
EJTIR 
      Issue 11(2)  

April 2011 
pp. 166-193 

 ISSN: 1567-7141 
www.ejtir.tbm.tudelft.nl 

Modelling Traveller Behaviour under Emergency 
Evacuation Conditions 

Adam Pel1, Michiel Bliemer2 and Serge Hoogendoorn3 
Delft University of Technology, Delft, the Netherlands 

 

Dynamic traffic simulation models are frequently used to support decisions when planning an 
evacuation. This paper focuses on limitations in the modelling of travellers’ behaviour with 
respect to traffic information and compliance to evacuation instructions. More specifically, we 
propose a model framework where the traffic simulation is executed only once (instead of many 
times within an iterative traffic flow convergence framework, e.g., yielding a user-equilibrium 
assignment). Within this one-time execution of the traffic simulation (or dynamic network 
loading procedure), travellers are initially assigned to their instructed route (and destination), yet 
may continuously update their destination and route during their trip – while accounting for the 
possibly disutility associated with non-compliance – thereby responding to the changing (traffic) 
conditions (but not anticipating these conditions, as otherwise assumed by an iterative user-
equilibrium assignment). This way, the realized departure time, destination and route decisions 
are a result of the trade-off that travellers make between complying with the prescribed travel 
behaviour and following their preferred travel behaviour (i.e., the travel decisions that would 
have been made in absence of an active evacuation plan). Also, this approach allows modelling 
full compliance, no compliance, and any state in between. The face-validity of the model 
characteristics are illustrated using a hypothetical test example. The results show the importance 
of capturing compliance and information levels in the traffic simulation model, as they have a 
large impact upon the evacuation efficiency. 
 
Keywords: Compliance, Evacuation, Network modelling, Road infrastructure dynamics, Traffic 
information, Traveller behaviour 
 

1. Introduction 

The occurrence of many natural and man-made disasters can be anticipated on, for instance, wild 
fires, hurricanes, floods, terrorist attacks, and industrial accidents. This implies that, up to a 
certain level, we can predict how such a disaster may affect a certain region and evolve in a 
specific way. A most probable disaster scenario can then be used to plan the best way of avoiding 
or mitigating the effects of the disaster, for instance by planning an evacuation. The success of an 
evacuation strongly depends on many factors, such as warning time, public preparedness and 
response time, information and instructions dissemination procedure, evacuation routes, traffic 
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conditions, dynamic traffic management measures, etc. (Dash and Gladwin 2007, Lindell and 
Prater 2007). Due to the complexity of the underlying processes and the multitude of factors 
influencing these processes, model-based approaches are helpful or even indispensible for the 
analysis and planning of emergency evacuations (Barrett et al. 2000, Hardy et al. 2010). Such an 
evacuation simulation model can be applied to obtain a better understanding of the network 
conditions and the effect of traffic regulations and control measures hereon, by predicting 
departure and arrival patterns, travel times, average speeds, queue lengths, traffic flow rates, etc. 
Insight into this dynamic process is necessary to make well-supported decisions on, for instance, 
the latest possible time to order the start of the evacuation, the best evacuation routes, or the most 
suitable traffic management measures. 

Many dynamic traffic simulation models have been used to forecast, plan, or optimize the traffic 
operations for a possible evacuation. In this paper, focus lies on the behavioural assumptions that 
are generally made while modelling travel behaviour and infrastructure dynamics, and their 
suitability to the case of evacuation conditions. To this end, in the next section, we present an 
overview of evacuation traffic simulation models and argue that many of these past and current 
traffic models used in evacuation studies have shortcomings. These model limitations, relating to 
traveller behaviour and model flexibility with respect to traffic information and travellers’ 
compliance, are discussed in Section 3. Subsequently, Section 4 formulates a mathematical model 
aimed at relaxing these limitations. The characteristics and face-validity of the proposed 
evacuation traffic model, called EVAQ, is shown on a small test-network and hypothetical 
disaster scenario. The impact of varying levels of compliance and traffic information is tested and 
discussed. In the closing section, we discuss the presented modelling approach, and show the 
applicability of the proposed model by making reference to a few larger-scale case studies 
described elsewhere. Finally, some remarks are made concerning issues on model calibration and 
validation, which remains a general challenge to these models due to the lack of sufficient 
quantitative empirical data. 

The contribution of this article lies in the conceptual framework and mathematical model 
formulation which relax some of the identified limitations and produce face-valid predictions on 
partial traveller compliance and traffic information under exceptional conditions, such as 
evacuation. Hence, the work presented here may be beneficial to those who develop evacuation 
traffic simulation models, as it provides a discussion on the proposed model formulation which 
incorporates travellers’ response behaviour towards traffic information and road infrastructure 
dynamics, and their compliance with evacuation instructions. Also, the discussions and model 
results may benefit those who apply these models to forecast, plan, or optimise an evacuation as 
it helps in understanding the role of these behavioural aspects in the evacuation process and the 
design and evaluation of evacuation plans, including testing for robustness towards uncertainties 
in travellers’ behaviour. 

2. Past and Current Practices in Evacuation Modelling 

Since the late 1970’s, evacuation simulation models are developed to analyse and evaluate 
emergency evacuation plans. Early studies in the 1980’s focused mainly on evacuation in case of 
nuclear power plant emergency due to the Three Mile Island reactor incident in 1979. Then, after 
a number of extremely devastating hurricanes hitting the coast line of the U.S. in the 1990’s, much 
evacuation research shifted focus to hurricane evacuation. Since the September 11, 2001, attack in 
the U.S., also mass evacuation due to bomb threats and terrorist attacks is getting more attention. 
Due to tsunamis and otherwise-caused floods in Eastern Asia and bush fires in Australia, 
evacuation research in these countries typically focuses on these types of evacuation. For the 
Dutch situation, rising sea levels and a perceived increasing threat of flooding has led to the start 
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of a national program initiating flood evacuation research and applications within the 
Netherlands. 

In many of the earlier studies, evacuation is recognized as an exceptional event regarding 
different travel demand patterns, driver behaviour, traffic management, etc., resulting in new 
traffic models being developed specifically for evacuation studies. A few of these earlier models 
have also been applied more recently and on reasonably large scale, such as the microscopic 
model OREMS (Rathi and Solanki 1993), and the macroscopic models DYNEV (KLD 1984) and 
MASSVAC (Hobeika and Jamei 1985). A note can be made here that MASSVAC can be seen as a 
successor of the earlier developed evacuation traffic simulation model NETVAC (Sheffi et al. 
1980), and OREMS is based on the microscopic traffic simulation model CORSIM, which is 
developed for regular daily traffic conditions. 

More recently, a large number of evacuation studies are conducted using well-established 
dynamic traffic simulation models developed for regular daily traffic applications, including both 
microscopic models, such as PARAMICS (Cova and Johnson 2003), CORSIM (Williams et al. 
2007), VISSIM (Han and Yuan 2005) and mesoscopic or macroscopic models, such as 
DYNASMART (Murray-Tuite 2007), DynaMIT (Balakrishna et al. 2008), DynusT (Noh et al. 2009), 
TransCAD (Wang et al. 2010), and INDY (Klunder et al. 2009). In a number of studies using 
microscopic models, model parameters describing driving behaviour (such as headway, 
acceleration, reaction time) have been adjusted for the case of emergency evacuation (e.g., Tu et 
al. 2010). Other than that, the model structure and parameter settings are typically not changed. 

In all these models, the origin-destination travel demand matrix describing travellers’ evacuation 
participation and destination decisions is either model input or is computed using a gravity-
model based trip distribution model, or a combination of the two. The departure times are 
generally determined by applying an exogenous response curve stating the percentage of 
departures in each time interval. Such a response curve has been assumed to follow a number of 
different distributions, for example, instantaneous departure (Chen and Zhan 2004, Chiu et al. 
2006), a Uniform distribution (Liu et al. 2006, Yuan et al. 2006), a Poisson distribution (Cova and 
Johnson 2002), a Weibull distribution (Lindell et al. 2002) and sigmoid curve (Kalafatas and Peeta 
2009, Xie et al. 2010). Although debated, the latter two are often claimed to be most realistic. A 
user-defined dynamic origin-destination matrix allows evaluating (mandatory) evacuation 
instructions, since the matrix can be chosen following dedicated departure time (windows) and 
destinations.  

These trips are then in most models assigned to the road network according to the (dynamic or 
static) user-equilibrium assignment assumption, although one may wonder whether an 
equilibrium assumption will hold in an emergency evacuation. In addition, most models allow 
user-defined routes as model input, thus enabling evaluating (mandatory) instructions regarding 
prescribed evacuation routes. Exceptions are the route choice model incorporated in, for instance, 
PARAMICS, INTEGRATION, DYNASMART and DynaMIT, modelling en-route route switching 
based on prevailing (and predicted, in case of DynaMIT) traffic conditions. 

In most models, traffic flow is simulated in which road network characteristics are mostly static. 
In some models, road network characteristics such as capacity and maximum speed vary to 
incorporate the damaging effect of the hazard on the road infrastructure (e.g., links becoming less 
accessible due to flooding) and dynamic traffic management and control measures (e.g., 
contraflow operations to increase outbound capacity). For example, MASSVAC allows modelling 
several consecutive time intervals (time-sliced static traffic assignment) in which road network 
characteristics change, and INDY incorporates so called ‘events’ in which network characteristics 
and model parameters can be different within a specified time window.  
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3. Modelling Shortcomings Reviewed 

Furthering the discussion in Section 2, a more complete overview of modelling approaches, 
including a discussion on current and future challenges in evacuation transport research and 
applications, is given elsewhere (Pel et al. 2011). Here, we highlight the main limitations in the 
modelling approaches applied in the various evacuation models. Two typical shortcomings, both 
relating to travellers’ behaviour, are on traffic information and compliance.  

Regarding traffic information, since evacuation is an unfamiliar situation, it needs to be 
considered that travellers cannot rely on prior experience and knowledge on future traffic 
conditions. This makes the user-equilibrium assignment assumption inappropriate stating that 
travellers are fully aware of, and anticipate on, future network conditions in their route choice 
decisions. Instead, travellers need to rely on the available traffic information, and hence a more 
myopic choice behaviour is to be expected. This is supported by empirical findings from, for 
example, Knoop (2009), Lindell et al. (2005), and Robinson and Khattak (2010). 

The second limitation relates to travellers’ compliance. Since the evacuation instructions (on, e.g., 
departure time, destination, and route) may differ from the travellers’ preferred travel decisions, 
the travellers’ level of compliance need to be considered. This makes modelling travellers’ 
behaviour equal to the instructed behaviour inappropriate. Instead, partial compliance is to be 
expected. Empirical findings supporting this can be found in studies by, for instance, Dash and 
Morrow (2001), De Jong and Helsloot (2010), Dow and Cutter (2000), Knowles (2003), and Rasid 
et al. (2000). 

These important aspects are often insufficiently incorporated in evacuation models, and hence in 
the scenario analyses that use these models, although they have occasionally been identified as a 
promising future research direction (e.g., Abdelgawad and Abdulhai 2009, Chiu 2004, Peeta and 
Hsu 2009). As to travellers’ compliance to advice under non-evacuation conditions, a number of 
studies have been done on identifying the factors that affect travellers’ willingness to comply, 
and how this traveller compliance can be modelled endogenously (for an overview, see Chorus et 
al. 2009). The body of research empirically studying compliance behaviour may prove helpful 
when generating hypotheses on the explanatory variables which determine travellers’ 
compliance. Although one may question whether the explanatory factors found under daily 
conditions (such as travel time variability, network familiarity, information quality, relative 
travel times under normal conditions, and a range of traveller characteristics) and their relative 
importance can be directly transferred to the case of an emergency evacuation, the research 
efforts nevertheless give direction to further study on travellers’ willingness to comply with an 
evacuation plan. 

In the remainder of this paper, we formulate a traffic model specifically aimed at relaxing these 
limitations on travellers’ partial compliance and their lack of prior experiences and hence reliance 
on traffic information. Thereby, the model is tailored to the circumstances of an extreme event 
such as evacuation. Although these two limitations are highlighted, to a lesser extent, also other 
limitations need to be dealt with. One of the more important ones is driving behaviour, since the 
behaviour of drivers (i.e., driver-vehicle combinations) under mentally demanding and 
emergency conditions is suspected to differ from that expressed in normal conditions. This is 
supported by experimental and empirical findings (e.g., Hamdar 2008; Hoogendoorn 2010; 
Hoogendoorn et al. 2010, 2011; Knoop et al. 2009; Ni 2006). Before going into the proposed model 
formulation in Section 4, first, it is explained why driving behaviour is not (explicitly) dealt with 
in this paper. 

The driving task is not considered throughout this thesis since the proposed model formulation is 
macroscopic and thus considers aggregated traffic flows instead of (the interactions between) 
individual driver-vehicle combinations. Hence, the impact of changes in driving behaviour under 
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evacuation conditions on, for instance, average speeds and road capacity, would be incorporated 
through the model input. The way this should be done is certainly not trivial, nor sufficiently 
studied yet. Nonetheless, there are strong arguments for defining the evacuation model at a 
macroscopic level of analysis (within the evacuation planning studies considered here):  

Scalability, computation time, memory usage; The model applications in mind for the model 
developed here, relate to region-wide evacuation planning and model-based optimization of 
evacuation plans/instructions (typically done within an iterative search-and-evaluate 
framework). These require efficient model scalability, computation time and memory usage. 
These requirements are better met by macroscopic traffic simulation models than microscopic 
models. 

Model complexity matching data availability; Given the lack of detailed empirical data, a more 
detailed (microscopic) level of traffic simulation which yields a higher model flexibility and 
complexity leads to problems regarding underdetermined (and hence unreliable) model 
calibration and validation. The principle of parsimony here strongly favours a macroscopic 
approach. 

The formulation of the proposed macroscopic evacuation traffic simulation model is discussed 
next. 

4. Model Formulation 

In this section, it is shown how the previously identified limitations on traffic information and 
travellers’ compliance can be relaxed. In short, this is done by modelling a one-time dynamic 
network loading (instead of an iterative traffic flow convergence algorithm yielding, e.g., a user-
equilibrium assignment). Within this one-time execution of the dynamic network loading 
procedure (i.e., the traffic simulator), the impact of the prevailing available traffic information 
and infrastructure dynamics are incorporated by combining pre-trip route assignment and en-
route route switching. In the pre-trip assignment, travellers are assigned to the prescribed 
evacuation routes to the prescribed safe destinations (coming from an evacuation plan). While 
en-route, travellers can decide to switch routes to any of the safe destinations, thereby 
responding to the changing (traffic) conditions (but not anticipating these conditions, as 
otherwise assumed by an iterative user-equilibrium assignment). This way, the realized 
departure time, destination and route decisions are a result of the trade-off that travellers make 
between complying with the prescribed travel behaviour and following their preferred travel 
behaviour (i.e., the travel decisions that would have been made in absence of an active evacuation 
plan). For the departure time choice, the level of compliance is modelled exogenously. For the 
destination and route choice, compliance behaviour is modelled endogenously by introducing an 
additional attribute representing the possible disutility associated with non-compliance. This 
approach allows modelling travellers full compliance, no compliance, and any state in between. 
The mathematical formulation modelling these processes is given in the ensuing. The way in 
which both pre-trip and en-route route choices are incorporated is derived from a hybrid route 
choice model developed in an earlier study (Pel et al. 2009).  
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Figure 1. EVAQ model framework 
 

4.1 Model Framework 

The general framework of the proposed model, called EVAQ, is in line with that of any 
traditional transportation model, and is presented in Figure 1. The conceptual framework shows 
the three model components describing how travellers’ departure time decisions, and destination 
and route decisions are realized (here assumed independent), and the traffic flow propagation 
over the road network (implicitly modelling driving behaviour). The model input comprises of: 
the hazard conditions, influencing the preferred departure times of evacuees, and (the 
accessibility of) the road infrastructure; the evacuation instructions, having an effect on the 
actually realized travel decisions, as travellers’ decisions are a trade-off between their preferred 
decision and the instructed departure time, destination, or route; and the level of traffic 
information, as this influences which routes are preferred. Each of the three model components is 
described in more detail in the remainder of this section.  
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Figure 2. Model variables: Origin r, intersection n, and safe destination s. Dynamic travel demand rate 

( ),rd k  route flow rate ( ),pf t  instructed evacuation routes p, (relevant) route choice set ( ),nQ t  with for 

each route ( )nq Q t  a route-specific flow fraction ( ).pq t  

 

We model road infrastructure as nodes and links, where N is the set of network nodes and A is 
the set of directed network links (arcs). The set of all nodes N consists of origin nodes  r R N  
(where travellers depart and enter the network), safe destination nodes  s S N  (where 

travellers arrive and exit the network), and intersections  \ n N R S  (where travellers can 

change the remainder of their route). All nodes are connected by directional links, representing 
roads or connector links. Links are indicated by subscript ,a A  and have characteristics, such as 
maximum speed, length, number of lanes, and inflow capacity. Figure 2 can be used as reference 
for clarification of the variables introduced below. 

4.2 Departure Time Choice Model 

Let the modelling time horizon be given by T. The cumulative dynamic travel demand from a 
specific origin r until time instant k T  is then computed as 

 instr pref( ) ( ) 1 ( )r r rD k D k D k     .   (1) 

Here, the actual travel demand ( )rD k  depends on the (cumulative) instructed travel demand 

instr ( )rD k  and the travellers’ (cumulative) preferred travel demand pref ( )rD k  (in case of no 

instructions). More precisely, we assume that the fraction  0,1   of travellers complies and 

follows the instructed departure time, while the remaining travellers (equal to fraction 1  ) do 
not comply and depart at their preferred departure time. The cumulative instructed travel 

demand instr ( )rD k  follows from the evacuation instructions regarding the prescribed departure 

time window for origin r.  
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The cumulative preferred travel demand is determined by the preferred departure times of 
travellers in case of no instructions. A method of predicting preferred departure time decisions is 
by applying a sequential binary Logit model (e.g., see Fu 2004, Fu and Wilmot 2004). In this 
method, the shares of people who prefer to evacuate and depart in the current period, or to 
postpone evacuation, are predicted repeatedly over time. The share of people choosing to 
evacuate at a specific time is determined based on the prevailing conditions, relating to factors 
such as the hazard force and the velocity with which it approaches. Such a departure time choice 
model and accompanying utility functions have been estimated for the case of wild fires (Alsnih 
et al. 2004) and hurricanes (Fu et al. 2007) using surveys on stated preference and post-disaster 
revealed preference.  

The sequential binary Logit model describes how people choose their preferred time of departure 
depending on their socio-demographic characteristics and the hazard’s spatial temporal 
dynamics. The outcome of this choice process yields an evacuation response curve. In the 
hypothetical example in Section 5, it is assumed that travellers’ preferred departure times can be 
represented by the sigmoid curve, 

  1

pref ( ) 1 exp ( )r r r rD k k h B


       .   (2) 

Here, pref ( )rD k  denotes the cumulative preferred travel demand from origin r at time k. The total 

number of travellers who wish to evacuate from this origin r is denoted by ,rB  while the 
bracketed term in front of it determines the share of travellers who prefer to depart at time 
instant k or earlier (since we are computing the cumulative demand). This way the bracketed 
term is the departure time profile, of which the shape is determined by two parameters (for an 
example see Figure 3(b)). The response rate   sets the slope of the curve, such that low values of 
  produce a more uniform departure profile (slower response). The half loading time h sets the 
midpoint of the curve, and thus states the time at which half the travellers have departed. As 
mentioned earlier, the values for the parameters   and h have to be estimated for each origin 
separately based on the outcomes of the sequential binary Logit model.  

The use of the sigmoid curve fits the purpose of testing the impact of traffic information and the 
level of compliance in the synthetic example in this paper. However, it should be noted that, in 
general, this assumption may not be representative of many emergency conditions that provoke 
evacuation as a means of risk mitigation. Specifically, the sigmoid curve adopted is symmetrical 
and strictly monotonic, while conditions provoking evacuation often generate risk that develops 
more rapidly as time progresses, making a symmetrical response likely less appropriate. Also, 
some factors influencing the evacuation response, for example, opening and closing of contraflow 
to increase outbound capacity, yield non-smooth evacuation departure patterns over time. 

Given the cumulative dynamic travel demand, the corresponding dynamic travel demand rates 
describing the total travel demand from origin r at departure time k is given by 

( )
( )

r
r D k

d k
k





 .   (3) 

4.3 Destination and Route Choice Model 

Pre-trip route assignment 

Suppose that a traveller from origin r is assigned a prescribed evacuation route ( )rp P k  upon 

departure, implying also a specific destination, where ( )rP t  is the set of instructed routes from 

origin r to any (safe) destination s S  at time t. Throughout the article we assume that each 



EJTIR 11(2), April 2011, pp. 166-193 
Pel, Bliemer and Hoogendoorn 
Modelling Traveller Behaviour under Emergency Evacuation Conditions 
 
 

174 

route has its own index and thus once a route is defined, also its start and end point is known. 
Therefore, to keep the notation short, indices for origins, destinations, and other nodes on the 
network are left out when they are implicitly known through the route index. The route flow rate 
of travellers being prescribed to a specific route p at departure time k is given by 

( ) ( ) ( )r
p pf k k d k , for ( )rp P k  .   (4) 

In other words, the total travel demand rate from origin r, ( ),rd k  can be distributed according to 

prescribed route fractions  ( ) 0,1 .p k   Since ( )rP k  denotes the set of all routes that are 

prescribed from origin r when departing at time instant k, evidently 
( )

( ) 1,r pp P k
k


  since all 

travellers are assigned a route. Travellers with the same prescribed route p can be seen as 
belonging to the same class of travellers. Hence, the formulation in this section can also be seen as 
a multiclass formulation where each class p is a distinct prescribed route.  

Travellers are assigned to an initial route upon departure, after which they may adapt their route 
(and destination) during their trip. They might do so when prevailing traffic conditions are such 
that travellers are better off (or have the feeling of being better off) by deviating to another route 
(possibly with another destination). Evidently, travellers need to be aware of these traffic 
conditions in order to switch routes. This way the level of available traffic information plays a 
role in (en-route) destination and route switching decisions. We distinguish two phenomena: 
route updating decisions and route choice decisions. These are described in the following sections. 

Route Updating Decisions 

Travellers decide to update their route based on changes in the perceived route travel times. 
Presumably, slight changes in traffic conditions are ignored (or go unnoticed) and therefore do 
not affect route flow rates, whereas larger changes do lead to travellers deciding on considering 
switching to a new route. For example, travellers are insensitive to, say, ten percent change in 
route travel times on alternative routes. Then route flow rates remain the same while travel times 
vary within this ten percent margin compared to the prevailing route travel times when the route 
was last updated. As soon as route travel time variations exceed this ten percent margin, new 
route flow rates are computed. 

This route updating rule shows similarity with the bounded-rationality route switching rule in 
the DYNASMART model where an alternative route must provide some minimum improvement 
in order for drivers to switch routes (Mahmassani 2001). The main difference is that in the 
mesoscopic DYNASMART model the route updating is checked for each specific driver, while in 
our proposed macroscopic model the route updating is checked for each intersection node.  

We let ( )nQ t  denote the set of all alternative routes from intersection node n to any (safe) 

destination s S  at time instant t. Then the set of nodes for route updating, denoted by 

( ) \ ,N t N S%  is given by 

  min( ) \ ( ),  for which ( ) ( ) / ( )n n n
q q qN t n N S q Q t t t t        % % % .  (5) 

In words, the set ( )N t%  consists of all nodes \n N S  for which the travel time on at least one of 

the alternative routes ( )nq Q t  from this node n to any safe destination, denoted by ( ),q t  

differs from the travel time on this same route q at an earlier time instant when the route flow 

rates where last updated, ( ),n
q t %  by more than min .  Here, nt%  denotes the time instant when 
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routes from node n where last updated, while min  denotes the minimum relative travel time 

difference as a threshold for route updating.  

As an example, consider travellers from an upstream link coming onto an intersection node n. 
Say, there are three relevant routes from this node n to any of the safe destinations. At a certain 
time, the prevailing travel times on these routes are (perceived as) 45, 48, and 52 minutes. When 
assuming travellers require a minimum relative travel time difference of 10 per cent, i.e., 

min : 0.1,   then travellers coming onto this intersection are assumed to only consider rerouting 

when, for at least one route, its travel time drops below 41.5, 43.2, respectively 46.8 minutes, or 

exceeds 49.5, 52.8, respectively 57.2 minutes. Then, ( ).n N t %  As long as the (perceived) travel 
times of all three routes stay within these margins, travellers continue on their earlier chosen 

route, as ( ).n N t %  

Travellers arriving at any of the nodes ( )n N t %  at time t decide to update their route (since here 
the threshold for route updating is exceeded). Once travellers have decided to do so, they choose 
their route based on the perceived route costs. This is explained next. 

Route Choice Decisions 

At time t, travellers can switch routes at any intersection node ( ).n N t %  That is, travellers may 

decide on switching to any route ( ),nq Q t  where ( )nQ t  denotes the set of all alternative routes 

from intersection node n to any safe destination s S  at time instant t. The fraction of travellers 
of class p (i.e., having route p instructed) selecting route q is given by the probability that route q 
minimizes their perceived generalized route costs, 

 ( ) Pr ( ) ( ),  ( )n
pq pq pzt c t c t z Q t      .   (6) 

Here ( )pq t  is the fraction of class p travellers switching to route q at time instant t, based on the 

prevailing perceived generalized route costs, ( ).pqc t  These costs, ( ),pqc t  are the costs of 

following route q (to any of the safe destinations) as perceived by travellers who are actually 
instructed to follow route p (to their instructed destination). These generalized route costs are 
computed as 

 ( ) ( ) 1pq q pqc t t     ,    (7) 

where ( )q t  is the travel time on route q, and  pql  is the additional disutility of non-

compliance. This additional disutility depends on the perceived costs, 0,   and the route 

deviation proportion,  0,1 .pq l  The perceived costs, ,  state that the new route q should be 

fraction   faster in order to make this route more attractive than the prescribed route p. The 
route deviation proportion is the relative length of route q which does not coincide with the 
instructed route p, 

 1aq ap a
a A

pq
aq a

a A

 

















 ,    (8) 

where al  is the length of link a, and aq  is the link-route incidence indicator that equals 1 if link a 

belongs to route q, and zero otherwise. Consequently, we assume that the more route q deviates 
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from the instructed route p, the larger the additional disutility is to switch routes, which seems 
reasonable.  

Here, we base travellers’ route choice decisions on travel time. We wish to point out that clearly, 
in case of empirical evidence, other attributes can be added, such as travel distance, perceived 
travel time reliability, network familiarity, and risk exposure (see e.g., Chiu and Mirchandani 
2008 for a discussion hereon). 

Presumably, the perceived route travel times used in Formula (7) to compute the generalized 
route costs are more accurate (i.e., closer to the actual route travel times) when travellers receive 
more information, and vice versa. This means that more information principally leads to a larger 
share of travellers selecting the present fastest route, while less information principally leads to a 
more uniform share of travellers selecting each alternative route (depending on the route 
compliance behaviour). The traffic information may relate to the expected future traffic 
conditions accounting for future traffic dynamics, or relate to the instantaneous traffic conditions 
where the current traffic state is expected to continue during the remainder of the trip. In the 
hypothetical example in Section 5, route updating and switching is based on instantaneous 
prevailing travel times, since this is available information nowadays from most information 
sources, such as, radio broadcasting, variable message signs (VMS), dynamic road-side 
information panels (DRIPs), in-car navigation systems, etc. (the impact of considering predictive 
information instead, is discussed in Section 5.3, while presenting the numerical results to the test 
example). 

The perceived route travel times on a route q, denoted by ( ),q t  can be computed as 

( ) ( ) ( )q aq a q
a A

t t t   


     .    (9) 

Here the route travel times consist of the travel times on all links belonging to the route, where 
( )a t  denotes the actual instantaneous link travel time. The route error ( )q t  is the error 

between the perceived (instantaneous) route travel time and the actual (instantaneous) travel 
time on route q. Or, in case the error terms are specified on link level then the perceived route 
travel times are computed as 

 ( ) ( ) ( )q aq a a
a A

t t t   


     ,              (10) 

where ( )a t  is the error between the perceived link travel time and the actual travel time on link 

a. Actual instantaneous link travel times are computed by the dynamic network loading model 
(discussed in Section 3.4). The route-based error formulation of (9) can be solved by a logit model, 
while the link based error formulation of (10) can be solved by a probit model. The choice 
between these model formulations is made as a trade-off between the computational costs (as 
logit provides a closed form expression, yet probit requires simulation) and some drawbacks (as 
probit automatically accounts for spatially overlapping route alternative, while logit need a 
correction term for this). A more detailed discussion is given in Appendix 1. This trade-off leads 
to the choice to use the probit formulation in the test example in Section 5 in this paper, and to 
use the logit formulation in larger case studies presented elsewhere (Pel et al. 2010a, 2010b, 
2010c). 

We assume that the error terms follow a distribution where the variance (>0) is related to the 
prevailing level of available traffic information. This way, high information levels are implied in 
case of small variance in the error distributions. The perceived travel times then closely resemble 
the actual travel times as the effect of the error term becomes negligible. As a consequence, route 
fractions (given by the probabilities in Formula (6)) are only non-zero on the fastest route(s) 
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(depending on the route compliance behaviour). On the other hand, low information levels are 
implied in case of large variance in the error distributions. The perceived travel times are then 
dominated by the error term, and route fractions are more uniformly distributed over alternative 

routes in the route choice set ( ).nQ t  

Synthesis 

In sum, the previous sections on the destination and route choice model describe the following. 

The dynamic travel demand rates, ( ),rd k  at the origins r R  are distributed over the set of 

prescribed evacuation routes, ( ),rP k  according to route fractions, ( ),p k  following from the 

evacuation plan. During their trip, travellers may switch routes in case of a more attractive route. 

They may do so when the perceived travel times on any of the alternative routes ( )nq Q t  

varies more than a certain threshold for route updating, min .  The share of class p travellers then 

switching to a new route q, ( ),pq t  is based on the perceived route travel times and an additional 

disutility of deviating from the instructed evacuation route. This additional disutility of non-
compliance depends on the route deviation proportion, ,pql  and the perceived generalized costs 

of non-compliance, .  Travellers then follow this new route q until variations in the perceived 
route travel times again exceed the route updating threshold compared to the prevailing route 
travel times when the route was last updated. And so forth until they have reached any of the 
safe destinations.  

This way, the dynamic network loading (DNL) procedure is executed only once (instead of many 
times within an iterative traffic flow convergence framework yielding, e.g., a user-equilibrium 
assignment). Within this one-time execution of the DNL procedure, travellers are initially 
assigned to their instructed route (and destination), yet may continuously update their 
destination and route during their trip – while accounting for the disutility associated with non-
compliance – thereby responding to the changing (traffic) conditions (but not anticipating these 
conditions, as otherwise assumed by an iterative user-equilibrium assignment). 

The mathematical model has been implemented in Matlab, with a user-defined road network, 
hazard scenario, and traveller behaviour (in terms of model parameters) as model input. For 
readers who are interested in model implementation, we refer to Appendix 1 where we discuss 
how the proposed model formulation can be solved, and provide a step-wise algorithm to do so.  

4.4 Special Cases 

The parameters   and   describe the traveller compliance behaviour, where   determines 
departure time compliance (Formula (1)), while   determines destination and route compliance 
(Formula (7)). These parameters are influenced by the travellers’ willingness to conform and the 
authority’s enforcement to control. Hence, the authority can steer the evacuation by deploying 
information and instructions as well as by enforcement to which the evacuees respond in their 
travel behaviour. By the latter we can discriminate the effect of discretionary advice (e.g., route 
guidance via information panels) and mandatory orders (e.g., applying police force and road 
blocks to regulate the evacuation traffic flows).  

Regarding departure time compliance, in the limiting case that 1,   we get instr( ) ( )r rD k D k  

indicating full compliance. On the contrary,   0  leads to pref( ) ( )r rD k D k  such that all 

travellers depart at their preferred departure time. For 0 1,   a share of travellers complies 
and departs at the instructed departure time, while the remainder of travellers does not comply 
and departs at their preferred departure time.  
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Similarly for route compliance, full compliance can be simulated when a high value is chosen for 
 . In this situation, the generalized route costs are predominately determined by the term 
associated with the additional disutility of deviating from the instructed route. Consequently, the 
costs of deviating from the instructed route p (that is, when 0pq l ) become very large (or 

approach infinity) such that all travellers comply. Non-compliance can be simulated by setting   
equal to zero. The additional disutility for deviating from the prescribed evacuation route then 
equals zero, such that travellers always follow the perceived fastest route, independent of which 
route is instructed. Partial compliance, depending on the traffic conditions, is modelled as 
0 , =  where a higher value of   allows for higher compliance rates, since travellers then 
require larger (travel time) gains before deviating from the instructed route. 

4.5 Dynamic Network Loading Model and Road Infrastructure Dynamics 

The dynamic network loading (DNL) model simulates the departing traffic flows ( )pf k  (given 

by Formula (4)) through the road network, while accounting for the dynamic class-specific route 
flow fractions ( )pq t  (given by Formula (6)) given at all intersections. The DNL model yields the 

traffic conditions (travel times) used to provide information to the travellers, based on which they 
may update their route (thus determining the route flow fractions), see Figure 1. Essentially any 
traffic flow simulator or DNL model can be used, such as a queuing model, cell transmission 
model (Daganzo 1994) or link transmission model (Yperman 2007).  

In this work, we use the multiclass dynamic spatial queuing model proposed by Bliemer (2007), 
consisting of a link model and a node model. The link model describes the flow propagation 
through each link, accounting for different speeds for different vehicle types (for the sake of 
simplicity not included in the explanation of the route choice model) and a dynamic horizontal 
queue. The link model thus computes the maximum traffic flow that may potentially enter a link 
based on the space availability, and the maximum traffic flow that may potentially exit a link as it 
reaches the downstream end. The node model then uses the potential inflows and outflows to 
compute the actual inflows into and outflows out of each node according to the dynamic route 
choice rates, accounting for possibly restricted flow capacities due to, for instance, queue 
spillback from downstream links, conflicting flows on the node, or traffic signal control. For 
details we refer to Bliemer (2007). 

The (actual) instantaneous prevailing link travel times, ( ),a t  used in the route choice model are 

computed from the DNL model as the link travel time under free-flow conditions plus some 
additional delay (in case of a queue) determined by the current queue load divided by the current 
link outflow rate. 

Road Infrastructure Dynamics 

We model time-dependent road infrastructure, hence characteristics such as speed limits and 
road capacity can vary over time. These variations can be due to the hazard’s evolution in space 
and time (e.g., road sections becoming inaccessible due to flooding) and prevailing traffic 
regulations and control measures (e.g., ramp metering and variable speed limits). Capturing 
these important changes in the road infrastructure over time makes the model (outcomes) more 
realistic. Also, this feature enables simulating an acute evacuation in which network disruption 
plays a major role in the evacuation process, and testing the robustness of an evacuation plan 
towards uncertainty in the hazard scenario. To realistically model the impact of road 
infrastructure characteristics which vary over time, travellers need to be able to adapt their route 
choice decisions during their trip in response to these unforeseen and changing conditions. The 
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way in which this is done is similar to the simulation of en-route route switching in case 
travellers receive new information on traffic conditions as explained previously. 

As mentioned earlier, considering dynamic network characteristics necessitates time-dependent 

route choice sets ( ),nQ t  since the choice set includes all relevant routes from a network node n to 
any safe destination that are relevant at time t. Therefore, these route sets are (when needed) 
generated during execution of the dynamic network loading model based on the prevailing 
traffic and network conditions. 

4.6 Heterogeneous Travel Behaviour 

For reasons of simplicity, the model framework is formulated here for homogeneous travel 
behaviour. That is, all travellers behave similarly when making departure time and route 
decisions, receive the same travel information, and react similarly towards this information and 
their instructions. In reality, there are differences between travellers regarding, for instance, 
preferred departure time and route, information availability, response to information, willingness 
to comply, etc. The differentiation in behavioural response is in line with findings from socio-
psychological studies on emergency situations (e.g., Leach and Campling 1994, Quarantelli and 
Russell 1977). 

When dealing with heterogeneous travellers, we may choose to form multiple discrete classes, 
where travellers belonging to the same class show (sufficiently) similar travel behaviour. In 
applying a multiclass assignment, each distinct class shows distinct travel behaviour and hence 
has its own parameter settings. Our model is generalized, in order to allow a (user-specified) 
number of classes with class-specific departure time choice parameters α and h, class-specific 

error variance in the perceived link costs  2N 0, ,a a :  and class-specific traveller compliance 

behaviour represented by   and .  The variables in the formulas above are then appended with 
the subscript m to indicate the class of travellers. The total number of travellers from an origin, 

,rB  is then given per class, and dynamic travel demand, generalized route costs, and route flow 

rates are computed for each traveller class, while the route fractions aggregated over all traveller 
classes sums to 1. 

Instead of discrete classes, heterogeneity in traveller behaviour and information level can also be 

represented by a continuous probability distribution for each of the parameters α, h, 2 ,a  ,  and 

  (similar to the Mixed Logit construct). Solving for the travel demand rates and route flow rates 
then requires simulation (as a closed form expression cannot be given). 

5. Test example 

Where Section 4 explained the mathematical formulation of the proposed model which 
generalizes the previously identified limitations in evacuation modelling, in this section the face-
validity of the model characteristics is shown by applying it to a simple example of a test network 
and disaster scenario. The test network and disaster scenario are introduced first, after which we 
present the experimental setup and discuss the numerical results. 

5.1 Case Description 

The proposed model is applied to the hypothetical test network shown in Figure 3, containing 
two origins r, two destinations s, and nine bi-directional links. Each of the two origins inhabits 
5,000 travellers, here for simplicity leading to a travel demand of 5,000 vehicles. The length of the 
network links is indicated in the figure. Other characteristics of all network links are set to be 
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equal, where capacity = 2,000 veh/h, speed limit = 80 km/h, and number of lanes = 1 lane. 
Furthermore, the maximum queue density (jam density) = 150 veh/km. The two connector links, 
starting from the origins, are assumed to have sufficient storage capacity (i.e., no spillback occurs 
upstream of these connectors). 

The considered disaster is a hypothetical flood approaching from the South (see Figure 3). The 
linear flood front reaches the lower network links and origin r2 1.5 hours after the start of the 
evacuation and propagates in upward direction with a speed of 2 km/h. Furthermore, the 
preferred departure times are assumed to be represented by the sigmoid curve shown in Figure 4 
(where the actual realized departure times depend on the level of compliance as explained in the 
previous section). 

 
Figure 3. Test network and disaster scenario 

 

 
Figure 4. Preferred departure profile for a single origin (α = 12 and h = 0.6): solid green graph shows 
cumulative departures [travellers], and dash-dotted blue graph shows departure rate [travellers/hour] 
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5.2 Experimental Setup 

A number of assignments are computed, while varying compliance behaviour and traffic 
information level. The setup of these assignments is discussed here, while the numerical results 
are presented in the next section. 

To illustrate the impact of accounting for traveller compliance behaviour, we design 
straightforward evacuation instructions. Travellers at origin r1 are prescribed to follow 
evacuation routes p1 and p2 (see Figure 5), while travellers at origin r2 are prescribed to follow 
evacuation routes p3 and p4. Each route is prescribed to 2,500 travellers in total. Departure times 
are instructed leading to constant departure rates of 2,000 veh/h (thus avoiding congestion to 
occur). The traveller compliance to these instructions is systematically varied to show the effect 
hereof. The tested parameter values for departure time compliance, ,  and destination and route 
compliance, ,  are listed in Table 1. 

The effect of accounting for traffic information is shown by systematically varying the 
corresponding parameters. The tested parameter values for route updating (the minimum travel 

time difference min ) and route selection (the link error variances 2
a ) are listed in Table 2. 

 
Figure 5. Instructed evacuation routes, P 
 

Table 1. Parameter settings relating to traveller compliance behaviour corresponding to 
compliance levels which are tested for 

0 1 2 3 4 5 6 7 8 9 10

departure time  γ 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
route ω 0 .05 .1 .15 .2 .25 .3 .35 .4 .45 inf

parameter
(none) compliance level (full)

 

 

Table 2. Parameter settings relating to traffic information corresponding to information levels 
which are tested for 

0 1 2 3 4 5 6 7 8 9 10

updating τ .5 .45 .4 .35 .3 .25 .2 .15 .1 .05 0
selection σ .1 .09 .08 .07 .06 .05 .04 .03 .02 .01 0

parameter
(low) information level (high)

 

 

 p1 

 p2 

p3 

p4 
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5.3 Numerical Results 

In the hypothetical example, all travellers, when they fully comply to the prescribed evacuation 
instructions, are capable of reaching their prescribed destination. With partial compliance, a 
number of travellers might not be able to evacuate in time before the flood causes the network 
links to become inaccessible and the evacuation to come to a halt. As expected, generally 
speaking, a lower compliance level has a larger negative impact on the number of arrivals. This is 
shown in Figure 6.  

In this example, with higher traveller compliance levels, the reduction in the total number of 
arrivals (as compared to that in the full compliance case) is caused by the non-compliance with 
the departure time instructions. This is shown by the fact that an equivalent reduction can be 
seen when only varying traveller compliance towards the prescribed departure times, while 
simulating full compliance towards the destination and route instructions (dash-dotted graph). 
Relatively high network outflow rates are maintained since apparently (most) travellers still 
follow the dedicated evacuation routes, thereby avoiding (severe) congestion. Below a certain 
compliance level, the number of arrivals drops further, where the additional reduction is due to 
the lower compliance level towards destination and route instructions (as seen from comparison 
with the dashed graph showing the impact of varying traveller compliance towards the 
prescribed destinations and routes while simulating full compliance towards departure time 
instructions). This is explained as follows. The low traveller compliance level leads to a more 
peaked dynamic travel demand, as it more closely replicates the preferred departure profile. In 
turn, this results in a high network load. In such conditions, the impact of route guidance (i.e., 
compliance towards the prescribed evacuation routes) will be larger, as compared to when the 
network load is low. Or, in reverse, lower compliance (towards the prescribed destinations and 
routes) results in additionally lower network outflow rates and longer evacuation times (see 
Figures 7 and 8). 

 

 
Figure 6. Total number of arrivals as a function of traveller compliance level: red solid line, varying 
departure time (DP) and destination and route (D&R) compliance level; green dashed line, varying D&R 
compliance level (with full compliance to DP); blue dash-dotted line, varying DP compliance level (with 
full compliance to D&R) 
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Figure 7. Cumulative departures (upper lines) and arrivals (lower lines): red solid lines, compliance level 
2; green dashed lines, compliance level 7; blue dash-dotted lines, compliance level 10 (see Table 1) 
 

 
Figure 8. Network outflow rates: red solid line, compliance level 2; green dashed line, compliance level 7; 
blue dash-dotted line, compliance level 10 (see Table 1) 

 
In contrast to traveller compliance, the impact of traffic information is non-monotonic. That is, a 
higher information level need not necessarily lead to a larger number of arrivals, and vice versa. 
This can be seen in Figure 9. When travellers receive complete traffic information (information 
level 10), then all travellers will select the (perceived and actual) fastest route. The fastest route 
from each of the origins is the direct route using the horizontal network links. The network 
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outflow rates in this case thus equal the capacity of these routes (see Figure 11). Note that queues 
build up on the connector links when departure rates exceed these route capacities, yet this does 
not lead to rerouting, since these routes remain fastest. In case of lowering the traffic information 
level, a share of travellers may perceive the alternative route using the diagonal network links as 
fastest and decide to reroute. The usage of the alternative parallel routes then increases the 
network outflow rate. Further lowering the traffic information level then leads to larger shares of 
travellers diverting to alternative routes. Initially, this reduces network outflow (rates) due to 
longer travel times and more (and larger) conflicting flows on the network nodes. However, 
lowering the traffic information below a certain level may spread the traffic more evenly over 
alternative routes, thus removing traffic from the (actual) fastest routes and consequently 
increasing throughput on these evacuation routes which slightly restores the overall network 
outflow (see Figures 10 and 11). 

 
Figure 9. Number of arrivals as a function of traffic information levels 
 

 
Figure 10. Cumulative departures (upper line) and arrivals (lower coloured lines): red solid line, 
information level 3; green dashed line, information level 8; blue dash-dotted line, information level 10 (see 
Table 2) 
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Figure 11. Network outflow rates: red solid line, information level 3; green dashed line, information level 8; 
blue dash-dotted line, information level 10 (see Table 2) 

 
The cause of the very low arrival rates observed in case of full information (i.e., all travellers 
choosing the direct route and other routes not being used) is specific to the topology of the 
example network. However, the principal that fully informed travellers yield lower arrival rates 
than highly informed travellers is more general, as it may occur in many cases including the 
larger case studies reported in Pel et al. (2010a, 2010c). Similarly, when predicted travel times are 
to be used (recall that the traffic information provided here are the instantaneous travel times), in 
some cases all travellers are better off, while in other cases the results are worse due to the well-
informed individualistic route choice behaviour. 

6. Concluding Remarks 

Dynamic traffic simulation models have proven to be helpful or even indispensible for the 
analysis, planning, and optimization of the traffic operations during a possible evacuation. Using 
an evacuation model allows obtaining a better understanding of the network conditions and the 
effect of traveller behaviour and traffic regulations and control measures hereon. In this paper, 
we relaxed some of the limitations in many traffic models used in evacuation studies regarding 
traveller behaviour and road infrastructure dynamics with respect to traffic information and 
compliance with evacuation instructions. The face-validity of the model characteristics are 
illustrated using a hypothetical example. The numerical analysis shows the importance of 
capturing compliance and information levels in the model, as they have a large impact upon the 
evacuation efficiency.  

The practical applicability of the evacuation model developed, implemented, and tested in this 
paper has been shown on a few larger real-life networks. In collaboration with the strategic traffic 
management authority of the municipality of Rotterdam, the model is applied to a case study 
describing the evacuation of the Dutch metropolitan area of Rotterdam, see Figure 12. Multiple 
simulations have been run varying in possible network exit points, traffic information levels, 
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evacuation instructions, traveller compliance behaviour, and network dynamics. These 
behavioural and control settings determine departure patterns and route flows, and thus traffic 
states and network outflow utilization, where these relationships are shown to be (in some cases 
highly) non-linear and non-monotonic. More detailed information on the evacuation study can be 
found in (Pel et al. 2010a and 2010c). 

 

 
Figure 12. Rotterdam evacuation network (Source: Google Maps) 
 

In other studies, the model is used as prediction model to optimize evacuation instructions. 
Optimization search methods have proven to substantially improve evacuation clearance times 
compared to evacuation by straightforward rules (such as evacuating towards the nearest exit, 
using the shortest routes, and spreading departure times to avoid the occurrence of congestion) 
(Huibregtse et al. 2009). More interestingly, the inclusion of traveller compliance in the model 
formulation has also been exploited to extend such an optimization method to design efficient 
evacuation instructions which anticipate this level of partial traveller compliance (Pel et al. 
2010b). 

Special attention needs to be paid to parameter settings, as traffic models that are used in 
evacuation studies tend to suffer from the lack of adequate real-life data, and our proposed 
model is no exception. The unfortunate consequence of this is that these models are often 
limitedly validated or inappropriately calibrated on traffic data representing regular daily traffic 
conditions. This need for appropriate data could possibly be addressed, first of all, by combining 
(i) the limited amount of post disaster evacuation data with (ii) data describing travellers’ 
behaviour in equivalent conditions, for example, route guidance and rerouting behaviour due to 
large-scale incidents on the road. Second of all, the lack of appropriate empirical data can be 
anticipated and evacuation traffic models can be formulated such that model parameters have a 
clear behavioural interpretation. The latter is attempted in the model developed here in this 
paper and allows (with appropriate caution) simulations based on expert judgment or non-
quantitative literature from the behavioural sciences. Finally, the uncertainty due to the lack of 
data can be relaxed by (elaborate) scenario analyses and sensitivity analyses on variations in both 
model parameters and factors determining travel demand and network supply. A detailed 
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discussion on the data requirements to manage and model evacuation situations is provided by 
Wilmot et al. (2009). 

The presentation of the model, numerical analyses, and conclusions presented in this work 
provide a discussion on the role of incorporating travellers’ response behaviour towards traffic 
information and road infrastructure dynamics, and their compliance with evacuation 
instructions, in evacuation models. Also, it helps in distinguishing and evaluating the various 
evacuation model formulations, and in understanding the role of the discussed behavioural 
aspects in the evacuation process and the design and evaluation of evacuation plans, including 
testing for robustness towards uncertainties in travellers’ response. 
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Appendix 1: Solution Algorithm 

In this work, first of all, the set of all alternative routes ( )nQ t  is reduced to the set of all relevant 
routes which are likely to be chosen. Different route set generation models could be considered 
for this (for an overview see, e.g., Bekhor et al. 2006, Fiorenzo-Catalano 2007). Here, we choose to 
adopt a stochastic route generation algorithm proposed by Bliemer and Taale (2006) (based on 
Bovy and Fiorenzo-Catalano 2007). This method applies Monte Carlo (MC) simulations in which 
the generalized link costs are assumed to be random variables with a mean related to the 
prevailing instantaneous link costs. In each subsequent MC simulation, the fastest routes from 
each origin to any of the destinations are determined using Dijkstra’s algorithm (Dijkstra 1959) 
and added to the route set (given that they show sufficient low overlap with existing routes in the 
route set). The dynamic route set is generated during the execution of the dynamic network 
loading model since we consider road infrastructure characteristics to be time-varying. In other 
words, some routes may be available and attractive during some time intervals, while being 
unavailable or unattractive during other time intervals. 

Second of all, we choose here to let the travel time error distributions be specified on link level 
(using Formula (10)). We wish to point out that in case of using error distributions on route level 
(using Formula (9)) and assuming that the route error terms are identically and independently 
Gumbel distributed then the route flow fractions, given by Formula (6), can be computed with 
the Multinomial Logit (MNL) model. The scale parameter in the MNL model is then related to 
the variance in the error distributions and thus represents the prevailing level of available traffic 
information. In this case, a route overlap factor can be included to account for the effect of 
spatially overlapping routes on the route flow fractions (see, for instance, the pathsize 
formulation by Ben-Akiva and Bierlaire 1999, or the commonality factor formulation by Cascetta 
et al. 1996).  

On the other hand, in case of error distributions on link level, as we use here, this effect of spatial 
route overlap is automatically accounted for. The route flow fractions in Formula (6) then 
however have no closed-form expression which necessitates solving these by means of 
simulation. A sufficiently large number of independent draws on the link-specific error terms is 
needed to replicate the error distributions. The route flow fractions then correspond to the 

relative number of draws in which the specific route ( )nq Q t  was the most attractive route 

compared to all alternative routes. That is, the number of times that ( ) ( )( ) ( ),  ( )x x n
pq pzc t c t z Q t    

where x denotes the draw.  

To limit the required number of draws, low discrepancy sequences are used. In this work the 
Modified Latin Hypercube Sampling (MLHS) method is applied to generate a sample of X quasi-
random draws (Hess et al. 2005). In case the link travel time error terms are assumed to be 

identically and independently Normal distributed, i.e.,  2( ) N , ,a t  :  this approach leads to 

the Probit assignment model (Daganzo 1979, Sheffi 1985). Then, to obtain the link error terms, we 
evaluate the inverse of the cumulative error distribution function at the quasi-random draw x, 

 ( ) 0,1 ,x
a   

 ( ) 1 ( ) 2x x
a a a     ,             (11) 

where   is the cumulative distribution function of the standard normal distribution, and 2
a  

corrects for the link-specific error variance. Recall that we assume the mean to be zero (no 

structural bias) and the variance ( 2 0a  ) to be related to the prevailing level of available traffic 
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information. From Formula (11) it is directly observable how a larger variance leads to a larger 
error and hence a larger difference between the actual travel times and the perceived travel times, 
thus implying a lower traffic information level. 

Below we present the step-wise algorithm corresponding to the destination and route choice 
model explained in Section 3. Here we use P to denote the full set of instructed evacuation routes 

from all origins to all destinations at all departure times, i.e., 
,

( ).r

r R k T
P P k

 
   

Destination and route choice algorithm 

Input: Network with for each link, prevailing instantaneous travel times, ( ),a t  and link 

lengths, ,a  a set of safe destination, S, and for each node \n N S  a choice set with relevant 

routes, ( )nQ t  (here generated using MC simulations and Dijkstra’s algorithm), their overlap with 

the prescribed routes, ,pq  , ( ),np P q Q t     and the time instant when routes from this node 

n were last updated, .nt%   

Parameters: number of iterations, J, link error variances, ,a  route updating threshold, min ,  and 

perceived generalized costs of non-compliance, .  

Output: Route fractions ( )pq t  for all relevant routes ( )nq Q t  from all nodes \ ,n N S  for all 

classes .p P  

 

Step 1: Compute node set for route updating, ( ) \ ( ) ,nN t n N S q Q t   %  

  minfor which ( ) ( ) / ( ) .n n
q q qt t t    % %   

Step 2: Set : 1.j   Set ( ) : 0,pq t  , ( ), ( ).np P q Q t n N t      %  

Step 3: Compute link travel times  ( ) ( )( ) ( ) 1+ ,j j
a a at t    with  ( ) 2N 0,j

a a �  (here using 

efficient MLHS draws). 

Step 4: For all routes ( ),nq Q t  from all nodes ( ),n N t %  compute the (perceived) travel time, 
( ) ( )( ) ( ) .j j
q aq a

a A

t t  


     

Step 5: For all routes ( ),nq Q t  from all nodes ( ),n N t %  and for all classes ,p P  compute the 

travel costs,  ( ) ( )( ) ( ) 1 .j j
pq q pqc t t     

Step 6: For all routes ( ),nq Q t  from all nodes ( ),n N t %  and for all classes ,p P  if 
( ) ( )( ) ( ),j j
pq pzc t c t ( ),nz Q t   then set ( ) : ( ) 1/ .pq pqt t J     

Step 7: If ,j J  then stop. Otherwise, set : 1j j   and continue with Step 3. 

 

 

 


