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Detecting activity types from GPS traces has been important topic in travel surveys. Compared 

to inferring transport mode, existing methods are still relatively inaccurate in detecting activity 
types due to the simplicity of their assumptions and/or lack of background information. To 
reduce this gap, this paper reports the results of an endeavour to infer activity type by 
incorporating both spatial information and aggregated temporal information. Three machine 
learning algorithms, Bayesian belief network, decision tree and random forest, are used to 
investigate the performance of these approaches in detecting activity types. The test is based on 
GPS traces and prompted recall data, collected in the Rijnmond region, The Netherlands. Results 
show that the random forest model has the highest accuracy. The model incorporating spatial 
and temporal information can predict activity types with an accuracy of 96.8% for the used 
dataset. These findings are expected to benefit research on the use of GPS technology to collect 
activity-travel diary data. 
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1. Introduction 

Activity types (or trip purposes) are key aspects in modeling travel behavior. Traditionally, data 
related to activities and trips are collected using activity-travel diaries in the context of travel 
surveys. The information collected in this way mostly relies on what people reported. It has been 
widely recognized that the data collected with conventional survey methods can be erroneous as 
people may not be able to provide correct or accurate information about their activities and trips, 
i.e. duration and location information. As an alternative of traditional survey methods, GPS-
based travel surveys may be more efficient in collecting accurate information about people’s 
activities and trips in the sense that the data, which is automatically recorded, represents 
substantial details at both spatial and temporal scales (Wolf, 2001). 

The imputed activity types and transportation modes from GPS traces provide inputs for 
transport modelling, accessibility analysis and discrete choice modelling (Neutens et al., 2007, 
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2008; Van Wee and Geurs, 2011). However, the detection is not straightforward as the activity 
and travel pattern need to be extracted from GPS traces. A variety of procedures to transform 
GPS traces into segmented activities and trips have been proposed in literature (Wolf, et al., 2004; 
Stopher, et al., 2005; Chung and Shalaby, 2005; Tsui and Shalaby, 2006; Du and Aultman-Hall, 
2007; Deng and Ji, 2010). One common approach is a sequential procedure where GPS traces are 
divided into activities or trips using an empirical time gap value, e.g., an activity is recognized if 
the time gap is shorter than 120 seconds (Schuessler and Axhausen, 2009). The transportation 
modes and activity types are then detected respectively for each portion of the segmented GPS 
traces. Alternatively, Moiseeva, et al. (2010) and Feng and Timmermans (2013) treated trips and 
activities together considering the difference in patterns. A set of merge rules was incorporated to 
determine the most possible segmentation of trips and activities.  

Relative to detecting transportation mode, the imputation of activity types from GPS traces has 
not been addressed sufficiently in literature. Basically, different activities have their own unique 
characteristics. The timing and duration of activities at the aggregate level may vary between 
different types. For example, home or work activities are generally considered to have a longer 
duration than other activities. Differences between activities may also relate to time of day. For 
instance, the work commute mostly happen during peak hours in weekdays while shopping 
activities are likely to happen during off-peak time and/or weekends (Schönfelder, et al., 2006).  

In spite of the possible reasoning in the temporal perspective, the type of activity also depends on 
spatial information (Wolf, et al., 2004). In general, the data related to activities has different 
characteristics in the spatial representation from the data related to travel where the latter follows 
a sequence of movement. The GPS traces related to activities however are either missing or 
fluctuated to different locations around a certain area. The measurement is relatively less accurate 
because of effects of urban contexts. This results into higher complexity in the detection of 
activity types relative to transportation modes.  

Due to the importance of locational information, existing studies commonly combine GPS traces 
with GIS data, i.e. land use data, point of interest (POI) data, to assist the identification of activity 
types. The rules developed based on such data are relatively simple. In principle, the shorter the 
distance from a trace point to a targeted location, the more likely the activity type matches the 
location type. For example, Wolf, et al. (2001) showed that activity types could be derived from 
GPS data and an extensive GIS land use database. Wolf, et al. (2004) derived the activity types for 
home activity if the activity location is within 200 meters from the home location. Other types of 
activities were derived by matching the GPS data with available points of interest and land use 
data. Although the results are promising, it also indicated that more GIS data are needed to 
increase the accuracy. 

To get a better quality of activity type data, Stopher, et al. (2008) incorporated individual 
locations into the process to derive activity types. Four personal addresses of respondents were 
collected beforehand, including, workplace or school, and the address of the two most frequently 
used grocery stores. A set of heuristic rules were designed to deduce the activity types. Bohte and 
Maat (2009) adopted similar rules to derive activity types. The activity locations were determined 
from GIS maps listing points of interest data. For example, if a trip ends within a radius of 50 
meters from a known location, it is assumed to be the location being visited. If an activity is 
located within 100 meters from home or work address, it is assumed as a home or work activity. 
This method is considered as efficient. However, it relies on the completeness of personal location 
information. In case that personal location data were not provided, activity types were then 
assigned as missing.  

In order to improve the high rate of missing activity types, Moiseeva, et al. (2010) used multiple 
data sources to detect activity types. A searching procedure was designed to match the activity 
location with different data sources in a sequential order of personal address data, point of 
interest data, land use data and road network data. The method is treated as a kind of integration 
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of existing approaches, while keeping the lowest level of missing activity types. However, such a 
deterministic approach is still limited in the sense that simply using spatial attributes only may 
not be able to capture the differences in temporal scales. 

As a recent extension using the deterministic approach, Li and Stopher (2013) proposed an 
improved process by introducing additional aggregated information related to activity duration 
and tours to derive activity types. The rules were obtained by analyzing the basis information 
based on the NHTS data. Results showed the accuracy by incorporating the determined rules 
yielded an accuracy of 66.5%. Although using the activity duration and tour-related information 
is interesting, it seems there is still room to improve the efficiency of the imputation algorithm. 

Machine learning algorithms are normally considered as be a better alternative of deterministic 
approaches regarding the intrinsic inference and learning capability. In general, deterministic 
approaches may perform not as good as machine learning algorithms, because the latter is 
relatively more flexible to handle complex problems. In a context of multi-functional land use 
areas, i.e. shopping centers, activity types cannot be easily detected using spatial information 
only because of the too much details or missing information of the locations. In this case, 
incorporating more relevant attributes into the identification procedure becomes extremely 
necessary.  

In the perspective of methodological development, different approaches have been applied to 
detect activity locations and activity types. Griffin and Huang (2005) used a density based 
clustering algorithm to identify the most possible point of interest location related to the activity 
location. A decision tree model was then used to infer the activity type using the data such as 
time of day, duration and arrival time. The accuracy reported reached nearly 90%. However, it 
was only implemented in a small pilot trial. A lot of details were insufficiently presented, e.g., 
which activity types were inferred and how the input variables were used.  

McGowen and McNally (2007) used two algorithms, the decision tree and the discriminant 
analysis algorithm, to detect activity types. They used 26 input variables to identify 22 types of 
activities. Accuracy of the two algorithms is similar, around 62%. However, authors also pointed 
out the potential problems which can be conducted in future, e.g. improve the accuracy of 
activity location detection, choose an optimal list of activity type categories, etc. In recent, 
Reumers, et al. (2013) used a decision tree-based model to infer activity types from GPS traces. 
The model considers only two indicators, the activity start time and activity durations, without 
considering the locational information. An accuracy of 74% and 76% for training and test data 
was achieved respectively. The models indicated the importance of time information in the 
semantic enrichment process.  

In summary of existing studies, the method adopted to recognize the type of activities is still 
relatively simple. Researchers have been using locational or temporal information to detect 
activity types. Combined use of the two types of information is rare. Moreover, it seems there is 
still room to improve the imputation accuracy of the existing methods. To fill this research gap, 
we attempt to propose an advanced approach to infer activity types from GPS data. The paper 
will shed lights to the enhancement of the discrimination between different activity types for 
GPS-based travel surveys. More specifically, we incorporate both aggregated temporal 
information and spatial attributes into a learning-based model. The performance of this approach 
will be investigated based on three popular machine learning algorithms, Bayesian belief 
network, decision tree and random forest. The GPS traces and prompted recall data collected 
recently in the Rijnmond region, The Netherlands, will be used for model estimation and 
validation. 

The remainder of the paper is organized as follows. Section 2 will briefly introduce the three 
algorithms. Section 3 will present our GPS data and the process to extract the attribute 
information for imputation. Section 4 will present the results. The paper will be concluded in 
Section 5. 
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2. Imputation algorithms 

Because of the inherent difference in activity characteristics, detecting activity types can be 
treated as a kind of classification problems. Regardless of the ad hoc rule based approach, in this 
paper, we only investigate the feasibility of advanced machine learning algorithms. Regarding 
the key roles and popularity of these algorithms in application of GPS data imputation, we 
selected three representative methods, the Bayesian belief network (BBN), the decision tree (DT) 
and the random forest (RF). We will first briefly describe some fundamental elements of each 
algorithm in the following sections.  

2.1 Bayesian belief network 
A Bayesian (Belief) network (BN) is a graphical representation of probabilistic causal information 
incorporating sets of conditional probability tables. It can be considered an enhanced naïve 
Bayesian model by relaxing the assumption of independent distributions in that BN consider the 
joint probability of an attribute with its parent attributes, while the naive Bayesian assume all 
variables are independent. Thus, a BN represents all factors deemed potentially relevant for 
observing a particular outcome.  

The model is described qualitatively by directed acyclic graphs where nodes and edges 
represent variables and dependencies between variables. The nodes where the edge 
originates and ends are called the parent and the child, respectively. Because of the statistical 
characteristics of BN for probabilistic inference, the probability of each value of a node can be 
computed when the values of the other variables are known. In a Bayesian network, each 
variable is conditionally independent of its non-descendent given the state of its parents. 
That is, if Xi is a variable with parents parents(Xi), all variables that are not descendants 
of Xi are conditionally independent of Xi given parents(Xi). Since independence among the 
variables is clearly defined, not all joint probabilities in the Bayesian system need to be 
calculated, which provides an efficient way to compute the posterior probabilities.  

A BN considers the joint probability of an attribute with its parent attributes. Suppose the set 
of variables in a BBN is (𝑋1, 𝑋2, … , 𝑋𝑛) and that parents (𝑋𝑖) denotes the set of parents of the 
node 𝑋𝑖  in the BBN. Then, the joint probability distribution for (𝑋1, 𝑋2, … , 𝑋𝑛)  can be 
calculated from the product of individual probabilities of the nodes: 

 

𝒑(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏) = ∏ 𝒑(𝑿𝒊|𝐩𝐚𝐫𝐞𝐧𝐭𝐬(𝑿𝒊))𝑵
𝒏=𝟏       (1) 

 

The network is represented as a directed graph, together with an associated set of probability 
tables. In our case, the Bayesian network measures the interrelationship between spatial and 
temporal factors (input), and activity-travel pattern (output), i.e. transportation modes and 
activity episode. All the input variables are considered as child nodes of the activity type. The 
parameters are estimated using the maximum likelihood method when the network structure is 
determined. 

2.2 Decision tree 
Decision tree (DT) is a type of learning method for approximating discrete-valued target 
functions. It classifies instances by sorting them down the tree from the root to leaf nodes, which 
provides the classification of the instance. Each node in the tree specifies a test of some attribute 
of the instance and each branch descending from that node corresponds to one of the possible 
values for this attribute. In general, an instance is classified by repeating a process which starts at 
the root node, tests the attribute and moves down the tree branch. 

Among a variety of decision tree learning methods, C4.5 has been used popularly. C4.5 builds 
decision trees from a set of training data using the concept of entropy. The training data is a set 
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S = 𝑠1, 𝑠2, … , 𝑠𝑛 of already classified samples. Each sample 𝑠𝑖 consists of a p-dimensional vector 

(𝑥1,𝑖 , 𝑥2,𝑖 , … , 𝑥𝑝,𝑖), where the 𝑥𝑗 represent attributes or features of the sample, as well as the class in 

which 𝑠𝑖 falls. At each node of the tree, C4.5 chooses the attribute of the data that most effectively 
splits its set of samples into subsets enriched in one class or the other. The splitting criterion is the 
normalized information gain (difference in entropy).  

 
𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑗|𝑠) =

|𝑠𝑗|

|𝑠|
𝑙𝑜𝑔

|𝑠𝑗|

|𝑠|
 (2) 

 
𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑠) = − ∑

|𝑠𝑗|

|𝑠|

𝑛

𝑗=1

𝑙𝑜𝑔
|𝑠𝑗|

|𝑠|
 (3) 

 𝐺𝑎𝑖𝑛(𝑠, 𝑗) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑗|𝑠)) (4) 

Then, the attribute with the highest normalized information gain is chosen to make the decision.  

C4.5 has been considered as a very efficient classifier in many other applications (Kotsiantis, 
2007). We will compare C4.5 with other major algorithms in this paper in the context of 
transportation mode detection.  

2.3 Random forest 
Random forests (RF) are considered as an ensemble method for classification problems. It starts 
with a standard machine learning technique by constructing a forest of uncorrelated decision 
trees. The algorithm for inducing a random forest was first developed by Breiman (2001). The so 
called out-of-bag estimate was used to monitor the error of random forest. The accuracy of a 
random forest depends on the strength of the individual tree classifiers and a measure of the 
dependence between them. A tree with a low error rate is a strong classifier. Therefore, increasing 
the correlation and the strength of the individual trees increases and decreases the forest error 
rate, respectively.  

The out-of-bag estimates normally mean the internal estimates of the generalization error, 
classifier strength and dependence between trees. The study of error estimates for bagged 
classifiers in Breiman (1996) gives empirical evidence to show that the out-of-bag estimate is as 
accurate as using a test set of the same size as the training set. Therefore, using the out-of-bag 
error estimate removes the need for a set aside test set. In another words, using random forest 
does not need the separate test data set for cross-validation. 

RF grows each tree based on a random selection made from the examples in the training set. All 
the trees are trained with the same parameters but on different training sets. These sets are 
generated from the original training set using the bootstrap procedure: for each training set, the 
same number of vectors is randomly selected as in the original set. The vectors are chosen with 
replacement. That is, some vectors will occur more than once and some will be absent. At each 
node of each trained tree, not all the variables are used to find the best split, but a random subset 
of them. With each node a new subset is generated. However, its size is fixed for all the nodes 
and all the trees. None of the built trees are pruned. 

3. Data and processing 

The GPS data used in this study was collected recently in a large-scale data collection project 
conducted in the Eindhoven and Rotterdam regions, The Netherlands. A Web-based data 
collection and data processing system which was developed before was improved and used in 
this study. The survey was divided into four waves. In each wave, participants were invited take 
the GPS logger for three months. The data were recorded for every three seconds. In addition to 
this, individuals also need to download data from the logger, upload their GPS traces and 
validate their daily activity-travel sequences online. The data regarding activities and trips were 
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then derived using the Trace Annotator system from the GPS traces. In the follow-up online 
prompted recall survey, people were requested to fill out and/or correct missing information 
which they think is inaccurate or missing. The system allows changing, removing and merging 
the imputation data, and creating new activity/travel data. Confirmed daily activity-travel 
sequences are automatically saved into a background database. For details regarding the data 
collection, one can refer to the paper by Feng and Timmermans (2014). 

In this paper, we use the data from Rotterdam because unlike Eindhoven the city has a broader 
set of available transportation modes, including metro and tram. The test of the algorithm is 
therefore more critical in this city. The Rijnmond region includes the city of Rotterdam and its 
surrounding suburbs and municipalities. Around 6 million inhabitants are living in the 
Rotterdam region. Data on daily activity-travel patterns were collected for approximately 430 
respondents consecutively in the Rijnmond Region. As a result, around 329 respondents fully or 
partly completed the survey. A map representing the region is shown in Figure 1. 

To detect activity types and transportation modes, different data were used in the imputation 
process. The GPS trace data were used in combination with the point of interest data to measure 
the spatial relationship between two locations. The prompted recall data (validated data) which 
are although not necessarily error free are considered to perfectly describe true activity-travel 
patterns. More specifically, the activity type data obtained from the prompted recall survey will 
be used to investigate the accuracy of our algorithms. 

The categories of activity types in the survey cover both in-home activities and out-of-home 
activities. For each activity type, it may have multiple sub-categories. For example, a “home” 
activity can be just staying at home or a social activity, e.g., meet friends or relatives. Therefore, in 
this paper, the “home” activity was not considered. In addition, we only include the main activity 
types and exclude the “waiting”, “other” and “unspecified” activities. In total, eleven activity 
types are used in this paper, as shown in Table 1. The data were filtered in advance regarding the 
categories of activity types where data related to missing activity information were ruled out. The 
final data used for imputation has 10,545 number of activity records. 

 

 

Figure 1. The Rijnmond region 
 

http://en.wikipedia.org/wiki/Rotterdam
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Table 1. Categories of activity types and transportation modes 

Items Categories 

Activity types Paid work, daily shopping, non-daily shopping, help parents/children, 
recreation, social, voluntary work, service, leisure, picking-up people, study 

Transportation modes Walk, bike, bus, car, taxi, tram, metro and train 
 

As shown in the table, there are two types of work activities (paid work and voluntary work). 
Some non-daily activities are grouped as service, e.g., getting money from ATM, cutting hair, 
visiting home doctor, etc. In the prompted recall survey, a sub-activity type was listed for 
selection if the main activity included sub categories. Because the type of activities may also be 
relevant to which transportation mode is used, Table 1 also lists the major 8 types of 
transportation modes used to conduct activities. The other two transportation modes, motorped 
and running, are not listed in the table because these modes are quite few and did not appear in 
the filtered dataset. In the following analyses, we do not simulate the effects of these two 
transportation modes.  

3.1 Characteristics of activity types 
Before we further move into the results of imputation algorithms, we first examine the 
differences in the patterns of different activities using the validated data. This might help us to 
understand the importance of contribution factors. Without loss of generality, we use the average 
activity duration and starting time as an example. These two indicators are mostly used in 
previous studies.  

Figure 2 shows the average duration by different activity types. It is obvious that different 
activities have different level of average duration. As one can see the paid work and study have a 
longer duration than other activities. This is reasonable and understandable. In addition, it also 
seems that people pay slightly longer time for non-daily shopping than daily grocery shopping. 

Figure 3 shows the distribution of starting time by different activity types. The starting time was 
classified into eight categories. It is evident that most work activities happen in the morning 
during 7:00~9:00, while social activities happen mostly during the afternoon time during 
13:00~15:00 and after 7:00 at night. In addition, most daily shopping activities happen between 
9:00 in the morning and 17:00 in the afternoon. Taking a special look at the picking-up activity, it 
happens mostly during the morning time period (7:00~9:00) and evening time period 
(15:00~17:00), while the frequency during morning time is higher than that during evening time. 

 

Figure 2. Average duration of different activities 
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Figure 3. Start time of activities 

3.2 Feature extraction 
Because the activity types are related to both the type of the spatial location and the aggregate 
timing and duration information, we therefore consider the factors from both the spatial and 
temporal scales. To extract the spatial and temporal attributes, we process the GPS traces in 
combination of GIS data. The variables considered as the model input are listed in Table 2. 

Except for the variables related to activities, i.e. activity duration and starting time, information 
regarding trips to activities are also considered here. The idea behind there is that the type of 
activities has a relation to the transportation mode. For example, people may not often use bus or 
train for grocery shopping activities.  

Table 2. Variables used in the imputation algorithms 

 Names 

Input variables Activity duration 
Starting time of activities 
Transportation mode to the activity location activities 
Travel time to the activities 
Have locations related to paid work activities, 1 yes and 0 otherwise 
Have locations related to daily shopping, 1 yes and 0 otherwise 
Have locations related to help parents/children activities, 1 yes and 0 otherwise  
Have locations related to non-daily shopping activities, 1 yes and 0 otherwise 
Have locations related to recreation activities, 1 yes and 0 otherwise 
Have locations related to social activities, 1 yes and 0 otherwise 
Have locations related to voluntary work activities, 1 yes and 0 otherwise 
Have locations related to service activities, 1 yes and 0 otherwise 
Have locations related to picking-up people activities, 1 yes and 0 otherwise 
Have locations related to study activities, 1 yes and 0 otherwise 

Output variables Activity types 
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Table 3. Correctly identified instances (CCI) among the three models  

  BN DT RF 

Correctly identified instances 46.2% 69.8% 96.8% 

 

In addition, the variables related to the locations to certain activity are a kind of spatial 
information with dummy values. Basically, all points which are within 100 meters to the activity 
location were considered here. This method differs from the definite way where the activity type 
is same as the type of closest GIS data, but represents the spatial correlation in a flexible manner. 
It means that, within a certain area, the value will be 1 if the pre-defined area covers data belongs 
to the specific type, and 0, otherwise. The number of such variables considered here is same as 
the number of activity type categories. This is expected to enhance the capability to infer activity 
types by incorporating spatial information.  

Such type of data is obtained in the way that the geocoded activity location data were matched 
with the personal location data and POI data. The personal location data were prepared with 
geocoded location information from the intake survey. The POI data, which are from the 
Openstreetmap data source, was processed in advance to keep consistent with our pre-defined 
activity categories. 

Because the location data of activities collected in the prompted recall survey are in the format of 
street names, the first step is then to transform the text of street names into geo-coded locations, 
which can be used to measure the spatial correlation between activity location and GIS data. 
However, the street names can be also erroneous, which leads to the case that we cannot find any 
coordinates in practice. Therefore, a sequential process was designed. First, the street names were 
matched with an online geocoding program to fetch the information through Google service. For 
the street names which cannot be geo-coded, we used the original GPS traces. Extracting the 
coordinates from the original imputation/GPS traces is based on the validated data. The geo-
coding process was designed like this: first, the starting time and ending time of activities are 
compared with the time in GPS traces. A block of epoch data were then recognized. The final 
coordinates attached to the activity location was recognized as the middle epoch in this block. 

Because the data was validated by individuals, it is normal that some activities/trips were added 
by the respondents additionally. This means the portion in the original GPS trace does not exist 
because of the device was left somewhere or the battery runs out. In this case, matching the time 
information with the trace data becomes impossible because the geo-information of the activity 
location cannot be derived from missing data. In this case, we first compare the name with the 
personal locations. If it can be matched, the coordinates in personal data will be used as the 
coordinate of the activity location. Otherwise, the activity location is considered as missing. In 
validating the performance of different algorithms, the data where coordinates are not 
recognizable were excluded. 

4. Results 

4.1 Performance of the three algorithms 
The three algorithms presented above were applied using the same dataset. Because the RF does 
not need the test dataset, we do not have to divide it into a training data and a test data. Here, we 
use the whole dataset to compare the performance of different algorithms. Table 3 shows the 
overall accuracy.  

The CCI means the percentage which the number of data were recognized correctly divided by 
the total samples. The larger is the value, the better the accuracy. As shown in the table, RF 
results into the highest accuracy (96.8%) among the algorithms. In this sense, RF is the best 
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algorithm to infer activity types. This is perhaps because of the inherent flexibility of RF models 
where the multiple decision trees can handle very complex problems. Therefore, in the next 
section to investigate the prediction accuracy for each activity type, we will use RF only. 

The overall accuracy of DT yields 69.8%, which is relatively higher than BN. It should be noted 
that DT has been applied also in other studies (McGowen and McNally, 2007; Reumers, et al., 
2013) to detect activity types. The accuracy obtained in existing studies using DT ranges from 
62% to 75%. It means that the accuracy using our GPS data and the models is consistent with 
other findings. Moreover, the BN model only yields the accuracy of 46.2%, lower than 50%. It 
perhaps means that the BN model may not be suitable to detect activity types in such a way of 
combination of spatial and temporal information.  

4.2 Confusion matrix of random forest model 
Because of the better performance of RF relative to other algorithms, we use RF to further 
investigate the imputation accuracy for each activity type. The confusion matrix is used to 
examine the correctness and incorrectness of the imputation algorithm for each activity type. 
Confusion matrix is also known as a contingency table or an error matrix. It is a specific table 

layout to represent the performance of our algorithm. As shown in Table 4, each column of the 
matrix represents the instances in a predicted class, while each row represents the instances in an 
actual class. The diagonal cells (in bold) represent the hit ratios which indicates the percentage 
which is correctly predicted for each class based on the real classes. 

The table shows that the highest prediction accuracy is obtained for the paid work activity 
(99.0%). As presented in previous sections, the work activity normally has a longer duration then 
others. This might account for some reasons for the high accuracy. Furthermore, the spatial 
information related to the paid work variable is obtained based on the personal location data 
given by respondents, indicating that the work location data is more definitive than other POI 
data. 

Table 4. Confusion matrix (predicted and real values by activity types) of RF model 
 

    Predicted classes  

    A B C D E F G H I J K Total 

R
ea

l 
cl

a
ss

es
 

A 99.0% 0.3% 0.0% 0.2% 0.1% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 100% 

B 0.4% 97.7% 0.0% 0.9% 0.3% 0.1% 0.1% 0.1% 0.1% 0.3% 0.0% 100% 

C 0.6% 1.7% 95.8% 0.6% 0.2% 0.6% 0.4% 0.0% 0.0% 0.2% 0.0% 100% 

D 0.2% 3.2% 0.0% 95.5% 0.3% 0.2% 0.4% 0.1% 0.0% 0.2% 0.0% 100% 

E 0.2% 0.5% 0.2% 1.5% 96.8% 0.2% 0.3% 0.0% 0.0% 0.2% 0.0% 100% 

F 0.5% 0.5% 0.2% 0.4% 0.5% 97.5% 0.2% 0.0% 0.2% 0.2% 0.0% 100% 

G 1.2% 1.3% 0.3% 1.3% 1.2% 1.2% 93.1% 0.1% 0.0% 0.1% 0.0% 100% 

H 0.3% 2.1% 0.3% 1.0% 0.7% 0.7% 0.0% 94.8% 0.0% 0.0% 0.0% 100% 

I 0.4% 1.3% 0.0% 0.4% 0.7% 2.6% 0.7% 0.0% 93.7% 0.2% 0.0% 100% 

J 0.3% 0.9% 0.3% 1.5% 0.5% 0.5% 0.1% 0.1% 0.0% 95.8% 0.0% 100% 

K 7.1% 0.0% 0.0% 0.0% 0.0% 1.2% 0.0% 0.0% 0.0% 0.0% 91.7% 100% 

Note: A- Paid work; B- Daily shopping; C- Help parents/children; D- Non-daily shopping; E- Recreation; F- 
Social; G- Voluntary work; H- Service; I- leisure; J- Picking-up people; K- Study 

 

Apart from the paid work activity, the accuracy for voluntary work activity is relatively low 
(93.1%). Unlike the major paid work activity, voluntary work normally requires multiple 
different locations and sometimes the duration for each activity can vary as well. Moreover, 
people may also not be able to provide the exact multiple work locations by themselves, which 

http://en.wikipedia.org/wiki/Contingency_table
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makes the detection difficult. In this sense, the identification of voluntary work activity may be 
mainly attributed to the temporal information. 

The study activity, which has a similar duration than paid work activity, results in the lowest 
accuracy (91.7%) among all activity types. Looking into the details, one can find that a substantial 
percentage of study activities are incorrectly recognized as work activities (7.1%). This is perhaps 
because the two types of activities have a similar pattern of duration. It might also indicate that 
the distinction between work and study activities may need additional information of individuals, 
e.g., if he/she is a student, or one uses the age of individuals. 

Social activities are important since they account for a substantial percentage of daily trips. As 
presented in Table 4, the accuracy of imputing social activities is as high as 97.5%. The high 
accuracy may be attributed to the fact that different social activities, which can happen in 
different locations, may have consistent timing and duration characteristics. For example, people 
who work during the day mostly conduct social activities after work or during night time. 

Moreover, the daily shopping and non-daily shopping activities have a high accuracy, 97.7% and 
95.5%, respectively. Similarly, the Help parents/children activity, recreation activity and picking-
up activity also obtain a good accuracy (95.8%, 96.8% and 95.8%, respectively). In summary, the 
RF demonstrates a good prediction capability. 

5. Conclusion and discussion 

Although activity types are considered as difficult to predict relative to transportation modes, it 
is potentially possible to discriminate activities in terms of their intrinsic features from the 
perspective of spatial and temporal scales. GPS data which has detailed spatial information 
potentially provides additional dimension in the identification process. Incorporating both spatial 
and temporal information into the activity type detection seems to be important to increase the 
prediction accuracy, which in turn benefits to the data imputation in travel surveys and follow-
up travel behavior analysis. 

As presented in this paper, the activity type can be better discriminated according to integration 
of aggregated temporal information and spatial attributes. The results using three modern 
algorithms showed that the random forest model is outstanding among the three machine 
algorithms. The overall accuracy yields 96.8%. The other two algorithms, although have been 
adopted in other studies, did not show the accuracy as good as the random forest model in this 
paper. The Bayesian belief model results into the accuracy of 46.2%, which means it may not be 
suitable to identify activity types. The decision tree model obtained the accuracy of 69.8% which 
is similar to the findings in other studies. 

Although one can imagine the activity types may be highly dependent on the personal locations 
which individuals visited frequently, this paper assume an automatic imputation without 
personal information. Part of the reasons is because that, in reality, people may not intend to 
provide detailed information of all personal locations, i.e. the location of picking-up their 
children from school. Inferring activity types then will be mainly dependent on the spatial data 
such as POI and the intrinsic characteristics of different activities at the aggregate level. In our 
survey, most people did not provide their personal location information completely as we 
required in the intake survey. The missing information has an effect on the activity type detection. 
It is obvious that the more complete the personal addresses, the higher accuracy the final 
detection. However, our approach will bring additional value to avoid the possible privacy issues 
related to GPS-based travel surveys. 

Alternatively, the imputation accuracy maybe improved by incorporating personal attributes. As 
showed in the above analysis, knowing the status of work or study of individuals might help the 
discrimination between work activities and study activities. In addition, the point of interest data 
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used in this paper was filtered as consistent with the pre-defined category. The data is not 
sufficient enough considering the requirement of data imputation, which results into the case that 
points might be not obtainable within a diameter of 100 meters. Therefore, a better/rich 
geographical dataset should be more supportive to infer activity types. It should be noted that 
activities like service or leisure can include multiple sub-categories. To what details the activity 
types are necessary to be divided into sub-categories will depend on the purpose of the research 
questions. We leave the further detection of sub-activity types to the future.  
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