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Predicting truck (heavy vehicle) travel time is a principal component of freight project 
prioritization and planning. However, most existing travel time prediction models are designed 
for passenger vehicles and fail to make truck specific forecasts or use truck specific data. Little is 
known about the impact of this limitation, or how truck travel time prediction could be improved 
in response to freight investments with an improved methodology. In light of this, this paper 
proposes a pragmatic multi-regime speed-density relationship based approach to predict freeway 
truck travel time using empirical truck probe GPS data (which is increasingly available in North 
American and Europe) and loop detector data. Traffic regimes are segmented using a cluster 
analysis approach. Two case studies are presented to illustrate the approach. The travel time 
estimates are compared with the Bureau of Public Roads (BPR) model and the Akçelik model 
outputs. It is found that the proposed method is able to estimate more accurate travel times than 
traditional methods. The predicted travel time can support freight prioritization and planning. 
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1. Introduction 

In both Europe and North American, predicting truck (heavy vehicle) travel time is a principle 
component of freight planning. For instance, most freight prioritization tools count travel time 
reduction as one of the key project benefits associated with a freight investment. Travel time 
changes are also an input into other calculations, for example, vehicle operating cost. Historically, 
vehicle performance functions have been used to predict travel time in planning tools, e.g. project 
prioritization tools and travel demand models. However, most vehicle performance functions are 
designed to represent passenger travel and do not consider truck performance separately. As a 
result, in these planning tools, trucks performance is either treated the same as passenger travel 
or approximated by simply applying an adjustment factor to passenger travel. For instance, the 
Puget Sound Regional Council’s (in Washington State, USA) travel demand model converts truck 
volume to passenger car equivalents for trip assignment and applies an additional 25% factor on 
travel time of trucks traveling on freeways during model calibration (Cambridge Systematics, 
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2007).  Similarly, the Atlanta Regional Commission (in Georgia State, USA) model assigns trucks 
to the network with a time-penalty value relative to passenger travel (Atlanta Regional 
Commission 2011). Although there are a considerable number of truck specific models, they are 
designed for modelling truck demand generation and distribution (Cambridge Systematics and 
Jack Faucett Associates, 2001) and truck specific performance functions for predicting travel time 
are not found in the literature. One reason for this is the deficiency of truck specific data 
(McCormack and Hallenbeck 2006). What’s more, many passenger trip travel time prediction 
models that have been used for truck related study rely on out-of-date data or limited samples. 
For instance, the travel time prediction model developed by the U.S. Bureau of Public Roads, 
called the BPR function, was proposed based on data collected on uncongested highways, and 
therefore is not able to capture the travel time under congested conditions (U.S. Bureau of Public 
Roads, 1964).  

Fortunately, the needs for quantitative freight performance measures and planning have been 
recognized. An increasing number of trucks in both North America and Europe are equipped 
with GPS devices (McCormack and Aakre 2014). One market research firm forecasts that by 2017 
21% (Europe) and 22% (North America) of all non-privately owned commercial vehicles will 
have GPS fleet management systems (Berg Insight 2014). Several studies have investigated how 
to collect, process and apply truck GPS data in North America, Australia and European counties 
(McCormack and Hallenbeck 2006, Greaves and Figliozzi 2008, and Pluvient et al. 2012). While 
most truck GPS data based research focus on evaluating current performance, no known study 
predicts truck travel time using truck GPS data. Thus the objective of this research is to propose a 
transferable framework to predict truck travel time that can be applied to different locations 
based upon available truck GPS data. The models generated by the proposed framework can 
support freight planning, e.g. estimating future truck travel time associated with freight 
investment or predicting truck travel time in travel demand model. 

2. Literature Review 

2.1 State of the practice of truck probe GPS data applications 
The usage of truck GPS data for freight related studies has gained increasing attention given the 
growing market penetration of GPS technology. A number of transportation agencies have or are 
planning to use truck GPS data to evaluate roadway performance.  For example in Norway, data 
from GPS devices will be used to monitor important freight corridors (McCormack and Aakre 
2014). In the USA, the Federal Highway Administration (FHWA) collaborated with the American 
Transportation Research Institute (ATRI) to investigate how data gathering from GPS devices 
installed in trucks can be used to measure mobility and reliability along U.S. interstate highways 
(ATRI and FHWA 2005). A series of studies have been conducted since 2002, including 
measuring average truck speed, travel time, and travel time reliability (using the buffer index). 
By 2012, 250 freight-significant highway locations in the U.S. were monitored and ranked based 
on congestion using truck GPS data. In June 2013, the FHWA released the National Performance 
Management Research Data Set, a 5-minute aggregated truck GPS speed data set covering the 
entire US national highway system for truck performance measure (FHWA 2013). As truck GPS 
data is increasingly available to transportation agencies and researchers, there are studies 
evaluating truck mobility. Figliozzi et al. (2011) utilized the ATRI truck GPS data to examine the 
travel time and travel time reliability on Interstate-5 corridor in Oregon State, USA. Using 
statistical techniques. Liao (2014) studied truck mobility, delay and reliability along 38 critical 
freight-significant corridors in Twin-City, USA to identify truck bottlenecks using truck GPS 
data. Ma et al. (2011) implemented a truck trip identification algorithm based on truck GPS data 
collected in the City of Seattle, USA. They also developed an online platform to measure and 
report truck trip performance including speed, trip distance, travel time, and travel time 
reliability. Zhao et al. (2011) employed the same dataset to measure truck travel time on 
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freeways. Wang et al (2015) employed truck GPS data to quantify truck travel time reliability 
using different models and provided recommendations on the appropriate models under 
different conditions. 

In addition, truck GPS data is used to understand truck trip characteristics. Pluvinet et al. (2012) 
proposed a GPS survey methodology to collect truck movement data in Spain and France. The 
GPS data was collected by mobile phone devices. The authors analyzed the trip characters, 
including number of delivery stops, duration of a delivery stop, length of route, and duration of a 
route. Truck GPS data also had been used to understand and evaluate truck behaviors, e.g. the 
studying by Wang and Goodchild (2014) quantify the impacts of tolling on truck speed and 
routing choice. Despite that there are studies using truck GPS data to study truck mobility and 
behaviors, none of them provide insight into how truck GPS data can be used to predict future 
truck travel time.  

2.2 Prediction of travel time 
There is considerable research being done on predicting travel time (Lin et al 2005). These 
approaches can be classified into two categories based on their applications: short-term (real 
time) travel time prediction for traffic operation purposes and long-term travel time estimation 
for transportation planning purposes. A great deal of recent research has been targeted at 
developing short-term travel time prediction models using statistical techniques and 
mathematical modelling approaches, including time series (D'Angelo 1999), Kalman filtering 
(Chien 2003), artificial neural networks (Van Lint 2005), and Markov chain (Yeon 2008). Most of 
these approaches require current traffic conditions and historical observations, as well as 
considerable computing resources to develop predictions for real-time traffic operations. The 
objective of this paper is to propose an approach that can support long-term freight project 
prioritization and planning, not real-time operations, and therefore, the literature review 
emphasizes travel time prediction over a longer time horizon.  

One of the most straightforward methodologies for longer time travel time estimation is the use 
of speed and volume-capacity ratio (V/C) relationship. It has been applied extensively in various 
project benefit-cost analysis tools (McFarland 1993, Dowling Associates 2000). The speed is 
predetermined and changes in response to various V/C, facility type and speed limit. This 
engineering relationship is simple but not always accurate. In addition, it does not capture any 
network effects when additional traffic is attracted to the improved segments from other roads. 
Equilibrium traffic assignment methods address this issue, by assigning traffic to the network 
based on the predefined cost functions. The entire system reaches an equilibrium status assuming 
all vehicles travel along the minimum cost path. For instance, the Freight Analysis Framework 
version 3 (FAF3) freight traffic analysis developed by Battelle (2011) uses this method to assign 
freight traffic flow to the national highway network. The FAF3 employs the BPR function (U.S. 
Bureau of Public Roads 1964) as the cost function for the stochastic user equilibrium traffic 
assignment procedure, as shown in Equation 1.  

[1 ( ) ]BPR ffTT TT x βα= × +                                                                                                              (1) 
where TTBPR = segment traversal time estimated using the BPR function, 

TTff = segment vehicle travel time at free flow speed, 

x = volume-capacity ratio, 

α and β are determined by facility type, free-flow speed and  speed at capacity. 

According to the Highway Capacity Manual (HCM 2000), the freeway free flow speed is 
calculated based on the information of number of lanes, lane width, shoulder width, and 
interchange density. Segment capacity is defined as number of vehicles during one hour under 
free-flow condition, and determined by facility type and free-flow speed. 
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The parameter α of the BPR function influences the ratio of free-flow speed to the speed at 
capacity. The parameter β determines how sensitive the speed change is when v/c is close to 1.0 
(Dowling et al 1998). Given the characteristics of the two case studies of this paper, α and β are 
assigned to 0.15 and 4 respectively.  

The BPR function assumes travel time has a linear relationship with volume-capacity ratio. The 
model was developed by fitting data collected on uncongested freeways, and does not capture 
the travel time under congestion condition.  To overcome the inaccurate prediction of 
oversaturated condition, Akçelik developed a time-dependent travel time prediction function 
based on the steady-state delay equation for a single channel queuing system, and this model was 
recommended by the HCM 2000 for predicting vehicle travel time for planning purposes 
(Akçelik et al 1991, HCM 2000).  The model is shown in Equation 2.  

2
2

2

160.25 [( 1) ( 1) ]Ak fçelik f
JLTT TT T x x

T
= + − + − +                                                            (2) 

where TTAkçelik = segment traversal time predicted using the Akçelik function, 

T = expected duration of demand (typically 1 hour), 

L = segment length (mile) 

J = calibration parameters determined by facility type, signal per mile, free-flow speed and speed 
at capacity (exhibit 30-4, HCM 2000) 

Although the above two travel time prediction equations are extensively employed in travel 
demand models to estimate vehicle speed and travel time in response to various traffic volumes, 
neither of them is a truck specific model. As a result, there exist considerable deviations between 
the truck travel estimates and actual truck travel times. To solve this issue and predict reasonably 
accurate truck travel time for freight planning, this paper proposes an approach to forecast truck 
travel time based on empirical truck GPS observations.  

The above literature review reveals that (1) despite the existence of studies using truck GPS data 
to study truck mobility and behaviors, none provide insight into how truck GPS data can be used 
to predict truck travel time, (2) although there exist travel time prediction equations that are 
extensively employed in travel demand models to estimate vehicle speed and travel time in 
response to various traffic volumes, none of them are truck specific. To bridge this gap, this paper 
proposes a pragmatic approach to estimate truck travel time in response to traffic changes using 
truck GPS data and loop data. The logic of this approach is based on multi-regime relationships 
between truck speed and segment density. Cluster analysis was employed to segment traffic 
regimes, and truck travel time is estimated in response to segment density changes. These 
predicted travel times can be used to estimate travel time changes associated with freight 
investments or other planning practices. 

3. Methodology 

This section introduces the proposed freeway truck travel time prediction approach. The 
proposed approach predicts truck travel time based on the relationships between truck speed 
and density, which were retrieved from truck GPS data and dual-loop detectors respectively. The 
k-means cluster analysis algorithm was selected to partition data into homogeneous groups 
based on the characteristics of different traffic regimes.  

The travel time prediction approach consists of 4 major steps:  

1. Classify clusters based on the characteristics of truck speed and segment traffic volume 
using k-means algorithm,  

2. Fit speed-density relationships,  
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3. Estimate freeway truck travel time, and 
4. Evaluate estimation accuracy.  

3.1 Identify clusters 
Existing traffic flow studies have observed that traffic data shows two clear phases: free-flow and 
congested phases. In the free-flow phase, vehicles move at their desired speed and there is little 
influence/interaction between vehicles. In the congested phase, the traffic volume on the segment 
approaches capacity, and vehicles speed declines. Recent studies have also identified a 
transitional phase, called the intermediate phase (Kerner 1996). In the intermediate phase, 
vehicles experience stop-and-go driving conditions and are forced to drive as part of the overall 
traffic. Both two-regime and three-regime traffic models have been proposed in the literature. 
The first two-regime traffic flow model was proposed by Edie (1961), in which, the free-flow 
regime was fitted using the Underwood model and the congestion-flow regime was represented 
by Greenberg model, as shown in Equation (3). 

54.9exp( /163.9)     50
26.8ln(162.5 / )          50

k for k
u

k for k
− ≤

=  ≥
                                                                               (3) 

where u = vehicle speed (mph) 

k = traffic density (vehicles per lane per mile) 

Drake et al. (1967) developed a three-regime traffic model based on the Greenshields-type linear 
model for all three regimes, as given in Equation (4). 

50 0.098               40
81.4 0.913           40 65
40 0.265              65

k for k
u k for k

k for k

− ≤
= − ≤ ≤
 − ≥

                                                                            (4) 

While these multi-regime models substantially improve the capability to capture different traffic 
characteristics under various traffic conditions, one of the major challenges of proposing such 
models is to determine the breakpoints between regimes (Sun and Zhou 2005). In the literature, 
most density breakpoints were determined by the researchers’ engineering experience, which is 
subjective and biased by the judgment of model developers. Sun and Zhou (2005) employed the 
Cluster Analysis method to determine the breakpoints automatically given the fact that data 
belongs to the same cluster share similar features and data with different features belong to 
different groups. This paper also employs a cluster analysis method to determine the 
breakpoints. Cluster analysis is a methodology to classify samples into a number of groups using 
a quantitative measure of association. The k-means algorithm is chosen in this study to identify 
traffic clusters. This algorithm is a centroid-based clustering algorithm, which aims to find the k 
cluster centers and assign the data to the nearest cluster center whose mean yields the least 
within-cluster sum of squares (Hartigan 1975). The k-means algorithm requires that the number 
of clusters is predetermined by modelers. Other cluster methods which the number of clusters is 
not predetermined (e.g. hierarchical clustering) were not selected. This is because the objective of 
this study is to develop an applicable approach to classify data belonging to the same traffic 
regime and to develop speed-density relationships, rather than calculating the optimal number of 
clusters that may not be applicable to establish speed-density relationships. The cluster analysis 
was accomplished using the R software package “cluster” (R Software 2014). Clusters are 
identified by minimizing the distance between observations and centroid of each cluster.  

3.2 Fit truck speed-density relationships 
For each cluster, the corresponding speed density relationship is fitted by minimizing squared 
errors. According to empirical observations, the speed-density relationships usually follow three 
relationships. The linear relationship originated from the Greenshields’ Model (Greenshields 
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1935); the logarithmic relationship originated from the Greenberger Model (Greenberger 1957), 
and the exponential relationships originated from the Underwood Model (Underwood 1961). The 
three original models are presented in Equation 5 to 7. The appropriate format to fit the data is 
determined based on the adjusted R-squared values using the R software. The one with the 
greatest R-squared value is chosen to represent the speed-density relationship of the empirical 
observations.  The major advantage of these three models is the mathematical simplicity, while 
the primary drawback is none of these three models is able to draw a whole picture of speed-
density relationship. More specifically, the Greenshields’ model assumes speed and density 
follows a linear relationship, but it is hard to find such a relationship in empirical data. The 
Greenberger model is not able to predict speed at low density where the speed tends to infinity 
when density tends to infinity. For the Underwood model, it fails to predict speed at high density 
situation where the speed is equal to zero when density reaches infinity (Wang 2009).  

(1 / )f ju u k k= −                                                                                                                      (5) 

ln( / )m ju u k k=                                                                                                                    (6) 

0exp( / )fu u k k= −                                                                                                              (7) 

Where fu  = free-flow speed (mph) 

jk  = jam density (vehicles per lane per mile) 

mu  = optimal speed when flow reaches the maximum value (mph) 

0k  = optimal density (vehicles per lane per mile) 

3.3 Estimate truck travel time 
Truck travel time is estimated by dividing segment distance by speed predicted on the speed-
density relationships. It is assumed that trucks travel at a constant speed along the segment. This 
assumption is reasonable when the segment is short and maintains similar features, including 
both traffic volume and roadway geometric characteristics. This approach has been proved to be 
a reliable method by comparing the travel time estimates with empirical observations (Zhao 
2011). In their research, the segment being studied was divided into several shorter sub-
segments. The travel time of each sub-segment was obtained by dividing the sub-segment 
distance by the average truck speed along the sub-segment. Travel time of the entire link was the 
sum of the travel time of each sub-segment. The result was compared with both empirical GPS 
observations and estimates based on loop detector data. It is found that the approach is 
sufficiently accurate to estimate truck travel time on freeways. 

3.4 Evaluate results 
Mean absolute percentage error (MAPE), which is widely used as a measure to quantify the 
difference between the estimated value and the observed value, is chosen to evaluate the 
accuracy of the prediction, as shown in equation 8. In this study, the observed travel time is 
defined as the estimates obtained by dividing segment distance by average truck speed from GPS 
data. The MAPE value of the proposed approach is compared with the MAPE values of the BRP 
function and the Akçelik function. A lower MAPE value represents more accurate prediction of 
truck travel time. 

1

'1 100%
n

i i

i i

TT TTMAPE
n TT=

−
= ×∑                                                                                           (8) 

where n = total number of examples, 

TTi = observed travel time, 

TTi’ = model predicted travel time. 
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4. Case Studies 

4.1 Data preparation 
Two traffic datasets from different locations in Washington State in the USA were collected to 
demonstrate the proposed approach: Interstate-5 (I-5) northbound between milepost (MP) 158 
and 161 in the City of Seattle and Interstate-405 (I-405) northbound between MP 8 and 10 in the 
City of Bellevue. Figure 1 shows the locations of the two segments in Great Seattle Area. Both are 
high capacity roadways and critical connectors for the region and are similar in design and 
operations to many high capacity multi-lane highways in Europe. The I-5 segment being studied 
is a 5-lane (each direction) interstate highway served 195,000 vehicles daily (both directions) in 
2013 (WSDOT, 2015a). The mean truck travel speed was 54.7 mph and there were 10% of trucks 
traveling below 60% of posted speed of 60 mph between September 2010 and September 2011 
(WSDOT, 2015b). The I-405 segment is a 5-lane (each direction) interstate highway carried 150,000 
vehicles daily (both directions) in 2013 (WSDOT, 2015a). The mean truck travel speed was 49.2 
mph and there were 15% of trucks traveling below 60% of posted speed of 60 mph (WSDOT, 
2015b). With substantial growth of travel demand in Great Seattle area, traffic along these two 
segments experiences considerable delay. In addition, the traffic is not stable during different 
times-of-day. It is unknown how truck travel time would be improved due to potential 
investment in infrastructure.  These two interstate segments were selected as case studies to 
demonstrate how truck GPS data can be used to forecast truck travel time on a freeway 
associated with transportation investments. 
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Figure 1. Locations of the two case studies 

Truck Speed 
Truck speed used in this research was retrieved from GPS devices installed in commercial 
vehicles traveling along the two selected segments. Data was collected anonymously from May 
2012 to July 2012. The GPS data was reported every 2-15 minutes. Information provided by GPS 
includes a unique device ID, latitude and longitude, instantaneous truck speed, truck heading 
direction, and timestamp (time and date). Vehicle composition and truck trip purposes are 
unknown due to the anonymity of data collection. Data was cleaned and geocoded to the freeway 
network in the ArcGIS environment. More details of data processing can be found in McCormack 
(2011). GPS data was aggregated into 1 hour bins for each freeway segment to get average truck 
speed along the link.  

Roadway Density  
Roadway density was obtained by dividing traffic volume by truck speed. Traffic volume was 
collected by dual-loop detectors deployed in the right-most lane. The raw loop data provides 

I-405 Segment 
I-5 Segment 

I-5 Segment 

MP 158 -161 

I-405 Segment 

MP 8 - 10 
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traffic counts every 20 seconds. Traffic count data was also aggregated into every 1 hour. Case 
study I contains six loop detectors deployed at MP 158.21, 158.92, 159.2, 159.96, 160.4 and 160.97.  
Case study II contains five loop detectors deployed at MP 8.03, 8.4, 8.9, 9.36 and 9.75. Traffic 
volume was estimated as the averaged value of loop detector collections along the segment. 

4.2 Case study 

4.2.1 Case study I 
A 3-mile stretch of northbound I-5 in the City of Seattle, between MP 158 and MP 161 was 
selected as case study I. Both truck GPS data and loop data were collected between May 2012 and 
July 2012. The data set was divided into a training set (May 2012 and June 2012) and a testing set 
(July 2012). Truck speeds along the segment was retrieved from GPS data. Traffic volume was 
calculated as the averaged traffic volume recorded by the six dual loop detectors. Density was 
obtained by dividing traffic volume by truck speed. Figure 2 displays the truck speed-density 
plot of the training dataset.  

  
Figure 2. Case study I truck speed-density plot  

As shown in Figure 2, trucks maintain a constant speed around 60 mph when segment density is 
less than 10 vehicles/mile and speed drops significantly while density increases, with the lowest 
observed speeds of  approximately 20 mph. The K-means algorithm was employed to classify 
dataset into different clusters representing various traffic regimes. It is clear from Figure 2 that 
there are at least two traffic regimes, and may be more as the speed decreases at different rates 
with the increase of density. The appropriate number of clusters is often ambiguous, and 
depends on the distribution of observations in a dataset and the desired resolution of the user. 
Meanwhile, the number should not be too many for convenient use of the model. Thus the 
authors conducted the cluster analysis with two clusters and three clusters respectively, and 
compare the results in the following sections.  

Two Clusters 
Figure 3 and Table 1 present the clustering results when there are two clusters. The first cluster 
characterizes the free-flow traffic regime, in which trucks travel at around 60 mph when segment 
truck density is less than 10 vehicles/mile. The clustering result shows that the average truck 
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speed of cluster 1 is equal to 60 mph, and average density is 4.87 vehicles/mile. The second 
cluster represents the non-free flow condition where truck speed starts to decrease when density 
is greater than 10 vehicles/mile and drops continuously with the increase in segment density. 
The average truck speed and segment density of the second cluster are 54.63 mph and 18.46 
vehicles/mile respectively. It should be noted that the cluster numbers here are only used to 
identify each specific cluster.  

 
Figure 3. Case study I two clusters truck speed-density plot 

Table 1.  Case study I cluster centers of two clusters analysis 

  Cluster 1 Cluster 2 

Truck Speed (mph) 60 54.63 

Density (vehicles/mile) 4.87 18.46 

   
For cluster 1, trucks travel at the average of 60 mph regardless of the segment density. For cluster 
2, truck speed is a dependent variable of density. The authors fitted the data using linear, 
logarithmic, and exponential models which were applied in the rational speed-flow relationships 
shown in Equation5 to 7. It is found that the exponential function provides the best fit of the 
observed data with the greatest R-squared value, and the regression results are summarized in 
Table 2. All parameters are significant with P-values less than 0.0005. The truck speed-density 
relationship of the test dataset is given in Equation 9.  

Table 2. Case study I the second cluster fitted results of two clusters analysis 

  Coefficients Standard Error t Stat P-value 

Intercept 4.478 0.009 469.177 <0.0005 

Density -0.027 0.000 -58.459 <0.0005 
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Data collected in July 2012 was used to evaluate the proposed approach. Hourly traffic volume 
was retrieved from loop detector data and averaged hourly truck speed was calculated from 
truck GPS data. Truck travel time obtained from dividing the segment distance by observed truck 
GPS speed was used as the ground truth travel time to evaluate the accuracy of the proposed 
approach. The authors also employed the BPR function and Akçelik function to estimate travel 
time, and compared with the ground truth travel time to calculate the corresponding MAPE 
values and evaluate the accuracy of each method. As shown in Table 3, the MAPE value of the 
proposed speed-density based approach is 6.16%, less than the MAPE values of BPR and Akçelik 
methods of 11.52% and 11.60% respectively. This result indicates that the proposed approach 
generates less deviation between travel time estimates and observations, and therefore performs 
better than the existing BPR method and Akçelik method. 

Table 3. Case study I MAPE values of each travel time prediction method 

  MAPE value 

Speed-density method (two clusters) 6.16% 

BPR method 11.52% 

Akçelik method 11.60% 

Three Clusters  
Figure 4 and Table 4 show the clustering results with 3 clusters. Similar to the two clusters 
results, cluster 1 represents the free-flow traffic regime, in which traffic density is low and truck 
travel at about 60 mph when density is less than 11 vehicles/mile. The speed is constant and not 
affected by density. The average truck speed and density of cluster 1 is 60 mph and 4.94 
vehicles/mile respectively. Truck speed in cluster 2 and cluster 3 decreases considerably with the 
increase of density. Cluster 2 features a high speed and intermediate density phase when density 
is between 11 and 25 vehicles/mile, and cluster 3 characterizes a low speed and high density 
congested phase when density is greater than 25 vehicles/mile. For cluster 2, the average speed 
and density are 58.77bmph and 15.26 vehicles/mile. For cluster 3, the average speed and density 
are 32.33 mph and 35.71 vehicles/mile.  
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Figure 4. Case study I three clusters truck speed-density plot  

Table 4. Case Study I Cluster Centers of Three Clusters Analysis 
  Cluster 1 Cluster 2 Cluster 3 

Truck Speed (mph) 60 58.77 32.33 
Density (vehicles/mile) 4.94 15.26 35.71 

As shown in Figure 4, the rate at which speed decreases differs between cluster 2 and 3. The 
linear, logarithmic and exponential models were tested to fit the cluster 2 and 3 data. It is found 
that the linear function fits cluster 2 data best and exponential function fits the cluster 3 data best, 
the fitting results are presented in Table 5. All parameters are statistically significant. Truck 
speed-density relationships are given in Equation 10.   

Table 5. (a) Case study I second cluster fitted results and (b) third cluster fitted results 
  Coefficients Standard Error t Stat P-value 

Intercept 72.709 0.794 91.569 <0.0005 
Density -0.914 0.051 17.975 <0.0005 

                                                         (a) 
  Coefficients Standard Error t Stat P-value 

Intercept 4.238 0.068 61.926 <0.0005 
Density -0.022 0.002 11.804 <0.0005 

                                                        (b) 
Truck speed and density relationship: 

60                                10
72.709 0.914           11 25
exp(4.238 0.022 )   25

u for k
u k for k
u k for k

= ≤
 = − < <
 = − ≥

                                                                           (10) 
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Similar to the previous analysis, the authors evaluated the proposed model using the test dataset 
and calculated the MAPE values. The MAPE value of the proposed approach is 5.55% as shown 
in Table 6. This value is less than the corresponding values of the BPR method and the Akçelik 
method, which are 11.52% and 11.60% respectively. This result reveals that the proposed 
approach generates, by a substantial margin, more accurate results than the other two methods. 

Table 6. Case study I MAPE values of the selected travel time prediction methods 
  MAPE value 

Speed-density method (three clusters) 5.55% 
BPR method 11.52% 

Akçelik method 11.60% 

By comparing Table 3 and Table 6, the two clusters and three clusters analysis results show that 
the MAPE value is improved from 6.61% to 5.55%. While the three clusters approach provides a 
slightly more accurate result, it also requires more data analysis efforts. While the user is entitled 
to choose the number of clusters appropriate for their study, for this case study, no significant 
improvement is observed when using three clusters instead of two clusters, and the case study is 
carried forward with the two clusters approach.  

4.2.2 Case study II 
Case study II is a 2-mile segment of I-405 northbound between MP 8 and 10. Traffic volume was 
the averaged value of data collected by the five loop detectors deployed along the rightmost lane. 
The speed-density plot is displayed in Figure 5. Similar to case study I, trucks travel at a constant 
speed in free-flow traffic pattern. Truck speed decreases when density is greater than 20 
vehicles/mile. Both two clusters and three clusters analyses were performed to identify the 
appropriate number of clusters for this dataset.   

 
Figure 5. Case study II truck speed-density plot 

Two Clusters 
Figure 6 and Table 7 present the clustering results with two identified clusters. Cluster 1 features 
free-flow phase, in which trucks travel at a constant speed. According to the cluster analysis 
result, the average speed and density of cluster 1 is 58 mph and 9.12 vehicles/mile. For cluster 2, 
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truck speed starts to decline when density is greater than 16 vehicles/mile. The average speed 
and density are 50.88 mph and 29.39 vehicles/mile respectively.  

 
Figure 6. Case study II two clusters truck speed-density plot 

Table 7. Case study II cluster centers of two clusters analysis 
  Cluster 1 Cluster 2 

Truck Speed (mph) 58 50.88 
Density (vehicles/mile) 9.12 29.39 

To fit the data of cluster 2, the linear, logarithmic and exponential models were tested, and the 
adjusted R-squared values of each model indicate that the linear model provides the best fit. The 
model results are presented in Table 8. The truck speed-density relationship is given in Equation 
11.  

Table 8. Case study II the second cluster fitted results of two clusters analysis 
  Coefficients Standard Error t Stat P-value 

Intercept 81.88 0.82 99.70 <0.0005 
Density -1.05 0.03 -38.65 <0.0005 

58                                   16
81.88 1.05                  16

u for k
u k for k
= ≤

 = − >
                                                                            (11) 

The MAPE values of the proposed approach, BPR function and Akçelik function were calculated 
and the results are summarized in Table 9. The proposed approach generates the least MAPE 
value, and therefore performs better than the other two approaches.  

Table 9.           Case study II MAPE values of the selected travel time prediction methods 
  MAPE value 

Speed-density method (two clusters) 7.33% 
BPR function 13.75% 

Akçelik method 14.60% 
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Three Clusters 
The three clusters were tested, and the speed-flow plot is displayed in Figure 7 and Table 10. 
While cluster 1 characterizes the free-flow traffic regime, cluster 2 represents the intermediate 
phase and cluster 3 features the congested phase. The authors tested linear, logarithmic and 
exponential models and find that none of them is able to delineate the dataset of cluster 2 and 3 
well given the R-squared values are all less than 0.5. Thus the authors concluded that two clusters 
analysis is better than three clusters for this specific data of case study II.  

 
Figure 7. Case study II three clusters speed-density plot 

Table 10. Case study II cluster centers of three clusters analysis 
  Cluster 1 Cluster 2 Cluster 3 

Truck Speed 59.73 54.35 42.46 
Density 14.49 27.31 36.06 

The above two case studies illustrate how the proposed multi-regime speed-density based 
approach can be used to forecast truck travel time. The analysis results indicate that the proposed 
approach is superior to the traditional BPR method and Akçelik method, and is able to forecast 
more accurate travel time. The number of clusters can be determined by both the distribution of 
data and the desired resolution of the user. The increase of number of clusters is able to improve 
the travel time prediction accuracy, but will involve additional data processing efforts and model 
application complexity. For both case studies, two clusters are able to provide substantial 
improvements over current methods used to predict truck travel time.  

Despite the fact that both case studies considered freeways in the Puget Sound, the speed-density 
relationships shown in Equations 9 and 11 are different. Figure 8 shows the speed-density plot of 
the two datasets. It is noted that two case studies have distinct speed-density relationships. For 
case study I, speed starts to decline when density is greater than 10 vehicles/mile, while the 
breakpoint of case study II is around 16 vehicles/mile. Further, when density exceeds the 
breakpoint, dataset 1 has a convex shape and an exponential model provides the best fit, while 
dataset 2 displays a straight and linear relationship. The deviation of the speed-density 
distributions is associated with several characteristics of each segment, including roadway 
geometric features and travel demand distribution. Thus, the objective of this paper is not to 
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develop a generalized model that is applicable for any location as it is less accurate to select one 
model to fit different datasets. Given this, and the simplicity of the approach, we recommend 
users to apply the clustering and best-fit modelling approach, and develop their own equations 
for different locations.  

 
Figure 8. Speed-density plot of case study I and case study II 

5. Conclusions 

This paper proposes a multi-regime speed-density relationship based approach to predict 
freeway truck travel time using empirical truck probe GPS data and loop detector data. The 
impacts of both truck and passenger vehicle densities are included as the density data used in 
this study is mixed traffic density collected by loop detectors. The K-means cluster analysis 
algorithm was employed to determine the breakpoints of different traffic regimes. Each cluster 
was fitted using linear, logarithmic, and exponential models, and the model with the highest R-
squared value was selected. The parameters of the best models for both cases are all statistically 
significant. The travel time estimates were compared with estimates calculated based on 
empirical truck GPS speed data, and the mean absolute percentage error was calculated. This was 
compared with the widely used BPR model and the Akçelik model. It is found that the new 
approach is able to estimate more accurate travel times than traditional methods given it 
generates the least MAPE values for both case studies. The truck GPS data employed in this 
study was not collected specially for predicting travel time, but for trucking company fleet 
management. With the growing market penetration of GPS technology in the trucking industry 
in both North American and Europe, this paper is a great asset to demonstrate how this type of 
GPS data can be used to produce better travel time estimates. In addition, it should be noted that 
this paper does not intend to develop a generalized result that fits different North American or 
European datasets since travel time is determined by many other factors in addition to traffic 
density. We recommend users to apply the proposed approach to develop their own equations 
for different locations.  

The authors investigated the appropriate number of clusters when segment the data using the K-
means algorithm. For case study I, the two-cluster identification is recommended since it is easier 
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to use and still provides reasonably high accuracy of estimates. For case study II, the two-cluster 
identification is recommended as well since the commonly applied speed-density formats do not 
fit the three-cluster clustering results. The analysis reveals that the number of clusters is 
determined by the distribution of data and the resolution desired by users. In the case studies 
evaluated, the more clusters are classified, the less deviation is obtained. The two clusters 
analysis is recommended when the improvement from three to two clusters is subtle.     

The predicted travel time is usable to support freight planning and project prioritization effort as 
conducted in the USA and Europe.  For instance, the speed-density relationships helps highway 
managers understand how truck speeds changes in response to different traffic regimes, and 
therefore managers can adjust traffic volume by imposing tolls or changing existing toll rates to 
manage the system to reach the desired speed. Another example of application is to forecast truck 
travel time associated with traffic density changes resulting from different freight investments 
and prioritize projects based on their impacts. More specifically, one can apply this approach to 
generate the multi-regime speed-density relationships based on GPS and loop data, and estimate 
the corresponding post-project traffic density. Although the GPS data may be provided by 
different vendors than that described in this paper, the data formats are consistent with those 
identified in this paper. 
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