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The present paper fills a gap in the literature by examining the efficiency of railway traffic control. 
In spite of large-scale migration strategies towards centralised signal boxes (traffic control centres), 
railway traffic control still remains a labour-intensive process in many European countries. In close 
collaboration with experts from Infrabel, the Belgian railway infrastructure manager, we develop a 
two-stage benchmarking framework which assesses and explains railway traffic control efficiency. 
In the first stage, a bootstrapped Data Envelopment Analysis model with categorical variable 
assesses efficiency, and closely monitors average and individual performance trends over time. 
Second-stage regressions examine the impact of several factors on efficiency. The proposed 
framework can be adopted by infrastructure managers as an internal benchmarking tool, evaluating 
the entire network or specific sub-regions. We demonstrate the practical applicability of our 
approach with a unique and rich 18-month dataset of Infrabel’s relay-technology signal boxes. 
Aiming to uncover additional insights, we perform our analysis on two subsets of the monthly data: 
one covering the working week, the other the weekends. Our findings suggest that in order to 
improve on traffic control efficiency, railway infrastructure managers should aim for geographical 
concentration, larger team sizes, and a continuous follow-up of signal box opening times. Further 
efficiency gains can be generated by reducing infrastructure complexity. Finally, our results also 
indicate that railway infrastructure managers should take into account the differences between 
working week and weekend when measuring and analysing traffic control performance. 
 
Keywords: bootstrap, data envelopment analysis, efficiency, railway infrastructure, traffic control, two-stage 
approach. 

1. Introduction 

Railway infrastructure managers are increasingly urged by European railway directives and 
national austerity measures to improve on their efficiency levels. Clearly illustrating this, the 
European Directive 2012/34/EU3 on the establishment of a Single European Railway Area (2012) 
states that ‘railway infrastructure is a natural monopoly and it is therefore necessary to provide 
infrastructure managers with incentives to reduce costs and to manage their infrastructure 
efficiently.’ The same directive also defines an infrastructure manager as 'any body or firm 

1 A: Frankrijkstraat 85, 1060 Brussel, Belgium T: +32 2 525 90 10 F: +32 2 526 38 08 E: bart.roets@ugent.be 
2 A: Sint-Pietersplein 7, 9000 Gent, Belgium T: +32 9 264 35 40 F: +32 9 264 35 92 E: johan.christiaens@ugent.be  
3 More commonly known as the ‘recast’ of the first railway package.  
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responsible in particular for establishing, managing and maintaining railway infrastructure, 
including traffic management and control-command and signalling’.  

Scholarly research on the efficiency of what is typically referred to as railway infrastructure asset 
management, i.e. establishing, managing and maintaining the infrastructure, was initiated with the 
internal benchmark of Network Rails4 maintenance and renewal zones by Kennedy and Smith 
(2004). Their analysis was followed by a series of international studies, all focusing on asset 
management efficiency (see e.g.  Smith, A., Wheat, and Smith G., 2010). Railway traffic control, 
however, consistently remained out of scope of all previous research. The present paper addresses 
this void in the literature. In support of the research, Ghent University initiated a research project, 
baptised CRIPTON5, together with Belgian railway infrastructure manager Infrabel.   

For the purpose of this paper, we define railway traffic control as the combination of real-time traffic 
management (i.e. real-time decision making by dispatchers to ensure a fluent traffic flow) and 
signalling activities (i.e. the authorisation of train movements through the signalling system, by 
signallers). Although of high importance, the technical and engineering aspects of the systems 
supporting the traffic control activities, i.e. the train control-command and signalling systems, are 
not the subject of this research. The need to provide an own definition of railway traffic control 
stems from the diversity of systems and procedures across Europe, and the corresponding disparity 
in terminology (Pachl, 2009, preface). For the remainder of this paper, we will adhere as closely as 
possible to the glossary on railway operation and control developed by Pachl (2009).   

Railway traffic control is performed at several levels, ranging from central to local. Our research is 
focusing on the traffic control activities performed in the so-called interlocking stations or signal 
boxes. Railway staff working in these signal boxes are mainly responsible for local or regional traffic 
management and signalling.  At present, several European infrastructure managers are migrating 
the technology behind these signal boxes from the existing legacy systems (mechanical, electro-
mechanical, relay-based or other technologies) towards a more modern and computerised 
environment, in which centralisation and automation are the keywords.  

Reliable information on these migration projects, as well as their current status, is rather 
fragmented. A relatively good overview is provided in the recent benchmarking report published 
by the UK Office of Rail Regulation (2013). With 7 infrastructure managers participating in the 
study, the report states that the levels of traffic control centralisation and automation vary 
significantly across Europe. It identifies a series of leaders with a high degree of centralisation (such 
as the infrastructure manager ProRail in the Netherlands) and followers, fully progressing in 
ambitious modernisation projects (e.g. Network Rail in the UK, RFF6 in France, or Infrabel in 
Belgium). It is clear however that, despite these large-scale and long term investment projects, 
railway traffic control currently still remains a labour-intensive process in many European 
countries. For instance, Network Rail aims to replace its 800 signal boxes by 14 Rail Operating 
Centres in a migration project stretching over several decades. The French infrastructure manager 
RFF targets the year 2030 to centralise their 1.500 signal boxes and 21 regional centres in 16 traffic 
control centres. In Belgium, Infrabel strives to replace its legacy system signal boxes in 10 electronic 
signal boxes by 2022. Infrabel staff involved in real-time traffic control currently adds up to about 
1800 persons, spread over up to 120 signal boxes (average number in 2013)7.    

The main contributions of this paper are threefold. First, drawing on related research as well as 
railway expertise, we present a benchmarking framework based on Data Envelopment Analysis 
(DEA), which assesses and closely monitors the efficiency of traffic control in signal boxes. The 

4 The British railway infrastructure manager. 
5 CRIPTON = Comprehensive Railway Infrastructure Productivity Tools for Operations on the Network. 
6 Réseau Ferré de France, merged into SNCF Réseau as of 1 January 2015. 
7 Source: Infrabel data. 
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second-stage regressions of the framework examine the impact of several environmental factors on 
efficiency. The framework can be adopted by other infrastructure managers as an internal 
benchmarking tool, evaluating the entire network or specific sub-regions. Second, we demonstrate 
the practical applicability of our framework with a unique and rich 18-month dataset of relay-
technology signal boxes provided by Infrabel. Aiming for additional insights, we perform our 
analysis on two subsets of the monthly data: one covering the working week, the other the 
weekends. Third, not only do our empirical findings suggest the significant impact of a number of 
environmental factors on efficiency, they also show differences between working week and 
weekend efficiency. The results are expected to be generalizable to other signal box technologies, 
and to railway networks or regions with a comparable range of traffic density and infrastructure 
complexity. 

The remainder of this paper is structured as follows. Section 2 provides an overview of related 
research. In the methodology section we then model the traffic control production process, as well 
as the environmental variables influencing its efficiency, and present the DEA-based two stage 
approach. Section 4 describes the data for the practical application of the benchmarking framework, 
and section 5 reports and discusses the empirical results. Conclusions and recommendations for 
railway infrastructure managers are set out in the final section. 

2. Related research 

The gradual vertical separation of infrastructure and train operations, one of the cornerstones of 
Europe’s railway policy, has increased the academic attention towards the cost and efficiency of 
railway infrastructure.  The existing body of literature in this research area has been steadily 
complemented by specific infrastructure oriented research, with a main focus on marginal cost 
estimation (e.g. Johansson and Nilsson, 2004; Wheat and Smith, 2008; Mats Andersson, 2008) and 
efficiency measurement (e.g. Kennedy and Smith, 2004; Smith, 2012; Smith and Wheat, 2012).  The 
scope of this previous research on the cost and efficiency of railway infrastructure was limited to 
asset management, and was almost exclusively based on parametric techniques.   

Although the subject of railway traffic control is gradually emerging in scholarly publications, 
research on its efficiency has not yet been performed. Railway traffic control does appear in 
fragments in previous research, but always within the context of a broader research topic (such as 
the impact of vertical separation on efficiency), and is referred to under a variety of terms. Clearly, 
the disparity in terminology across Europe is also reflected in scholarly research.  

For instance, in an efficiency analysis of European railways, Growitsch and Wetzel (2009) apply a 
bootstrapped Data Envelopment Analysis model to examine the economies of scope associated with 
the vertical separation of infrastructure management and train operations. One of the theoretical 
elements cited, is the cost of ‘real-time traffic coordination’. Research by Merkert and Nash (2013) 
investigates on the size and nature of transaction costs between infrastructure managers and train 
operators (a consequence of the vertical separation). Based on in-depth interviews with senior rail 
managers, the study calls attention to ‘control centres of the infrastructure manager’ and ‘real-time 
decisions’ as elements in the complex and intense area of ‘day-to-day operations’. A paper by Cowie 
and Loynes (2012), analysing the evolution of British railway infrastructure costs over the years 
1980-2009, mentions ‘controlling traffic movements’ through operation of the signalling system as 
‘the second component of operating the infrastructure’. As a final example, Hansen, Wiggenraad, 
and Wolff (2013) discuss a series of Key Performance Indicators relevant for international 
benchmarking of train operations as well as infrastructure management. The authors suggest the 
further breakdown of infrastructure management activities and costs into general administration, 
maintenance and repair, ‘traffic control’ and investment projects.  
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Only at an industry level, a slowly increasing number of reports explicitly examining railway traffic 
control efficiency are emerging. First in line of a series of studies was a chapter on ‘operation 
management cost’ in the UIC InfraCost study (Union Internationale des Chemins de fer, 2002), in 
which the initial steps towards a benchmarking methodology were taken. For the 14 Western 
European companies participating in the project, the yearly operation management cost rose to an 8-
9 billion EUR order of magnitude, which represented about 30 % of total annual expenditures for 
infrastructure management (based on year 2000 budgets). Labour cost was the dominating factor in 
operation management and represented, on average, about 90 %.  Based on additional data gathered 
from a more restricted sample of 10 UIC members, a number of partial productivity ratios (such as 
operation management cost per maintrack-km or per train-km) were presented in an anonymized 
reporting.  

And finally, similar benchmarking work was carried out by the same group of consultants8  within 
the context of the McNulty Value For Money report (2011), and in a further extension of this study 
in a benchmarking report on operations and support functions (UK Office of Rail Regulation, 2013).  
The latter report advocates that optimal migration strategies for railway traffic control should 
consist of a combination of both centralisation and, in parallel, optimisation of staffing levels. A 
series of measures to achieve this are put forward, e.g. more sophisticated staffing calculations, part-
time work, and the optimal alignment of rostering plans to the traffic profile.  

Most probably the major cause for the current neglect of railway traffic control efficiency in the 
scholarly literature is the lack of sufficiently disaggregated - or even basic - data. In the area of air 
traffic control research, much data is publicly available through the annual benchmarking reports 
provided by the EUROCONTROL Performance Review Commission (ATM Cost-Effectiveness 
Benchmarking Reports). In addition, EUROCONTROL has commissioned a series of parametric and 
non-parametric studies in the past years to assess the efficiency of Air Navigation Service Providers 
(e.g. Mouchart and Simar, 2002; NERA, 2006; EUROCONTROL Performance Review Unit, 2011). 
Recently, two academic articles have been published (Button and Neiva, 2013 and 2014), 
benchmarking the European Air Navigation Service Providers against each other by means of 
bootstrapped DEA, and analysing the environmental variables influencing efficiency in a second 
stage regression.  

Although the model specifications, results and conclusions of the air traffic control research cannot 
be directly transposed our research area, they provide a valuable source of information for our 
benchmarking framework. For an overview of the main similarities and differences between air and 
rail traffic control, we refer to Pellegrini and Rodriguez (2013).   

3. Methodology 

In the first stage of our benchmarking framework, we estimate traffic control efficiency by means of 
Data Envelopment Analysis (DEA). The DEA methodology is a powerful non-parametric tool for 
assessing the efficiency of operational processes with multiple inputs and outputs (Cooper, Seiford, 
and Zhu, 2011). In the second stage of the framework, we apply second-stage regressions to examine 
the impact of environmental variables on the obtained efficiency scores. Environmental variables are 
factors that could influence efficiency, but are assumed not under the control of management (Coelli 
et al., 2005). This two-stage approach allows for hypothesis tests on the effects of the environmental 
variables, and can be considered as more transparent than the alternative, i.e. including these 
variables in the DEA model specification (ibid.).   

As one of the objectives of the benchmarking framework is to keep close track of traffic control 
performance, the developed model is based on a monthly evaluation of efficiency, but can easily be 

8 BSL, and later on civity Management Consultants.  
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adapted to other monitoring frequencies. In addition, in order to assure a fair efficiency comparison, 
only signal boxes equipped with the same technology (e.g. electro-mechanical, relay-based, or 
electronic) should be benchmarked against each other.   

In order to support the model building process, an expert panel composed of Infrabel specialists 
from operations, accounting and data departments was established (see Golany and Roll, 1989, for a 
DEA application procedure invoking expert knowledge). The panel provided valuable feedback on 
previous related research and its applicability on railway traffic control. Moreover, much attention 
was paid to the understanding of the DEA concept by the experts. The intuition behind the 
methodology was carefully explained and visualised, without diving into the mathematical details. 
This was a critical step in interpreting the results and acknowledging potential limitations of the 
analysis (Ozbek, de la Garza, and Triantis, 2009).  

In the remainder of this section we will model the traffic control production process, through a 
definition of its inputs and outputs. Also, we will present the environmental variables expected to 
influence its efficiency, and discuss the decision-making levels related to these variables. Finally, the 
DEA-based two-stage methodology will be detailed.  

3.1 Model specification 

The traffic control production process 
To define the traffic control production process in the signal boxes, we specify a model with one 
input and multiple outputs.  The hours worked in the signal boxes serve as the single input, while 
the output mix consists of two types of services: two outputs capture the workload associated with 
railway traffic (train and shunting movements), while two other variables account for the workload 
related to the railway infrastructure (lines and nodes of the network).  

The local management of the signal boxes has no control over the exogenously determined traffic 
and infrastructure outputs but it holds, within the limits of its own authority, responsibility for the 
optimal alignment of the inputs (i.e. the hours worked by signal box staff) with these outputs. As the 
signal boxes are benchmarked against others equipped with the same technology, we do not 
consider other inputs such as technical properties or capital expenditures9. At a central decision-
making level, senior management responsible for traffic control policy can apply the developed 
benchmarking model to not only capture best and worst traffic control practices across their 
network, but also to closely monitor the evolution of the efficiency scores. We will now proceed 
with a detailed description of the input and output variables of the production process.  

HOURS.  This single input fully captures the resources lined up for signalling and traffic 
management, and is defined as the total number of hours worked in the signal box, by the 
dispatchers and signallers. Their tasks also include monitoring the infrastructure, safety measures in 
case of infrastructure works, and the attribution of delay causes to the infrastructure manager or the 
train operators. There is no outsourcing involved, neither in the Infrabel case, nor in any other 
European case known to the authors and the Infrabel experts. Sometimes both functions of 
signalling and traffic management are performed by the same person. The so-called available time, 
which reflects the free time between tasks (e.g. in signalling), is included in this variable.  

TRAIN and SHUNT. The first two outputs account for the workload associated with movements of 
railway vehicles. These movements can be divided in train and shunting movements (Pachl, 2009, p. 
23). Shunting involves all movements other than train movements (e.g. train formation, shunting 
from sidings to station tracks and back), is performed at low speed, and follows operating 

9 This approach is in line with all the above-mentioned international studies from the railway sector, in which the 
operational expenditures (predominantly labour costs) are benchmarked. See InfraCost (2002), the McNulty Value 
for Money study (2011), and the UK Office of Rail Regulation benchmarking report (2013). 
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procedures different from train movements. The first output TRAIN accounts for the signalling, 
traffic management and delay attribution of the train movements. The variable counts these 
movements in each network node (i.e. station or junction), and is weighted according to the 
corresponding workload for the signal box: trains passing through nodes without any stop have a 
weight of 1; trains with arrival and departure receive a weight of 2, as this requires two separate 
route settings and dispatching efforts for the train. The SHUNT variable accounts for the shunting 
workload in the signal boxes. A concern in modelling this workload may be the absence of data to 
capture the shunting movements10. To circumvent this issue, we define the SHUNT variable as an 
ordered categorical variable. Together with the expert panel, we determined 5 levels of shunting 
workload, relative to the total number of train and shunting movements. The highest shunting 
workload (level 1 of the variable) is attributed to signal boxes in which shunting represents 100% - 
80% of total movements, level 2 accounts for a shunting workload of 80% - 60%, and so on until 
level 5, in which shunting is assessed as representing 20% - 0% of total movements. 

LINES and NODES. While the first outputs are related to the active role of signallers and 
dispatchers, a second category of variables captures the more passive character of the activities in 
the signal boxes. Surveillance of infrastructure components such as switches, signals, level crossings, 
track circuits used for train detection, as well as tasks related to ensuring the safety of infrastructure 
works are brought into the model through the LINES and NODES variables. They are defined as the 
number of main line kilometres (LINES) and the number of stations and junctions (NODES) 
controlled by the signal box. In order to ensure correct comparability across months, these variables 
were added up on a daily basis. In addition, as signal boxes can be closed for a period of time, a fair 
and equitable benchmarking also requires each daily line length and number of nodes to be 
multiplied with the percentage of time the signal box is in operation. For example, if a signal box is 
open for 80% of a certain day, the monitored lines and nodes can only be considered an output for 
the same percentage of this day, and are correspondingly multiplied by 0.80. As we shall see in the 
discussion on the environmental variables, the opening and closing of signal boxes (and hence of the 
infrastructure) is set by central management. Within these exogenously determined time limits, local 
management has the responsibility of optimally aligning the HOURS input (i.e. the sum of all hours 
worked by the staff in the signal box) with the traffic and infrastructure outputs. Ideally, both the 
LINES and NODES variables should also capture the partial closing of the network (within the area 
controlled by the signal boxes). Similar to the opening or closing of airspace sectors in Air 
Navigation Service Providers, signal boxes can be closed when traffic volumes do not justify the 
presence of staff (see also the UIC InfraCost study, 2002). 

Environmental variables 
The factors expected to influence railway traffic control efficiency can be grouped in 3 categories of 
environmental variables. The first group represents traffic and timetable characteristics (e.g. traffic 
density), and is considered exogenous to infrastructure manager. The other environmental variables 
are related to the infrastructure manager’s internal decision-making, and can be subdivided into 
two distinct categories. First, we have identified variables corresponding with the asset 
management component of railway infrastructure (e.g. track layout complexity). Second, we 
consider variables which reflect decisions made by the central management responsible for traffic 
control (e.g. signal box closing times). All environmental variables are beyond the control of local 
management of the signal boxes, but are expected to influence efficiency levels in a positive or 
negative way. We will now describe these variables one by one.  

The first group of environmental variables can be considered as being exogenous to the 
infrastructure management, and contains traffic and timetable characteristics. These variables are 

10 As shunting movements are executed inside stations, sufficiently detailed data on the shunting movements 
authorised by the signal boxes may not always be available to the infrastructure manager (with the exception of 
electronic signal boxes). 
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largely influenced by macro-economic factors or public service requirements (see e.g. Merkert, 
Smith, and Nash, 2010), and the corresponding timetable put forward by the railway undertakings. 
VAR is accounting for the variability of the hourly traffic profile, a factor expected to have a 
negative impact on efficiency levels. In accordance with the EUROCONTROL econometric models 
(2011), we calculate the variability by dividing the maximum number of weighted train movements 
per hour (i.e. during the hourly peak) by the average number per hour (during opening times). 
Traffic density is introduced through two variables DENS_SPAT and DENS_TEMP, respectively 
reflecting spatial and temporal density of traffic. Spatial density (DENS_SPAT) is expected to 
increase efficiency, as it reduces the amount of available time in the signal boxes, while higher 
temporal densities (DENS_TEMP) are expected to exert a negative influence. DENS_SPAT is 
calculated as the number of weighted train movements TRAIN divided by the NODES variable. We 
proxy the temporal traffic density DENS_TEMP by the number of secondary delays on the line (i.e. 
delays passed from one train to another), divided by the number of weighted train movements 
TRAIN. We also examine the impact of several timetable properties (i.e. train connections and 
changes in rolling stock or train crew, performed at the station platforms), through the TT_CHAR 
variable. These characteristics complexify the decisions to be taken in the signal box, as well as their 
timely execution, and are therefore expected to decrease efficiency. We proxy the TT_CHAR 
variable through the number of train delays due to these connections or changes, divided by the 
number of weighted train movements TRAIN. 

The next category of variables examines the impact of asset management policy on traffic control 
efficiency. First, the reduction of infrastructure complexity was put forward as an important lever 
for improving traffic control efficiency, not only by the Infrabel experts, but in also previous work 
(UIC InfraCost study, 2002). In our study, we consider two levels of complexity: a higher level 
COMP_NET, reflecting the complexity of the railway network under the control of the signal box, 
and a second level COMP_TRACK, capturing the complexity of the track layout. The COMP_NET 
variable is calculated as the number of nodes divided by the number of lines, while COMP_TRACK 
is proxied by the number of signals divided by the number of nodes. Intermediate block signals 
(automatic signals between signal boxes) and dwarf signals (small ground mounted signals located 
at sidings) are not taken into account, as they do not add to the complexity of the train movements 
and could bias the calculation of the complexity ratio. Second, we also examine the proportion of 
stations in the network, relative to the number of nodes (i.e. stations and junctions). The variable 
P_STATIONS is expected to exert a negative effect on efficiency, due to the additional complexity in 
handling train movements. A final variable linked to the infrastructure, WORK_DENS, represents 
the density of infrastructure works (i.e. maintenance and renewal of tracks, switches, catenaries, and 
signalling equipment). We proxy this variable through the number of delays caused by 
infrastructure works, divided by the length of the lines during opening times (LINES variable).  

The final group of environmental variables captures decisions made by the central management 
responsible for traffic control. First, as reducing opening times of the signal box is expected to 
increase efficiency levels, we introduce the P_CLOSED variable. It is defined as the percentage of 
signal box closing time relative to the total considered time (e.g. all days of the month x 24 hours). 
The opening and closing of infrastructure (lines and stations) through the opening and closing of 
signal boxes is a decision taken at central level, and can affect several signal boxes along the 
concerned railway axes.  Second, the team size in the signal box is expected to increase efficiency, as 
the alignment of staffing levels in the signal box with the hourly traffic profile can be easier attained 
in larger signal boxes (UK Office of Rail Regulation report, 2013). We proxy team size by 
N_PERSONS, the total number of traffic controllers (dispatchers, signallers) who worked in the 
signal box during the month under consideration. Third, verifying the impact of geographical 
centralisation, the KM_PERSON variable (LINES divided by N_PERSONS) is expected to display a 
positive sign in the regression results. The last two variables assumed to be largely controllable by 
central management check for a possible association between human factors and efficiency, without 
a priori expectations on the sign of the possible effects. AVG_AGE is the average age of the staff 
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who worked in the signal box, and serves as a proxy for their experience and skills. The ERRORS 
variable captures the human errors by signal box staff leading to quality issues. It is calculated as the 
number of delays due to these human errors, divided by the number of weighted movements 
TRAIN, and rescaled upwards by a factor of 1000. Important to note is that - in contrast with air 
traffic control - railway traffic control is much less prone to human errors leading to safety issues, as 
the signalling system ensures almost all safety aspects (Pellegrini and Rodriguez, 2013).  

3.2 Data Envelopment Analysis 

DEA model with categorical variable 
In the first stage of our analysis, we estimate the relative efficiency of the signal boxes by means of 
DEA. The DEA methodology can briefly be described as ‘a data-oriented approach for evaluating 
the performance of a set of peer entities called Decision-Making Units (DMU), which convert 
multiple inputs to multiple outputs.’ (Cooper, Seiford, and Zhu, 2011). Applying mathematical 
programming techniques, DEA evaluates the relative efficiency of these DMU (the signal boxes in 
our analysis) with a minimum of a priori assumptions. These assumptions are generally referred to 
as the free disposability (i.e. the possibility of producing less outputs with more inputs) and 
convexity of the examined technology (i.e. a convex linear combination of the observed input-output 
combinations is also feasible). Based on these assumptions, DEA constructs an empirical production 
set Ψ� , which contains all observed input-output combinations and which estimates the true 
attainable production set Ψ (i.e. the set of all physically attainable input-output combinations). The 
so-called technical efficiency of a specific DMU is then estimated relative to the boundary or 
production frontier ∂Ψ�  of Ψ�  (Simar and Wilson, 2008). For a more detailed discussion on DEA, we 
refer to the cited references.   

In our analysis, as we expect scale to play a role in shaping the true production set Ψ, and as local 
management does not have the power to change the size of the signal boxes, we will apply the DEA 
Variable Returns to Scale (VRS) model. This model, introduced by Banker Charnes, and Cooper 
(1984), takes scale differences into account when determining the production frontier ∂Ψ� , and 
assures that a DMU is benchmarked against DMUs of the same scale. Also, as the local management 
is accountable for the optimal alignment of the inputs with the traffic and infrastructure outputs 
(which are uncontrollable by local management), we adopt an input-orientation to measure 
technical efficiency. I.e., the distance of a DMU to the empirical production frontier ∂Ψ�  is 
determined by moving towards this frontier through contraction of its inputs (hours worked), while 
keeping the outputs at the same levels.  

Also, given the objective of monitoring efficiency on a monthly basis, we consider each monthly 
observation to be a distinct DMU for the DEA calculations. In doing so, the efficiency of each DMU 
is gauged against a single empirical frontier, spanning all observations. Under the assumption of no 
technological change, this intertemporal approach (Tulkens and Vanden Eeckhout, 1995) presents the 
advantage of comparing each signal box not only with others but also against itself over time, 
allowing for additional insight in seasonal effects and trends (Boussofiane, Dyson, and 
Thanassoulis, 1991).  

To incorporate the ordered categorical variable SHUNT (a variable capturing the shunting output), 
we apply the DEA model with categorical non-discretionary variables. This model was introduced 
by Banker and Morey (1986a), as an extension to the basic DEA models. The categorical variable can 
assume one of L levels (1, 2, …, L), which reflect the different conditions in which the DMU have to 
operate. A higher level refers to a more advantageous environment. Each DMU is then evaluated 
against the empirical production frontier which envelopes its own category and all preceding 
(lower) categories. Thus, resting on the assumption that there is a natural nesting or hierarchy of the 
L categories, each unit is only compared with DMU operating under the same or harsher conditions 
(Cooper, Seiford, and Zhu, 2011). The Banker and Morey (1986a) model can also be applied in cases 
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where not the environment, but one of the production inputs or outputs is a categorical variable. For 
instance, when the research output for universities is assessed in terms of ‘good’, ‘better’ or 
‘excellent’ (see Boussofiane, Dyson, and Thanassoulis, 1991), or when the output ‘quality of service’ 
of municipalities is classified as ‘good’, ‘normal’ or ‘bad’ (Balaguer-Coll and Prior, 2009).    

Several approaches are available for integrating the categorical variable in the DEA models (Löber 
and Staat, 2011). As there is only one categorical variable in our model, we simply apply different 
VRS frontiers for each level of the variable. More formally, based on the notations in Cooper, 

Seiford, and Zhu (2011), we calculate the efficiency estimate θ�𝑉𝑉𝑉𝑉𝑉𝑉
𝑙𝑙

(𝒙𝒙, 𝒚𝒚) for a DMU in level l of the 
categorical variable, and with input and output vectors x and y, by solving the following linear 
programming model: 

θ�𝑉𝑉𝑉𝑉𝑉𝑉
𝑙𝑙

(𝒙𝒙, 𝒚𝒚) =  

𝑚𝑚𝑚𝑚𝑚𝑚 �θ > 0 | θ𝒙𝒙 ≥ � 𝜆𝜆𝑖𝑖𝒙𝒙𝑖𝑖

𝑖𝑖∊⋃ 𝐾𝐾𝑓𝑓
𝑙𝑙
𝑓𝑓=1

;  𝑦𝑦 ≤ � 𝜆𝜆𝑖𝑖𝒚𝒚𝑖𝑖

𝑖𝑖∊⋃ 𝐾𝐾𝑓𝑓
𝑙𝑙
𝑓𝑓=1

;  � 𝜆𝜆𝑖𝑖

𝑖𝑖∊⋃ 𝐾𝐾𝑓𝑓
𝑙𝑙
𝑓𝑓=1

= 1; 𝜆𝜆𝑖𝑖  ≥ 0 , 𝑚𝑚 = 1 , … , 𝑚𝑚 �, 

   

 

(1) 

where the sample of n observations  K = { 1, 2, …,n} is split into L subsets Kf  ={ j| j ∊ K and level of 
the categorical variable = f} , and Ki ∩ Kj = ∅, i ≠ j. In this formula, (𝒙𝒙𝑖𝑖 , 𝒚𝒚𝑖𝑖) are the input and output 
vectors of the n observations in the sample. The scalars 𝜆𝜆𝑖𝑖 are the weights applied in the 
optimization problem to construct the empirical frontier ∂Ψ�𝑉𝑉𝑉𝑉𝑉𝑉

𝑙𝑙  which, under the assumption of 
Variable Returns to Scale, tightly envelops all observations of level l and lower.     

Bootstrapping the efficiency estimates 
As the efficiency scores are based on the empirical frontier, and not on the unknown true 
production frontier, these estimations are upward biased by construction: the probability of 
including truly efficient units in the sample decreases with diminishing sample size, shifting the 
empirical frontier away from the true frontier. In addition, DEA efficiency scores are serially 
correlated in an unknown and complex way (Simar and Wilson, 2007).  To deal with these issues, 
and before engaging in the second stage regression analysis, we apply the subsample bootstrapping 
algorithm proposed in the literature to obtain bias-corrected efficiency VRS estimates. See Simar and 
Wilson (2008) for an overview and further technical details on this subject.  

Now coming back to our DEA model with categorical variable, the integration of the variable 
implies that the convexity assumption is relaxed for this dimension of the model (Banker and 
Morey, 1986a). We therefore need to adapt the bootstrap algorithm to accommodate for the l levels 
of the categorical variable. We do this by sampling in a way similar to the group-wise subsampling 
approach developed by Simar and Zelenyuk (2007). The technical details of the adapted algorithm 
are presented in the Appendix, to which we refer the interested reader.  

3.3 Second stage regressions 
In order to gain insight in the determinants of railway traffic control efficiency, we explore a series 
of possible causes in the second stage of our framework. To this end, several researchers have 
applied second-stage regressions on efficiency scores estimated by means of DEA models with 
categorical variables (e.g. Balaguer-Coll and Prior, 2009; Harrison and Rouse, 2014).  

We mainly follow the approach adopted by Button and Neiva (2013, 2014) in their analysis of 
Europe’s Air Navigation Service Providers, and perform an OLS regression on the bias-corrected 
efficiency estimates. As the use of second stage regression methods is currently the subject of an 
academic debate, in which McDonald (2009), Banker and Natarajan (2008) and Simar and Wilson 
(2007, 2011) play a leading role, we complement this approach with a truncated regression on the 
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bias-corrected scores, applying the single bootstrap procedure developed by Simar and Wilson 
(2007). Finally, in line with the recommendation of McDonald (2009) to calculate White’s 
heteroskedastic-robust standard errors for the OLS regressions, we apply Arellano clustered 
standard errors for panel data (robust to heteroskedasticity and temporal serial correlation).   

4. Data 

We will demonstrate the practical applicability of our framework with a unique and rich set of intra-
company data provided by Infrabel. Detailed staff rostering and operations data for relay-based 
signal boxes were gathered, for an 18 month period starting from January 2013 till June 2014. Given 
the substantial differences between the staffing levels and traffic densities in the working week and 
the weekend, we looked for additional insights and patterns by splitting up the monthly data in two 
subsets, one covering the five weekdays of the working week (Monday to Friday), the other the 
weekend (Saturday and Sunday)11. Results and discussions reported in this paper will be based on 
these 2 datasets. 

With the aim of implementing the efficiency analysis as an ongoing exercise, a custom Business 
Intelligence (BI) application code-named as the CRIPTON BI tool was developed. The tool collected 
micro-data from the databases of interest, and subsequently aggregated the data to signal box level, 
the Decision Making Unit which is the subject of our DEA efficiency analysis. In line with the 
objective of closely monitoring traffic control performance, monthly datasets were generated. With 
the CRIPTON tool, a detailed drill-down analysis of the underlying data as well as an interactive 
visualization of the efficiency results were made accessible at the click of a mouse12. A cornerstone 
of this concept was the creation of a new database, linking data from the staff rostering application 
with data from the operational systems. The server-based tool was built in close cooperation with 
Infrabel’s Traffic Operations department, with the specific aim of not only preparing the necessary 
data sets, but also verifying data quality and introducing the DEA concept in the organisation. Most 
importantly, the use of the Business Intelligence tool helped to unlock the full potential of the expert 
panel, and proved to be an important asset in the process of building the DEA-based framework 
and validating the empirical results. 

The initial dataset generated by the CRIPTON BI tool consisted of 101 relay-technology signal boxes. 
Together with the expert panel, an extensive data examination was carried out. Due to complexities 
inherent to the migration process, 8 signal boxes were eliminated from the sample (as they are 
temporarily equipped with mixed technologies, relay-based and electronic). Another 10 exhibited 
errors in the data, mainly in the first months of the sample, and 3 signal boxes presented local 
particularities which could not be modelled in the database. The list of 80 remaining signal boxes 
was validated by the expert panel. During the 18 months under consideration, and as a consequence 
of the ongoing migration towards electronic technology signal boxes, 14 relay-technology signal 
boxes left the sample, leading to a total of 1305 observations.   

As there was no reliable data available on the shunting movements, the expert panel made an 
assessment of the appropriate level of shunting workload for each signal box. Thus, the sample was 
categorized as follows: 

11 As pointed out by an anonymous referee, this data split could be further improved by also considering public 
holidays as weekend days. In addition, public holidays with a large-scale shutdown of the railway system (such as 
‘boxing day’ in the UK) could possibly lead to very poor efficiency levels, and should be analysed with care. Such 
cases do not occur on the Belgian network.    
12 DEA calculations were performed in R, subsequently imported in the Business Intelligence tool, and interactively 
visualised next to micro-level data such as the corresponding railway lines, nodes, signals, train numbers, or staff 
rostering details.  
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Table 1. Shunting levels (categorical variable SHUNT) 

Level shunting workload  
(% of total movements) 

# of signal 
boxes 

# of monthly 
observations 

1 100% - 80% 24 405 
2 80% - 60% 7 126 
3 60% - 40% 9 141 
4 40% - 20% 13 215 
5 20% - 0% 27 418 
Total   80 1,305 
 
It was also decided to exclude the first level from the sample, as the shunting workload for these 
signal boxes was judged as being consistently close to 100% of the total movements (i.e. signal boxes 
in shunting yards). In doing so, the sample was further reduced to 900 observations. Table 2 
provides the descriptive statistics of the final datasets (working week and weekends). In this table, 
the name of the 3 categories of environmental variables reflects the decision-making level which has 
authority over these variables.   

Table 2. Descriptive statistics 

   Working week (Mon-Fri)  Weekends (Sat-Sun) 
  Mean St. dev. Min Max  Mean St. dev. Min Max 
1. Production process          
           
Input           
HOURS  (hours worked) 1,009 513 304 3,574  351 170 29 1,090 
           
Output           
TRAIN  (train movements) 11,727 10,640 1,036 59,991  2.402 2.276 40 13,916 
SHUNT  (shunting level) 4.028 1.087 2 5  4.028 1.087 2 5 
LINES  (line.km controlled) 451.8 383.2 60.9 2,127.2  177.9 155.6 6.18 924.87 
NODES  (nodes controlled) 90.9 67.9 13.6 299.0  34.9 26.7 2.4 130.0 
           
2. Environmental variables influencing efficiency       
         
External decision-making (railway traffic characteristics)       
           
VAR (variability) 1.794 0.235 1.260 2.506  1.745 0.583 1.000 7.273 
DENS_SPAT (spatial density) 13.831 7.928 2.386 42.252  7.451 4.576 0.250 22.969 
DENS_TEMP (temporal density) 0.941 0.899 0.000 4.120  0.314 0.403 0.000 2.839 
TT_CHAR (timetable charact.) 0.005 0.007 0.000 0.042  0.005 0.010 0.000 0.084 
           
Internal decision-making (asset management policy)       
           
COMP_NET (network complexity) 1.036 0.387 0.250 2.000  1.036 0.387 0.250 2.000 
COMP_TRACK (track complexity) 11.241 5.574 3.625 25.000  11.241 5.573 3.625 25.000 
P_STATIONS (proportion stations) 86.80 20.46 25.00 100.00  86.80 20.46 25.00 100.00 
WORK_DENS (infrastr. works) 0.223 0.463 0.000 3.222  0.153 0.331 0.000 2.675 
 

 

         
Internal decision-making (traffic control policy)         
 

 

         
P_CLOSED (closing times) 5.929 11.136 0.000 42.029  8.605 17.838 0.000 86.574 
N_PERSONS (team size) 13.657 6.383 3 42  12.387 6.004 2 40 
KM_PERSON (centralisation) 2.818 1.715 0.152 8.633  3.074 1.798 0.152 9.270 
AVG_AGE (age of the staff) 49.77 3.46 36.67 58.69  49.57 3.92 36.47 58.69 
ERRORS (errors delays) 0.136 0.861 0.000 25.038  0.137 0.768 0.000 18.416 
 



EJTIR 15(4), 2015, pp.396-418  407 
Roets and Christiaens 
Evaluation of Railway Traffic Control Efficiency and its Determinants 
 

5. Results 

5.1 DEA results 
Table 3 summarizes the obtained efficiency scores for the working week and weekend estimations. 
On average, the bias correction leads to a slight decrease in average efficiency scores of 0.017 
(working week) to 0.014 (weekend). For the remainder of this paper, we will only consider the bias-
corrected values.  

Table 3. Efficiency scores 

 Working week (Mon-Fri)  Weekends (Sat-Sun) 
 Mean Median St. dev. Min  Mean Median St. dev. Min 
          efficiency 0.664 0.682 0.215 0.260  0.574 0.483 0.237 0.159 

bias 0.017 0.014 0.016 0.000  0.014 0.009 0.014 0.000 
bias-corrected efficiency 0.647 0.670 0.210 0.256  0.560 0.473 0.232 0.156 
 
Average efficiency levels may seem rather low, but this is a consequence of the unavoidable 
‘available time’ in signal boxes, since the workload associated with the traffic volumes and the 
supervised infrastructures cannot always sufficiently fill each (e.g. 8-hour) working shift. In 
addition, as we shall see in the regression results, there are several factors not under the control of 
local management which significantly influence efficiency, and therefore can impede efforts to 
maximise efficiency. Very low efficiency scores can be observed at the periphery of the network, 
where few trains run on relatively short stretches of track. It should also be emphasized that, 
although the calculated technical efficiency scores suggest a sometimes large potential for 
performance improvement, major productivity and efficiency gains are only achievable through the 
implementation of a different technology (i.e. the migration towards electronic signal boxes). The 
DEA calculations do nevertheless allow senior management to look for smaller and incremental 
efficiency improvements, by analysing the best and worst practices across their (sometimes 
extensive) network, and keeping a finger on the pulse through a continuous monitoring of traffic 
control performance. 

The results also show a strong difference between the average efficiency levels in the working week 
versus the weekend: mean efficiency scores drop substantially from 0.647 for the working week to 
0.560 for weekend efficiency (difference of 0.087), while the median shifts from 0.670 to 0.473, i.e. 
minus 0.197. Although this weekend effect was not entirely unexpected by the Infrabel expert panel, it 
was now quantified for the first time, and identified as being statistically significant (Wilcoxon 
signed-rank test statistic:  V = 318414, p-value < 2.2e-16). Correlation between working week and 
weekend efficiencies is positive and significant, but not extremely large: the Pearson correlation 
coefficient is 0.762 (p-value < 2.2e-16), while the Spearman coefficient equals 0.745 (p-value < 2.2e-
16). 

Taking a closer look at the gap between working week and weekend efficiency (see the histogram in 
figure 1 with the calculated efficiency difference for each signal box), we can observe that working 
week efficiency is not consistently larger than weekend efficiency, and that a higher weekend 
efficiency occurs for a substantial number of signal boxes. An in-depth analysis of some of the latter 
cases unravelled a series of explanations, such as modified signal box closing times, or a closer 
alignment of staffing levels to the traffic volumes. Traffic densities were consistently lower during 
the weekends. As mentioned, the factors influencing efficiency will be examined more closely in the 
second stage regressions of the benchmarking framework.   
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Figure 1. Histogram of observed efficiency differences between working week and weekend  
 
The detailed reporting of the DEA results - which will not be disclosed here for confidentiality 
reasons - displays an average efficiency trend which seems to be slightly positive for working week, 
and stable for the weekends. Seasonal effects appear to be most clearly present during the 
weekends, with higher average efficiencies during the summer months (which the expert panel 
interpreted as a consequence of increased closing times). The observed average efficiency evolutions 
are a consequence of both the migration strategies (privileging the elimination of signal boxes 
perceived as less efficient), and tendencies related to the remaining relay-technology signal boxes 
(with the traffic of the eliminated signal boxes being taken over by the new electronic signal boxes). 
Interestingly, although the efficiency of the individual signal boxes seems to be relatively robust 
over time, several signals boxes display efficiency changes which, after conducting a more thorough 
analysis by the experts, revealed a very diverse pattern of underlying causes (e.g. slowly evolving 
towards best-practice through local optimisation of staff rostering plans, or gradual decrease in 
efficiency due to long-term changes in traffic volume).  

This is an illustration of performance trends which can ‘develop slowly and sometimes unevenly 
across different units’, as indicated by Brockett, Golany, and Li (1999). In order to detect and 
monitor these and other trends, the combination of the DEA methodology (providing a single 
measure of efficiency of the complex production process in the signal boxes) with the ease of use of 
a Business Intelligence tool (allowing for tailored management reporting as well as an in-depth 
analysis by experts), can be of considerable value to decision-makers.   

5.2 Regression results 
In the second stage of the benchmarking framework, the bias-corrected efficiency scores 
(independent variable) are regressed against the environmental variables presented in the 
methodology section. A positive sign of the parameter estimates implies a positive impact of the 
environmental variable on technical efficiency. The results of these second-stage regressions13  are 
presented in table 4. Both for the OLS and the truncated bootstrap regression, two model 
specifications are tested: a first model with only the traffic and asset management variables 

13 All calculations were carried out in R. OLS regressions were performed with the plm package. The truncated 
single bootstrap regressions are developed with the functions available in the FEAR 2.0 package. We also performed 
various robustness checks with related model specifications, as well as OLS regressions on the original efficiency 
estimates, all showing similar results (not reported here). As suggested by an anonymous referee, we also calculated 
the DEA model without weighing the train movements (see the description of the TRAIN variable). This provided 
similar regression results. 
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(TR_AM), and a second model TR_AM_TC including the full array of explanatory variables. 
Moreover, the juxtaposition of working week and weekend results allows for additional insights 
and robustness checks.  

Bivariate correlations between independent variables did not indicate multi-collinearity problems. 
All variance inflations factors for the estimators of the OLS models are well below the threshold of 5, 
with a maximum value of 2.18. In particular, variables which might seem related at first sight (such 
as density and complexity, or team size and geographical centralisation) exhibit a low correlation14. 
According to the Infrabel experts, the low correlation between infrastructure complexity and traffic 
density can be explained by the design of the train routing across the track configuration (even at a 
lower traffic density, the train routing can require a more complex infrastructure, and vice versa). 
Also, although the concepts of team size and geographical concentration seem closely related, they 
are complementary dimensions (which show little correlation in our sample of relay-technology 
signal boxes) and should not be equated with each other. For example, the larger team sizes can also 
be the consequence of dense traffic areas or important shunting activities, in signal boxes covering 
only short stretches of track.  

We control for trends and seasonal effects through 2 semester dummies (representing the last six 
months of 2013 and the first six months of 2014). As our base methodology is the OLS regression 
with cluster-robust standard errors, we will mainly discuss results based on this approach. We will 
also focus on the most general regression model (TR_AM_TC), and highlight the most important 
differences and similarities between working week and weekends.    

Overall, our regression results exhibit a moderately strong goodness-of-fit (adjusted R-squared: 0.63 
for the working week, 0.71 for the weekend). The model TR_AM shows a more modest but still 
satisfactory explanatory power (adjusted R-squared: 0.42 for the working week, 0.47 for weekends). 
In terms of confidence intervals, the OLS model with cluster-robust standard errors generally yields 
more cautious results then the Simar and Wilson (2007) single bootstrap procedure, which does not 
correct for possible heteroskedasticity and serial correlation in the panel data. 

First, we discuss the environmental variables representing traffic and timetable characteristics 
(variables not under the control of the infrastructure manager). The impact of traffic variability VAR 
exhibits a positive sign but is only significant during weekends (attaining significance in 3 out of the 
4 regressions). An intuitive explanation by the expert panel was that weekends typically display a 
larger difference between day-time and night-time traffic volumes. Although more research is 
needed on this aspect (e.g. through more precise modelling of traffic variability), it would appear 
that signal boxes are able to cope with traffic decline during the weekends, e.g. through reduced 
night shifts. Even though statistical significance is not achieved in the working week models, the 
positive sign of the regression coefficient could also point at the adaptability of the signal boxes to 
follow traffic variations.  

The variables exploring the influence of traffic density demonstrate the anticipated effect on 
efficiency levels, although consistent statistical significance is only attained in the working week. 
The higher traffic densities during the working week could explain this dissimilarity with the 
weekends. As expected, the spatial traffic density DENS_SPAT has a positive impact on railway 
traffic efficiency, while the temporal traffic density DENS_TEMP exerts a negative influence. The 
last variable related to traffic and timetable, train connections and changes in rolling stock and crew 
at station platforms TT_CHAR, is not significant except for the two truncated regressions in the 
weekends (and carries an unexpected positive sign). A possible explanation for this counterintuitive 
result is that the variable is a poor proxy for the characteristics of the timetable it is intended to 

14 Correlations between N_PERSONS and KM_PERSON: 0.14 in working week, 0.21 in weekends; correlations 
between COMP_GRID and DENS_SPAT (DENS_TEMP): 0.38 (0.22) in working week, 0.27 (0.10) in weekends.  
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operationalise (e.g. number of delays generated by train connections, instead of the true number of 
connections).   

Turning next to the group of variables related to railway infrastructure asset management, the 
network complexity COMP_NET is not consistently significant across the regression models. 
However, highly significant negative effects of track layout complexity (COMP_TRACK) can be 
observed. As the COMP_TRACK variable was proxied by the number of signals per node, we need 
to interpret this result with some caution. The variable does account for the number of signals, but 
may not necessarily fully reflect additional complexity parameters such as the number of switches 
or the possible routes in the track configuration. We refer to Landex (2013) for a series of track 
complexity measures which, however, require much more detailed data, such as the number of 
conflicting train routes. In line with the expectations of the expert panel, the final complexity 
variable P_STATIONS, i.e. the proportion of stations in the network, exerts a positive influence (and 
is clearly significant). The negative impact of the density of infrastructure works WORK_DENS is 
only significant in the weekend models (3 out of 4 regressions). As infrastructure works mainly take 
place during the night or in the weekends, this result was not entirely unanticipated. 

The final group of environmental variables consists of parameters under the control of the central 
management responsible for the signal boxes, but which are beyond the discretionary power of local 
management. The percentage of signal box closing times (variable P_CLOSED), is confirmed as 
highly significant throughout all models, with a positive impact both for the working week and the 
weekend. The factor team size (variable N_PERSONS) also positively influences efficiency, and is 
highly significant in all models. Team size is closely linked to the input variable HOURS. Therefore 
this result must be interpreted as the impact of scale on efficiency, after allowing for scale effects 
when determining the production frontier (as we applied the DEA Variable Returns to Scale model). 
In other words, our results indicate that a larger scale – in terms of team size – allows signal boxes to 
move closer to the production frontier, and hence increase the efficiency of their operations.   

Regression results also identify a clear positive and significant impact of the variable KM_PERSON, 
which reflects the degree of geographical centralisation. As this result is in accordance with previous 
rail and air traffic control research (e.g. InfraCost 2002, ORR report 2013, Button and Neiva 2013 and 
2014), and is also confirmed by the current migration strategies towards centralised traffic control 
centres, this provides us with further confidence in our findings. In addition, even though the 95 % 
confidence intervals of the working week and weekend slightly overlap for the OLS estimations, the 
higher regression coefficient for the weekend results could also point - ceteris paribus - at a higher 
leverage of geographical centralisation on the weekend efficiencies. This could be a consequence of 
the lower traffic volumes, which allows for a higher coverage of railway line capacity per person. 
Another explanation, applicable in some cases, is the partial closing of signal boxes in the weekends 
(which remains uncaptured by the data). Evidently, more research is needed to investigate this 
particular phenomenon. The last two environmental variables, average age AVG_AGE and human 
errors ERRORS are all insignificant15, as well as the semester dummies, and are therefore not 
reported.  Including monthly dummies or a time trend provided similar results.   

  

15 Results are robust to omission of these variables. 
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Table 4. Regression results on bias-corrected efficiency estimates 

Variable Working week (Mon-Fri)  Weekends (Sat-Sun) 
 OLS (robust SE)a 

TR_AM 
OLS (robust SE)a  

TR_AM_TC 
trunc. bootstrapb 
TR_AM 

trunc. bootstrapb  
TR_AM_TC 

 OLS (robust SE)a  

TR_AM 
OLS (robust SE)a  

TR_AM_TC 
trunc. bootstrapb  
TR_AM 

trunc. bootstrapb  
TR_AM_TC 

Constant 1.142*** 0.435* 1.377*** 0.414***  1.181*** 0.630** 1.325*** 0.617*** 
 (0.840, 1.444) (-0.012, 0.881) (1.222,1.507) (0.247,0.582)  (0.911, 1.451) (0.143, 1.118) (1.216,1.393) (0.491,0.737) 
          
External decision-making (railway traffic characteristics)       
VAR 0.025 0.068 0.020 0.081***  0.039 0.052** 0.040*** 0.056*** 
(variability) (-0.130, 0.180) (-0.046, 0.181) (-0.042,0.083) (0.035,0.127)  (-0.043, 0.122) (0.005, 0.099) (0.015,0.062) (0.038,0.072) 
DENS_SPAT  0.006** 0.005** 0.007*** 0.004***  0.007 0.006 0.007*** 0.006*** 
(spatial density) (0.001, 0.011) (0.001, 0.010) (0.005,0.009) (0.002,0.006)  (-0.003, 0.017) (-0.002, 0.014) (0.003,0.010) (0.003,0.008) 
DENS_TEMP -0.059*** -0.034* -0.072*** -0.025***  -0.021 -0.035 -0.019 -0.033*** 
(temporal density) (-0.101, -0.016) (-0.072, 0.004) (-0.087,-0.052) (-0.038,-0.011)  (-0.112, 0.070) (-0.107, 0.036) (-0.054,0.019) (-0.056,-0.006) 
TT_CHAR 0.015 -0.568 -0.919 -0.933  2.835 1.133 2.604*** 1.020** 
(timetable characteristics) (-4.397, 4.426) (-4.091, 2.955) (-2.902,1.036) (-2.327,0.501)  (-1.254, 6.924) (-1.272, 3.538) (1.169,3.852) (0.098,1.890) 
          
Internal decision-making (asset management policy)        
COMP_NET -0.008 -0.054 -0.013 -0.057*  -0.049 -0.028 -0.047** -0.026 
(network complexity) (-0.136, 0.120) (-0.146, 0.038) (-0.051,0.027) (-0.090,-0.024)  (-0.163, 0.065) (-0.104, 0.048) (-0.080,-0.008) (-0.056,0.004) 
COMP_TRACK -0.015*** -0.011*** -0.016*** -0.011***  -0.017*** -0.010*** -0.017*** -0.009*** 
(track complexity) (-0.022, -0.008) (-0.017, -0.005) (-0.018,-0.013) (-0.013,-0.009)  (-0.024, -0.009) (-0.015, -0.004) (-0.019,-0.014) (-0.011,-0.008) 
P_STATIONS -0.005*** -0.004*** -0.007*** -0.005***  -0.006*** -0.005*** -0.007*** -0.005*** 
(proportion of stations) (-0.006, -0.003) (-0.005, -0.002) (-0.008,-0.006) (-0.006,-0.004)  (-0.008, -0.003) (-0.006, -0.003) (-0.008,-0.006) (-0.005,-0.004) 
WORK_DENS 0.018 0.012 0.018 0.009  -0.076** -0.029 -0.084*** -0.036** 
(infrastructure works) (-0.027, 0.063) (-0.026, 0.050) (-0.011,0.050) (-0.011,0.032)  (-0.134, -0.018) (-0.079, 0.021) (-0.118,-0.042) (-0.060,-0.009) 
          
Internal decision-making (traffic control policy)         
P_CLOSED  0.009***  0.012***   0.004***  0.005*** 
(closing times)  (0.005, 0.014)  (0.011,0.014)   (0.002, 0.006)  (0.004,0.006) 
N_PERSONS  0.009***  0.011***   0.009***  0.009*** 
(team size)  (0.006, 0.013)  (0.009,0.013)   (0.004, 0.015)  (0.008,0.011) 
KM_PERSON  0.034***  0.045***   0.062***  0.069*** 
(geographical centralisation)  (0.014, 0.054)  (0.038,0.051)   (0.047, 0.077)  (0.063,0.075) 
          
R2 (adjusted R2) 0.424 (0.418) 0.645 (0.633)    0.478 (0.472) 0.725 (0.712)   
a heteroskedastic and temporal serial correlation robust standard errors, Arellano (1987)       b Simar and Wilson (2007) single truncated bootstrap  
* p < 0.1; ** p < 0.05; *** p < 0.01; 95 % CI between brackets.    
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6. Conclusions 

In this paper, we presented a first of many steps in the new and in our opinion promising 
research field of railway traffic control efficiency. Drawing on related research as well as railway 
expert knowledge, we constructed a DEA-based benchmarking framework which assesses and 
explains the relative efficiency of traffic control in signal boxes. In a first stage, the framework 
estimates the technical efficiency of the production process, and keeps close track of average and 
individual performance trends over time. The efficiency scores are bias-corrected with a DEA 
subsample bootstrap algorithm, which we adapted to accommodate for DEA models with a 
categorical variable. The impact of several determinants of efficiency is examined in second-stage 
regressions. We demonstrated the practical applicability of the developed framework on a unique 
and rich 18-month dataset of Infrabel’s’ relay-technology signal boxes. Aiming to uncover 
additional insights, our calculations were performed on two subsets containing working week 
and weekend data. The analysis was supported by the development and implementation of a 
custom Business Intelligence application. This tool proved to be an important asset, not only as a 
managerial instrument, but also during the process of building and validating the DEA 
framework.  

As the basic principles of railway operation are similar across Europe (Pachl, 2009, preface), and 
as the DEA methodology relies on a minimum of a priori assumptions, we are confident that our 
framework can be adopted by other infrastructure managers. It can be applied as a decision-
support tool for senior management, internally benchmarking the entire network or specific sub-
regions. The single overall measure of efficiency obtained through the DEA calculations can act 
as a guide to pinpoint the best, good and worst practices throughout the examined area. 
Especially for large networks with an extensive number of signal boxes (such as the French or 
British, see the introduction) this can deliver powerful management insight. If the goal is to 
consistently inform the decision makers on efficiency trends, the tool should preferably be 
implemented as an ongoing exercise, supported by advanced reporting and analysis software. As 
the development of such a performance measurement system can consume important time and 
resources, it should be approached as a long-term and sustainable project, with considerable 
academic input (or sufficient internal capabilities) and an appropriate project management 
structure. And finally, but most importantly, it needs continuous support from the management 
involved.  

Two sets of policy recommendations for infrastructure managers can be drawn from our 
empirical results. First, oriented towards the asset management component of railway 
infrastructure, our second-stage results suggest a significant influence of track layout complexity 
on efficiency. This could imply that an asset management strategy, aiming for ‘lean 
infrastructure’ (UIC InfraCost study 2002) is not only reducing asset maintenance cost, but also 
has positive effects on traffic control efficiency. At Infrabel, the reduction of infrastructure 
complexity (while still maintaining the same levels of capacity and flexibility in handling the 
traffic volumes) is a long-term and ongoing process, integrated in the infrastructure renewal 
program.   

A second set of conclusions is relevant for railway traffic control policy. Our DEA efficiency 
results show that average efficiency levels clearly and significantly drop during the weekend, 
thus confirming the intuition that the lower weekend traffic volumes decrease efficiency. More 
surprisingly however, at an individual level, a higher weekend efficiency can be observed for a 
substantial number of signal boxes (even though traffic densities consistently remained lower 
during the weekends). These diverging ‘weekend effects’ can further assist senior management in 
identifying and analysing their best and good practices, which may be different in weekends 
compared to the working week.    
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Based on the second stage regression results, further policy recommendations regarding railway 
traffic control can be put forward. First, geographical centralisation and a higher team size clearly 
and significantly improve efficiency levels. Although both concepts seem closely related, they are 
complementary dimensions (which show little correlation in our sample of relay-technology 
signal boxes) and should not be equated with each other. For example, the larger team sizes can 
also be the consequence of dense traffic areas or important shunting activities, in signal boxes 
covering only short stretches of track. As indicated in the international benchmarking report from 
the UK Office of Rail Regulation (2013), larger team sizes allow for a more flexible and closer 
alignment of the working shifts to the hourly traffic profile, and as such offer the potential to 
increase efficiency. Infrastructure managers should therefore complement the beneficial effects of 
geographical centralisation with the optimisation of their staff rostering, an exercise which can be 
leveraged by larger team sizes. The current migration strategies across Europe, aiming for fewer 
and larger signal boxes, provide this opportunity to further improve on efficiency through 
optimised resource planning (see ibid.).  

Second, the opening and closing of infrastructure for operation provides a significant lever for 
increasing efficiency. Although the power to change opening times can be restricted by 
operational constraints (such as train paths demanded by railway undertakings), it is a key 
parameter to improve efficiency. It does not require extensive investment budgets, and has the 
potential to deliver results in a relatively short time span. A practical implementation of this 
measure could be supported by a thorough and systematic monitoring of areas with very weak 
traffic volumes at the early or late hours of the day. Slowly changing traffic volumes (e.g. in 
freight traffic) can then act as a trigger to examine the opening hours of the signal boxes along the 
affected railway axes, or consider a partial closing of the infrastructure. In addition, as put 
forward by the UIC InfraCost study (2002), shunting operations could be analysed and bundled 
into fewer hours.  

Although the practical application of our framework was demonstrated on relay-technology 
signal boxes, we expect the results to be generalizable to other signal box technologies, and to 
railway networks or regions with a comparable range of traffic density and infrastructure 
complexity. An element however not considered in our study, is the automation of the signalling 
activities through Automatic Route Setting16 (ARS). The automation can provide an additional 
lever for efficiency improvement. At Infrabel, ARS is currently being rolled out in the electronic 
signal boxes, and is introduced with the objective of not only further enhancing the efficiency but 
also the quality of traffic control. We refer the interested reader to Hayden-Smith (2013) for a 
more detailed discussion on the impact of ARS on signaller workload. In this interview-based 
analysis, areas with high traffic density and a higher infrastructure complexity are expected to 
still require considerable manual intervention (a consequence of knock-on delays passed from 
one train to another).  

A first spin-off of our research is currently under development: a single-stage DEA model 
incorporating some of the significant environmental variables is being tested in the CRIPTON 
Business Intelligence tool. The model applies the Banker and Morey (1986b) approach, which 
allows for exogenous inputs and outputs. Also, imposing a limit on the importance of some of the 
environmental variables, custom constraints are added to the DEA linear programming problem 
(i.e. virtual weight restrictions, Wong and Beasley, 1990). In order to further improve the DEA 
model, our next research efforts will directed towards the internal process flows in the signal 
boxes. In conventional DEA, the production unit under consideration (e.g. the signal box) is 
modelled as a ‘black box’ which transforms the inputs into outputs. By including information on 
the internal production process, the efficiency results can provide additional managerial insights. 

16 Automatic Route Setting (ARS): the automatic setting of a train route when a train approaches a signal (Pachl, 
2009, p. 228). ARS software is developed for electronic signal boxes, and is therefore not considered in our 
analysis of relay-technology signal boxes.  
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One approach currently under consideration is the novel DEA-based methodology developed by 
Cherchye et al. (2013), which incorporates expert knowledge on the process flows into the 
benchmarking models. 
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Appendix: DEA subsample bootstrap algorithm, adapted for categorical variable 

To obtain bias-corrected efficiency VRS estimates, we apply the subsample bootstrapping 
algorithm proposed in the literature. See Simar and Wilson (2008) for an overview and further 
technical details on this subject.  

The purpose of this Appendix is to present a subsample bootstrap algorithm applicable to the 
Banker and Morey (1986a) DEA models with a categorical variable. 

Let us first consider the DEA Variable Returns to Scale (VRS) model, introduced by Banker 
Charnes, and Cooper (1984). In the input-oriented case, an estimate θ�𝑉𝑉𝑉𝑉𝑉𝑉(𝒙𝒙, 𝒚𝒚) of the true 
efficiency θ(𝒙𝒙, 𝒚𝒚) can be calculated by solving the following linear programming model:   

                θ�𝑉𝑉𝑉𝑉𝑉𝑉(𝒙𝒙, 𝒚𝒚) =  

                𝑚𝑚𝑚𝑚𝑚𝑚 �θ > 0 | θ𝒙𝒙 ≥ � 𝜆𝜆𝑖𝑖𝒙𝒙𝑖𝑖 ; 
𝑛𝑛

𝑖𝑖=1

𝑦𝑦 ≤ � 𝜆𝜆𝑖𝑖𝒚𝒚𝑖𝑖; 
𝑛𝑛

𝑖𝑖=1

� 𝜆𝜆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 1; 𝜆𝜆𝑖𝑖  ≥ 0 , 𝑚𝑚 = 1 , … , 𝑚𝑚 � .  
     (2) 

 

Here, (𝒙𝒙𝑖𝑖, 𝒚𝒚𝑖𝑖) are the input and output vectors of the n observations in the sample, and the scalars 
𝜆𝜆𝑖𝑖 are the weights applied in the optimization problem (2) to construct the convex and free-
disposal hull Ψ�𝑉𝑉𝑉𝑉𝑉𝑉 , tightly enveloping these observations.     

The idea behind the bootstrap procedures is to approximate the unknown sampling distribution 
of θ�𝑉𝑉𝑉𝑉𝑉𝑉(𝒙𝒙, 𝒚𝒚) −  θ(𝒙𝒙, 𝒚𝒚) through the empirical distribution of θ�𝑉𝑉𝑉𝑉𝑉𝑉

∗ (𝒙𝒙, 𝒚𝒚) −  θ�𝑉𝑉𝑉𝑉𝑉𝑉(𝒙𝒙, 𝒚𝒚), in which 
θ�𝑉𝑉𝑉𝑉𝑉𝑉

∗ (𝒙𝒙, 𝒚𝒚) represents pseudo efficiency scores generated by the bootstrapping algorithm. 

The standard naive bootstrap, where a set 𝑆𝑆𝑛𝑛
∗ of n pseudo-observations is randomly drawn 

(independently, uniformly, and with replacement) from the original set of observations 𝑆𝑆𝑛𝑛 and is 
subsequently used to calculate θ�𝑉𝑉𝑉𝑉𝑉𝑉

∗ (𝒙𝒙, 𝒚𝒚), is known to be inconsistent17. Two solutions providing 
consistent inference have been proposed by Kneip, Simar, and Wilson (2003): a subsampling 
procedure and a smoothing technique. Of the two, the subsampling approach is the least complex 
to implement and allows for speedier computations, since it only differs from the naive bootstrap 
in the size of the pseudo-samples, by drawing m < n instead of n pseudo-observations from 𝑆𝑆𝑛𝑛 .  

In each iteration b of the subsample bootstrap algorithm, the efficiency score θ�𝑉𝑉𝑉𝑉𝑉𝑉,𝑚𝑚,𝑏𝑏
∗ (𝒙𝒙, 𝒚𝒚) is 

calculated with the bootstrap sample 𝑆𝑆𝑚𝑚,𝑏𝑏
∗ =  ��𝒙𝒙𝑖𝑖

∗,𝑏𝑏, 𝒚𝒚𝑖𝑖
∗,𝑏𝑏), 𝑚𝑚 = 1, … , 𝑚𝑚�� determining the bootstrap 

production possibility set: 

          θ�𝑉𝑉𝑉𝑉𝑉𝑉,𝑚𝑚,𝑏𝑏
∗ (𝒙𝒙, 𝒚𝒚)  =  

 

          𝑚𝑚𝑚𝑚𝑚𝑚 �θ > 0 | θ𝒙𝒙 ≥ � 𝜆𝜆𝑖𝑖𝒙𝒙𝑖𝑖
∗,𝑏𝑏 ; 
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= 1; 𝜆𝜆𝑖𝑖  ≥ 0 , 𝑚𝑚 = 1 , … , 𝑚𝑚 �. 

 
 

(3) 

 

For the subsample bootstrap, Kneip, Simar, and Wilson (2003) have proven that as the number of 

bootstrap iterations B → ∞, the empirical distribution of 𝑚𝑚
2

(𝑁𝑁+𝑀𝑀+1) �θ�𝑉𝑉𝑉𝑉𝑉𝑉,𝑚𝑚,𝑏𝑏
∗ (𝒙𝒙, 𝒚𝒚) −  θ�𝑉𝑉𝑉𝑉𝑉𝑉(𝒙𝒙, 𝒚𝒚)� 

approximates the unknown sampling distribution of  𝑚𝑚
2

(𝑁𝑁+𝑀𝑀+1) �θ�𝑉𝑉𝑉𝑉𝑉𝑉(𝒙𝒙, 𝒚𝒚) − θ(𝒙𝒙, 𝒚𝒚)�. This given 
𝑆𝑆𝑛𝑛 , and in- and output dimensions N and M of the DEA VRS model, see Simar and Wilson 
(2008).  

Turning now to the DEA model with a categorical variable (see formula 1), the integration of the 
variable implies that the convexity assumption is relaxed for this dimension of the model (Banker 

17 The efficient facet determining the value of θ�𝑉𝑉𝑉𝑉𝑉𝑉(𝒙𝒙, 𝒚𝒚) appears too often and with a fixed probability 
in the pseudo-samples. 
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and Morey, 1986a). Therefore, as the line of reasoning unfolded above is applicable to VRS 
technologies, estimated with convex and free-disposal hull boundaries, we need to adapt the 
bootstrap procedure to accommodate for the categorical variable. This can simply be done by 
performing the algorithm for the specific VRS frontier against which a DMU is gauged. This 
frontier is determined by all DMU with an equal or lower level l ∈ {1, 2,… ,L} of the categorical 
variable, i.e. all DMU working in similar or harsher conditions.  

The remaining question now, is which subsample size m we need to choose for each level of the 
categorical variable. The value of m is determined through 𝑚𝑚 =  𝑚𝑚𝜅𝜅, with 0 < 𝜅𝜅 < 1 . Following 
the approach of Simar and Zelenyuk (2007), who developed a group-wise subsampling algorithm 
for testing efficiency differences between L subgroups of a set of DMU, we will subsample with a 
value of  𝜅𝜅 being equal for all levels l of the categorical variable. That is, 𝑚𝑚𝑙𝑙 =  𝑚𝑚𝑙𝑙

𝜅𝜅 for all l, with 𝑚𝑚𝑙𝑙 
= the number of observations of level ≤ l. 

Thus, after calculating the efficiency estimates θ�𝑉𝑉𝑉𝑉𝑉𝑉
𝑙𝑙

(𝒙𝒙, 𝒚𝒚) with formula (1), the following 
subsample bootstrap algorithm can be applied to obtain the bias-corrected estimates:  

1. Generate a bootstrap sample 𝑆𝑆𝑚𝑚𝑙𝑙,𝑏𝑏
∗  for the level l ∈ {1, 2,… ,L}  by randomly drawing 

(independently, uniformly, and with replacement) 𝑚𝑚𝑙𝑙 observations from the original set 
of 𝑚𝑚𝑙𝑙 observations determining the empirical production possibility set for the 
observations of level l, i.e. all observations of level ≤ l, with 𝑚𝑚𝑙𝑙 =  ⌊𝑚𝑚𝑙𝑙

𝜅𝜅⌋, 0 < 𝜅𝜅 < 1, and 
⌊𝑚𝑚𝑙𝑙

𝜅𝜅⌋ being the largest integer smaller than 𝑚𝑚𝑙𝑙
𝜅𝜅. 

2. For each observation in the level l ∈ {1, 2,… ,L}, compute the bootstrap estimate 
θ�𝑉𝑉𝑉𝑉𝑉𝑉,𝑚𝑚𝑙𝑙,𝑏𝑏

∗,𝑙𝑙 (𝒙𝒙, 𝒚𝒚) using the bootstrap pseudo-sample 𝑆𝑆𝑚𝑚𝑙𝑙,𝑏𝑏
∗  from the previous step, and 

applying formula (3), with 𝑚𝑚 = 𝑚𝑚𝑙𝑙. 

3. For each level l ∈ {1, 2,… ,L},  repeat the above steps (1) and (2) B times and obtain 
bootstrap estimates for each b = 1, …, B. 

4. The resulting B bootstrap values can then be used to estimate the bias for each 
observation:   

𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆� 𝐵𝐵 �θ�𝑉𝑉𝑉𝑉𝑉𝑉
𝑙𝑙 (𝒙𝒙, 𝒚𝒚)� = �

𝑚𝑚𝑙𝑙

𝑚𝑚𝑙𝑙
�

2
(𝑁𝑁+𝑀𝑀+1)

 �  
1
𝐵𝐵

 � θ�𝑉𝑉𝑉𝑉𝑉𝑉,𝑚𝑚𝑙𝑙,𝑏𝑏
∗,𝑙𝑙 (𝒙𝒙, 𝒚𝒚) −  θ�𝑉𝑉𝑉𝑉𝑉𝑉

𝑙𝑙 (𝒙𝒙, 𝒚𝒚)
𝐵𝐵

𝑏𝑏=1

� , 
 

(4) 
 

with the factor  �𝑚𝑚𝑙𝑙
𝑛𝑛𝑙𝑙

�
2

(𝑁𝑁+𝑀𝑀+1)  correcting for the effect of different sample size in the original 
data and the bootstrap subsamples (Simar and Wilson, 2008).  

5. The bias-corrected estimates can then be obtained by:  

θ��𝑉𝑉𝑉𝑉𝑉𝑉
𝑙𝑙  = θ�𝑉𝑉𝑉𝑉𝑉𝑉

𝑙𝑙 (𝒙𝒙, 𝒚𝒚) − 𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆� 𝐵𝐵 �θ�𝑉𝑉𝑉𝑉𝑉𝑉
𝑙𝑙 (𝒙𝒙, 𝒚𝒚)�. (5) 

    

We wrote the algorithm elaborated above in R, using the functions of the FEAR 2.0 package 
(Wilson, 2008). Bootstrap calculations were performed applying B = 2000 iterations. After 
assessing the stability in the bootstrap results with several values of 𝜅𝜅, both for the working week 
and weekend datasets, we chose a value for 𝜅𝜅 equal to 0.75 (Daraio and Simar, 2007).     
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