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This paper provides a framework for optimizing toll locations and levels in congestion pricing 
schemes for large urban road networks, with the objective to maximize the social surplus. This 
optimization problem is referred to as the toll location and level setting problem (TLLP) and is 
both non-convex, non-smooth and involves binary decision variables, and is therefore considered 
as a hard problem to solve. In this paper a solution approach is provided which instead of 
directly solving the TLLP, makes use of the first-best toll level solution, in which no restrictions 
are imposed on toll locations or levels. A first-best pricing scheme can be obtained by solving a 
convex program, and it has previously been shown that for the used routes in the network, the 
first-best toll levels on a route level are unique. By formulating an optimization problem, which 
instead of maximizing the social surplus, tries to find the link toll levels which minimize the 
deviation from first-best route tolls, a mixed integer linear program is obtained, and if the toll 
locations are predetermined the resulting optimization problem is a linear program. 
 
The approach of minimizing the deviation from first--best route tolls is applied for two different 
network models, and results are provided to show the applicability of the approach, as well as to 
compare with other approaches. Also, it is shown that for the Stockholm network, virtually the 
first-best level of social surplus can be obtained with a significantly reduced number of located 
tolls. 
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1. Introduction 

Marginal social cost pricing (MSCP) in a road traffic network will lead to the most efficient usage 
of the road infrastructure (first discussed by Pigou, 1920), and will maximize the social surplus. 
One drawback with MSCP is, however, that in practice, a toll needs to be collected on every road 
segment. Even though collecting a toll on every road segment is possible with the technology 
available today, it would result in a pricing scheme in which it would be virtually impossible for 
the road users to predict the cost associated with choosing a specific route through the network. 
Also, such a pricing scheme may become expensive to implement and operate. Therefore 
congestion pricing schemes are usually implemented, in practice, with a more limited number of 
toll locations, and in such a way that the road users easily can understand the system and predict 
their costs of travelling. The pricing scheme can be in the form of cordon pricing, where the road 
users pay a toll when crossing a cordon, in the form of area pricing, where the road users pay a 
toll for accessing a restricted part of the city, or as in the form of distance based pricing where the 
road users are charged a fixed amount per kilometer driven. In all of these variants of pricing 
schemes, restrictions are imposed on toll locations and/or toll levels, but the aim is still to 
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maximize the social surplus and such pricing principles are commonly referred to as second-best 
ones, as opposed to first-best ones in which there are no restrictions. 

When predicting effects of changes in transportation infrastructure or pricing of using the 
infrastructure it is commonly assumed that the travelers are distributed according to a 
Wardropian user equilibrium. In a user equilibrium no traveler can reduce his/her travel cost by 
altering the choice of mode or route in the transportation network.  While a distribution of road 
users according to a user equilibrium assumes that the road users have perfect information about 
travel costs (both time and monetary costs) within the road network, and that they make 
decisions which maximize their individual utility, the user equilibrium has desirable 
mathematical properties. Assuming that the traffic conditions are static over the studied time 
period, the problem of determining the user equilibrium can be formulated as a convex program. 
The problem of finding optimal toll locations and toll levels, which maximize the social surplus, 
can then be formulated as a bi-level optimization program. In which the lower level program is a 
convex user equilibrium problem, and on the upper level, toll locations and levels are adjusted to 
maximize the social surplus. A special case of the bi-level program arise when there are no 
restrictions on the toll locations and their toll levels (first-best pricing), and for this case the 
problem is convex. For the first-best case, MSCP tolls always give an optimal solution but there 
can also be alternative optimal solutions. The bi-level program, which is both non-convex and 
non-smooth for the general case, is similar to other bi-level programs arising in transportation 
network design problems. For a review on bi-level programs within transportation planning see 
Migdalas (1995), and for a more recent review on models and methods the case of congestion 
pricing see Tsekeris and Voß (2009).  

For the case when the toll locations are predetermined, the problem is reduced to finding optimal 
toll levels, which is still a non-convex and non-smooth problem, due to the intricate relationship 
between the upper and lower level problems. This will be referred to the toll level setting 
problem (TLP), and it has previously been solved with both ascent methods (Yang and Lam, 
1996; Verhoef, 2002a; Chen and Bernstein, 2004; Lawphongpanich and Hearn, 2004; Ekström et 
al., 2009) and meta-heuristic approaches (Yin, 2000; Yang and Zhang, 2003; Shepherd and 
Sumalee, 2004; Zhang and Yang, 2004). Introducing stochastic route choices, ascent methods are 
developed in (Chen et al., 2004; Ying and Yang, 2005; Sumalee et al., 2006; Connors et al., 2007). 
While the ascent approaches can only be used for finding a local optimal solution and need to 
deal with the non-differentiability of the TLP, meta-heuristic approaches usually require a large 
number of toll level solutions to be evaluated, and each evaluation of a solution to the TLP 
requires one user equilibrium problem to be solved. On the other hand, meta-heuristic 
approaches include mechanism to avoid getting stuck in local optimal solutions, although they 
can neither guarantee local or global optimality of the solution. 

The toll location and level setting problem (TLLP) has almost exclusively been studied with 
different heuristic approaches (Verhoef, 2002b; Zhang and Yang, 2004; Sumalee, 2004; Shepherd 
and Sumalee, 2004; Ekström et al., 2009). Heuristic methods are, however, often based on 
hierarchal decisions of toll locations and toll levels, and to evaluate one specific toll location 
require one TLP to be solved, and to achieve good results with such heuristics require a large 
number of toll locations to be evaluated. The approach in Ekström et al. (2009) is instead based on 
a smoothening of the discrete part of the objective function, in order to simultaneously determine 
the optimal number of tolls to locate and the corresponding toll locations and toll levels, based on 
a cost associated with each toll location, and this approach has been demonstrated on a network 
model of Stockholm in Ekström et al. (2014).  

More recently, global optimization approaches have been adopted to solve the TLLP by Zhang 
and van Wee (2012) and Ekström et al. (2012). These approaches are based on piecewise 
linearization of the non-linear functions in the TLLP, resulting in a mixed integer linear program 
(MILP). So far, global optimization approaches have, however, only been demonstrated on small 
network models, due to the computational burden of solving the resulting MILPs.  
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Based on first-best pricing schemes Yildirim and Hearn (2005) formulate a set of valid toll 
vectors, which fulfil the requirement of being first-best pricing schemes. Different objective 
functions can then be formulated to choose between the different first-best toll vectors, e.g. the 
toll vector with minimum number of located tolls or which minimize the maximum toll level. 
Larsson and Patriksson (1998) and Yin and Lawphongpanich (2009) have, however, shown that 
while the toll levels differ between different first-best pricing schemes on a link-level, the sum of 
the collected tolls for each used route is equal for all first-best pricing schemes, under the 
assumption that the traffic demand is depending on the cost of travelling. Thus, as Larsson and 
Patriksson (1998) points out, the set of first-best toll vectors is of limited interest as the number of 
tollable links can only be reduced if several links can be replaced by a single one. 

The study in Ekström et al. (2014) suggests that it is, for the presented Stockholm study, possible 
to achieve 96% of the social surplus associated with first-best pricing, with only 24% of the links 
being tolled. To search for first-best pricing schemes will result in pricing schemes which account 
for 100% of the social surplus, but will on the other hand require an increased number of links to 
be tolled. Thus, close to first-best pricing may be possible using a significantly reduced number of 
tolled links. In the work presented in this paper, the maximization of the social surplus is 
replaced by the minimization of the deviation from first-best pricing on a route level. The 
resulting optimization problem is a linear program (LP), if the toll locations are fixed and a MILP 
if the toll locations are variable. While the minimization of the deviation from first-best route tolls 
is not likely to result in toll levels which maximize the social surplus function, it is shown in the 
numerical results that good toll levels and locations can be obtained within a reasonable 
computational time for a network model of Stockholm. 

The main contribution of this paper is to provide a framework for optimizing toll locations and 
toll levels, which is applicable to large urban road networks within reasonable computational 
time. In the numerical results it is shown that although the deviation from the first-best solution 
is large, toll level solutions which minimize this deviation results in toll levels close to what has 
been obtained with other, more computational demanding, methods. This paper also presented 
results which show that congestion pricing schemes resulting in a level of social surplus close to 
what is reached with first-best pricing can be achieved with a significantly reduced number of 
located tolls. While Larsson and Patriksson (1998) points out that the set of first-best toll vectors is 
of limited interest, the results presented in this paper shows that for a practical case, a small 
relaxation of the first-best toll set can significantly reduce the number of tolled links with 
virtually the same level of social surplus. 

The resulting LP (for the case of fixed toll locations) includes constraints which rely on the 
complete set of routes being explicitly formulated for every OD-pair. In the optimum solution it 
is, however, assumed that only a subset of these constraints are binding. Therefore a model, with 
only a subset of constraints included, is formulated, and an iterative solution algorithm is 
developed for generating additional routes. For the case of variable toll locations, the resulting 
MILP is solved with a greedy heuristic. 

The remainder of the paper is outlined as follows. In Section 2 the set of first-best toll vectors is 
formulated, and later relaxed in Section 3 to allow for second-best solutions. Together with the 
relaxed set of first-best toll vectors an optimization problem is formulated in order to minimize 
the deviation from first-best route tolls. To solve the resulting LP and MILP, solution algorithms 
are developed in Section 4 for both the cases of fixed and variable toll locations. Numerical 
results are presented in Section 5 for network models of Sioux Falls and of Stockholm, and in 
Section 6 the results are summarized and further research directions are discussed. 
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2. Valid toll vectors in the first-best pricing problem 

Consider a road traffic network with a set of origin-destination (OD) pairs I and a set of links A. 
For each OD-pair i I∈  there is a set of routes Πi, each route ip∈Π  with fp being the number of 
travelers using route p per hour. The number of cars per hour, νa, on link a is given by 

i

a
a p pi I p

v f δ
∈ ∈Π

=∑ ∑  where a
pδ  takes on the value of 1 if route p traverses link a, and 0 

otherwise. The link travel cost is given by ( , ) ( )a a a a a ac v t vτ α τ= + , where ( )a at v  is the travel 

time (in minutes) on link a  at flow av , aτ  the toll level on link a, and α the value of time which 
transforms time into the same monetary unit as the toll levels are given in. The relationship 
between travel cost and demand is expressed by the inverse travel demand function, which for 
OD-pair i I∈  is given by 1( )i i iD qπ −= , where iπ  is the minimum travel cost and qi the travel 
demand in OD-pair i  in the unit of travelers per hour. Note that the link flow is given in the unit 
of cars per hour, and the demand and route flows in the unit of travelers per hour, thus the mean 
car occupancy, 𝜒, will be used to provide a conversion between travelers and cars. Throughout 
this paper the travel time functions are assumed to be separable and increasing functions and the 
inverse travel demand functions are assumed to be separable and decreasing functions. 

The problem of finding the user equilibrium link flow and demand distribution, given a toll 
vector τ , can then be formulated as the complementarity problem (Sheffi, 1985) 

 0 ( , ) ,a
p a a p i

a A
f c vτ δ π

∈

> ⇒ =∑    ,ip i I∈Π ∈    (1a) 
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f q
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=∑  i I∈   (1h) 

Constraints (1a) and (1b) states that any used route will have a cost equal to the minimum cost, 

iπ , of making a trip in OD-pair i I∈ , and any unused route will have a cost equal to or larger 

than iπ  for OD-pair i I∈ . For each OD-pair, constraints (1c) and (1d) will ensure that a potential 
road user only makes a trip if the individual surplus with making the trip exceeds the minimum 
cost of travelling in the OD-pair. Constraints (1e) and (1f) ensure non-negative route flows and 
demands respectively, (1g) gives the conversion between route and link flows, and (1h) ensure 
that the sum of the route flows in each OD-pair equals the demand. For a given toll vector, τ , the 
user equilibrium link flows and demands can be obtained by solving the following convex 
program (Sheffi, 1985) 

 ,

1

0 0
( , , ) ( , ) ( )
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The efficiency of a congestion pricing scheme is evaluated by the change in social surplus. The 
social surplus measure (SS), for a given toll vector τ consists of the consumer surplus (CS) plus 
the operator surplus (OS). The consumer surplus is expressed as   

 
( ) 1

0
( , ( ), ( )) ( ) ( ( ) ) ( ),iq a

i a a a
i I a A

CS q v D w dw t v v
τ ττ τ τ χ α τ τ

χ
−

∈ ∈

 
= − + 

 
∑ ∑∫    (3) 

in which the first sum is the user benefits (given by the Marshallian measure (Zerbe and Dively, 
1994) and the second sum is the user costs. The operator surplus (OS) is equal to the collected 
tolls 

 ( , ( ), ( )) ( ).a a
a A

OS q v vτ τ τ τ τ
∈

=∑         (4) 

The social surplus measure can then be expressed as 

 ( ) 1

0

( , ( ), ( )) ( , ( ), ( )) ( , ( ), ( ))

( ) ( ( )) ( ).iq

i a a a
i I a A

SS q v CS q v OS q v

D w dw t v v
τ

τ τ τ τ τ τ τ τ τ

χ α τ τ−

∈ ∈

= +

= −∑ ∑∫
    (5) 

Let 0v  and 0q  bet the link flow and demand vectors corresponding with the non-tolled solution. 
The social surplus for the non-tolled solution is then given by  

     
0

0 0 1 0 0

0
( , ) ( ) ( ) ,iq

i a a a
i I a A

SS q v D w dw t v vχ α−

∈ ∈

= −∑ ∑∫      

with the change in social surplus, ( )SS τ∆ , induced by the toll vector τ , given by 

 0 0( ) ( , ( ), ( )) ( , ).SS SS q v SS q vτ τ τ τ∆ = −        (6) 

Consider the problem of maximizing the social surplus by adjusting the toll locations and toll 
levels. Let ay  be a variable for each link a A∈  which takes on the value of 1 if link a is tolled and 
0 otherwise. The feasible combinations of toll locations and levels are then given by the set 

 : ( , ) | ,0 , ,V U
a a a a a a a a

a A
T y y g y a A y kτ τ τ

∈

 ≤ ≤ ≤ ∈ = 
 

∑      (7) 

where k  is the number of tolled links, ag  is a parameter which takes on the value of 1 if link a is 

tollable and 0 otherwise and U
aτ  is the maximum toll level allowed to be charged on link a. For 

the case when the toll locations are fixed, the feasible set of toll levels can be formulated as 

 { }: | 0F U
a a a aT gτ τ τ≤ ≤          (8) 

The objective in both the TLP and TLLP is to maximize (6), and since 0 0( , )SS q v  is constant, (5) 
can be used as objective function. The TLLP can then be formulated as 

 
( , )

( ) 1

0
max ( ) ( , ( ), ( )) ( ) ( ( )) ( ).i

Vy T

q

i a a a
i I a A
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τ

τ
τ τ τ τ χ α τ τ

∈

−

∈ ∈

= = −∑ ∑∫    (9) 

For fixed toll locations, ( , ) Vy Tτ ∈  is simply replaced by FTτ ∈  in (9). Note that ( )q τ  and ( )v τ  
are given implicitly by the solution to the user equilibrium problem. This implicit relation 
between the objective function and toll levels give rise to the non-convex nature of the bi-level 
program. If 1ag =  for every link a, and k  is equal to the number of links in the network, (9) is a 
convex program with the MSCP toll vector as one, among possibly several, first-best optimal 
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solutions. The corresponding link flow and demand solution is for this case commonly referred 
to as the system optimal (SO) link flow and demand solution, and any first-best toll level solution 
results in SO link flows and demands. 

 Let SOπ , SOv  and SO
pf  be the vectors of minimum OD travel costs, link flows and route flows 

respectively, corresponding to the SO link flow and demand solution. Inserting OSπ , SOv  and 
SO
pf  in (1), Yildirim (2001) shows that any toll vector τ  satisfying 

 ( )SO SO SO0 ( ) ,a
p a a a p i

a A
f t vα τ δ π

∈

> ⇒ + =∑     ,ip i I∈Π ∈     (10a) 

 ( )SO SO SO0 ( ) ,a
p a a a p i

a A
f t vα τ δ π

∈

= ⇒ + ≥∑    , ,ip i I∈Π ∈    (10b) 

will maximize the social surplus. Note that in order to formulate the set of first-best toll vectors 
(10), it is actually only necessary to know the SO link travel times, minimum route travel cost and 
the set of used routes, which can be computed from SOv  and SOq . 

The set of route flows and demands satisfying (10) is denoted as the set of feasible first-best toll 
vectors. Larsson and Patriksson (1998) show that if the demand is elastic, the total paid toll for 
each route through the network with a positive flow is independent of the choice of toll vector, as 
long as the toll vector belong to the set of first-best toll vectors. In Hearn and Ramana (1998) and 
Yildirim (2001) an equivalent link based formulation of (10) is used to maximize or minimize 
different objectives over the set of feasible first-best toll vectors, e.g. to minimize the number of 
located tolls or the minimum of the maximum toll level. The resulting optimization problem is 
either a LP or a MILP. First-best solutions are, however, usually not possible in practice, when 
there are restrictions on toll locations and/or toll levels. In the next section the set of feasible toll 
vectors (10) is therefore relaxed, to allow for second-best solutions. 

3. Relaxing the first-best toll set 

Let 1,SO
iΠ  and 2,SO

iΠ  be the set of routes in OD-pair i  with flow 0pf >  and with flow 0pf =  
respectively, i.e. the set of used and unused routes respectively. The set of first-best feasible toll 
vectors (10) can then be expressed as 

 ( )SO SO( ) ,a
a a a p i

a A
t vα τ δ π

∈

+ =∑     1,SO ,ip i I∈Π ∈     (11a) 

 ( )SO SO( ) ,a
a a a p i

a A
t vα τ δ π

∈

+ ≥∑    2,SO , ,ip i I∈Π ∈    (11b) 

Note that the first-best toll, charged for travelling on a route ip∈Π  in OD-pair i I∈ , can be 

expressed as SOroute SO a
p i a pa A

tτ π α δ
∈

= −∑ . Thus, instead of charging a toll on each link, an 

equivalent route toll, route
pτ , can be charged to each user on route p. While there may exist several 

link toll vectors which are valid in (11), Larsson and Patriksson (1998) show that, under the 
assumption of elastic demand, the route tolls can be uniquely determined, and this route toll will 
always be equal to the sum of the first-best link tolls along route p. For a route with zero flow, it 
is only necessary for the route toll to be equal to or exceed SO

iπ . For unused routes, route
pτ  can 

therefore be equal to zero if the route cost, even without tolls, exceeds SO
iπ . 

The problem of maximizing the social surplus (5) over the set of feasible toll vectors is a non-
linear program, if the set of feasible toll vectors are defined by (8), or a mixed integer non-linear 
program, if the set of feasible toll vectors are defined by (7). Both of these problems belong to the 
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class of mathematical programs with equilibrium constraints (MPEC) and are in the general case 
non-convex and non-smooth problems. Instead of directly solving the non-linear program or the 
mixed integer non-linear program, this paper proposes another strategy for obtaining toll levels 
and locations in order to maximize the social surplus. By searching for link toll vectors which 
minimize the deviation first-best route tolls, toll levels can be obtained by solving a LP and toll 
locations and levels by solving a MILP. 

The set (11) can be relaxed by introducing the variables 0pρ ≥  and 0pσ ≥  into (11a) for each 

route 1,SO ,ip i I∈Π ∈ , and the variables 0iµ ≥  into (11b) for each OD-pair i I∈ . The relaxed set 
of first-best toll vectors can then be expressed as 

            ( )SO SO( ) ,a
a a a pp i

a A
pt vα ρτ πσδ

∈

+ =+ −∑     1,SO ,ip i I∈Π ∈     (12a) 

 ( )SO SO( ) ,a
a a a p i

a A
it v µα τ δ π

∈

+ ≥+∑    2,SO , .ip i I∈Π ∈    (12b) 

For a route p, with SO 0pf > , pρ  and pσ  will describe the amount, negative and positive 

respectively, by which the current route toll, given by a
a pa A
τ δ

∈∑ , deviates from the first-best 

route toll. For a route p  with SO 0pf = , the negative deviation from the first-best route toll is 

instead only given by the maximum deviation in OD-pair i, iµ . This will make it possible to later 
iteratively generate the constraints for unused routes, without introducing additional variables. If 
ρ, σ and μ are zero, the corresponding toll vector τ, which satisfies (12a) and (12b), will be a valid 
first-best toll vector. By penalizing the deviation from first-best pricing, i.e. the values on ρp, σp 
and μi, a minimization problem can be formulated, with the optimal solution equal to the toll 
locations and levels which minimize the penalized deviation from first-best route tolls. The 
problem of minimizing the penalized deviation (PD) is formulated as 

          ( )
1,SO

SO SO
1 2, , , ,

min
i

p p p i iy i I i Ip

z f q
ρ σ µ τ

β ρ σ β µ
∈ ∈∈Π

= + +∑ ∑ ∑     (13a) 

 ( )SO SO( ) ,a
a a a pp i

a A
pt vα ρτ πσδ

∈

+ =+ −∑    1,SO ,ip i I∈Π ∈     (13b) 

 ( )SO SO( ) ,a
a a a p i

a A
it v µα τ δ π

∈

+ ≥+∑   2,SO ,ip i I∈Π ∈    (13c) 

 ,p iρ µ≤   1,SO ,ip i I∈Π ∈   (13d) 

 ( ), ,Vyτ ∈Τ     (13e) 

 0, 0,p pρ σ≥ ≥   1,SO ,ip i I∈Π ∈   (13f) 

 0,iµ ≥   .i I∈   (13g) 

Constraint (13d) is introduced to make it possible to develop an efficient solution algorithm, and 
the practical interpretation of (13d) is that the negative deviation from first-best route tolls for a 
route with positive flow cannot exceed the maximum negative deviation for the routes with zero 
flow in the same OD-pair. This is further discussed in the next section. 

In the objective function (13a), for any route with positive flow, 1,SO
ip∈Π , the deviation from 

first-best route tolls is weighted by a constant 1β  and the SO route flow SO
pf . For each OD-pair, 

i I∈ , the maximum deviation from first-best route tolls is weighted by the constant 2β  and the 

SO travel demand SO
iq . The weights reflect that, for routes with positive flows, it is reasonable 

that a small deviation from first-best route tolls is more important for routes with large flows, 
compared with routes with smaller flows. For routes with zero flow in the SO solution, the same 
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argument is used when weighting iµ  by SO
iq , to reflect the importance of OD-pairs with a high 

SO demand. If the first-best tolls can be completely recreated on a route level, the resulting toll 
vector is a first-best solution, with the optimal objective function value z*=0. 

For fixed toll locations an equivalent minimization problem can be formulated as   

 
( )

1,SO

SO
1 2, , ,

subject to and constraints (13b)-(13

m

g

n

)

i
i

p p p i i
i I i Ip

F

z f q
ρ σ µ τ

β ρ σ β

τ

µ
∈ ∈∈Π

∈

= + +

Τ

∑ ∑ ∑
      (14) 

Note that the link flows are assumed to be fixed (to SO flows), and the optimization problem 
either takes the form of an LP (if the toll locations are fixed) or a MILP (if the toll locations are 
variable). For optimal solutions to (13) with optimal objective function values close to zero this is 
reasonable and the toll level solution will be close to the global maximizer of (9). As the number 
of tollable links is reduced, the difference between the true equilibrium link flows and the system 
optimal ones will increase, and the toll level solution to (13) can be expected to move further 
away from the global maximizer of (9). The benefit, on the other hand, is the possibility to find 
good toll location and toll levels for large networks in reasonable time. 

Even if the set of used routes is known, it is still a matter of expressing (11b) for every unused 
route, which can be expected to be large. Therefore, a cutting constraint algorithm (CCA) is used, 
both for solving the LP and the MILP. For the MILP case, the problem, however, becomes too 
large to be solved to optimality for larger networks, and a greedy heuristic is adopted for the 
example of the Stockholm network presented in Section 5. 

While (11) is formulated based on route flows, a corresponding link based model can be 
formulated (Yildirim and Hearn, 2005). Since the link based formulation will not rely on 
explicitly formulating the set of used and used routes, it can directly be implemented and solved 
with any commercially available solver. The major limitation with adopting a link based 
formulation is the number of constraints introduced. A link based formulation will 
approximately have the number of constraints equal to the number of links multiplied with the 
number of OD-pairs, while the route based version, adopted in this paper, will have the number 
of constraints equal to the number of used routes, plus the number of additionally added 
constraints for unused routes. Generating the unused routes iteratively with a CCA, it is thus 
possible to keep the number of constraints considerably smaller compared with the link based 
formulation.  

One potential problem is the non-uniqueness of route flows. In contrast to the SO link flow 
solution, the SO route flow solution is not unique, either in terms of used routes or flows on the 
routes. For the case of (11), the set of first-best toll vectors will not depend on the SO route flow 
solution. When formulating (13), the objective function will, however, depend on the SO route 
flow solution (through the weighting parameters). Thus, the SO route flow solution can affect the 
resulting objective function value, as well as the computed toll levels and locations. While this is 
clearly a potential limitation of the presented approach, it has for the example of the Stockholm 
network (used in Section 5 for numerical results) been shown that in practice the choice of SO 
route flow solutions has a negligible effect on the results. 

4. Solution approach for large networks 

Constraint (13b) is formulated for every route with a positive flow in the SO solution, and 
constraint (13c) is formulated for every route in the network with zero flow in the SO solution. 
The total number of routes with zero flow will for real world traffic networks be large, and to 
generate them all a priori is not practical possible. Also, it not expected that every constraint in 
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(13c) will be binding in the optimal solution. Thus, constraints in (13c) can be generated 
iteratively when solving both (13) and (14). 

4.1 Fixed toll locations 
Let us first consider the case with fixed toll locations. To solve (14), a reduced set of constraints 
for the routes with zero flow is formulated,  2,SO

iΠ , which is a (possibly empty) subset of 2,SO
iΠ . 

(14) can then be formulated as 

           ( )
1,SO

SO SO
1 2, , , ,

min
i

p p p i iy i I i Ip

z f q
ρ σ µ τ

β ρ σ β µ
∈ ∈∈Π

= + +∑ ∑ ∑    
(15a) 

 ( )SO SO( ) ,a
a a a pp i

a A
pt vα ρτ πσδ

∈

+ =+ −∑    1,SO ,ip i I∈Π ∈     
(15b) 

 ( )SO SO( ) ,a
a a a p i

a A
it v µα τ δ π

∈

+ ≥+∑   2,SO ,ip i I∈Π ∈    
(15c) 

 ,p iρ µ≤   1,SO ,ip i I∈Π ∈   (15d) 

 ( ), ,Vyτ ∈Τ     (15e) 

 0, 0,p pρ σ≥ ≥   1,SO ,ip i I∈Π ∈   (15f) 

 0,iµ ≥   .i I∈   (15g) 

Let * * * *( , , , )ρ σ µ τ  be the optimal solution to (15). Then, the search for a violated constraint in 
(14), for OD-pair i , can be formulated as 

 ( )2,SO

SO * *min ( ) .
i

a
i a a a p ip a A

w t vα τ δ µ
∈Π ∈

= + +∑              

     (16) 

To only search for routes in 2,SO
iΠ , which minimize (16), is not trivial since it will require a 

complete enumeration of the routes with zero flow in each OD-pair. Since constraint (13d) is 
included in (14), any route in 1,SO

iΠ , will also satisfy ( )( )SO a SO
a a a p i ia A

t vα τ δ µ π
∈

+ + ≥∑ . Thus, 

(16) can be solved by finding the shortest path in each OD-pair (since *
iµ  is constant), with link 

costs given by *( )SO
a a at vα τ+ . Let *

iw  be the optimal objective function value to (16). If * SO
i iw π< , 

then there exists a route with zero flow which makes the current solution infeasible if it would be 
included in 2,SO

iΠ . 

The CCA for solving (15) can now be formulated as: 

Step 0. For each OD-pair i I∈ , initiate the set of routes with zero flow 2,SO
iΠ . 

Step 1. Solve (15), with optimal solution ( , , , )τ µ ρ σ    and objective function value z . 

Step 2. Solve (16) for each OD-pair i I∈ , with optimal objective function value *
iw  and 

corresponding optimal solution *p . If * SO
i iw π< , set 2,SO 2,SO:i i pΠ Π= ∩ . If 

* SO
i iw π≥ , for every OD-pair i I∈ , terminate the algorithm, otherwise continue 

with Step 1.  

In each iteration of the CCA, at least one route is added, or it is concluded that the solution to (15) 
also solves (14). Since every link has a positive cost, there will be no routes which include cycles, 
and thus, the algorithm must terminate in a finite number of iterations. 
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4.2 Variable toll locations 
For variable toll locations the optimization problem (13) takes the form of a MILP. Using the CCA 
presented in the previous section would require one MILP to be solved in each iteration, which is 
not practical for larger networks. Also, for the numerical results presented for the Stockholm 
network in the next section, it has not been possible to solve the MILP to optimality even when 

2β  is set to zero, and no unused routes need to be generated. Thus, to show the applicability of 
using (13) to find toll locations and levels which provide good solutions to (9), a greedy heuristic 
has been developed. The purpose of the greedy heuristic is to provide good, but not necessarily 
optimal, solutions to (13), in order to evaluate the approach of minimizing the deviation from 
first-best route tolls. 

Consider (8), and let aλ  be the dual variable corresponding with the constraint U
a a agτ τ≤  in (7). 

The value of the dual variable gives an estimate on how much the objective function value would 
improve by a unit change of the right hand side. Thus, for a link a with 0ag = , a aλ τ  will give an 
estimate on the potential improvement of the objective function value from introducing a toll 
equal to aτ  on link a . While aλ  is not likely to be valid for the whole range from 0  to U

aτ , and it 

is not known what the actual value on aτ  would be if link a is actually tolled, aλ  can still be used 
as an estimate on the importance of tolling link a. In the greedy heuristic, links are chosen 
iteratively to be included in the solution based on the λ -values, and after a link is added (14) is 
resolved in order to update the λ -values based on the currently selected toll locations. 

The greedy algorithm can more formally be written as 

Step 0. Initiate by setting : 0ag =  for every link a A∈  
Step 1. Solve TLP in (14) to obtain λ  
Step 2. Add toll location Find toll location ( )argmin (1 )a a

a
b gλ= − , and set : 1bg = .  

Step 3. Terminate algorithm if aa A
g k

∈
=∑ , otherwise continues with Step 1. 

A low toll level may indicate less important toll locations, and to further improve the solution 
quality, the greedy algorithm is rerun with the toll locations with a toll level aτ  below the 
threshold κ removed. This provides a mechanism to remove toll locations which seemed 
important in the early iterations, but which in the end turned out to give a small contribution to 
reducing the objective function value. Removing toll locations with aτ κ<  can be repeated 
several times with κ reduced by a parameter ψ each time. 

4.3 Bounding the minimum toll booth solution 
For comparison, it is of interest to obtain a good estimate on the minimum number of toll 
locations required to reach SO link flows and demands. Dropping (11b) from (11) results in the 
relaxed set of first-best toll vectors 

 ( ) 1, ,, .SO a SO SO
a a p i i

a A
t p i Iα τ δ π

∈

+ = ∈Π ∈∑       (17) 

A relaxation of the minimum toll booth problem (Hearn and Ramana, 1998) can then be 
formulated as 

 
( ) 1,

min

subject to , , .

ay a A

SO a SO SO
a a p i i

a A

y

t i I pα τ δ π
∈

∈

+ = ∈ ∈Π

∑

∑
     (18) 
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The solution to (18) will give an underestimation of the number of tolls required to achieve first-
best pricing. Using the greedy heuristic, but continuing to add toll locations until the optimal 
objective function value of (14) is below some threshold close to zero2, will result in an upper 
bound on the number of tolls required for achieving first-best pricing. 

5. Numerical results 

The approach for finding good toll locations and toll levels in a congestion pricing scheme, based 
on the PD approach, has been applied to network models of Sioux Falls and Stockholm. The 
Sioux Falls model is well used in research papers addressing optimal network design and 
optimal pricing schemes. The version of the Sioux Falls network adopted in this paper is the 
elastic demand model, first presented in Yildirim (2001), and later used in Ekström et al. (2013) 
for evaluating a global optimality approach when optimizing toll locations and toll levels. The 
Stockholm network has previously been used in Ekström et al. (2014), to study optimal toll 
locations and corresponding toll levels with a heuristic approach based on a smoothening 
technique.  

To solve both (13) and (14) require a number of LPs to be solved (problems (15) and (16)), and for 
the numerical results presented here, the commercially available solver CPLEX version 12.2 (IBM, 
2010) has been used. 

5.1 The Sioux Falls network 
The version of the Sioux Falls network model, used in this paper, has 79 links and 30 OD-pairs. 
The link travel time functions are on the BPR-form (Bureau of Public Roads, 1964) and the 
complete network data is given in Yildirim (2001). For the Sioux Falls network all costs and tolls 
are given in the unit of minutes, and applying MSCP tolls results in an improvement of the social 
surplus by 2,722 minutes. In Ekström et al. (2013), a global optimization approach is applied to 
find the number of optimal toll locations, and their location and corresponding optimal toll 
levels, given a cost for locating each toll. While the number of toll locations are variable in 
Ekström et al. (2013), the number of tolls to locate is fixed in (9). To be able to compare the results, 
the number of tolls to locate will therefore be given by the resulting number of toll locations from 
Ekström et al. (2013). For the Sioux Falls network model, (13) can be solved to optimality by 
applying the CCA directly, i.e. by letting the toll locations be variable in (15). This is only possible 
for small network model, for which the resulting MILP is affordable to solve to optimality in each 
iteration of the CCA.  

For all experiments β1 is set equal to one and β2 is varied between 0 and 1.5 in steps of 0.5. In 
Table (1), the resulting improvement in social surplus is presented for 7, 11 and 14 number of 
located tolls (k), and the results are compared with the best found solution from using the global 
optimization approach in Ekström et al. (2013). From the results it is clear that for this limited 
analysis, the approach presented in this paper perform well in comparison to the results from 
using the global optimization approach. The global optimization approach should in theory be 
able to find the global optimal solution. In practice, the computational time required to prove 
optimality of a solution is large, and therefore the global optimization approach is applied with a 
time limit. Thus, global optimality is in practise usually not proven for the solutions form this 
approach. For 11 located tolls, this is clearly a case when the global optimization approach 
perform worse, compared with the approach presented in this paper. Also, except for β2=0 the 
solution is robust in terms of how the weighting parameters are set. 

                                                        
2 For larger networks there will be some convergence error when solving the user equilibrium 
problem and thus it is not appropriate to use zero as termination criteria. 
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Table 1. Resulting improvement in social surplus for the Sioux Falls network. 

k 𝛽2=0.0 𝛽2=0.5 𝛽2=1.0 𝛽2=1.5 Global optimality approach 
7 - 141 2,281 2,316 2,259 2,506 
11 1,823 2,573 2,573 2,562 2,531 
14 1,835 2,672 2,672 2,669 2,698 
 
In order to evaluate the greedy algorithm it has been applied with β1=β2=1. In Figure 1, a 
comparison of the improvement in social surplus is given for both the 7, 11 and 14 located tolls 
presented in Table 1, and additionally for 5, 10, 15, 20 and 25 located tolls. First of all the results 
presented in Figure 1 show that the benefit from actually solving (13) to optimality is large, 
compared with using the greedy algorithm. It is also clear that the differences between the two 
solution methods diminish when the number of located tolls increases. It is especially interesting 
to see that the SO solution is reached with 26 located tolls, and that the greedy algorithm requires 
27 located tolls in order the reach the SO solution. In terms of computing the minimum toll booth 
solution, the greedy heuristic performs well. These results can also be compared with the 
minimum toll booth solution from Yildirim (2001) which provide a minimum toll booth solution 
with 28 located tolls, based on solving the (MILP) link based minimum toll booth problem. In 
Yildirim (2001) the solution algorithm is terminated before an optimal integer solution has been 
verified due to excessive computational time, although a solution with 26 located tolls is found 
by ad-hoc means. Formulating the set of feasible first-best toll vectors based on route flows rather 
than link flows, and solving the minimum toll booth problem based on the same CCA as 
described here, results in the optimal solution of 26 located tolls within seconds, which suggests 
that in terms of computational efficiency the route based version is superior. 

 
Figure 1. Comparison between optimal and greedy solution of (13), based on the improvement in social 
surplus. 
 

5.2 The Stockholm network model 
The Stockholm network used in this paper has 392 links (312 if the connectors to origin and 
destination zones are excluded) and 40 zones, resulting in 1,560 OD-pairs. Some pairs of links are 
only used to give a realistic graphical representation of the network, and can be replaced with 
one single link, which reduce the number of tollable links required for MSCP to 291 links. The 
link travel time functions are given on the form  
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where aL  is the link length, an  the number of lanes, and 1, 4,a ap p−  link type specific parameters. 

The practical road capacity is given by 3,a ap n .  

The demand model describes the choice between public transport and car for the travellers with 
access to car during the morning rush hour. The choice between public transport and car is given 
by a binomial logit model. Assuming that the travel cost for public transport is not depending on 
the number of travellers using it, the pivot point version of the binomial logit model Kumar 
(1980) can be used, which for OD-pair i  takes the form 

 0( )
( ) ,

i i

i
i i i i

i i

Aq D T
A K eη π π

π
−

= =
+

 (19) 

Where Ti is the total travel demand in OD-pair i , and Ai and Ki are the demand for car and public 
transport in the non-tolled scenario. The minimum travel cost in OD-pair i, in the non-tolled 
scenario, is given by 0

iπ  and 𝜂>0 is the dispersion parameter. The number of travellers by car in 
the non-tolled scenario is always less than Ti and when πi is increased qi will decrease.  

The Stockholm network represents an aggregated traffic network of the Stockholm region (Figure 
2). The demand model (19) is based on data from the demand forecast model T/RIM (Engelson 
and Svalgård, 1995). The T/RIM model is, however, calibrated for a full Stockholm network, with 
about 1,100 links and 1,250 zones. In this paper an aggregated version of the T/RIM model is 
used, and it is possible that using the aggregated traffic network together with T/RIM data, 
without further calibrations, will result in higher link flows compared with results from other 
models for the Stockholm region. In Transek (2003) several alternative models are compared for 
Stockholm, and for the non-tolled scenario the flow across the current cordon in Stockholm vary 
between 38,357 and 47,922 vehicles per hour, while the aggregated model used in this paper 
results in 41,731 vehicles per hour. For the purpose of evaluating the PD approach presented in 
this paper, the aggregated Stockholm network is considered to be a good example of a real 
network model. The car occupancy χ =1.13 travelers per car and the dispersion parameter  
𝜂 = 0.07, are also provided from the T/RIM model, and the value of time is set to 1.2 SEK per 
minute.  
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Figure 2. The Stockholm network. 
 
The currently implemented congestion pricing scheme in Stockholm is presented in Figure (3), 
for a cut-out of the central parts of Stockholm. In the aggregated network there are a total of 20 
toll facilities located for the currently implemented scheme, to be compared with the 37 actual 
located toll facilities. For each located toll, 20 SEK is charged each car passing the toll facility 
during peak hour. For the SO link flow and demand distribution, which can be achieved by the 
MSCP tolls, MSCPτ , the improvement in social surplus is 1,031,499 SEK per rush hour, which can 
be compared with the improvement in social surplus achieved by the currently implemented 
cordon which is 303,715 SEK per rush hour. 

When the demand is given by (19), the user equilibrium problem with elastic demand (2) can be 
solved by using the partial linearization algorithm presented in Evans (1976), in which a series of 
fixed demand user equilibrium problems are solved iteratively. In this paper the partial 
linearization algorithm is used together with the Disaggregated Simplicial Decomposition (DSD) 
algorithm (Larsson and Patriksson, 1992) for solving each fixed demand problem. The benefit 
from using the DSD algorithm is the availability of route information, which is needed when 
formulating (13). Also the DSD algorithm has a re-optimization capability which is a useful 
feature when solving a series of similar fixed demand user equilibrium problems. Any algorithm 
providing explicit route information can, however, be used.  

For a large traffic network, the convergence when solving the user equilibrium problem will not 
be perfect, and there may exist routes with positive flow but with the route travel cost differing 
from the minimum OD-travel cost. In this paper this is handled by removing any route with 

0.1pf <  from the set of used routes. 

While the optimization problem solved in Ekström et al. (2014) includes the cost of locating the 
toll collection facilities, and the number of toll locations is variable in the problem, the resulting 
toll locations from Ekström et al. (2014) can still be used as comparison to the ones computed 
with the PD approach presented in this paper.  
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Figure 3. The current congestion pricing cordon in Stockholm. 

Fixed toll locations 
For the experiment presented in this section, β1 is set equal to 1 for all experiments, and β2 is 
varied between 0 and 2. For β2=0, no iterations are needed with the CCA since routes with zero 
flow will not affect the optimal solution, for β2>0, the CCA generate between 542 and 943 
additional routes, during 2 to 4 iterations. The solution time is between 2-20 CPU-seconds, using 
one Intel P8600 2.4GHz processor. 

Using the sensitivity analysis based ascent method, presented in Ekström et al. (2009), optimal 
toll levels were computed in Ekström et al. (2014) for the currently implemented cordon in 
Stockholm, as well as for an extended Stockholm cordon, in which the bypass highway 
“Essingeleden” is also tolled (resulting in a total of 22 tolled links). The toll level solution 
obtained from the ascent method is denoted τAS with corresponding change in social surplus 
ΔSS(τAS), and for comparison these results are presented in Table 2. 

The toll level solution which solves (14) is denoted PDτ , and applied as toll level solution in (9) 
results in an improvement of the social surplus by PD( )SS τ∆ . The improvement in social surplus 
associated with the toll levels obtained PD approach are presented in Table 3 and 4 for the 
current and extended cordon respectively. For comparison, PD AS( ) /SS SSτ τ∆ ∆  is also given in 
these tables. 

Table 2. Results (in SEK) for the Stockholm network, from Ekström et al. (2014). 

Scheme Δ𝑆𝑆 ASτ  
Current cordon 303,715 20 
Current cordon optimized 399,837 8.1-42.8 
Extd. current cordon 430,503 20 
Extd. current cordon optimized 583,803 8.7-47.9 
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Table 3. Results obtained when solving (14) for the current Stockholm cordon. 

 

2β  

PD( )SS τ∆ (in SEK) PD

AS

( )
( )

SS
SS

τ
τ

∆
∆

 

0 357,000 0.89 
0.5 383,181 0.96 
1 390,664 0.98 
1.5 393,913 0.99 
2 392,769 0.98 
  

Table 4. Results obtained when solving (14) for the extended Stockholm cordon. 

 

2β  

PD( )SS τ∆ (in SEK) PD

AS

( )
( )

SS
SS

τ
τ

∆
∆

 

0 379,631 0.65 
0.5 550,466 0.94 
1 566,664 0.97 
1.5 578,541 0.99 
2 574,813 0.98 
 
For β2=1.5, the toll levels obtained by minimizing the deviation from first-best route tolls reaches 
99%  of AS( )SS τ∆ . While the ascent method requires several hours in computational time, the 
time required to solve (14) is between 2-20 seconds depending on the number of iterations with 
the CCA. For all evaluated choices of β2, it is only β2=0 which performs poorly, and for all other 
choices the results are close to what is achieved by the ascent method. First of all, this suggests 
that minimizing the deviation from first-best route tolls may result in toll levels close to a local 
optimal solution, and secondly, that the PD approach is a practical useful approach for 
minimizing (9). The results also suggest that the PD approach is robust in terms of values on the 
β-parameters, and the relative small number of generated routes and the low computational time 
suggests that the approach will be applicable for even larger network models. 

To evaluate how the choice of route flow solution used for defining the set of feasible first-best 
toll vectors can affect the performance of the PD approach, three additional route flow solutions, 
with different properties, have been used when applying the PD approach to the current 
Stockholm cordon. A linear program can be formulated with the feasible region defining the 
route flows which realise the SO link flow and demand solution. Different objectives can then be 
applied in order to compute route flow solutions with different properties. The complete set of 
unused routes has not been included in this analysis, but a subset of the unused routes (extracted 
from the DSD algorithm) has been included. Route set 1 is the initial set of route from the DSD 
algorithm. Set 2 is obtained by minimizing the sum of the route flows on the ten routes with 
largest flow in the initial solution. By maximizing the sum of the route flows on the unused route 
(with travel cost equal to the minimum OD travel cost) in the initial solution, route set 3 and 4 are 
obtained, with the difference that in route set 4 no used route in the initial solution is allowed to 
be reduced to less than 50% of the flow in the initial solution. 

The four different route flow solutions are presented in Table 5, together with the optimal 
objective function value (z*) of (14) and resulting improvement in social surplus (ΔSS) for the 
example of β1= β2=1. Let P be the set of considered equilibrium routes (for both used and unused 
routes), and the initial and new route flow solution denoted initf  and newf  respectively. The 
distance between the initial and new route flow solution is then expressed as 

new init| |
p P

D f f
∈

= −∑ , and is also presented in Table 5. 
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Table 5. Comparison of results from using alternative route flow solutions for defining the set 
of first-best toll vectors 

Route set Number of routes with positive flow z* SS∆  (in SEK) D  
1 2,527 2,638,941 390,664 0 
2 1,601 2,638,040 391,001 32,179 
3 1,618 2,634,140 388,182 32,116 
4 2,707 2,637,940 390,161 16,601 

 
From Table 5 it is clear that for this example the choice of route flow solution has negligible effect 
on the toll level solution. The conclusion is the same for other choices of values on β1 and β2, and 
for the extended Stockholm cordon as well. These results are therefore excluded from this 
presentation. 

Variable toll locations 
The greedy heuristic presented in Section 4.2 has been applied to solve (13). While the greedy 
heuristic is not expected to solve (13) to optimality, it provides solutions which can be used for 
evaluating the PD approach of minimizing the deviation from first-best route tolls in order to 
obtain good toll locations and toll levels to (9). Results are presented for choosing 24, 43, 69, 120, 
160 and 200 tollable links out of 291 possible toll locations. The κ -parameter in the greedy 
heuristic is scenario specific and set to 20, 10, 5, 3, 2 and 1 respectively, and the reduction factor 
has been set to /10ψ κ= , resulting in a total of 10 reruns with the greedy heuristic for each 
scenario.  

The first three scenarios (24, 43 and 69 tollable links) correspond with solutions from using the 
smoothening heuristic presented in Ekström et al. (2009). While the smoothening heuristic is used 
for a variable number of toll locations, in order to maximize the social surplus minus the cost of 
setting-up and operating the toll collection facilities, the resulting toll locations will also provide 
good solutions for the case when the number of toll locations are fixed to the optimal number of 
located tolls from the smoothening heuristic. In this paper, each of these scenarios will be used as 
comparison, when searching for the optimal toll locations given the number of tolls to locate from 
the smoothening heuristic. The scenario with 69 located tolls is obtained from Ekström et al. 
(2014), in which the set-up and operational cost is estimated to 500 SEK per lane of each link. To 
obtain 24 and 43 located tolls, the set-up and operational cost is set to 10,000 SEK and 5,000 SEK 
respectively for each link. Note that for the purpose of this paper, the cost associated with a toll 
location is not relevant, and is just set to a value which results in an appropriate number of tolls 
being located. For 120, 160 and 200 located tolls there exist no comparison from the smoothening 
heuristic and results are presented for these scenarios to show the performance of the PD 
approach when the number of tolled links is increased. Lower and upper bound estimations on 
the number of toll locations required for first-best pricing is obtained by the approach presented 
in Section 4.3, which results in a lower bound of 211 tolls3 and an upper bound of 219 tolls4. 
Computing the improvement in social surplus with the 219 toll locations results in the same 
improvement of the social surplus as is reached with MSCP tolls. 

In Figure 4, the final objective function value of (13), from the greedy heuristic, is given as a 
function of the number of located tolls for each scenario. Let PDτ  and SHτ  denote toll level 
solutions from the PD approach and the smoothening heuristic respectively. In Table 6  

PD( )SS τ∆  is presented together with PD SH( ) / ( )SS SSτ τ∆ ∆  and PD MSCP( ) / ( )SS SSτ τ∆ ∆  for 
comparison. As an alternative approach for determining good toll locations, the k  number of 

                                                        
3 The solution to (18) is provided by running CPLEX version 12.2 for 8 hours 
4 The upper bound is obtained by adding toll locations until ˆ 17.63z = , which is the value on ẑ  when 
every link is tollable. 
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links with the largest MSCP toll levels are chosen to be tolled, with toll level equal to the MSCP 
link toll. The results from this approach is denoted as the k-MSCP solution, and the 
corresponding change in social surplus ( k-MSCP( )SS τ∆ ) is given in Table 6 for comparison.  

 
Figure 4. Objective function value when solving (13) with the greedy heuristic. 
 
From Figure 4 it is clear that ẑ  is reduced when the number of located tolls is increased. In Table 
6, it can be seen that the highest value on PD( )SS τ∆  is obtained with β2=1 for k= 24, with β2=1.5 
for k=43, and with β2=0.5 for the remaining scenarios. For k=160 and k=200, the choice of β2 seems 
to be less important, and β2=0 in general performs poorly. It is, however, difficult to make any 
definitive statement based on the solutions from the greedy heuristic, since optimality is not 
guaranteed. Comparing the best toll locations for each scenario, based on PD( )SS τ∆ , with the 

solution obtained by the smoothening heuristic, it is clear that PD SH( ) ( )SS SSτ τ∆ < ∆  for all 
scenarios. It should, however, be noted that the computational time for the PD approach is 
between 100 and 7,960 seconds, depending on the number of located tolls, while the 
computational time required by the smoothening heuristic to provide the solutions is counted in 
days. For the cases with 24, 43 and 69 tollable links, the maximum computational time required 
by the PD approach is 1,156 seconds, and the resulting improvement of the social surplus is 
within the range 87%  to 94%  of what is achieved with the smoothening heuristic. Comparing 
the PD approach with the k-MSCP approach shows that when the number of located tolls is 
increased, the difference between the two approaches diminishes. For up to 69 located tolls, the 
PD approach, however, clearly outperforms the k-MSCP approach. 

For the best found solution for each number of located tolls, the ascent method is applied to 
further polish the solution. The resulting toll levels are denoted PD-ASτ  with the change in social 
surplus given by PD-AS( )SS τ∆ , and these results are presented in Table 7 together with 

PD-AS SH( ) / ( )SS SSτ τ∆ ∆  and PD-AS MSCP( ) / ( )SS SSτ τ∆ ∆  for comparison. 
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The results in Table 7 show that with 24 located tolls (approximately 11% of the number of tolls 
required to achieve first-best pricing) it is possible to reach 75% of MSCP( )SS τ∆ , and the best 
obtained toll location solution for 24 located tolls is presented in Figure 5. Allowing 120 toll 
locations makes it possible to reach 96% of MSCP( )SS τ∆ . With 160 and 200 located tolls, the 

deviation from MSCP( )SS τ∆  is only minor. In the light of these results it is apparent that by 
optimizing toll locations and toll levels, attractive congestion pricing schemes can be designed 
with a significantly reduced number of located tolls compared with first-best pricing. The results 
also show that for a realistic traffic network, several of the toll locations required to achieve first-
best pricing will have negligible contribution to the improvement in the social surplus. 

Table 6. Results from solving (13) with the greedy heuristic, and comparison with k-MSCP. 

k  2β  PD( )SS τ∆  PD

SH

( )
( )

SS
SS

τ
τ

∆
∆

 
PD

MSCP

( )
( )

SS
SS

τ
τ

∆
∆

 
k-MSCP

MSCP

( )
( )

SS
SS

τ
τ

∆
∆

 

 
 
24 
 
 

0 
0.5 
1.0 
1.5 
2.0 

517,850 
706,708 
756,639 
739,082 
728,636 

0.61 
0.84 
0.90 
0.88 
0.86 

0.50 
0.69 
0.73 
0.72 
0.71 

 
 
0.55 

 
 
43 
 
 

0 
0.5 
1.0 
1.5 
2.0 

650,341 
823,620 
803,892 
827,413 
766,405 

0.69 
0.87 
0.85 
0.87 
0.81 

0.63 
0.80 
0.78 
0.80 
0.74 

 
 
0.71 
 
 

 
 
69 
 
 

0 
0.5 
1.0 
1.5 
2.0 

749,366 
932,128 
929,281 
930,552 
859,512 

0.75 
0.94 
0.94 
0.94 
0.87 

0.73 
0.90 
0.90 
0.90 
0.83 

 
 
0.82 

 
 
120 
 
 

0 
0.5 
1.0 
1.5 
2.0 

929,168 
971,283 
968,918 
960,847 
954,562 

- 
- 
- 
- 
- 

0.90 
0.94 
0.94 
0.93 
0.93 

 
 
0.96 

 
 
160 
 
 

0 
0.5 
1.0 
1.5 
2.0 

964,312 
1,023,991 
1,015,478 
1,015,637 
1,018,705 

- 
- 
- 
- 
- 

0.93 
0.99 
0.98 
0.98 
0.99 

 
 
0.99 

 
 
200 
 
 

0 
0.5 
1.0 
1.5 
2.0 

1,023,500 
1,031,453 
1,028,560 
1,030,953 
1,030,909 

- 
- 
- 
- 
- 

0.99 
1.00 
1.00 
1.00 
1.00 

 
 
1.00 

Table 7. Results obtained by using the ascent method for polishing PDτ . 
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24 1.0 775,681 0.91 0.75 
43 1.5 864,410 0.91 0.84 
69 0.5 961,251 0.97 0.93 
120 0.5 989,821 - 0.96 
160 0.5 1,026,230 - 1.00 
200 0.5 1,031,459 - 1.00 
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Figure 5. Best obtained toll location solution for 24 located tolls. Tolled links are marked with a grey bar. 

6. Discussion and further research 

In this paper an approach based on minimizing the deviation from first-best route tolls is applied 
for finding toll locations and levels which maximize the social surplus. In the numerical results it 
is shown for a realistic traffic network that results can be obtained, for fixed toll locations, with 
small differences from known local optimal solutions, in very short computational time. For 
variable toll locations, it is shown that the approach is able to find good solutions, within 
reasonable computational time. 

One limitation of the proposed approach is that the quality of the solution depends on the values 
of the parameters β1 and β2. While it may not be possible to know what values to use on these 
parameters in advance, the numerical results suggests that the solution approach is not very 
sensitive on the selection of the parameter values. Giving the unused routes a weigh close to zero 
or double that of the used routes (β2≥ 2β1) clearly show a worse performance of the approach. 
For all other evaluated β-values, the differences in term of solution quality are small. Another 
potential problem is the set of used SO routes is not unique, either in terms of route flows or used 
routes. For the Stockholm network, this has not shown to be an actual problem, and the solution 
when optimizing the toll levels in the current cordon are not sensitive to the choice of used routes 
and their flows.  

This paper also provides results which give some insight into “close to” first-best pricing 
schemes. While it can be determined that between 211 and 219 tolls are required to achieve first-
best pricing, it is possible to find pricing schemes with 160 located tolls which account for 99% of 
the improvement in social surplus associated with first-best pricing. Even more interesting are 
the results for 24 and 43 numbers of tolls to locate, which correspond to 11% and 20% 
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respectively of the 211 number of tolls which at least are required to achieve first-best pricing in 
the Stockholm network model. With 24 located tolls it is possible to reach 75% of the increase in 
social surplus associated with first-best pricing, and for 43 located tolls the corresponding 
number is 85%. Thus, one can argue that to search for the minimum number of toll locations 
which achieve first-best pricing is not interesting in practice, when the marginal contribution of 
as much as 80% of the located tolls is small. Comparing the improvement in social surplus 
achieved by the current cordon, extended cordon and the 24 optimal located tolls, it is clear that 
the ability to optimize toll locations can significantly improve the performance of the pricing 
scheme. 

While this paper has shown the applicability of the approach on the rather aggregated Stockholm 
network, future work need to focus on applications to larger transportation models and on 
further developing the solution approach for the case of variable toll locations. The comparison 
between optimal and greedy solutions for Sioux Falls network clearly shows the potential in 
improving the MILP solution approach. 

One interesting extension of the PD approach is to apply it to multiclass traffic networks, in 
which users are differentiated by their value of time. In a multiclass network, MSCP tolls, in the 
unit of travel time, is equal for all user groups but the corresponding MSCP money tolls will be 
differentiated with respect to the value of time in each user group. The PD approach can be used 
in order to minimize the deviation from the first-best route time toll, to set a common money toll 
for all groups. 

The PD approach only rely on the ability to compute MSCP tolls, and this makes it possible to use 
the approach together with the trial-and-error algorithm, presented in Yang et al. (2004), for 
computing MSCP tolls in the absence of demand functions, which allow for usage with networks 
in which the relationship between demand and travel cost cannot be formulated as a closed form 
function. In de Palma et al. (2005), approximative MSCP tolls are computed for a dynamic traffic 
model, and the simplicity of the PD approach makes the approach interesting to extend to 
dynamic traffic models with time expanded networks. 
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