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The collection of actual traffic delays and road traffic speed data is essential in modelling urban 

transport resource efficiency, congestion and carbon and pollutant emissions, which is in turn 
part of core empirical basis for evidence-based policy making for improving urban sustainability. 
This data collection has also been one of the most expensive and time-consuming tasks, which 
restricts how well and how often the models can be built and validated, often to the extent that 
urban transport models have to rely on severely outdated data with sparse coverage.  New smart 
data such as GPS vehicle traces has raised the prospect of remedying the data shortage, but for 
operational and data protection reasons often only low-sampling frequency traces are available. 
This paper proposes a novel method for estimating actual, congested link-speeds from low-
sampling frequency taxi GPS traces that are publicly available. The method is based on a path 
inference process and is applied over a detailed road network in a large city region. It shows that 
low frequency GPS trajectories can significantly improve the spatial and temporal resolutions of 
traffic speed data for transport modelling and policy analysis. This opens up the prospect of 
improving road operation performance, managing travel demand and optimizing urban 
circulation.   

Keywords: low-frequency GPS taxi traces, route choice, map-matching, congested link speed, transport 
modelling. 

1. Introduction 

Taxis play an important role in urban transport, complementing traditional public transport 
modes. As urbanization expands, the demand for taxis is increasing, particularly in fast 
developing cities such as Beijing. As a result, taxi trips are contributing more to urban traffic 
volumes. For example, there were 66,600 licensed taxicabs in Beijing in 2012, which generated 
over 1.2 million ridden trips per day (Zhu et al., 2013). Nowadays large numbers of these taxicabs 
are equipped with GPS (Global Positioning System) applications, transforming these vehicles into 
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ubiquitous probes of transport networks. The resulting information provides significant 
opportunities in understanding urban transport dynamics. The nature of taxi driving in busy 
urban areas; high passenger demand; significant levels of congestion and the desire for drivers to 
maximize profit through optimization of route, allows greater potential in the estimation of 
network speed from these datasets.  

In this paper we seek to determine whether publicly released low sampling frequency GPS traces 
generated by urban taxis can be used effectively to identify traffic delays, particularly to explore 
the extent to which they are useful in estimating the congested driving speeds of urban road 
networks as an input to city-scale land use and transport models.  

The congested link speed plays a crucial role in urban transport modelling. Historically this 
information has been generated iteratively from observed traffic volume on each road link. 
Besides the time-consuming process of collecting and processing traffic-flow data, the 
conventional iterative calculation itself is a complex task.  The existence of an alternative method 
for estimating congested link speeds would potentially cut the cost in time and labour; improve 
the efficiency om data collection; and enhance the precision (particularly with regard to temporal 
accuracy) of the congested link speed estimation.  

In order to evaluate the effectiveness of our proposed methods, we base our study on a publicly 
available set of taxi traces from Beijing. This data provides a minimal amount of information, 
limited to location, timestamp and taxicab ID and presents some typical shortcomings of such 
datasets: there is a short collection period (seven days, only three of which are work days); there 
is no behavioural context (no information on whether the taxicab is occupied, available, parked 
or looking for fares); low positional accuracy and low (and inconsistent) sampling frequency (the 
nature of the urban environment means signal quality is reduced and in some cases lost 
completely for short periods of time).  

The question is whether data-sources of this kind can offer insights into the spatial and temporal 
patterns of the traffic conditions on heavily congested urban networks. If so, the process of the 
traffic assignment module in transport models could be significantly improved in a time-and-
labour-efficient way, taking advantage of the widespread use of the GPS technology and the 
immediate availability of the sensed data. In addition, the increasing availability of the 
processing power and advanced computational route assignment method (Hagen-Zanker and Jin, 

2012; Zachariadis et al., 2013) offer possibility to derive route choices over large origin and 
destination matrices so long as there are ways to estimate driving speeds and traffic conditions 
across the road network. 

Addressing the problem, this paper represents a revised map-matching method to estimate the 
congested link speed for the purpose of improving the route choice module for urban transport 
modelling. More specifically, there are four major challenges to consider:  

 The first challenge is network representation. Availability of detailed network is often a 
restriction, as such datasets are often costly to access or build or held by state controlled 
organizations. Thus we develop a semi-supervised network-generation process that relies 
on publically available mapping data from Open Street Map (2013). The developed 
network represents all traversable links with a structure of multi-lane and multi-
directional, as well as complex junctions.  

 The second challenge is spatial transformation. We propose a method for map-matching 
GPS positioning coordinates in continuous space (latitude-longitude pairs) onto the 
modelled road network, most importantly, for inferring paths (sequences of network 
road-links) between successive (typically sparse) positioning observations based on time-
minimizing shortest paths.  

 The next challenge is the statistical significance. We have to establish whether the 
collection of samples (from pairs of successive GPS taxi traces) that are used to estimate 



EJTIR 15(4), 2015, pp. 639-661  641 
Deng, Denman, Zachariadis and Jin 
Estimating traffic delays and network speeds from low-frequency GPS taxis traces for urban transport modelling 
 

the driving speed and traffic delay for each of the network links offer statistically 
significant results; i.e. whether the inferred speeds from the GPS data that correspond to a 
network link are distributed relatively close to their mean value.  In order to justify the 
proposed method it must be shown that the inferred link speeds are both consistent and 
realistic in space and time. We provide a systematic testing of our results using a sample 
validation procedure. 

 The last challenge is the validation of the method. A sample validation procedure is 
executed, and we compared the travel time between observational origin-to-destination 
trips and the estimated travel times based on the calculated congested link speed. 

2. Related work 

GPS was primarily developed for US military purposes in the 1960s (Kaplan and Hegarty, 2005). 
Today GPS technology has already established itself as the most popular global positioning 
method. The applications of GPS cover a wide range of scientific fields, such as topography, 
geodesy, hydrography, photogrammetry, transport (Mintsis et al., 2004). Such applications have 
been embedded into various portable electronic devices, such as smart phones, tablet computers, 
and vehicle-mounted devices (such as fleet tracking systems and satellite navigation systems). In 
many modern cities, taxis equipped with GPS devices have transformed them into ubiquitous 
probe vehicles.  

As urban traffic patterns become increasingly complex, more precise and detailed information 
are now required by transport planners and researchers when inform policy decision. While the 
high adoption rate of taxi GPS applications and the spatial-temporal data collected as a result, 
provide us with new opportunities in understanding urban transport dynamics. Meanwhile, the 
availability of analysis and visualization platforms (such as Geographic Information Systems 
(GIS)) has enable researchers to tackle with bid datasets relating the complex driving behaviour 
(which typically contain millions of spatial-temporal records) at a very detailed level (Mintsis et 
al., 2004; Zheng et al., 2008).  

Recent research can be categorized into two emerging themes: 

 First is focused on the microscopic standpoint of drivers’ individual behaviour, such as 
the optimization of location or route choice (Manley, 2012), location identification 
(Ashbrook et al., 2003; Kang et Al., 2005; Schmandt and Marmasse, 2004; Zhou et al., 
2007), route determination (Wang et al., 2011), analysis of mobility patterns (González et 
al., 2008; Fang et al., 2009; Liao et al., 2007), traffic condition prediction (Bar-Gera, 2007; 
Herrera et al., 2010; Shi and Liu, 2010; Work et al., 2010; Zou et al., 2005; Nanthawichit et 
al., 2003; Liu and Ma, 2009), and mobility intelligence (Zheng and Xie, 2011; Zheng et al., 
2009; Liu et al., 2010; Bohte and Maat, 2009); 

 Second is comparatively new, which is in a view of macroscopic traffic characteristic 
investigation, such as the hot-zone extraction (Zhu et al., 2013), traffic monitoring (Shi 
and Liu, 2010), urban traffic dynamics studies (Geroliminis and Daganzo, 2009; Hellinga 
and Liping, 2002; Ye et al., 2012), and very recently route choice modelling (Ben-Elia et al., 
2010; Jenelius and Koutsopoulos, 2013; Fadaei Oshyani et al., 2014; Zhan et al., 2013). 

The field of congested speed estimation, using sparse taxi GPS data is rather new, and remains 
largely unexplored. Meanwhile in the case of macroscopic network-based analysis, the core 
process is the translation from continuous-space positioning information into topologically valid 
network-based representations. This is facilitated using map-matching methods, which typically 
integrate positioning data with spatial road networks to identify the correct continuous-space to 
network-space transformation; e.g. to infer the link in which a data-point corresponds to 
(Greenfeld, 2002; Ochieng et al., 2003; Quddus et al., 2007; Yuan et al., 2011; Yuan et al., 2013). As 
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expected, the accuracy of a map-matching algorithm will be determined by the quality of the 
spatial road network and the sampling rate of the GPS data. However, even though the 
performance of an algorithm relies on the quality and characteristics of input data, the 
underlying inference method will significantly affect its effectiveness (Chen et al., 2005; 
Parkinson et al., 1996).  

This is particularly relevant when input data is of low sampling rate, as in the case of the dataset 
in this paper, where GPS loggers occasionally lose signal in dense urban areas, and their 
frequencies are set below 0.01Hz to reduce power consumption. Low frequency data requires 
map-matching algorithms that consider the topological validity of the inferred matches.  

There have been several map-matching methods developed to deal with low-frequency data, 
such as (Chen et al., 2014; Hunter et al., 2013; Miwa et al., 2012; Wang et al., 2011; Ye et al., 2012). 
Particularly Lou et al (2009) propose such a map-matching algorithm, ST-matching that combines 
(1) the spatial geometric and topological structures of the road network and (2) the 
temporal/speed constraints of the trajectories. This is used to construct a candidate graph from 
which global trajectory route is selected based on a scoring system.  

Rahmani and Koutsopoulos (2013) propose a simultaneous map-matching and path inference 
methodology for sparse GPS traces where the only information available is latitude, longitude, 
and timestamp. The method identifies a set of candidate links in the vicinity of each GPS 
observation and find a matched point on each of those links. Subsequently, all pairs of matched 
points of consecutive observations are connected with shortest paths between them. Since the 
algorithm is designed with real-time applications in mind the shortest path calculation at time 
t(k) is based on the estimated link speeds at time t(k-1). Their study had the advantage of known 
trues paths in which to evaluate the effectiveness of their method. Their findings show that their 
method is robust and performs favourably compared to other methods that incorporate 
additional observed data (such as heading and instantaneous speed) Rahmani and Koutsopoulos 
(2013). 

The method proposed in this paper builds on the work of Rahmani and Koutsopoulos (2013) and 
Lou et al using very similar foundations. We also propose the adoption of a candidate link 
approach to the initial map-matching problem followed by the estimation of shortest paths on a 
topologically structured network. However there are a number of differences in methodology, 
scale, observational datasets, and research aims, discussed in more detail below. 

The methodology we propose has been designed to facilitate multiple iterations of shortest path 
calculation. An initial iteration calculates time minimised shortest paths based on free flow road 
speeds allocated to each link based on road type (Figure 1). This can either be applied in a 
temporal context (similarly to Rahmani and Koutsopoulos, 2013), or be based on iterative updates 
to road speed based on previous iteration and subsequent refinement of the respective shortest 
path calculations.  

This provides two opportunities; firstly as the final estimated link speed is not wholly reliant on 
an initial shortest path calculation based on free-flow speed, the initial route choice becomes less 
important assuming a suitably large dataset. Over multiple iterations, this approach will 
optimize link speed; secondly, and particularly suitable to smaller and/or time series datasets, 
congested link speed can be refined over time as further datasets are collected or are made 
available.  

The majority of research in this area is focused on relatively limited spatial scales, or tested using 
small sample networks (Zhan et al., 2013; Rahmani and Koutsopoulos, 2013; Hellinga and Liping, 
2002; Ye et al., 2012). In contrast, the intended use of our method is within the context of city scale 
land use transportation modelling; as such we are more focused on the urban or city scale.   

Zhan et al (2013) propose a comprehensive method for the calculation of link travel times based 
on minimising the least squared difference between expected travel times and observed travel 
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times. They utilise a large taxi dataset from New York with known origin and destinations for 
defined fares. They use a sample network for Manhattan, and in comparison to the research 
outlined in this paper, the network complexity is relatively low: 193 nodes and 381 links. A very 
different approach is required in their work due to the nature of both data and network; the 
urban environment of Manhattan, in particular the gridded road network where multiple paths 
may involve very similar costs,  provides very different challenges to the complex urban network 
of Beijing.  

The dataset available for our study is very large and contains very limited attribution, with no 
information on taxi status, such as origin and destination points; or alternative sensor 
information such as acceleration. We do not have the advantage of knowing the true paths 
associated with each trajectory, as with Lou et al. (2009) and Rahman and Koutsopoulos (2013). 
This provides both limitations and opportunities.  

In terms of limitations, we will never know the true path taken so we cannot validate our results 
based on comprehensive ground truth data. There are also numerous errors in the source data, 
such as inconsistencies in observed travel time versus observed distances inferring impossible 
speeds. We believe this is an inherent characteristic of this type of data and as such we propose 
methods to utilise typically available datasets in this context.  

In terms of opportunities, the size of the dataset allows a selective approach and provides 
opportunities to remove observations that are ambiguous.  Due to the large volumes of data, we 
are also able to estimate congested link speed at high spatial-temporal resolution (thirty minute 
time intervals during the morning peak for the entire extent within Beijing’s fifth ring road). Our 
iterative approach reduces the requirement for absolute accuracy of route choice. We also 
validate our approach using a sample validation procedure and a comparison of travel time with 
observations. 

In summary, the approach gains insight into the processing of complex and low-frequency spatial 
data in a large scale, with a relatively high temporal resolution; and provides a new point view in 
the generation of congested link speeds. 

3. Methodology 

In the following section, we propose methods for addressing the three key challenges identify in 
the introduction: network representation, spatial transformation (map-matching and path 
estimation) and statistical significance. 

3.1 Development of the modelled network 
Our modelled road network represents all traversable links within the fifth ring road of Beijing 
and is suitably detailed to accommodate our map-matching method. We use a hybrid generation 
process whereby major links are manually categorized by link type: expressways; second to sixth 
ring road; level one-to-four city major roads; and assigned one way restrictions and elevation 
types.  We use geometry from Open Street Map to generate infill links representing minor roads 
with respective link characteristics (low speeds; bi-directional movement; one lane in each 
direction). Our network consists of 38,000 links in total (Figure 1). 
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Figure 1. Network representation 

3.2 Map-matching and path inference 
The second challenge that we previously identified, is the development of a methodology to 
map-match continuous space GPS trajectories to the modelled network and the inference of paths 
from typically sparse observations. We propose map matching and path inference methods 
utilizing time minimised shortest path (Dijkstra Algorithm) with an aim to estimate traffic delays 
across a significant proportion of the modelled network.  

Most map-matching algorithms map current or neighbour locations to the road network. The 
accuracy is generally low as the map-matching routine generally only considers current position, 
ignoring previous and following locations. These traditional map-matching algorithms rely on 
high sampling rate frequency and become less reliable as the uncertainty in data increases (Lou et 
al., 2009). Traditional methods would lose the detail between observations, relying simply on the 
position and associated speed at a known location measured by the GPS device. We adopt a 
shortest path based method (similar to that proposed by Rahmani and Koutsopoulos, 2013) that 
calculates the likely real word position on the network whilst estimating the path travelled 
between observations allowing more accurate path estimation and supplying significant 
increases in the speed observations available throughout the entire network.  

Inferring paths from sparse GPS observations using shortest path is well documented (Lou et al., 
2009; Rahmani and Koutsopoulos, 2013; Patterson et al., 2003; Fadaei Oshyani, 2011). Distance 
minimised shortest path calculations have been shown to be unrealistic when compared with 
actual routes. A study of London using a similar GPS datasets from taxis has shown that a 
distance minimised shortest path predicts on average only forty per cent of the actual route 
travelled (Manley, 2012). 

Intuitively, taxi drivers are experienced drivers who can usually find out the fastest route to send 
passengers to a destination based on their extensive local knowledge (Yuan and Zheng, 2010). We 
therefore believe that estimating inferred path using time minimised shortest path is a more 
realistic assumption. 

The GPS trajectory dataset 
The GPS trajectory dataset used in this paper consists of 1,500,000 observations from 10,357 taxis 
in Beijing covering the working period Monday 4th to Wednesday 6th February 2008 (Table 1). 
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The data was obtained from Microsoft Research Asia. Each observation includes details of taxi 
identifier, location and timestamp. 

Table 1. The result of the filtering process 

 4th Feb 5th Feb 6th Feb 

All observations 562,612 509,690 422,795 

Within fifth ring road 312,869 266,807 162,293 

Within network tolerance 171,939 134,212 69,467 

Within speed tolerance 311.052 265,226 161,273 

Within length tolerance 171,246 142,112 75,829 

Used in path inference 115,018 90,977 46,614 

 

The median sampling time of trajectories is 219 seconds (Table 2). Assuming an average speed of 
20 kph then the travel distance between GPS observations would 1,200 meters. This poses a 
challenge when estimating link speed and traffic delays over the entire modelled network. 

Table 2. GPS sampling time 

Date  Counts of Records  Sample Time /s  
(5am-11am)  Total  Filtered  Mean  Median  

4th Feb 2008  562,612 115,018 206.10  221  
5th Feb 2008  509,690 90,977 219.61  251  
6th Feb 2008  422,795 46,614 231.97  300  
Total  1,495,097  252,609  219.23  seconds  

 

The trajectory dataset has been filtered to remove those observations that are inaccurate or 
unsuitable for map-matching: Trajectory lengths of less than 100 meters are removed; Point to 
point trajectory speeds of greater than 120 kph are removed; Trajectories are filtered based on 
proximity to modelled network (this is described in more detail below).  

Trajectories outside of set tolerances from the modelled network are removed from the map-
matching process. The tolerances used are shown in Table 2 and represent a buffer equal to: 

 𝑏𝑅𝑚 =  (𝑑𝑙 (𝑓(𝑅𝑚))𝑥 𝑛𝑙(𝑅𝑚))  + (𝑑𝑠(𝑓(𝑅𝑚)) 𝑥 𝑛𝑠(𝑅𝑚))  + 𝑑𝑢(𝑓(𝑅𝑚)) (1) 

where bRm is the buffer distance of link Rm, f(Rm) is the classification function (returns Rm’s link 

type), dl (f(Rm)) is the typical lane width for Rm’s link type, nl(Rm) is the number of lanes in Rm, 

ds(f(Rm)) is the typical separator band width for Rm ’s link type,  ns(Rm) is the number of 

separators in Rm and du(f(Rm)) is the typical utilities width for Rm’s link type. 

The network proximity tolerance aims to consider the total width of the road when allocating 
trajectory start and end points to a candidate network link. This allows greater tolerances to road 
types that are generally wider to account for the positional accuracy of the GPS location. 
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Figure 2. The combined map-matching and path inference process. For all pairs of successive GPS points 
(Origin-Destination 𝑃¹ → 𝑃²) the proposed algorithm (1) finds all candidate start links 𝐶𝑠𝐿ⁿ and end links 
𝐶𝑒𝐿ⁿ within the appropriate distance buffers 𝑏𝑅𝑚  and calculates their respective candidate start 𝐶𝑠𝑃ⁿ and 
end 𝐶𝑒𝑃ⁿ  points (A); (2) identifies the on-network points that do not hold appropriate connectivity 
properties (B); (3) for each combination of on-network OD points calculates the time-minimising path (C-
H)5; and (4) selects the OD pair with the minimum time-minimising path (I) 
 

This paper defines the taxi trajectory T as a pair of sequential taxi locations. Each trajectory 
therefore consists of a start point P¹  and end point P² . Each point consists of a location 
(x(Pn), y(Pn)) and a timestamp T(Pn). A trajectory can therefore be described as T: P¹ → P² and 
the observed time difference between consecutive points can therefore be described as T(P2) −
T(P1). 

The initial problem is how to allocate each of the trajectory points P¹ and P² to a precise location 
on a network link (any location along R¹ →  R² → ⋯ → Rⁿ).  The proposed solution is the 
generation of candidate start CsLⁿ and end links CeLⁿ for each trajectory. Candidate links are 
therefore all links within a search tolerance ε of trajectory points P¹ and P². Candidate start CsPⁿ 
and end CePⁿ points are then generated by calculating the nearest point on each candidate link to 
P¹ and P² (Figure 2).  

We define ε using the network proximity tolerance defined in Table 2, which is dependent upon 
link type. We therefore search wider for candidate links representing higher status roads to 
account for their greater widths and the likelihood of additional locational inaccuracies on these 
road types.   

                                                        
5 The time traversing each of the links is, in first instance, based on free flow link speeds. In case of more than one 
iteration, iteration 𝑘 uses the link speeds estimated at iteration 𝑘 − 1. 
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The problem becomes as follows: for a set of candidate start and end locations pairs how do we 
define the most probable pair and, given that we know the precise start and end location of each 
trajectory, how do we estimate the route taken between consecutive points and how do we use 
this to estimate speed along the entire network? 

Map-matching and path estimation 
We propose the use of a time minimised shortest path to estimate candidate paths taken between 
each pair of candidate start and end locations for each trajectory. We then select the most likely 
path from all candidates for any given trajectory as the path with smallest time cost. We describe 
this route as the initial path. The initial path can be described by a series of road links such that 
travel time between P¹ → P² is minimised based on free flow road speeds. We are then able to 
infer the precise start and end locations for each trajectory based on the initial path, which is used 
in later analysis.  

We propose further refinement of the estimated speeds by introducing an iterative process. In 
each round of iteration, the refined time-minimising paths are calculated using the estimated link 
speeds of the previous iteration. In this case, the refined paths can be described by a series of road 
links such that the travel time between point P¹ → P² is minimised based on estimated link 
speeds derived from the paths of the previous iteration. 

Estimation of link traffic delays and driving speeds 
In order to estimate a representative speed for each modelled network link, we split the initial 
path (or refined path in later iterations) for each trajectory based on link type and associated free 
flow travel time of the component network links. We calculate free flow travel time6 for each 
portion of the path based on free flow link speed and link length (tRm  =  lRm/sRm). We then 
calculate path travel time for each path based on observed path length and trajectory time 
difference (T(P2) − T(P1)). We then allocate a proportion of path travel time to each path portion 
based on free flow travel time to path travel time ratio and then allocate a speed value for each 
link traversed on that path. Therefore, in the case of the pair of successive trajectory points P¹ and 
P² which are map-matched to path R¹ →  R² → ⋯ → Rⁿ, where Rm are network links, the estimated 

time of traversing link Rk after iteration k the pair of successive trajectory points P¹ and P² will 
be: 

 
𝑡𝑘

𝑃1→𝑃2
(𝑅𝑚) = (𝑇(𝑃2) − 𝑇(𝑃1)) ∙

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘(𝑅𝑚)/𝑠𝑝𝑒𝑒𝑑(𝑘−1)(𝑅𝑚)

∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘(𝑅𝑛)𝑛 /𝑠𝑝𝑒𝑒𝑑(𝑘−1)(𝑅𝑛) ∙
 (2) 

where T(P1), T(P2) are the timestamps for the successive GPS points P1 and P2, speed(k−1)(Rm) is 

the speed estimation for link Rm after iteration k − 1, and distancek(Rm) is the length of the cost-
minimising path between points P¹ and P² inside network link Rm in the current iteration k. 

 

Table 3. The results of path inference 

 Day 3 Day 4 Day 5 

Trajectories processed 115,018 90,977 46,614 
Links within 5th ring road 47,262 47,262 47,262 
Number of routes generated 110,414 20,113 11,483 
Number of speed values 1,203,646 209,941 122,151 
Links with speed values 27,260 20,157 17,326 
Average route length (km) 3.3 - 2.9 

                                                        
6   In subsequent iterations free flow link speeds are replaced by the estimated link speeds of the previous 

iteration. 
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Using equation 2, we are then able to calculate an estimated mean speed for each modelled 
network link by day and time of day, along with statistics such as speed range, standard 
deviation, number of observations and the difference between free-flow speed and observed 

speed. In the kth iteration of the process, for link Rm, these metrics will be based on a statistical 
sample that contains all pairs of successive GPS points P¹ and P² that contain part of Rm in the 
cost-minimising path between P¹ and P². Therefore, the estimated link speed of Rm after iteration 
k will be equal to:  

 

𝑠𝑝𝑒𝑒𝑑𝑘(𝑅𝑚) =
1

‖𝑀𝑘(𝑅𝑚)‖
∙ ∑ [

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘(𝑅𝑚)
𝑡𝑘

𝑃1→𝑃2
(𝑅𝑚)

⁄ ]

𝑃1→𝑃2∈𝑀𝑘(𝑅𝑚)

 (3) 

Where Mk(Rm)  is the set that contains all the [P¹, P²]  GPS point pairs, for which the cost-
minimizing path in iteration k traverses (either partially or fully) network link 𝑅𝑚. The results of 
the path-inference process are shown in Table 3. These will be analysed in section 3.3. 

3.3 Statistical analysis of resulting speed estimates 
Following equation 3, the objective of this piece of analysis is to explore whether the aggregate 
traffic delays and speeds 𝑠𝑝𝑒𝑒𝑑𝑘(𝑅𝑚) of the network links are based on statistically significant 

distributions of individual estimations 𝑡𝑘
𝑃1→𝑃2

(𝑅𝑚). This is an essential part of the proposed 
methodology; in order to justify the use of the link-based speed estimations we should 
demonstrate that they are both consistent and realistic in space and time; i.e. that speed 

estimations 𝑠𝑝𝑒𝑒𝑑𝑘
𝑃1→𝑃2

(𝑅𝑚) of any GPS point pairs [𝑃¹, 𝑃²] in 𝑀𝑘(𝑅𝑚) with similar timestamps 
𝑇(𝑃1), 𝑇(𝑃2) will not vary dramatically around an arbitrary mean value, but will be tightly 
distributed around it.  

To establish that this is the case, we calculate the relative standard deviation (RSD) for all links 
for different time periods and plot the results as a function of the size of the sample ‖𝑀𝑘(𝑅𝑚)‖. 
Moreover, we want to establish that the size of the RSD for link 𝑅𝑚 is not dependent on the 
spatial location of the 𝑅𝑚 or at least any spatial variation does not introduce systematic biases 
that would undermine the usefulness of the speed estimations. Having said that, we expect to 
observe systematic RSD variation between different link types (e.g. motorways versus “in-fill” 
links) because the circulation characteristics of each link type is unique.  

Figure 3 illustrates road-link RSD as a function of size of the sample (top-left plot). As expected, 
as the sample size increases the variation of the relative deviation of different links decreases, 
because of the rule of big numbers. The top-right plot shows the cumulative distribution of 
sample sizes of the links. At least half of the links base their estimated speed 𝑠𝑝𝑒𝑒𝑑𝑘(𝑅𝑚) on 16 
samples or more. The two plots at the bottom show the respective RSD distributions for two short 
periods of time (30 minutes each). Our expectation, temporally concentrated samples should 
result in lower RSDs, is confirmed; average RSD for all links is 0.39 for the 6.00-11.00am period, 
and 0.32 and 0.33 respectively for the 7.30-8.00am and 9.30-10.00am periods. Moreover, the 
postulation that different types of links should have different levels of RSD is also confirmed. The 
average RSDs of infill-links and low tier road-links are 0.40 and 0.39 respectively. On the other 
hand, the average RSDs of road-links with speed limits equal to 90kph and 120kphare 0.29 and 
0.22 respectively. The higher RSD variation of the low speed network reflects their multiple 
functions, higher probability to encounter congestion and the behaviour of the taxi drivers 
(collection of passengers etc.). Similarly, the lower RSD values of the high-speed links reflect 
arterial conditions; and in the case of the 120 kph links, the freedom to apply preferred speed by 
choosing from multiple lanes. 
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Figure 3. Relative Standard Deviation. Top-left plot shows RSD as a function of sample size for the full 
length of the morning peak period (6.00 – 11.00am). Top-right plot shows the cumulative distribution of 
links with sample size less than x. Bottom plots show RSD as a function of sample size for the 7.30-8.00am 
and the 9.30-10.00am time slots. As expected, as the sample size increases) the relative deviation for the 
shorter time periods tends to lowers values. Average RSD for all links is 0.39 for the 6.00-11.00am period, 
and 0.32 and 0.33 respectively for the 7.30-8.00am and 9.30-10.00am periods. 
 

 
Figure 4. Relative Standard Deviation (RDS) of speed estimation (left) and number of speed estimations 
(sample size) in each link (number of taxi GPS traces used to estimate link speed) (right). 
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Figure 5. Time lost in traffic based on the taxi-GPS speed estimations (in seconds per metre) 

Figure 4 illustrates the spatial distribution of the relative standard deviation for the full morning 
peak period including the shoulder hours (6.00-11.00am) and the respective sample sizes; the lack 
of spatial pattern in the distribution of the RDS sizes is good news, because it implies that there is 
no systematic, spatially introduced bias in the speed estimation. On the other hand, the spatial 
distribution of the sample sizes results in a distinct pattern that highlights the hierarchical 
structure of the road network. Figure 5 shows the resulting time 𝑇𝑙𝑜𝑠𝑡(𝑅𝑚) lost in traffic based on 
the taxi-GPS speed estimations for the full morning-peak period (6.00-11.00am). It represents the 
time over free flow required to traverse a metre of road (measured in seconds per traversed metre 
or road): 

 
𝑇𝑙𝑜𝑠𝑡(𝑅𝑚) =

1

𝑙𝑅𝑚
∙ (

𝑙𝑅𝑚

𝑠𝑝𝑒𝑒𝑑𝑘(𝑅𝑚)
−

𝑙𝑅𝑚

𝑠𝑝𝑒𝑒𝑑𝑓.𝑓.(𝑅𝑚)
) =

1

𝑠𝑝𝑒𝑒𝑑𝑘(𝑅𝑚)
−

1

𝑠𝑝𝑒𝑒𝑑𝑓.𝑓.(𝑅𝑚)
 (4) 

where speedf.f.(Rm) is the free-flow speed of the link Rm . This measure reflects the level of 
congestion in the network; i.e. how much more time than a vehicle would need if there was no 
traffic will be needed per metre under the morning peak traffic conditions. Since this is calculated 
per metre there is no visual distortion related to the length of each link. Finally, Figure 6 shows 
the average estimated link speed by type of network link and Figure 7 shows the average 
estimated link speed on major expressways in Beijing, both for the three days of testing. 
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Figure 6. Average estimated link speed by type of link for the three days of testing 

The average link speed increases as we move outwards from the centre of Beijing. 

 
Figure 7. Average estimated link speed on 10 expressways in Beijing for the three days of testing 

It should be noted that the 3 days of testing are the last weekdays before the Chinese New Year 
and therefore, variations between them should be expected because the travel demand changes 
as we move closer to the public holiday. 

3.4 Validation of Method 
In this section, we now introduce a sample based validation procedure to assess the accuracy and 
effectiveness of the method, by comparing travel times between modelled and observed data.  
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Figure 8. Flow chart of validation process 

The process is illustrated in Figure 8. From the 10,357 taxis forming the dataset for the 4th 
February (Monday), 20% are randomly selected and their trajectories combined to form an 
observational dataset. The trajectories from the remaining eighty per cent of taxis are combined to 
form an experimental dataset which is used to generate congested link speeds. Then the travel 
time from estimated shortest-path and observed trip duration will be compared. 

 
Figure 9. Generation of observed trips 

As highlighted, taxi status information is unavailable, while the dataset is provided as a series of 
continuous locations and timestamps for each taxi. This inhibits the comparison of travel times 
using the modelled versus observed approach. In order to create a meaningful comparison, we 
combine consecutive trajectories from the observational dataset to form taxi trips. We assume 
that taxi drivers would prefer to choose the shortest path based on their experiences and 
awareness of the congested network speed. 

Trips are formed from consecutive trajectories when the following criteria are all met:   

 All trajectories belong to one taxi; 

 The time interval between any two consecutive trajectories is shorter than a defined 
maximum time interval. This requirement is applied to ensure the continuity of the trip; 
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 There are at least three consecutive trajectories in each trip; 

 The start point and end locations of each trip are different to ensure only moving taxis are 
simulated; 

The ratio of the actually observed travel distance against the start-to-end-point straight line 
length is below the 90% value of the ratios for all trips. Due to the inaccuracies in the original 
dataset, this rule is further applied to remove trips with overwhelmingly longer distance or faster 
speeds. This occurs in reality when taxi drivers wonder around within a specific region; while in 
the datasets, this is reflected by significant errors of the ratio of observed accumulated trip length 
(calculate as the straight line distance between all trajectories forming a trip) and the straight line 
distance between trip start point and trip end point. We then remove the ten per cent of 
observation versus modelled data points with the highest ratio (20.85 and 3.96 respectively for 
sixty-second-interval and ninety-second-interval trips). 

Table 4. Generated Observed Traces 

Max Time Interval Raw Trip 
(counts) 

Filtered Trip 
(counts) 

Authentic Trip 
(seconds) 

60 seconds 1417 891 846 
90 seconds 1320 821 780 
Total 2737 1712 1626 

 

As shown in Figure 9, p0-p8 points are nine consecutive trajectories for one taxi. The processing 
starts from the earliest point p0; if time difference between any two consecutive points smaller 
than r, then a trip is generated (such as Trip T1). The trip stops at point (p4), where the 
subsequent trajectory interval is greater than r.  This process is repeated for all trajectories in the 
observational dataset, with points not forming part of a trip ignored.  

Our observational dataset consists of trajectories from 2,071 taxis, twenty per cent of the entire 
10,357 taxis in the original dataset. We generate observed trips during 6am-11am on the 4th 
February with r values of 60 and 90 seconds. Table 4 demonstrates the number of generated 
observed trips for each of the maximum-interval segmentations. There are 1712 original trips 
generated in total, and to guarantee the authenticity of the observations, these trips are then 
further filtered respectively for each segmentation by the 95% travel time value.  

So far the pre-processing of observations has been implemented, and consequently there are 1626 
authentic trips will be used in the following comparison analyses.  

Generation of the congested link speed from the experimental dataset 
Congested link speed is estimated for each 30 minute period during the extended morning peak 
(from 6am to 11am) calculated from the experimental dataset and our path estimation and 
congested link speed calculation methods, outlined in chapter 3. Where link speed has not been 
calculated for an individual link due to insufficient information in the experimental dataset, we 
assign the average congested link speed for the network by link type (as show in Table 5). This 
forms a series of comprehensive time based networks within the fifth ring road of Beijing.  

We then calculate travel time for each trip based on a time minimised shortest path using the 
congested link speed corresponding to the trip start time. For example, a trip beginning at 
10:06am is modelled using the 10:00am congested link speed.  
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Table 5. Average congested link speed (kph) by link type in each time segmentation 

Link Type 

Average Congest Link Speed (kph) 

6:00 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 
Morning  
Peak 

4th level/ unclassified 22.2 19.9 22.2 20.6 20.9 19.3 19.2 18.1 18.3 18.1 18.6 
2nd ring /3rd level road 28.5 29.0 28.0 28.3 27.6 25.9 25.2 23.7 23.4 23.6 25.1 
3rd ring /2nd level road 33.2 33.2 32.7 32.6 31.2 29.5 28.4 27.0 27.0 26.8 29.2 
4th ring /1st level road 40.2 39.5 39.1 36.8 37.5 35.6 32.4 30.1 31.2 30.8 33.6 
5th ring / expressway 55.2 57.0 56.0 54.6 52.7 49.6 47.0 45.1 44.9 45.1 47.9 
6th ring 74.1 78.8 71.2 75.9 71.8 64.2 71.5 67.8 61.3 66.4 68.9 
6th ring/ expressway 61.4 69.3 62.7 63.2 63.1 59.9 58.4 53.8 52.1 55.6 58.1 
expressway 80.2 76.4 76.4 72.4 72.6 67.1 68.2 67.0 66.1 65.4 69.7 

Analysis of validation results 
Figure 10 and Figure 11 illustrate the comparison between modelled travel time and observed 
travel time, for trips with sixty-second and ninety-second maximum interval respectively. The 
comparison suggests that when trips are generated using the sixty-second maximum interval, our 
method is capable of producing modelled-trip travel times that have a broadly satisfactory 
relationship to the observations. The heteroskedastic pattern shown in Figure 10 (i.e. the margin 
of error for the modelled versus observed becoming larger as the durations of the trips are larger) 
is to be expected, as we compare an average travel time estimated off the model network against 
individual taxi trajectories. However, the modelled travel time in aggregate is 5% higher than the 
observed, as indicated by the linear fitting slope of 1.05. When we compare the estimated trip 
times with those observed taxi trajectories with pausing intervals ranging from 0 up to 90 
seconds, then there is a much higher discrepancy: the estimated trip times are some 19% below 
(i.e. with the slope being 0.81). We cannot be certain why this is the case, but since the traffic 
signal intervals are rarely more than sixty seconds long, this sharp change in the comparison 
indicates that introducing those taxi traces with 60-90-second interval into the sample may not be 
advisable. Such delayed intervals might be caused by either the observed times having been 
prolonged by non-traffic delays (e.g. detours and waiting for customers), or some other errors in 
the observed data. This will need better quality data being available in the future. 

There is also the potential issue of the reduction of the number of observations used to estimate 
congested link speed. Although the total number of observation in the original dataset is very 
large, the network is also very dense, meaning that is some instances few observations are used 
to estimate congested link speed. Where these links are then used in the modelled trip shortest 
path we would expect to see fluctuations in the modelled travel time.  
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Figure 10. Estimated-observed travel time comparison for trips with 60-seconds max interval 
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Figure 11. Estimated-observed travel time comparison for trips with 90-seconds max interval 

Although the linear fitting curves are acceptable, there are errors when comparing individual 
pairs. More precisely speaking, the median values of proportional absolute error of estimated 
travel times are 36.8% and 37.4% respectively for sixty-second and ninety-second interval trips. 
This means that for all 1626 observational trips, there are 50% (813) of them, have estimated travel 
time with error smaller than 37%, when comparing with the observed travel time. This can be 
explained by limiting factors already discussed; the inconsistencies in the accuracy of the original 
dataset itself; limiting the congested speed estimation to just 80% of original data; and difficulties 
in inferring trips from what is a very limited dataset in terms of identifying taxi status.  

We have shown through this validation exercise that the methods outlined in this paper provide 
satisfactory congested link speeds across the network. These congested link speeds produce 
estimated travel times for a randomly generated sample of trips that are within acceptable levels 
when compared with observed travel times. This is especially true when the trips are generated 
using time intervals of no longer than 60 seconds. Meanwhile the median values show that there 
are 50% of the 1626 estimations having errors smaller than 37%. But those errors are inherent 
with such datasets with low or inconsistent-precision of the original observations and 
exaggerated by the difficulty in comparing shortest-path routes and the real routes taken by a 
taxi driver where status information is unknown.  

Having said that, the validation result verifies the method as acceptably accurate, especially 
when the time interval of observation is no longer than 60 seconds.  
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4. Conclusions and further work  

We have tested the feasibility of estimating traffic delays and link speeds for a strategic transport 
model of Beijing, from low sampling frequency taxi GPS traces, generated over three consecutive 
days. The available GPS dataset contained only basic information: a series of time-stamped 
coordinates for each vehicle. We build on previous work, to derive the link speed data at the city 
scale, from high volume but low-sampling-frequency GPS traces.  

The algorithm combines hierarchical, geometric and topological structures of the road network 
and temporal and speed constraints of the trajectories. It relies on an information-rich network 
representation, which is generated through a semi-automated process. The matching tolerance 
varies between different network link types, which has a positive impact on map-matching 
precision and increases the probability of considering a valid subset of trajectories. Moreover, the 
path inference process is based on time minimisation rather than observational probability. This 
allows the application of an iterative refining process which results in a deterministic set of 
inferred paths that guarantee minimisation of time between any pair of consecutive GPS traces. 
All the proposed processes can be implemented in standard GIS tools, however the authors 
recommend a different approach in order to optimise computational efficiency; much of the map-
matching and path estimation tools used in this paper have been developed using Python. 

We argue that the analysis of low-frequency taxi GPS traces can facilitate a significant 
improvement of the temporal resolution of conventional transport models and potentially 
generate reliable link speed estimations, especially when the used dataset includes contextual 
information (vehicle status etc.). However, our analysis has shown that even in the case of basic 
time-place datasets (which covers the majority of available GPS datasets), speed estimations 
could be robust; half of the results have an RSD below 34.9%, 34.2% and 32.3% for the three days 
of data collection. Meanwhile, the results of method validation using the 20% sample taxis, also 
indicates that 813 observations among all 1626 sample trips, have a proportional absolute error 
below 37%. Those errors are inherent and not avoidable due the limitation factors mentioned 
above. Thus the results can be concluded as this is arguably justifies the use of the estimations to 
increase the temporal resolution of link speeds estimated using more static (and possibly 
computationally intensive) approaches, such as conventional transport models.  

4.1 Further work 
This is a relatively unexplored research area and as such it provides exciting future opportunities 
for simplifying the process of transport model development. The main short-term objectives are 
(1) further development of the proposed methods (map-matching, path inference and network 
generation) and (2) addressing a series of identified shortcomings and un-tackled issues, 
including: 

 Further automation of the network generation process and populating link attributes 
directly from publicly available resources  

 Development of methods to tackle zero speed observations in order to identify status (e.g. 
parking, traffic lights, congestion) in basic time-place datasets 

 The implementation of the methods into an integrated software package to improve 
automation and computational performance 

At the same time, we are keen to explore  several other directions: Further development of 
methods using other data sources (such as the full Beijing taxi dataset consisting of 30 days of 
data) to investigate how precision is affected by data availability and identify potential 
thresholds in terms of data requirements; apply the method to other study areas and compare 
finding from our Beijing study; investigate the spatiotemporal traffic patterns for different link 
types and search for distinct characteristics.  
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