 or 1, the degree of failure of the network is expressed 
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as Θ�𝐫𝐫𝑗𝑗� =  
∑ �1−𝑟𝑟𝑖𝑖

𝑗𝑗�𝑎𝑎
𝑖𝑖=1

𝑎𝑎
 . Θ�𝐫𝐫𝑗𝑗� is a normalized global measure of networks’ physical integrity 

to shocks as Θ�𝐫𝐫𝑗𝑗� = 1 indicates the network is fully physically intact and operational, 
while Θ�𝐫𝐫𝑗𝑗� = 0 indicates the network has totally failed.       

• Relative magnitude of negative consequences of disruption – Measured as the ratio between the 
service disruption following failure and the service level before failure. If pre-disruption 
the network delivers 𝑆𝑆 amount of service and in the state 𝐫𝐫𝑗𝑗 it suffers a service loss of 
amount 𝑆𝑆(𝐫𝐫𝑗𝑗), then the relative magnitude of negative consequences of disruption is 
expressed as Φ�𝐫𝐫𝑗𝑗� = 1 − 𝑆𝑆(𝐫𝐫𝑗𝑗)

𝑆𝑆
 . Φ�𝐫𝐫𝑗𝑗� is a normalized global measure of networks’ 

increased functional vulnerability to shocks as Φ�𝐫𝐫𝑗𝑗� = 1 indicates the network is fully 
functional, while Φ�𝐫𝐫𝑗𝑗� = 0 indicates the network has lost all functionality.  

Combining the above expressions, Equation (1) explains the vulnerability metric 𝑉𝑉�𝐫𝐫𝑗𝑗� for the 
network state vector 𝐫𝐫𝑗𝑗. 

𝑉𝑉�𝐫𝐫𝑗𝑗� = �Θ�𝐫𝐫𝑗𝑗�,Φ�𝐫𝐫𝑗𝑗�� = �
∑ �1−𝑟𝑟𝑖𝑖

𝑗𝑗�𝑎𝑎
𝑖𝑖=1

𝑎𝑎
, 1 − 𝑆𝑆(𝐫𝐫𝑗𝑗)

𝑆𝑆
�                                                 (1) 

Since both components of the vulnerability metric are normalized we can compare different types 
of negative consequence outcomes over a wide variety of impacts and performance metrics. By 
assembling multiple vulnerability measures for different network state vectors sampled from the 
set 𝐫̅𝐫, we can generate a comprehensive vulnerability assessment measure 
𝑉𝑉(𝐫̅𝐫) = �𝑉𝑉(𝐫𝐫1), … ,𝑉𝑉(𝐫𝐫𝑏𝑏)�, which gives the ranges of possible failure impacts and negative 
consequences.  

2.2 Network representations and properties 
In graph theory, a network is a collection of nodes and edges, where edges represent the 
connectivity between nodes. In the case of infrastructures edges also represent physical assets 
(pipes, cables, road, railway tracks, etc.) that connect nodes. For the infrastructure network of 𝑣𝑣 
nodes and 𝑤𝑤 edges (𝑣𝑣 + 𝑤𝑤 = 𝑎𝑎) the graph is represented by the set 𝐼𝐼 = {𝑁𝑁,𝐸𝐸,𝑀𝑀} comprised of the 
node set 𝑁𝑁  =  {𝑛𝑛1 , … ,𝑛𝑛𝑣𝑣 }, edge set 𝐸𝐸 =  {𝑒𝑒1 , … , 𝑒𝑒𝑤𝑤 }, and mapping set 𝑀𝑀 = �𝑒𝑒𝑘𝑘 → �𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧 �,∀𝑘𝑘 ∈
[1,𝑤𝑤],𝑦𝑦, 𝑧𝑧 ∈ [1,𝑣𝑣]�. The arrangement of nodes and edges defined via the mapping set 𝑀𝑀 is called 
the topology of the network (Lewis 2011). 

Based on their role in facilitating the flow of resources we classify infrastructure network nodes 
as: (i) source nodes – where the resources are generated; (ii) intermediate nodes – where the 
resources are transmitted from source nodes towards other nodes; and (iii) sink nodes – where 
resources are received either directly from source nodes or through the intermediate nodes. A 
source-sink resource flow lends directionality-based structure to infrastructure networks, thereby 
providing a complete understanding of interdependence. If a node X receives resources from 
node Y and vice-versa then X and Y are interdependent even if they are not physically joined by 
an edge. Such interdependence is possible when there is a functional pathway containing edges 
and intermediary nodes that have to be physically traversed to get from X to Y (or Y to X).  

Based on the type of resource flow all source nodes from the network can be extracted and 
categorised into separate sets Ω = {Ω1, . . ,Ωc} based on different source types (e.g. Ω  = {electricity 
substation nodes, railway station nodes, signal tower nodes}, see Section 3.1, Figure 3). For a 
single source node 𝑛𝑛𝑜𝑜 selected from the set of all source nodes of a particular infrastructure type 
(𝑛𝑛𝑜𝑜 ∈ Ωl ⊂ 𝑁𝑁) and a single sink node 𝑛𝑛𝑠𝑠 selected from the set Λ of all sink nodes (𝑛𝑛𝑠𝑠 ∈ Λ ⊂ 𝑁𝑁) we 
assemble functional pathways between this particular source-sink pair into the set 𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑠𝑠. The 
complete pathway set connecting the sink node 𝑛𝑛𝑠𝑠 to all its different source types is represented 
by Equation (2). 

𝛏𝛏𝑠𝑠 =  �𝛏𝛏∀𝑜𝑜∈Ω1,𝑠𝑠, … , 𝛏𝛏∀𝑜𝑜∈Ω𝑐𝑐,𝑠𝑠�              (2) 
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As there could be multiple functional pathways between a unique source-sink pair, the set 
𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑠𝑠 = {𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚,𝑚𝑚 = {1,2 … ,𝑢𝑢}} is produced, assuming 𝑢𝑢 number of paths between the source-
sink pair. Equation (3) shows the mathematical notation for a particular functional pathway 
(𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚) when traversing from a single source node to a single sink node. 

𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 =  {𝑛𝑛𝑜𝑜, 𝑒𝑒𝑧𝑧, … , 𝑒𝑒𝑙𝑙 ,𝑛𝑛𝑠𝑠}              (3) 

The existence of multiple functional pathways between source-sink pairs accounts for the 
redundancy and robustness of the network structure, as the flow of resources between 𝑛𝑛𝑜𝑜 and 𝑛𝑛𝑠𝑠 
stops only if all the pathways in the set 𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑠𝑠 have failed.  

2.3 Disruption calculations 
In this study disruptions are measured in terms of the ability of the sink nodes to deliver 
resources for further consumption. We assume that under normal operations a sink node 𝑛𝑛𝑠𝑠 ∈ Λ 
delivers 𝑊𝑊𝑠𝑠 amount of resource, which is delivered along different functional pathways. As 
mentioned previously, 𝑊𝑊𝑠𝑠 could represent any performance metric (resource output, customers 
served, areas serviced) and there are specific models required to first obtain these metrics. For 
example in the railway case study we will demonstrate a passenger trip assignment model that is 
required to first build 𝑊𝑊𝑠𝑠 estimates. Having mapped the set of functional pathways 𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑠𝑠 =
{𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚,𝑚𝑚 = {1,2 … ,𝑢𝑢}} between a unique source-sink pair, we assume that we can estimate the 
contribution of each unique pathway 𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 towards the 𝑊𝑊𝑠𝑠 amount of resource delivered as a 
weighted fraction 𝛽𝛽𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 ∈ [0,1] of 𝑊𝑊𝑠𝑠. The weight set 𝛃𝛃𝑜𝑜∈Ω𝑙𝑙,𝑠𝑠 = �𝛽𝛽𝑜𝑜∈Ω𝑙𝑙,1𝑠𝑠, … ,𝛽𝛽𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚� shows the 
relative contribution of all pathways between each source-sink pair and for all sources of a 
particular infrastructure type connected to a given sink node 𝑛𝑛𝑠𝑠, ∑ ∑ 𝛽𝛽𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚

𝑢𝑢
𝑖𝑖=1∀𝑜𝑜∈Ω𝑙𝑙 = 1. Similar 

to different pathway sets connecting the sink node 𝑛𝑛𝑠𝑠 to all its different source types represented 
by Equation (3), we can construct different weight sets as given in Equation (4). 

𝛃𝛃𝑠𝑠 =  �𝛃𝛃∀𝑜𝑜∈Ω1,𝑠𝑠, … ,𝛃𝛃∀𝑜𝑜∈Ω𝑐𝑐,𝑠𝑠�              (4) 

As is evident from Equation (4), we have assigned different weights for sources belonging to each 
infrastructure type, which also means the weights have different interpretations. If the source and 
sink infrastructure types are the same then 𝛽𝛽𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 is the fraction of resources being delivered 
towards sink output, whereas if the source and sink infrastructure types are different then 
β𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 is a measure of the influence the source resource has on the sink output. For example, in 
a railway network if 1000 passengers reach a station from two routes such that 600 arrive from 
one and 400 from another then 𝛃𝛃∀𝑜𝑜∈Rail,𝑠𝑠 = {3/5,2/5} shows the proportions of passengers 
arriving from the different routes. If the same railway station also requires electricity from two 
separate substation sources providing 200 Gwh/day and 100 Gwh/day respectively then 
𝛃𝛃∀𝑜𝑜∈Electricity,𝑠𝑠 = {2/3,1/3} shows the proportions of electricity supplies from the sources required 
to operate the railway station.           

When disrupted by external shocks, some of the source-sink functional pathways may no longer 
be operational due to failure of nodes and edges. Following the disruptive impact we assign a 
binary state 𝜌𝜌𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 ∈ [0,1] function to each unique path 𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 ∈ 𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑠𝑠,𝑚𝑚 = {1, … ,𝑢𝑢}, where 
𝜌𝜌𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 = 1 implies that the pathway is still in operation and 𝜌𝜌𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 = 0 means the pathway has 
failed. 𝜌𝜌𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 is a function of the network state vector 𝐫𝐫 because the pathway’s functionality 
depends upon its included assets. The post-disruption service level output of a sink node 𝑛𝑛𝑠𝑠 
depending upon source nodes of a particular infrastructure type Ω𝑙𝑙 in the disruption state 𝐫𝐫𝑗𝑗 is 
given as 

𝑊𝑊Ω𝑙𝑙,𝑠𝑠
𝑗𝑗 = ∑ ∑ max�0,𝜌𝜌𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚

𝑗𝑗 � 𝛽𝛽𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚
 𝑊𝑊𝑠𝑠

 𝑢𝑢
𝑚𝑚=1∀𝑜𝑜∈Ω𝑙𝑙            (5)  

Equation (5) provides the values for the disruption effects for one type of sources supplying 
resources to the sink node. Similar estimates can be obtained over different source types 
connected to the sink 𝑛𝑛𝑠𝑠 to assemble the set �𝑊𝑊Ω𝑙𝑙,𝑠𝑠

𝑗𝑗 ,∀Ω𝑙𝑙 ∈ Ω�. The final post-disruption service 



EJTIR 16(1), 2016, pp.174-194  181 
Pant, Hall and Blainey 
Vulnerability assessment framework for interdependent critical infrastructures 
 
output of a sink node is the minimum of the service outputs 𝑊𝑊Ω𝑙𝑙,𝑠𝑠

𝑗𝑗  for each category of sources it 
depends upon, and is given by Equation (6) below. 

𝑊𝑊(𝑟𝑟𝑠𝑠
𝑗𝑗) = minΩ𝑙𝑙∈Ω{𝑊𝑊Ω𝑙𝑙,𝑠𝑠

𝑗𝑗 }              (6) 

The service loss, introduced in Section 2.1, at the sink node is the difference between the pre-
disruption and post-disruption estimates of service, i.e. 𝑆𝑆�𝑟𝑟𝑠𝑠

𝑗𝑗� =  𝑊𝑊𝑠𝑠 −𝑊𝑊(𝑟𝑟𝑠𝑠
𝑗𝑗). If there are 𝜍𝜍 

number of sink nodes for which we are estimating the service delivery post-disruption then the 
total network post-disruption service output is calculated by summing up the individual 
disruptions at the sink nodes, as explained in Equation (7). Since a sink node signifies the final 
point of delivery for further usage of the resource, we are assuming that the outputs across sink 
nodes are discrete and hence add up to give final post-disruption outputs. 

𝑆𝑆(𝐫𝐫 
𝑗𝑗) = ∑ �𝑊𝑊𝑠𝑠 −𝑊𝑊(𝑟𝑟𝑠𝑠

𝑗𝑗)�𝜍𝜍
𝑠𝑠=1               (7) 

The functional vulnerability metric in Section 2.1 is derived from the pre- and post-disruption 

service outputs as Φ�𝐫𝐫𝑗𝑗� = 1 −
∑ �𝑊𝑊𝑠𝑠−𝑊𝑊(𝑟𝑟𝑠𝑠

𝑗𝑗)�𝜍𝜍
𝑠𝑠=1

∑ 𝑊𝑊𝑠𝑠
𝜍𝜍
𝑠𝑠=1

 . The application of the disruption estimation on 

actual networks is further explained for the railway case study presented in Sections 3 and 4. 

2.4 Vulnerability assessment algorithm 
Table 1 below summarises the algorithm for implementing the vulnerability assessment 
methodology outlined in Sections 2.1 – 2.3, and shown in Component C of Figure 1. The 
algorithm is implemented using an appropriate programming tool. In this study we have 
developed and implemented all models using the Python programming language (Van Rossum, 
1993). This allowed us to use inbuilt libraries and functions and also create new functions for 
performing calculations on spatial networks. 

Step 3 of the algorithm, where the failure state 𝐫𝐫j is generated, is implemented via Monte Carlo 
simulation based on sampling from the set of assets that are considered vulnerable due to 
exposure to the hazard. By using random seed generators we can obtain different failure 
combinations of all vulnerable assets and assign appropriate failure states (0 or 1) to them. 

 Algorithm to simulate the network failures and vulnerability calculations. Table 1.

1.  Network Assembly:  
 Topological network with source (𝛀𝛀) - sink (𝚲𝚲) directionality and flows  
 Sink node set Λ =  {𝑛𝑛1, … ,𝑛𝑛𝜍𝜍} with demands  
 Resource delivery outputs 𝑊𝑊 = �𝑊𝑊1, … ,𝑊𝑊𝜍𝜍�   
2.  Network path flow analysis:  
 Assemble all source-sink paths ∀𝑜𝑜 ∈ Ω, 𝑠𝑠 ∈ Λ  
 For each sink find 𝛏𝛏𝑠𝑠 =  �𝛏𝛏∀𝑜𝑜∈Ω1,𝑠𝑠, … , 𝛏𝛏∀𝑜𝑜∈Ω𝑐𝑐,𝑠𝑠�  
 For each sink estimate path weights 𝛃𝛃𝑠𝑠 =  �𝛃𝛃∀𝑜𝑜∈Ω1,𝑠𝑠 , … ,𝛃𝛃∀𝑜𝑜∈Ω𝑐𝑐,𝑠𝑠� 
3.  Shock-network intersection: Assemble failure set 𝐫𝐫j 
4.  Residual path analysis:  
 Remove all assets 𝑖𝑖, s.t. 𝑟𝑟𝑖𝑖

𝑗𝑗 ∈ 𝐫𝐫𝑗𝑗 , 𝑟𝑟𝑖𝑖
𝑗𝑗 = 0 and their paths  

 For each sink assemble the path state set 𝛒𝛒𝑠𝑠 =  �𝛒𝛒∀𝑜𝑜∈Ω1,𝑠𝑠 , … ,𝛒𝛒∀𝑜𝑜∈Ω𝑐𝑐,𝑠𝑠�  
  5. Assemble sink failure estimates: Find 𝑊𝑊(𝑟𝑟𝑖𝑖

𝑗𝑗) from Equations (5) and (6)  
6. Calculate impact magnitude: Find Θ(𝐫𝐫j) 
 Calculate disruption estimates: 𝑆𝑆(𝐫𝐫𝑗𝑗) from Equation (7)  
 Calculate vulnerability metric: 𝑉𝑉(𝐫𝐫𝑗𝑗) from Equation (1)  
7. Repeat steps 3-6 over more failure combinations to assemble 𝑉𝑉(𝐫̅𝐫)  
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3. Case-study for Great Britain’s railway infrastructure 

This section describes the application of the methodology developed in Section 2 to the railway 
network for Great Britain, which is a critical infrastructure. Railway  passenger usage in Great 
Britain has increased by a quarter over the last five years, and an estimated 1.5 billion journeys 
totalling 36 million miles were made on the railway network during 2012-2013, which was 
double the number of journeys made in 1994-1995 (Department for Transport, 2013b). Over the 
next few years substantial investment is planned both to construct new routes and to upgrade 
existing railway infrastructure (HM Treasury, 2013; Network Rail, 2014). There have though been 
several instances of serious failures that have highlighted the vulnerability of the railway 
infrastructure, showing the need both for additional investments and for a better understanding 
of the risks facing the network. The Great Britain rail network experienced about 3 million train 
delay minutes in 2007 due to weather related external shocks (Dobney et al., 2009). Widespread 
flooding between December 2013 and February 2014 resulted in an estimated £100m of damage 
to the railway infrastructure, requiring around 4000 railway staff to be constantly deployed to 
tackle flood water and repair infrastructure to keep trains running (Topham, 2014). 

Figure 2 shows the spatial and topological representation of Great Britain’s railway network, 
which was assembled from a combination of datasets provided by Ordnance Survey (Ordnance 
Survey, 2013), the Association of Train Operating Companies (ATOC) (ATOC, 2013), and the 
Department for Transport (the National Public Transport Access Node database (NaPTAN)) 
(Department for Transport, 2013a). The network consists of 3959 nodes and 4457 edges. Network 
nodes represent stations (2539 nodes) and junctions (1420 nodes), while edges represent all routes 
between nodes. Demand assignments in the railway network are quantified in terms of the 
average daily passenger trip flows across network nodes and edges, which are shown in Figure 3. 
Section 3.1 outlines the detailed trip assignment methodology developed in this study to generate 
these results. Since modern day railway networks are comprised of several complex subsystems 
that make them functional, there are other assets that we need to include in the network 
representation of an interdependent railway infrastructure. In particular, other infrastructures 
such as electricity, water, telecommunications (ICT), gas and fuels have an influence of railway 
operations. In Section 3.2 we discuss some of these assets that exist in the railway infrastructure, 
while in Section 3.3 we explain how these assets are mapped to the network to create physical 
and functional interdependencies. 

 
Figure 2. Topological railway network for Great 
Britain showing stations, junctions and tracks. 

 
Figure 3. Results of the railway trip assignment 
analysis showing estimates of daily number of 
passenger trips across individual railway network 
edges (track sections).   
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3.1 Trip assignment and disruption modelling for railways  

We are interested in quantifying the negative consequences for passenger travel resulting from 
disruptions at stations, junctions or track sections in the railway network. At any given time the 
railway network is being used by people to travel from one location to another, which creates 
passenger trip measures along the network. Hence we develop estimates of passenger-trips lost 
when the network is disrupted due to external shocks.  

As a starting point we require some means of estimating the number of passengers travelling 
along a given section of railway route or through a given station during a certain time period.  
While extensive research has been carried out into rail demand forecasting in Great Britain 
(Department of Transport, 2009; Worsley, 2012), the data and outputs relating to these models 
were either: (i) not available for reasons of commercial confidentiality; or (ii) only relate to 
aggregated trips at individual stations or between zones, and therefore do not assign trips to 
particular segments of route.   

We therefore developed a method for estimating trip assignment to the railway network based 
on the limited datasets that are available, focusing particularly on the Office of Rail Regulation’s 
(ORR) station usage dataset. These provide details of the annual number of passengers entering, 
exiting and interchanging at all individual railway stations in Great Britain  (ORR, 2013). This is 
complemented by electronic timetable data available from the Association of Train Operating 
Companies (ATOC), which gives full details of routing and calling points for all passenger trains 
operating on the Great Britain rail network over the period of validity of the timetable (ATOC, 
2013). A set of Python functions were written to match the electronic timetable information with 
the spatial network (Figure 2), in order to create specific geocoded route information for each 
train journey. The trip assignment model calculations, which give the daily number of passenger 
trips between stations along specific routes, are explained in the subsections that follow. 

Trip generation and attraction 
The first step in the trip assignment model involves estimating the number of trips generated and 
attracted at all individual stations on the railway network. Since every station is a point of 
passenger entry or exit in the railway network, it is both a source and a sink. Here as is 
conventional in transport modelling we use the terms origin (source) and destination (sink). We 
calculated the daily number of passengers using stations by first converting the annual station 
usage figures (ORR, 2013) into weekly estimates, and then allocating the weekly estimates to 
particular days in proportion to the train frequencies for each day. The respective calculations for 
number of entries (𝜂𝜂𝑠𝑠𝑑𝑑) and number of exits (𝜅𝜅𝑠𝑠𝑑𝑑) at a station (𝑠𝑠) on a given day (𝑑𝑑) are shown in 
Equations (8) and (9). 𝑄𝑄𝑠𝑠 is the annual number of entries plus interchanges, and 𝐻𝐻𝑠𝑠 is the annual 
number of exits plus interchanges at the station 𝑠𝑠. Interchanges occur when passengers change 
trains during their journeys, and hence were accounted for in both the entries and exits 
calculations. It is assumed that passenger numbers are distributed equally over all weeks of the 
year, as while in practice there will be some variation based on (for example) holiday periods, no 
data were available which allowed such variation to be quantified.  In estimating the trip 
distribution across the week we calculated the daily number of trains at each station as being a 
combination of the number of trains starting (passengers only enter) (𝑡𝑡𝑠𝑠

st,𝑑𝑑), making intermediate 
stops (passengers enter and exit) (𝑡𝑡𝑠𝑠

in,𝑑𝑑) or terminating (passengers only exit) (𝑡𝑡𝑠𝑠
te,𝑑𝑑) at the station. 

𝜂𝜂𝑠𝑠𝑑𝑑 = 𝑄𝑄𝑠𝑠
52
� 𝑡𝑡𝑠𝑠

st,𝑑𝑑+𝑡𝑡𝑠𝑠
in,𝑑𝑑

∑ (𝑡𝑡𝑠𝑠
st,𝑑𝑑+𝑡𝑡𝑠𝑠

in,𝑑𝑑)𝑑𝑑
�               (8) 

𝜅𝜅𝑠𝑠𝑑𝑑 = 𝐻𝐻𝑠𝑠
52
� 𝑡𝑡𝑠𝑠

te,𝑑𝑑+𝑡𝑡𝑠𝑠
in,𝑑𝑑

∑ (𝑡𝑡𝑠𝑠
te,𝑑𝑑+𝑡𝑡𝑠𝑠

in,𝑑𝑑)𝑑𝑑
�               (9) 

Trip distribution and assignment 
The second step in the trip assignment model involves matching the total trip origin and 
destination information calculated in the previous section to create an origin-destination (O-D) 
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trip matrix, while simultaneously allocating these trips to the rail network. The aggregate daily 
station usage figures estimated using Equations (8) and (9) were converted to flows along specific 
paths using Equations (10) and (11). These allow estimation of the number of passenger trips 𝜇𝜇𝑂𝑂𝑂𝑂

𝑃𝑃,𝑑𝑑 
made between an origin (𝑂𝑂) and destination (𝐷𝐷) using a particular rail service (path 𝑃𝑃) for each 
day 𝑑𝑑. The steps of the trip assignment calculations are explained as follows:  

1. The number of entries (𝜂𝜂𝑂𝑂𝑑𝑑) indicate the volume of flow that has to be directed from the 
origin station along specific paths. The timetable data (ATOC, 2013) gives us information 
on rail service paths, where a path (𝑃𝑃) for each station is defined as a unique route across 
the network taken by trains calling at that station.  For each path 𝑃𝑃 we calculate a trip 
attractiveness factor (𝑓𝑓𝑂𝑂

𝑃𝑃,𝑑𝑑) in relation to the entry station 𝑂𝑂, which is the product of the 
number of trains along the path from station 𝑂𝑂 (𝑡𝑡𝑂𝑂

𝑃𝑃,𝑑𝑑) and the total volume of exiting 
passengers (∑ 𝜅𝜅𝐷𝐷𝑑𝑑𝐷𝐷∈𝒟𝒟𝑂𝑂

𝑃𝑃 ) at all stations (𝒟𝒟𝑂𝑂
𝑃𝑃) along the path beyond station 𝑂𝑂. The trip 

attractiveness factor is used to determine how the aggregated volume of flow from the 
entry station is directed over the course of the day along path 𝑃𝑃, based on the volumes of 
trains and station exits along different paths. At each station where passengers can enter a 
path, we convert the station entry estimates into trip entry estimates (𝜂𝜂𝑂𝑂

𝑃𝑃,𝑑𝑑) by dividing 
(𝜂𝜂𝑠𝑠𝑑𝑑) between the available paths in proportion to the trip attractiveness factors, as shown 
in Equation (10). The paths with higher trip attractiveness factors will therefore attract 
more passengers from the entry station over the course of the day. 

2. The trip entry estimates for each path are then used to calculate a set of O-D flow 
estimates 𝜇𝜇𝑂𝑂𝑂𝑂

𝑃𝑃,𝑑𝑑 (Equation (11)), which give the number of trips made between an O-D pair 
using a particular path. We assume that along a path the number of passengers getting 
off at a station is in direct proportion to the station’s total trip exits (𝜅𝜅𝑠𝑠𝑑𝑑) relative to other 
stations along the path. Aggregated over the day, a station with a larger number of total 
exits (plus interchanges) will see a proportionally greater number of passengers alighting 
from every train that calls there. 

𝜂𝜂𝑂𝑂
𝑃𝑃,𝑑𝑑 = 𝜂𝜂𝑂𝑂

𝑑𝑑 �
𝑡𝑡𝑂𝑂
𝑃𝑃,𝑑𝑑 ∑ 𝜅𝜅𝐷𝐷

𝑑𝑑
𝐷𝐷∈𝒟𝒟𝑂𝑂

𝑃𝑃

∑ �𝑡𝑡𝑂𝑂
𝑃𝑃,𝑑𝑑 ∑ 𝜅𝜅𝐷𝐷

𝑑𝑑
𝐷𝐷∈𝒟𝒟𝑂𝑂

𝑃𝑃 �𝑃𝑃
� = 𝜂𝜂𝑂𝑂

𝑑𝑑 � 𝑓𝑓𝑂𝑂
𝑃𝑃,𝑑𝑑

∑ 𝑓𝑓𝑂𝑂
𝑃𝑃,𝑑𝑑

𝑃𝑃
�          (10) 

𝜇𝜇𝑂𝑂𝑂𝑂
𝑃𝑃,𝑑𝑑 = 𝜂𝜂𝑂𝑂

𝑃𝑃,𝑑𝑑 � 𝜅𝜅𝐷𝐷
𝑑𝑑

∑ 𝜅𝜅𝐷𝐷
𝑑𝑑

𝐷𝐷∈𝒟𝒟𝑂𝑂
𝑃𝑃
�             (11) 

 
The above calculations conserve the total number of flows along each path, because they 
guarantee that the total of the O-D flow estimates equals the total of all entries made in the path. 
This is explained mathematically by Equation (12). 

∑ ∑ 𝜇𝜇𝑂𝑂𝑂𝑂
𝑃𝑃,𝑑𝑑

𝐷𝐷∈𝒟𝒟𝑂𝑂
𝑃𝑃𝑂𝑂 = ∑ ∑ 𝜂𝜂𝑂𝑂

𝑃𝑃,𝑑𝑑 � 𝜅𝜅𝐷𝐷
𝑑𝑑

∑ 𝜅𝜅𝐷𝐷
𝑑𝑑

𝐷𝐷∈𝒟𝒟𝑂𝑂
𝑃𝑃

�𝐷𝐷∈𝒟𝒟𝑂𝑂
𝑃𝑃𝑂𝑂 = ∑ 𝜂𝜂𝑂𝑂

𝑃𝑃,𝑑𝑑
𝑂𝑂          (12) 

Relating to the resource output metrics introduced in Section 2.3, the two equations, 𝑊𝑊𝐷𝐷 = 

∑ ∑ 𝜇𝜇𝑂𝑂𝑂𝑂
𝑃𝑃,𝑑𝑑

∀𝑂𝑂∀𝑃𝑃  and 𝜇𝜇𝑂𝑂𝑂𝑂
𝑃𝑃,𝑑𝑑

𝑊𝑊𝐷𝐷
= 𝛽𝛽𝑂𝑂∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚,Ω𝑙𝑙 = {Railway Station}, can be derived. For a given destination 

(sink) station 𝐷𝐷 all the O-D flow estimates add up to give the amount of trips completed, i.e., 
resources delivered; hence they add up to the metric 𝑊𝑊𝐷𝐷. Also each 𝜇𝜇𝑂𝑂𝑂𝑂

𝑃𝑃,𝑑𝑑 indicates the value of 
flow along each individual O-D pathway and proportionally gives the pathway weight metric 
𝛽𝛽𝑂𝑂∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚.   

The O-D flow estimates developed here are static estimates for the average daily flows through 
the railway network calculated using freely available data. While the assumptions made when 
assigning trips to paths mean that the methodology may not exactly reproduce actual travel 
behaviour, they should provide an approximation that is accurate enough for the purposes of this 
study (i.e. disruption estimation). 
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3.2 Mapping key critical components for railways 

We have compiled a list of some of the key critical components (assets) that are responsible for 
cross-infrastructure interdependencies in an operational railway network in Great Britain. This 
list reflects our understanding of the railway infrastructure and also results from data provided 
by Network Rail, who are the owners and operators of the rail infrastructure in Great Britain. 
Based on our interpretation of similarities in functionality the following six broad categories of 
assets emerge: (i) electrification equipment, (ii) signalling systems, (iii) monitoring systems, (iv) 
lighting systems, (v) heating and cooling systems, and (vi) traction systems.  These are shown in 
Figure 4.  While this is not an exhaustive list, all railway operations at stations, junctions and 
along tracks are dependent on these assets. Since Great Britain’s railway network operates on 
similar standards to other European and worldwide networks, the asset list compiled here can be 
used to study other similar railway infrastructures. 

 
Figure 4. Different components of the railway network. 
 

As is evident from Figure 4, the railway network requires resources from other infrastructures for 
operating assets. Figure 5 shows the key infrastructures that supply the resources for operating 
the assets listed in Figure 4. We have mapped key interdependencies between infrastructures 
based on the operational requirements of assets. Some of the infrastructures supply resources 
directly to the railway network, which results in a direct mapping between the infrastructures. In 
Figure 5 the solid black arrows represent such mapping. In most cases there is more than one 
layer of interdependent mapping, where a railway asset requires resources from different 
infrastructures in order to operate. In Figure 5 the dashed black arrows represent such indirect 
mappings. The direction of the arrows in each mapping shows the direction of resource flows 
across infrastructures, which helps in building the network functional pathways (discussed 
further in Section 3.2).  
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Figure 5. Interdependency mappings between infrastructures that are required for an operational railway 
network.  

3.3 Network representations of key critical component interdependencies 
We first identified the locations of the key critical components (assets) from Figure 4 to integrate 
them in the spatial railway network shown in Figure 2. We note that other infrastructure 
networks (e.g. electricity transmission grid, water supply network, etc.) have not been included 
here, rather we are inferring their interdependence and influence on the railway infrastructure 
through the assets listed in Figure 4. All assets were interpreted as network nodes whose spatial 
coordinates were either available in the data or built using other asset information which was 
processed using Python functions. For example, functions were written to convert postcode and 
Ordnance Survey grid information into coordinates and to extract location information from 
Open Street Map via the address information for the asset. After populating the raw data with 
relevant spatial information a dataset containing 8347 point assets (excluding the station and 
junction nodes in the Figure 2 network) was created for this study. 

Since each asset in Figure 4 supplies resources to the railway network, it is designated as a source 
node and belongs to the set Ω, while the sink node set Λ contains the stations and junctions. 
Physically all these sources were joined to their nearest edge (track) or node (station or junction) 
by single-line geometries. Functionally some assets supply resources only to the sink nodes or 
edges they are directly connected to, which means the functional pathway 𝛏𝛏𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 includes just 
the source and sink. This is shown in Figure 6 through a graphical representation where assets 
such as points heating, lighting systems, and level crossing equipment influence only the railway 
node or edge they are directly connected to. Other assets supply resources or influence a 
significant proportion of the railway network. For example in Figure 6 the traction system 
consists of electricity substations (grid supply point station) that supply to groups of stations, 
junctions and their related tracks. In reality the substation supplying electricity to the traction 
system is connected to its nearest node on the railway network via an overhead cable, which is 
then connected to the next station via another cable to branch out the electricity supply. This is 
shown in Figure 6. Similarly, many signalling and telecommunication systems influence the 
operation of multiple stations, junctions and tracks and are connected in a similar way. In most 
cases the railway networks are divided into specific strategic routes (a collection of stations) that 
have operational boundaries. This information is used while assigning functional pathways for 
the traction, signalling and telecommunication systems. For example we know that certain routes 
of the British railway network (e.g. East Coast Main Line, Great Western Line) are operated by 
single IECC (Integrated Electronic Control Centre) systems, and we used this information to 
create functional pathways in the railway network. 
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Figure 6. Illustration of functional (topological and operational) connectivity of certain assets to the 
railway network. Assets such as level crossings, signalling points or point heating are connected to their 
nearest node (station/junction) or edge. Assets such as traction electricity substations are connected to 
their nearest node and through overlaying a series of overhead cables along the network the electricity is 
supplied to other stations.        

Certain redundancies also exist in the railway infrastructure, which we accounted for in the 
functional mapping. In particular if a grid supply point substation in the traction system shuts 
down due to failures its supply is replaced by adjacent substations. Hence for each station, 
junction or track that is electrified, functional pathways to every adjacent grid supply point were 
mapped. 

We assume here that if a sink is connected to multiple sources of the same type only one of them 
is operation at one time and the rest are for backup supply. This implies that we are assigning 
weights 𝛽𝛽𝑜𝑜∈Ω𝑙𝑙,𝑚𝑚𝑚𝑚 = 1  to all functional pathways that exist between source types listed in Figure 3. 
Hence we assume here that every asset is critical for the functioning of the railway infrastructure, 
and unless there are backups the associated sink nodes stop operating once the sources fail. 
Evidence suggests that railway operations are halted temporarily when the type of assets listed 
here fail until they can be repaired (Network Rail 2014).  

Table 2 gives information (derived from the asset dataset) on the number of assets belonging to 
the different infrastructure types (shown in Figure 4) and their spatial coverage (% length) on the 
railway network. It is clear that the railway infrastructure is most dependent upon electricity and 
telecommunication infrastructures, followed by water, natural gas and fuels. Based on asset types 
monitoring and signalling systems have influence over the largest proportion of the network 
compared to other asset types. The percentage spatial coverage values can also be used as 
indicative metrics for quantifying vulnerability as they provide an indication of the extent of 
damage to the railway infrastructure resulting from widespread failures in other assets and 
infrastructures. 

 List of asset numbers and spatial coverage divided by asset types and infrastructure Table 2.
types that supply resources to the railway infrastructure.  

Asset type Number % Network coverage (length) 
Local electrification 327 10.9% 
Monitoring systems 3235 100% 
Signalling systems 2914 100% 
Lighting systems  105 3.2% 
Heating/Cooling equipment 1643 37.5% 
Traction system (substations) 123 33.4% 
Infrastructure dependency Number of assets % Network coverage (length) 
Electricity 7163 100% 
Telecommunications (ICT) 2222 100% 
Water 823 36.2% 
Gas 212 15.7% 
Fuels 26 1.6% 
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4. Vulnerability assessment results and insights 

In the current analysis we are interested in evaluating the railway network vulnerabilities due to 
interdependent failures initiated in the six different assets types presented in Section 3.1.  

We look at the propagation of interdependent asset failures towards railway operation 
disruptions, depending upon connectivity to nodes (stations or junctions) or edges (tracks). In 
both instances disruption effects extend up to the nearest nodes where the trains can still operate. 
Following disruption each path is therefore ‘broken’ into separate sections along which trains are 
still operational. We assume day long disruption scenarios for every failure outcome and 
estimate the pre- and post-disruption trips for that day. If the disruption occurs for more than a 
day then we can estimate the flow damages over the entire time period since we have daily 
estimates of origin-destination flows. We note that here flow rerouting, congestion and other trip 
reassignment mechanisms are not considered. We acknowledge that in reality rerouting should 
be considered as it has a considerable effect on failure estimates, but to some extent this can be 
relaxed for railway networks because large sections of the railway network have very limited 
diversionary options. We are measuring the worst-case negative consequences for each 
disruption, which for widespread failure could be very plausible. In the calculations we estimate 
the post-disruption passenger trips for all existing O-D pairs and sum them to get the overall 
network flow, i.e., 𝑊𝑊�𝐫𝐫𝑗𝑗� = ∑ ∑ ∑ max�0,𝜌𝜌𝑂𝑂,𝑃𝑃𝑃𝑃

𝑗𝑗 � 𝜇𝜇𝑂𝑂𝑂𝑂
𝑃𝑃,𝑑𝑑

∀𝑂𝑂∀𝑃𝑃∀𝐷𝐷 . The passenger trip loss estimates 
follow from Equation (7). 

We consider the results from two types of vulnerability assessment results, firstly random 
component failures and secondly flood vulnerability. 

4.1 Random component failures 
We test the vulnerability of the railway network due to random failures of different sets of 
interdependent assets selected using two criteria.  

1. Criteria 1 – We choose assets based on their functionality as defined through the six 
categories in Figure 3. Separate calculations are done for each asset category, where it is 
assumed only those assets of the chosen category fail. Hence the vulnerability assessment 
tests the criticality of each type of supporting asset in the railway infrastructure. 

2. Criteria 2 – We choose assets based on the type of infrastructure that is supplying the 
resources to make them operational. The five infrastructure types shown in Figure 4 are 
selected individually and we test failure sets for them separately. Here the vulnerability 
assessment tests the criticality of the dependence of the railway infrastructure on other 
infrastructures. 

Figure 7 shows the vulnerability assessment results when assets are chosen according to Criteria 
1 and different degrees of random failures are introduced in the railway infrastructure network. 
The x-axis shows the number of each asset type that is removed for the network, expressed as a 
fraction of its total number in the network, which is the metric Θ�𝐫𝐫𝑗𝑗� introduced in Section 2.1. 
The y-axis shows the daily loss of passenger trips over the entire network expressed as a 
percentage of pre-disruption passenger trip estimates, which is the metric Φ�𝐫𝐫𝑗𝑗� expressed as a 
percentage. To generate the Figure 7 results we implemented 250 simulations for each magnitude 
of random failure scenario in order to capture the full range of vulnerability outcomes. The size 
of the railway network governs the number of simulation runs, because each trip disruption loss 
estimate is produced by recalculating the trips on the disrupted network, which is 
computationally expensive. Our aim here is to show a substantial range of possible vulnerability 
outcomes to demonstrate the methodology. 

The results in Figure 7 show that railway systems are vulnerable to equipment failures in the 
following order (high to low): (i) signalling systems, (ii) monitoring systems, (iii) heating systems, 
(iv) traction systems, (v) electrical (local) systems, and (vi) lighting systems. These results are 
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influenced by three factors: (i) the quantity and spatial coverage of the assets (see Table 2); (ii) the 
location on the network where the assets are installed; and (iii) the network flows through the 
parts of the network supported by the assets. Apart from traction systems all other asset 
vulnerabilities grow at almost similar rates because of the comparable spatial coverage of 
individual assets. Even though the heating systems (point heating) cover only 37.5% of the 
network (see Table 2), they have a significant impact on network operations because they are 
installed strategically along the busiest routes of travel. In the case of traction systems, since each 
grid supply substation supplies to multiple nodes, progressive failures lead to much larger 
impacts compared to other systems. Also, even though there are fewer assets (substations) in the 
traction system over a smaller spatial proportion of the network (33.4%, see Table 2), they supply 
power to most of the busiest routes (in terms of passenger flow) resulting in larger disruptive 
impacts.  

 
Figure 7. Vulnerability of the railway network due to random failures of different type of functional assets. 
 
Figure 8 shows the vulnerability assessment results when assets are chosen according to Criteria 
2 and different degrees of random failures are introduced in the railway infrastructure network. 
The axes in Figure 8 are similar to the ones in Figure 7, and the results are again generated 
following 250 simulation runs per failure magnitude. The results in Figure 8 show that railway 
infrastructure is most vulnerable to other infrastructure failures in the following order (high to 
low): (i) electricity, (ii) telecommunications (ICT), (iii) water, (iv) natural gas, and (v) liquid/solid 
fuels. These results are in line with expectations given the number of assets that require electricity 
and ICT for their operations. 
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Figure 8. Vulnerability of the railway network due to failures induced through other infrastructures. 

4.2 Flood vulnerability 
As with the random failure scenarios, the flood vulnerability of the railway infrastructure is 
tested with respect to failures to critical assets. In particular flood vulnerability is evaluated here 
in terms of the likelihood of exposure to floods and the resultant negative consequences.  

We have used the National Flood Risk Assessment (NaFRA) flood likelihood map for England 
and Wales, which is illustrated for a localized area in Figure 9 (Environment Agency, 2009). The 
map data provides information on the estimated likelihood of flooding to areas of land within the 
flood plain of an extreme flood (0.1 per cent or 1 in 1000 chance of fluvial and/or tidal flooding in 
any year). The likelihood of flooding takes in account the probability that the flood defences will 
overtop or breach, and the distance of the impact from the river or the sea. The results of the 
analysis are presented for three flood likelihood risk categories as: (i) low - the chance of flooding 
each year is 0.5 per cent (1 in 200) or less; (ii) moderate - the chance of flooding in any year is 1.3 
per cent (1 in 75) or less but greater than 0.5 per cent (1 in 200); and (iii) significant - the chance of 
flooding in any year is greater than 1.3 per cent (1 in 75). 

 

Figure 9. Illustration of part of the NaFRA flood likelihood map for England and Wales and its intersection 
with the railway infrastructure network.  
 
By spatially intersecting the flood likelihood maps with different assets (Figure 9), we generate 
the list of all assets located in either a low, moderate or significant flood likelihood area. Here it is 
assumed that the flood protection measures (embankments, raised platforms) around railway 
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assets are now able to prevent flooding, because we do not have information on such protection 
standards. The analysis could be improved if such data were made available, and this will form 
the subject of future work. Hence we perform a worst-case vulnerability assessment by 
evaluating failure scenarios for assets exposed to flooding. Figure 10 shows the number of 
different asset types, expressed as percentages of their total numbers, intersecting with the flood 
areas and belonging to each category of flood risk likelihood. Following the estimate of assets 
intersecting flood regions, the negative consequences are estimated by assuming four worst-case 
scenarios where: (i) all assets that intersect with floods fail; and only assets exposed to (ii) low, 
(iii) moderate or (iv) significant flood risk fail separately. Figure 11 shows the analysis results, 
where it can be inferred that the heating, monitoring and signalling assets that are flooded have a 
substantial impact on the railway network. Though not shown here, we can spatially infer that 
the assets that are exposed to flooding risks are located along some of the busier rail routes, 
which result in high disruption impacts. For risk management the results show that planning and 
resource allocation should concentrate on such busy routes. In all cases many assets in areas with 
low flood likelihoods have large vulnerability impacts if they fail. These results indicate that the 
low flood risk areas cannot be ignored when risk reduction measures are put in place. For most 
assets we can derive similar inferences for moderate and significant flood likelihood vulnerability 
outcomes. The case of traction system vulnerability outcomes again differs from other assets, 
because when a smaller percentage of traction substations fail they are backed-up by the other 
substations, whereas such robustness does not exist in other systems. 

 
Figure 10. Flood vulnerability result showing the 
percentages of different types within each flood 
likelihood zone. 

 
Figure 11. Flood vulnerability result showing the 
percentages of disrupted passengers for different 
type of flood likelihood outcomes. 

4.3 Usefulness and development of vulnerability analysis 
The winter floods in 2013-2014 in caused major disruptions to Great Britain’s rail network, when 
large parts of the network were disrupted for extended periods. Several disruptions on the 
network occurred due to key critical component failures of the type we discussed in this study. 
Since we have mapped everything spatially we are able to provide Network Rail with 
information on vulnerability locations and transport corridors. As discussed in Section 1, from 
Network Rail’s perspective this analysis is very useful towards informing systemic risks and 
utilising this information to improve network resilience. To make this study of greater use to 
Network Rail and other railway operators, other asset datasets can be incorporated to create a 
comprehensive vulnerability and risk assessment tool. These include, among others: (i) Network 
Rail’s Fault Management System (FMS) dataset which records all key critical component failures 
and their causes, which can help in creating better strategic and probabilistic failure scenario; (ii) 
Network Rail asset datasets on flood and other hazard protecting measures, which can provide a 
better hazard vulnerability assessment; and (iii) Passenger ticketing information datasets that 
provide data in trips during peak or non-peak hours, which would give better trip disruption 
estimates.  
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5. Conclusions 

The work presented in this paper outlines a detailed vulnerability assessment methodology for 
critical infrastructures at the national scale. We have provided a comprehensive methodology for 
building spatial railway network models, railway trip assignment models and vulnerability 
assessment algorithms for national level system failure analysis. We also provide a dataset and 
template for understanding interdependencies in national-scale railway networks and mapping 
them spatially, creating a useful tool for infrastructure planners and operators. Through this 
methodology we have addressed two key issues in building meaningful national scale 
infrastructure representations, namely: (i) conceptualizing infrastructure network models that 
capture critical asset characteristics; and (ii) building functionality based interdependency 
mapping between assets to capture the geographic and operational characteristics of 
infrastructure networks. The simulation-based approach outlined here highlights the capabilities 
of the framework to capture multiple vulnerability outcomes and check different failure 
sensitivities. Overall the framework addresses the requirements of a comprehensive systems 
performance assessment or impact assessment. 

The case study presented here shows a network model representation of Great Britain’s railway 
infrastructure, which is close to the actual geographic and functional system. Through various 
datasets we have been able to assemble information on critical railway assets and infer their 
spatial and functional mapping as best as possible. The analysis provides a template for 
understanding any modern railway system around the world. We have also presented a railway 
trip assignment model based on aggregate station usage and service timetable information. The 
model can be used for present or future railway trip forecasts based on available data. In the 
vulnerability analysis results for the railway infrastructure the most critical asset impacts are in 
terms of signalling, monitoring, heating and traction systems, whereas when interdependent 
infrastructures are considered electricity and telecommunications networks have the biggest 
impact on railway operations. In the flood vulnerability analysis, we have been able to show that 
even though there are only a small number of assets exposed to flooding, their impacts on the 
network functionality are substantial. The vulnerability results highlight the importance of 
considering: (i) quantity and spatial extents of assets, which influence the spread of failures; and 
(ii) the specific locations of assets, which influence the disruptions of network flows.  

Train operators and planners to identify the locations and sources of vulnerabilities in their 
networks and plan accordingly can use the detailed analysis of the railway system. Further 
analysis using this work will lead towards national infrastructure risk analysis and adaptation 
planning.  
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