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 9 Summary

Summary

Just after World-War II building materials were scarce, architects and engineers had to design 
buildings using not much cement and steel. In French an architect, Jacques Couëlle, had invented a 
system with céramique infill elements to reduce for structures of concrete the self-weight and need of 
cement and steel. In the fifties and sixties of the twentieth  century these céramique elements, known 
as Fusée Céramique elements, were used widely in France, North Africa and the Netherlands, mostly 
for barrel vaults and shells.  Nowadays most of these structures are pulled down and the remaining 
buildings do not meet the demands of the present concerning climate comfort, insulation and safety.
This thesis analyses the structural design of cylindrical Fusée Céramique roofs in the context of those 
days. The effect of the céramique infill elements for the time dependent deformations, stiffness and 
load bearing capacity, including second order, is studied. To save the few remaining buildings for the 
coming generations the possibilities to strengthen these structures with slender light elements of 
steel are explored. The effect of the strengthening is described for a Fusée Céramique vault, designed 
and constructed in the past. 
Reinforced concrete is a widely used building material with many advantages. Unfortunately the 
production of both reinforcement and cement is quite energy intensive and causes the emission of 
greenhouse gasses as NO2, NO and CO2. Reducing the need of cement is a relative simple way to reduce 
the emission of these greenhouse gasses. 
In practice roofs are seldom really flat but curved or at least slightly inclined, to drain rainwater and 
snow. Structurally curved structures, transferring loads as a surface-active or form-active structural 
system, are very efficient. The need of material and the self-weight is pretty low. This can be very useful 
if in the future the potentials of roofs for producing food and energy are used more often and these 
roofs must be designed for much heavier payloads as usual at the present.
For form-active and surface-active roofs of concrete the self-weight and need of steel and cement can 
be reduced further with light infill elements. This study of the Fusée Céramique system shows that 
infill elements can save cement, self-weight and reduce the environmental load. The possibilities to 
save cement and reduce the environmental load with infill elements are studied with respect to the 
construction techniques of the present. 
The design of prefabricated cylindrical vaults, composed of segments following a part of a circle 
and strengthened with slender ties of steel to reduce the bending stresses, is described. To produce 
prefabricated cylindrical barrel vaults efficiently a positioning of tubes perpendicular to the span is 
preferable. The effect of this infill concerning the load transfer is analysed. Models of a prefabricated 
element, with tubes positioned perpendicular to the span, are tested to define the structural bearing 
capacity of prefabricated barrel vaults. 
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 11 Samenvatting

Samenvatting

Vlak na de tweede wereldoorlog waren de bouwmaterialen schaars, architecten en ingenieurs moesten 
gebouwen ontwerpen met een beperkt gebruik van cement en staal. In Frankrijk had een architect, 
Jacques Couĕlle , een systeem bedacht om met keramische  invulelementen het eigen gewicht van 
betonconstructies te reduceren en te besparen op cement en staal. Deze keramische elementen, 
bekend als Fusée Céramique elementen werden in de vijftiger en zestiger jaren van de twintigste 
eeuw op een ruime schaal  toegepast in Frankrijk, Noord-Afrika en Nederland voor hoofdzakelijk 
cilinderschaaldaken en koepels. Momenteel zijn de meeste van deze constructies gesloopt en  de 
resterende gebouwen voldaan vaak niet meer aan de hedendaagse eisen voor het binnenklimaat, de 
isolatie en de veiligheid.  
In dit proefschrift wordt het ontwerp van de Fusée Céramique  daken geanalyseerd in de context 
van die tijd. Het effect  van de keramische invulelementen op de tijdsafhankelijke vervormingen, de 
stijfheid en het draagvermogen, inclusief het tweede orde effect,  wordt bestudeerd. Om de weinige 
nog resterende gebouwen te bewaren voor het nageslacht wordt onderzocht hoe deze constructies 
versterkt en verstijfd kunnen worden met slanke en lichte elementen van staal. Het effect van het 
versterken wordt beschreven voor een in het verleden ontworpen en gebouwd Fusée Céramique 
schaaldak. 
Gewapend beton is een veelvuldig toegepast bouwmateriaal met vele voordelen. Helaas vergt de 
productie van cement en staal veel energie en komen bij de productie gassen vrij als NO, NO2 en CO2 , 
die bijdragen aan het broeikaseffect. De uitstoot van deze broeikasgassen kan op een eenvoudige wijze 
worden gereduceerd door de hoeveelheid cement in de betonconstructies te verminderen.
In de praktijk zijn daken, voor het afvoeren van regenwater en sneeuw, vrijwel nooit geheel vlak , maar  
gekromd of op zijn minst enigszins hellend. Constructief gezien zijn gekromde dakconstructies, die 
de belastingen als oppervlak-actieve constructie of als vorm-actieve constructie kunnen afvoeren, 
zeer doeltreffend. Voor deze constructies is zowel het materiaalgebruik als het eigengewicht tamelijk 
gering. Dit is zeer nuttig als in de toekomst de mogelijkheden van daken om energie en voedsel te 
produceren vaker benut gaan worden en deze daken ontworpen moeten worden op een hogere nuttige 
belasting dan momenteel gangbaar.
Voor de betonnen vorm-actieve en oppervlak-actieve constructies kan het eigengewicht en de 
benodigde hoeveelheid cement en staal  verder worden beperkt met lichte invulelementen. 
Dit onderzoek naar het Fusée Céramique systeem toont aan dat met ingestorte elementen  
minder cement nodig is en tevens het eigengewicht en de belasting op het milieu verminderd 
wordt. Onderzocht wordt hoe met invulelementen, uitgaande van de momenteel gangbare 
uitvoeringsmethoden,  het cementgehalte en de milieubelasting teruggebracht kan worden..
Het ontwerp van geprefabriceerde cilindrische schaaldaken met een cirkelvormige kromming wordt 
beschreven, die om de buigspanningen te reduceren zijn versterkt met slanke stalen staven. Om 
de geprefabriceerde schaalconstructies efficiënt te kunnen maken, worden de in te storten buizen 
bijvoorkeur niet evenwijdig maar loodrecht op de kromming geplaatst. Het effect van deze plaatsing 
op de krachtsafdracht wordt geanalyseerd. Om het draagvermogen van deze geprefabriceerde 
cilindrische schaalconstructies te bepalen zijn modellen van een geprefabriceerde schaalelement met 
sparingbuizen dwars op de overspanning  beproefd. 
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 13 Notation

Notation

A cross section;

E Young’s modulus;

F Force;

H thrust;

I second moment of the area;

M   bending moment;

N normal force;

Ncr buckling force;

P post-tensioning force;

V vertical reaction;

W moment of resistance;

a half span;

e eccentricity;

f rise of the vault;

fx ultimate stress;

h height of a section;

k reduction factor for the creep;

l span of the barrel vault;

lc buckling length;

ncr buckling ratio;

nf ratio stiffness fusées to  stiffness concrete;

ns ratio stiffness rebars to  stiffness concrete;

q equally distributed load;

qe equally distributed live load; 

qg equally distributed permanent load;

s length of the curve of an arch between the top and support; 

t depth of the vault;

u deformation;

w width;

x coordinate X-axis;

y coordinate Y axis;

a angle; factor;

b angle; factor;

f angle; creep factor;

s stress;

e specific deformation;

erc specific deformation of concrete due to shrinkage;

y factor reduction buckling length.
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Introduction

Fusée Céramique System

Just after World-War II infills were used often to reduce the cost of structures of concrete.  For floors 
tubes of cardboard and for vaults tubes of céramique, the so-called Fusée Céramique tubes, were 
used to reduce the need of cement and save cost. Nowadays the Fusée Céramique system is almost 
forgotten, but half a century ago this system was well known and competitive for roofs above industrial 
buildings. A fusée is a cylindrical céramique tube, which was embedded in concrete walls and roofs, 
mostly barrel vaults and domes, to reduce weight and cement. Just before the second Word War, 
a French architect, Jacques Couëlle, invented this system. In World War II many buildings were 
destroyed, so after the war the need for buildings was huge and the building industry was booming. 
Consequently the cost of materials was rising and architects and engineers had to save cement, steel 
and other building materials. For structures of concrete the self-weight as well as the need of cement 
and steel could be reduced considerately by embedding a light cost effective infill. Of course not every 
infill is suitable for structures of concrete, the infill must be chosen carefully. Combining materials 
with varying features can affect the load bearing potential. Due to  shrinkage and thermal expansion 
composites can be subjected to internal stresses potentially causing cracks and a reduction of the 
load bearing capacity. Possibly for some vaults built with Fusée Céramique elements the safety is not 
fulfilling the demands of the present and need to be strengthened. 

Saving building materials 

At the moment many people are concerned about the environment of our planet. The number of 
people living on this planet is rising exponentially. To feed these people increasingly woods and 
wastelands are cultivated and transformed into urban areas at the cost of biodiversity. Pollution 
threatens the delicate eco-systems in the oceans and jungles. Burning fossil energy pollutes the 
atmosphere. Due to the greenhouse effect the average temperature has been rising for more 
than a decade. The melting of glaciers and polar ice will lead to rises of the sea and ocean level, 
possibly coastal areas will be flooded. In the sixties of the XXth century scientists warned us for the 
consequences of overpopulation and the use of non-sustainable energy for the environment. Many 
people are aware of these problems and are concerned to stop the climate change. Consequently the 
consumption of fossil energy must be reduced, for example by saving energy and transferring from 
fossil to renewable energy. The building industry can contribute much to save energy. An important 
part of the yearly energy consumption is needed to create a comfortable climate in buildings. 
Probably this will change in the coming decades. To save energy architects design buildings that do 
not use fossil energy for heating or cooling. Consequently the next step in reducing the total energy 
consumption will be the reduction of the environmental load of the materials. Professor Haas expects: 
‘’that with a greening of energy in the next fifteen to twenty years, the material share concerning 
the environmental load of buildings will increase to 48%. Materials are our next problem after 
energy’’ [Was09]. This will change the building industry significantly. Just as in the past architects 
and engineers will optimise buildings to reduce the need of the energy for the production, transport 
and assemblage of building elements. The better part of the materials is needed to make the load-
bearing structure of a building. Consequently  just as in the past the reduction of the self-weight of the 
structure will be an essential part of building design. 
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Curved roofs

Curved roofs designed as a form-active structure system can transfer the loads most efficiently. 
Engel defines these systems as: “Form-active structure systems are structure systems of flexible 
non-regid matter, in which the redirection of forces is effected through particular form design 
and characteristic form stabilization” [Eng99].  In practice most building structures are section-
active structures, even for roofs. Engel defines these systems as: “Section-active structure systems 
are  structure systems of solid rigid linear elements - including their compacted form as slab - in 
which the redirection of forces is effected through mobilization of sectional forces” [Eng99]. To 
drain the rain water roofs need a curvature or slope. For flat roofs ponding is a real threat, every 
year some flat roofs collapse due to the accumulation of rainwater. A roof can be designed also as 
a surface-active structure system, but building surface-active structures is complicated and labour 
intensive, consequently shells are not often built nowadays. Otherwise new techniques of design 
and construction are being developed. At the beginning of this century free forms became quite 
popular. Thanks to the CAD-CAM technology these complex forms could be designed and built in 
spite of the irregular form. Single curved surfaces are easier to make than double curved surfaces and 
the cost of construction will be less. Selecting materials that use less fossil energy, such as organic 
materials, can thus reduce the environmental load of structures. Unfortunately organic materials are 
mostly not very stiff and strong, so the dimensions are substantial. Consequently the volume of these 
buildings will be increased. The environmental load can be reduced too by developing new high-tech 
materials. Generally the environmental impact of light building materials or lightweight elements 
is less than the environmental impact of heavy materials such as concrete and masonry. Nowadays 
structures for low-rise buildings, housing for example workshops, swimming pools, sporting halls and 
shopping malls, are mostly composed of light materials. Especially for large spans light materials or 
elements are preferred, so the self-weight is not consuming most of the load bearing capacity. But 
the capacity of these light constructions to accumulate heat or cold is poor. Passive energy is ideal 
for low temperature heating and cooling systems, using green energy. During the winter the heat 
is accumulated into the floors and walls at the night and during the day the heat is returned. In the 
summer the process is used to cool the inner spaces during the day by restoring the heat lost from the 
core elements during the night. Embedding infill elements can reduce the environmental impact of 
concrete structures. Concrete is composed of a mixture of cement, sand and gravel. The environmental 
impact of sand and gravel is small. The environmental impact of cement can be reduced considerately, 
for example by using blast furnace cement and fly ash. Blast furnace cement is a by-product of blast 
furnaces producing steel. Fly ash (pulverized fuel ash) is a by-product of energy plants. The use of fossil 
energy for the production of cement can be reduced too by using organic waste for the furnace of the 
plant. Reduction of the self-weight will reduce the need for steel reinforcement. The self-weight can 
be reduced with light aggregates and infill elements. In the past the self-weight of floors was reduced 
with tubes of cardboard, at the present the self-weight is reduced with spherical bals and polystyrene 
boxes. 
Actually both strategies, minimizing the environmental load by form design and reducing the 
embodied energy/self-weight were applied 70 years ago already. In France the architect Jaques 
Couëlle invented a system known as Fusée Céramique. Just after World War II curved concrete 
roofs composed with ceramic tubes, known as the Fusées Céramique, were built in France and The 
Netherlands. Fifty years ago most buildings were constructed with concrete roofs. For large spans the 
self-weight was compensated by form-design. Folded plates, cylindrical vaults and double curved 
shells can span considerable lengths with a minimal thickness and a minimal use of material. Thanks 
to the reduction of the self-weight the Fusée Céramique roofs were competitive to roofs with a steel or 
timber structure. In the sixties the costs of the labour were rising faster than the costs of materials, so 
these vaults, constructed in situ, became less competitive and were thus not built any more. Nowadays 
the cost of the environmental impact has to be included and this will change the building industry 
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again and force architects and engineers to find new solutions. Developing new materials is expensive. 
A lot of research is needed to demonstrate that new materials can be applied safely. Learning from 
the past is cost effective. Buildings standing for fifty years show problems and time dependant effects 
distinctly. Nevertheless the Fusée Céramique roofs performed well for more than fifty years. Nowadays 
prefabricated flat hollow core plates can be applied for spans up to 18 m, the ratio of thickness to span 
is only 1/40. To pre-tension these elements, high tensile steel wires are pre-tensioned on a frame and 
the concrete is extruded. When the concrete has set the long plates are cut to the required length. 
Due to this process of production these elements are flat slabs and cannot be used for curved roofs. 
With curved hollow core elements the maximal span of curved roofs can be increased and the ratio 
of thickness to span can be reduced considerately. For example the ratio of thickness to span of  a 
fusée vault was often less than 1/150. These structures were well designed according to the features. 
Structurally concrete can resist compressive stresses very well but the resistance to tensile stresses is 
poor. Usually, to resist tensile stresses, structures of concrete are reinforced, commonly with steel. If 
a reinforced concrete beam is subjected to bending then a part of the section resists the compressive 
stresses and the reinforcement resists the tensile stresses. The concrete in the tensioned part of a 
section in bending is cracked and not transferring loads. Structurally it is efficient to remove the parts 
between the tensile and compressive zone that only transfer limited shear stresses. The following 
figure shows a beam subjected to a lateral load. If the tensioned and not highly stressed zones are 
removed, the load is transferred by a slender compressed arch and tensioned tie. This reduces the 
self-weight considerably. Generally form-active structures can be designed much thinner than 
section- active structures. For example beams are designed with a ratio height to span of about 1/10 
and arches are designed with a ratio rise to span of 1/40 at minimum.  Thus structures of concrete  
are preferentially form-active to reduce material consumption and to minimise dead weight and 
embodied energy. Unfortunately in practice it is not always possible to apply arches. For floors the 
upper surface has to be flat, so most floors are section-active structures.

 

 

 Improving the efficiency of a beam of concrete by removing material and changing the beam into a low-rise arch. 

Arches and vaults

This thesis focuses on low-rise barrel vaults.  The effect of the end walls of a barrel vault will be 
small if the length of the vault is more than three times the span, then these vaults and vaults with 
no stiffening at the ends can be schemed as an arch. In practice the Fusée Céramique vaults were 
partitioned by dilatations with a centre-to-centre distance of about 5 m. Due to the partitioning these 
structures can be schematised as arches. Nevertheless for the design and load transfer the following 
differences must be considered. Generally the ratio thickness to span is for a concrete arch  1/40. This 
is much more than for a low-rise barrel vault with a ratio thickness to span 1/150. For these slender 
low-rise vaults buckling can be a serious threat. Generally the loads acting on arches are much more 
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than the loads acting on vaults, also the normal stresses will be higher than for vaults. For the Fusée 
Céramique vaults described in this thesis the normal stress was seldom more than 1.0 MPa. For arches 
the ratio rise to span is seldom smaller than 1/5. Due to the modest stresses the ratio rise to span can 
be for low-rise vaults much smaller than for arches. The Fusée Céramique vaults, described in this 
thesis, were designed with a ratio rise to span of 1/8. Consequently the design rules developed for these 
low-rise vaults cannot be applied for arches. 

Infills

The technique of construction resembles the techniques applied by Eladio Diëste for shells of 
reinforced masonry. Comparing these techniques will show the context of the fusées at that time. 
Thanks to the ceramic infills, the need of cement and the self-weight of the vaults were reduced 
considerately. Consequently the Fusée Céramique barrel roofs were competitive for roofs with a 
span up to about 24 m. Later other infill elements were introduced to reduce the weight of concrete 
floors and to save cement, for example cardboard tubes, cassettes, spherical balls (bubble deck), 
boxes of polystyrene and so on. Generally combining varying materials causes complications, often 
with adverse consequences, especially when the physical features vary.  Due to the shrinkage of the 
concrete the composite is subjected to internal stresses too. Possibly the concrete, enveloping the 
fusée elements, is cracked due to these stresses; consequently the stiffness of the vaults and the safety 
concerning buckling is decreased. Nevertheless some of these buildings are still in use. The effect of 
the time dependent deformations for the load transfer and safety will be analysed in this thesis.

Focus

This thesis focuses on the load transfer for form active structures of concrete made with light infill 
elements to reduce the self-weight, need of cement and environmental load. To learn from the 
past the load transfer is studied for Fusée Céramique vaults. The schemes, theories, idealizations 
and assumptions, practised during the nineteen fifties are analysed, validated and discussed. 
For a remarkable cylindrical vault, constructed in Woerden, the design is reconstructed and the 
structural bearing capacity is defined. Unfortunately most of these buildings, just as the building 
in Woerden, are pulled down already. To remain some of these structures and use these buildings 
safely the possibilities to strengthen these vaults are explored. Currently the worldwide attention 
for the environment should stimulate architects and engineers to seek sustainable, durable and 
environment-friendly techniques. These will save energy and reduce CO2  emission. To reduce the 
footprint of structures of concrete, especially vaults,  further the possibilities of infills are studied with 
respect to the construction techniques of the present. To facilitate the construction of prefabricated 
circular vaults the weight and need of concrete is reduced with cardboard tubes positioned 
perpendicular to the span. The effect of the direction of the tubes for the load transfer is studied. Tests 
are made for circular prefabricated cilindrical vaults with cardboard tubes positioned perpendicular 
to the span to validate the concept and to create light roofs able to resist the loads for public activities 
or the production of food and energy. Thus possibly the Fusée Céramique concept can be transformed 
into new technical systems and is this study a starting point to save material and to decrease the 
environment load for cilindrical vaults, to create sustainable green roofs contributing to a human 
friendly climate in urban areas.
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1  The Fusée Céramique System, history, 
construction, dimensions and context

This chapter describes the Fusée Céramique system.  In successive paragraphs the history, inherent 
advantages, the technique of construction, the form and the dimensions are described. The technique 
of construction resembles the techniques applied by Eladio Diëste for shells composed of reinforced 
masonry and the techniques, still practised in India, to built the Guna vaults. Comparing these 
techniques will show the context of the fusées at that time.

§  1.1 A short description of the history of the Fusée Céramique System

Halfway the XXth century the building industry was booming, consequently the costs of scarce 
materials were rising and architects, engineers and contractors had to find alternatives to save 
cement and steel. During Word War II the French architect Jacques Couëlle had invented a system to 
build structures using cylindrical ceramic elements embedded in concrete. Actually Byzantine and 
Roman engineers applied before hollow ceramic elements. For example ceramic elements were built 
in, fifteen centuries before, in the church of San Vitale in Ravenna [Eck54]. The slender branches of 
bamboo, composed of tubes connected and stiffened by nodes, inspired Couëlle to design the Fusées 
Céramique System. The ceramic tubes have a conical top to join the elements. This enables the 
conical top to be pushed into the rear of the next tube. The fusées were used as infill for concrete walls, 
floors and roofs.  Thanks to the conical top the elements can be rotated slightly at the nodes, so these 
elements can easily be used in curved roofs.

 

FIGURE 1.1 Fusee Céramique element saved from building Q in Woerden. Photo taken by author.

During World War II the army recognized the advantages of the Fusées Céramique elements and used 
this system for bridges, barracks and shelters.  A large factory was built in Marseille, which after the 
war had a lot of the ready to use fusées in stock. Many people had lost their homes and the architects 
André Bruyère and Fernand Pouïllion saw possibilities to use these elements for temporary housing. In 
Marseille a large resort, the Arenas Camp, was built for emigrants from North Africa [Dub00]. Beside 
in France the system was introduced in North Africa, for example Morocco [Lan49], too. The improved 
heat insulation, due to the hollow core elements, was appreciated in North Africa, lowering the indoor 
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temperatures during the summer. Further the French army used this system for defence buildings 
in North Africa [7]. A few years later the system was introduced in Belgium and the Netherlands. A 
factory, the ‘N.V. Nederlandse Fusée Céramique Maatschappij  Nefumij’, was erected in Echt, which 
could produce 10 million Fusée elements a year [Lan49]. The engineering and technique of building 
were described in journals [Toe53] and technical books [Vri55] and many barrel vaults were made, 
mostly for industrial buildings such as warehouses, factories and garages. Occasionally this system 
was used for prestigious buildings as churches and railway entrance buildings. The elements were also 
used for domes. For example in France the church Saint-Jean Bosco in Biollay was roofed with a dome, 
designed by the architect Pierre Jomain. In the Netherlands the architect H. van Wissen designed a 
dome for the st.Raphael-Exodus church in Hengelo [11]. The architect H.G.J. Schelling designed a 
dome for the entrance of the Railway station in Arnhem. This dome, with a diameter of 8.77 m, was 
built in 1954 [Roo09] and pulled down. A workshop of the Pastoe factory was roofed with conoid shells 
to enlighten the interior with roof lights, see figure 1.2.  During the sixties the cost of labour was rising 
significantly and this system could not compete anymore with other systems. Nowadays this system 
seems almost forgotten.

FIGURE 1.2 Conoid shells roofing the Pastoe workshop in Utrecht. Photo: Katja Effting fotografie

Advantages/disadvantages

During the introduction the benefits of this system were emphasized. Langejan [Lan49] described the 
following advantages: 

 – a reduction of the self weight of 25% - 40%;

 – a saving of cement up to 50% -70%;

 – an increase in thermal insulation of 30%-40%;

 – uncomplicated construction;

 – formwork can be stripped earlier.

Further Van Eck [Eck54] mentioned that the acoustic resistance was practically identical to the 
acoustic resistance of massive structures.

During the fifties of the past century the building industry was booming and consequently steel and 
cement became difficult to obtain, thus limiting the use of cement was important. For floors many 
systems, as for example Nehobo, Steno, Stalton, Omnia, Kwaaital, Cushfeller and Dato floors, were 
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developed to reduce the self-weight and the cement content. The Nehobo, Steno and Stalton floors 
were composed of ceramic elements. The Stalton floor was composed of prestressed ceramic beams 
and ceramic infill elements. This floor did not need a formwork. The Steno and Nehobo floors were 
composed of hollow ceramic elements. The reinforcement was positioned into the voids between 
the elements.The voids and top layer were filled with cast concrete. These floors did not need a 
casing, but the ceramic elements had to be supported till the cast concrete was set. For floors these 
systems were competitive above the fusée system. Due to the conical end the fusées could be laid 
easily in curved roofs, thus in practice these elements were used by preference in shells and vaults.For 
concrete structures the self-weight is often as much as 50% to 75% of the total load. Decreasing the 
self-weight thus decreases the total load considerately. As a result the depth of the structure can be 
reduced. In the fifties buildings were not as insulated as is the current practice. Decreasing the thermal 
conductivity, although minor compared to present standards, was welcomed as it improved comfort 
and reduced the heating cost in winter. Thanks to the ceramic elements the formwork could be 
stripped earlier and the time required for the successive cycles of the construction was reduced as well. 
Nevertheless the vaults had a serious disadvantage, the construction on the building site of concrete 
roofs is labour-intensive. During the sixties the cost of labour was rising fast and this system could 
not compete with steel and timber roofs using prefabricated components. Consequently this system 
became obsolete in the last quarter of the twentieth century.

Technique of construction

The fusées are cylindrical elements with a length of 35 cm, an outward diameter of 8 cm and a wall 
thickness of 1 cm [Eck54]. To join the elements one of the ends is shaped conically. The conical 
end is placed into the open rear of a second element. The joints can be rotated slightly to follow the 
curvature of the roof. The fusées are embedded in mortar or concrete [Lan49]. Probably in practise to 
save cement concrete composed of cement, sand and gravel was preferred above mortar, composed 
of cement and sand. Nevertheless to fill the voids between the fusée elements the diameter of the 
gravel had to be quite small. The spacing between the fusée elements was 1 cm at minimum, so 
possibly a gravel C2-C8 was used. The construction order was as follows: first scaffolds were erected 
and the mould was greased, a layer of about 2.5 cm of liquid concrete was poured. Next the elements 
were wetted and pushed in the  non hardened concrete with a twist, starting at the gutter. At the top 
the elements were connected with a special element with two open ends, known in the Netherlands 
as a ‘mof’. Sometimes a second and a third layer was added. The liquid concrete in the second layer 
was poured when six rows of fusées were laid on the formwork. The top layer was smoothened with a 
straightedge. The concrete needed to set for at least 36 hours before the formwork could be stripped 
[Eck54].  Some contractors used a sliding mould with a width of about 2.0 m, which could be moved 
on rails, to reuse the formwork many times.

Dimensions

The number of layers was chosen with respect to the span and loads. For barrel vaults one layer of 
fusées was applied for spans of 15 m at most [Eck54], for larger spans it was recommended to use two 
or three layers. Actually in practice, as for example for roofs in Woerden and Dongen, barrel vaults were 
constructed with only one layer of fusées and a span up to 20 m. The thickness of the shell was chosen 
according to the number of layers. For a shell with one layer a minimum thickness of 11 cm, for a vault 
with two layers a minimum thickness of 18 cm and for a roof with three layers a minimum thickness of 
25 cm was recommended [Eck54]. 
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Reinforcement

Generally the barrel roofs were reinforced, but some vaults were constructed like masonry vaults 
without reinforcement. According to professor Ros barrel vaults with 3 layers of fusées and a 
span of 15 m could be constructed without reinforcement (Lan49]. Otherwise Van Eck and Bish 
recommended to reinforce vaults with a span above 10 m. The reinforcement was selected to match 
the span and the loads. Generally the centre-to-centre distance of the bars was 18 cm. For a span 
of 10 m to 15 m a reinforcement of Ø6-18 cm was recommended. For a span above 15 m the 
reinforcement was increased to Ø8-18 cm [Eck54]. Of course just as in the present the designer had to 
prove the load bearing capacity of the roof with a calculation. 
Originally the forces, stresses and dimensions were expressed in kg and cm. To accommodate the 
reader this notation is transferred into the modern SI-system using Newton and mm.  

Depth of unreinforced vaults

The covering on the fusées had to be at least 10 mm. Thus for a one-layered vault the depth of the 
vault was at least:  

t = 80  + 2 × 10 = 100 mm. 

This depth is less than the minimal depth, 110 mm, described by Van Eck and Bish [Eck54]. 
For the fusées the minimal spacing for bond to the concrete had to be 10 mm. Thus for roofs 
composed of two layers of fusées the centre distance of the fusées is minimal 90 mm. If the cover on 
the fusées was 10 mm then the thickness of the roof had to be minimal:  

t = 10 +  80 + 10 + 80 + 10 mm = 190 mm. 

90 mm

78
 m

m

60 mm

80 mm

FIGURE 1.3 Section of a vault with two staggered layers of fusée elements. 

This depth is larger than the minimal depth described by Van Eck and Bish [Eck54]. Building the 
elements stepwise can reduce the depth of the vault. The distances of the lines through the centres 
of the layers is equal to  ½ × 90 × √3 = 78 mm, see figure 1.3. The coverage on the fusées is 10 mm, 
thus the depth of a vault composed with two layers of fusées built stepwise and not reinforced with 
distribution bars is at least: 

t = 10 +  40 + 78 + 40 + 10 mm = 178 mm ≈ 180 mm. 

This depth is equal to the minimal depth described by Van Eck and Bish [Eck54]. 
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Depth of reinforced vaults

Possibly the depth had to be increased in case the section was reinforced. According to the building 
code of 1950 [C1] the minimal cover on the reinforcement had to be at least 10 mm for slabs with a 
maximum thickness of 120 mm. Generally Fusee Céramique vaults were reinforced with main bars 
running parallel to the span and fusées. The section with one layer of fusées, showed in figure 1.4 , is 
reinforced with rebars Ø8-180. The showed section is not reinforced with distribution bars running 
perpendicular to the span. The thickness of the roof, if the reinforcement running parallel to the span 
was laid between the fusées, had to be minimal equal to: 

t = 10 + 80 + 10 = 100 mm. 

90 mm

60 mm

80 mm

180 mm

t

FIGURE 1.4 Section of a vault with one layer of fusée elements reinforced with main rebars positioned parallel to the span.

For roofs composed of two layers of fusées the depth must be increased. The minimal spacing between 
the fusées was 10 mm, so the centre distance of the fusées is at least 90 mm. According to the 
building code of 1950 [C1] the minimum cover on the bars had to be 15 mm for slabs with a thickness 
of 120 mm or more. The thickness of the roof, if the reinforcement running parallel to the span was 
laid between the fusées, had to be minimal equal to: 

t = 15 + 80 + 10 + 80 + 15 mm = 200 mm. 

Building the elements stepwise can reduce the depth of the vault. The distances of the lines through 
the centres of layers is equal to  90√3/2 = 78 mm, see figure 1.3. The coverage on the rebars is 15 
mm, thus the depth of a vault composed with two layers of fusées built stepwise and not reinforced 
with distribution bars is at least:

 t = 15 +  40 + 78 + 40 + 15 mm = 188 mm ≈ 190 mm

Depth of vaults reinforced with rebars parallel and perpendicular to the span

Generally one way-floors and roofs are reinforced with main bars parallel to the span and distribution 
bars perpendicular to the span. For floors the distribution bars are generally placed in the second layer, 
so the main bars are positioned on the outside. Generally the diameter of rebars and distribution bars 
is respectively Ø8 and Ø6 at minimum. Nevertheless a drawing of a fusée vault shows reinforcement 
with rebars Ø6 and distribution bars Ø4  [Lan49]. Using rebars Ø6 and distribution bars Ø4 into the 
second layer, the thickness of a vault with one layer of fusées must be al least: 

t = 10 + 6 + 4 + 80 + 4 + 6 + 10 = 120 mm.  
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Using rebars Ø8 and distribution bars Ø6 will increase the depth, then the covering has to be 
increased to 15 mm and the depth thickness has to be about 140 mm. However if the distribution 
bars are placed into the first layer and the main bars positioned between the fusées the minimal depth 
is at minimum: 

t = 10 + 4 + 80 + 4 + 10 = 108 ≈ 110 mm.  

For roofs, composed of two layers of fusées reinforced with main bars between the fusées and 
distribution bars Ø4 in the first layer, the depth has to be minimal: 

t = 15 + 4 + 80 + 10 + 80 + 4 + 15 mm = 208 mm ≈ 210 mm. 

Again building the elements stepwise can reduce the depth of the vault. The distances of the lines 
through the centres of layers is equal to 78 mm, see figure 1.3. The coverage on the distribution bars 
laid in the first layer is 15 mm; the depth of a vault composed with two layers of fusées built stepwise 
has to be at least:

 t = 15 + 4 + 40 + 78 + 40 + 4 + 15 mm = 196 mm ≈ 200 mm.

§  1.2 Form and Curvature

Generally the curvature of the barrel vaults was following a segment of a circle, a parabola or a 
funicular curve. To show the differences the following table and graph show the coordinates for a 
vault with a ratio rise to span of f/a = ¼, with a = ½ l, for a parabola, a circle segment, a cosine and a 
catenary. 

parabola:   y/f = x2/a2                [1.1]

circle segment:   y/f = R [1 - (1-x2/R2)1/2 ]/f  with R = ½ (a2 + f2)/f   [1.2]

cosine:     y/f = 1 - cos (½ p x/a)             [1.3]

catenary:  y/f = [cosh (x/c)  – 1] c/f  with c = H/q       [1.4]

Expression [1.4] describes the catenary for the parameters c = H/q and the rise f. Te Boveldt [Bov94] 
gives an expression to approach the coefficient c for a ratio f/a:

2 a/c =           4 f/a                                [1.5]
                             (1+ ½ f2/a2)1/2

In practice most Fusée Céramique vaults were designed with a ratio rise to span of f/a = ¼ then c is 
equal to 2.031 a. Probably in the past most engineers, using a sliding rule, designed the catenary with 
c = 2 a. For c = 2 a and f/a  = ¼  the coordinates follows from [1.4]:  

y/f = 8 [cosh (½ x/a) – 1]/B                  [1.4’]

Substitute y = f and x = a to define the parameter B: B = 8 [cosh (½ ) – 1] = 1.021 
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FIGURE 1.5  Curvature following a parabola, circle segment, cosine and catenary

Table 1.1 gives the coordinates according to [1.1], [1.2], [1.3] and [1.4’].  Comparing the curvatures, 
see figure 1.5, shows that the differences between the catenary and parabola are minor.  For x/a = 0.7 
the difference between the catenary and parabola is D/f = 0.0052. For f=l/8 the ratio difference  to the 
span is equal to D/l = 0.00065. Generally the fusée roofs were dimensioned slender. For building Q in 
Woerden the ratio thickness to the span is 0.0066. for this vault the difference between the catenary 
and parabola is only 1/10 of the thickness.

x/a Parabola y/f Circle y/f Cosine y/f Catenary y/f Differences catenary 
and parabola D/f

0 0 0 0 0 0

0.1 0.01 0.00940 0.01231 0.00980 0.0002

0.2 0.04 0.03773 0.04894 0.03921 0.0008

0.3 0.09 0.08513 0.10899 0.08830 0.0017

0.4 0,16 0.15195 0.19098 0.15723 0.0028

0.5 0.25 0.23864 0.29289 0.24614 0.0039

0.6 0.36 0.34586 0.41222 0.35525 0.0048

0.7 0.49 0.47442 0.5460 0.48484 0.0052

0.8 0.64 0.62536 0.69098 0.63524 0.0048

0.9 0.81 0.80000 0.84357 0.80682 0.0032

1.0 1.0 1.0 1.0 1.00001 0

TABLE 1.1  Coordinates y/f for a parabola, circle segment, cosine and catenary 

The catenary can be approached with the following expression: 
y = (x2/c)/2 + (x4/c3)/24 + ...... (xm/cm-1)/(m!)              

For a vault with f/a = ¼ the parameter c is approached with to  c = 2 a. 
y/f = [(x2/a)/4 + (x4/a3)/192 + ......  ] a/f        

Substituting f/a = ¼ gives: y/f = (x/a)2 + (x/a)4/48 + ……..          [1.6]

Notice that if only one term is used and the following terms are neglected expression [1.6] is exactly 
equal to expression [1.1] describing a parabola. The second term is very small, in practice the third and 
following terms can be neglected. 
Due to an equally distributed load a parabolic vault is subjected to normal forces only and not loaded 
by bending, so a parabola is quite efficient for this loading. Actually the dead load acting on an arch 
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is equally distributed over the surface, due to this loading the structure is subjected to normal forces 
only in case the curvature follows a catenary. Thus structurally the catenary transfers the dead load 
very efficiently. Unfortunately the calculation of a vault following a catenary is significantly more 
complicated, especially in the pre-personal computer era. For low rise vaults the differences between 
the parabola and catenary are very small so in the past most engineers preferred the parabolic form, 
which can be calculated much more easily. 

FIGURE 1.6 Roof lights illuminated the inner space of building Q  
in Woerden and partitioned the vault. Photo taken by author

The barrel vaults could be supported by the foundations, walls or frames, composed of beams and 
columns. For vaults resting directly on the foundations the horizontal thrust could be resisted by the 
foundations or a reinforced concrete ground floor. For vaults resting on frames or walls the thrust was 
resisted with steel bars, generally with a centre-to-centre distance of about 1.0 m. The connection of 
the bars with the roof had to be detailed very carefully. Preferentially the tension rods were connected 
at the centre of the beams to avoid twisting moments [Toe53]. To illuminate the inner spaces, roof 
lights could be added, running parallel to the span of the roof, as shown in figure 1.6. 

§  1.3 Vernacular vaults composed of Guna-Tubes

In Auroville, India, small vaults, the Wardha roofs, are built with burnt clay pipes, the so called Guna-
Tubes.  The technique of construction is labour intensive. The following description summarizes the 
text of Scienceandsociety [13].  The tapered conical clay pipes are made by local craftsmen and burnt 
in a small oven. Firstly a skeleton of steel pipes is erected on top of the bearing walls. The Guna-Tubes 
are laid on the formwork; the conical top is pushed in the open end of the neighbouring element. The 
arches are laid in reverse direction to minimize the gaps. To joint the elements and to create watertight 
roof cement plaster is constructed on the top of the vault. The inner side is not finished. The mould 
of the vault is composed of the Guna Tubes supported by the steel pipes. The mortar is resting on the 
Guna-Tubes only. The clay pipes, supported by the frame of steel bars, are stiff and strong enough to 
support the top layer till the concrete is set. The frame of steel pipes is removed when the top layer is 
set, often within 12 hours. Probably the roof sinks slightly when the frame of steel pipes is removed 
to enable the elements to joint firmly into the sockets.  The vaults are labour intensive, but the cost of 
materials and mould are small. The vaults are not reinforced, nevertheless these structures are said to 
be safe even in earthquake prone areas.  
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§  1.4 The bovedas of Eladio Diëste

The buildings, which were constructed with the Fusée Céramique system, resemble the buildings, 
the so called bovedas, made by Eladio Diëste (1917-2000), who built many remarkable shells, 
constructed with bricks, mostly in Uruguay and Spain.Diëste preferred brick above concrete for the 
following reasons [Die87]:

 – Elevated Mechanical resistance; between 50 and 100 MPa and up to 150 MPa;

 – Lightness unachievable with reinforced concrete;

 – Less elasticity than reinforced concrete, which gives the structure greater adaptability to deformations.

 – Good aging with minimal upkeep;

 – Repairs and changes less noticeable;

 – Good thermal insulation, incremented even more by introducing holes;

 – Better acoustic behaviour;

 – “Natural” regulation of environmental humidity;

 – Less heat radiation;

 – Incomparable lower price per cubic meter;

 – Saving costs.

wave length: 5.0 or 6.0 m

height ≈ 2.0 m

t=130 mm

generator

directive

FIGURE 1.7 Section of a discontinuous ‘Gausa’ vault. The 
generator curve follows a sine. The directive perpendicular to 
the section is a catenary.

FIGURE 1.8 Section of a continue ‘Gausa’ vault. The generator 
curve follows a sine. The directive parallel o the span is a 
catenary.

Diëste constructed barrel vaults (the so called horizontal silos), barrel shells and the ‘Gausa’ vaults, 
which were undulated longitudinally, to increase the stiffness and prevent buckling. These double 
curved vaults are described using a generator, which is moved along a line, the directive. For a barrel 
vault the generator is a straight line, which is moved along a curved line, mostly a catenary, a parabola 
or a part of a circle. The generator of a ‘Gausa’ vault is a curve, mostly a sine, with a wavelength of 5.0 
to 6.0 m and a rise of about 2.0 m, see figure 1.7. The directive is curved and follows mostly a catenary, 
parabola or a segment of a cycle, see figure 1.8.

The span of the directive of the ‘Gausa’ vaults varies from 20 m to 50 m, the width varies from 4.0 to 6.0 
m and the thickness varies from 120 mm to 150 mm. The shells were composed of massive or hollow core 
bricks, 250 × 250 × 73 mm, and a top layer of 30 – 70 mm reinforced with a mesh Ø4.2 –150 mm. The 
voids were reinforced with bars Ø6-190 mm in both directions [Ver07]. Often the top layer was reinforced 
with steel oblong rings, which were post-tensioned by pulling two opposite midpoints to each other. 
For the ‘Gausa’ vaults Diëste preferred the catenary so only the permanent surface load compresses the 
structure.  The design of a vault following a catenary is complex;. Due to the varying height of the generator 
curve, the rise of the funicular curves of the directives varies. Further the rise of a funicular curve depends 
on the load and thrust, so the description of the roof is difficult. To describe the funicular curvatures of the 
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spans, tables were made with a computer at the faculty of engineering of the Universidad de Montevideo 
in 1967 [Die87].

Construction

The construction was as follows, first the formwork was erected, the bricks were placed on the mould, and 
the reinforcement was placed in the voids as well as in the top layer above the bricks. The voids were filled 
with a mortar of cement and sand. Next the top layer, resting on the bricks, was poured. The shells were 
finished with white paint, to waterproof the roof and reflect the sun. The moulds, needed for the ‘Gausa’ 
vaults are an expensive investment, but repeated use decreases the lifecycle costs. The structure of the 
moulds is iron covered with wood. Mechanical jacks are used to raise and lower them smoothly [Die87]. 
The formwork was replaced rather quickly. Diëste wrote: “about three hours of hardening time for mortar 
is necessary in 15 m vaults and 14 hours for 50 m vaults” [Die87]. This short cycle time could be realized 
because the mortar in the voids was only 20 mm thick, the quality of the mortar was good and the water, 
added to the mortar, was partly absorbed by the bricks [Ver07]. For petrol stations, market halls and bus 
stops Diëste designed barrel shells with huge cantilevers. Due to the cantilevers the vaults are subjected 
to bending causing tensile stresses in the top layer. To resist the tensile stresses the vaults were post-
tensioned with cables laid in the top layer of the vault. The cables were tensioned by contracting the loop, 
which caused compressive stresses to compensate the tensile bending stresses. For the omnibus-station 
“de Salto” Diëste designed barrel shells with a cantilever of 13 m, supported by  rows of columns with a 
centre-to-centre distance of of 5.75 m. For omnibus-station Turlit the cantilever was increased to 14 m, 
the five barrel shells are supported by rows of columns with a centre-to-centre distance of 5.75 m.

§  1.5 Comparing the bovedas and the Fusée Céramique vaults

Comparing fusée roofs and bovedas we can notice that with both techniques costs were reduced by 
using ceramic elements to save on cement and reinforcement. Also the technique of construction is 
similar; elements are joined by the hardening of the mixture. Generally both systems were reinforced 
with steel rebars. 
However the elements of both systems are fundamentally different: the fusées are cylindrical 
elements, embedded in concrete and jointed by placing the conical top into the rear of the next 
element; for the bovedas the bricks were jointed by the mortar poured in the voids between the bricks. 
The Fusée Céramique cylindrical vaults are form-active structural systems composed of reinforced 
concrete and ceramic elements. The bovedas are surface-active structural systems. The bricks are 
connected through the reinforced voids and the top layer, which could be post tensioned too, for 
example to realize a cantilever. The voids filled with mortar form a grid, which can be described as a 
crossbeam system of reinforced concrete bars. 
Both systems offer the designer a large free span. The span of the single curved Fusée Céramique 
vaults was up to 24 m, the centre-to-centre distance of the columns supporting the edge beams 
was about 5 to 6 m and the thickness varied from 110 to 290 mm. For example the roof of the N.V. 
Twentsche Stoombleekerij in Goor was composed of three fusée vaults with a span of 16.3 m each and 
a length of about 25 m [Toe53]. 
The span of the double curved bovedas varies from 20 to 50 m; the wavelength of the undulation 
needed to stiffen the roof and prevent buckling varies from 4.0 to 6.0 m, the thickness varied from 
120 to 150 mm. For example Diëste designed for the Agro-industrias Massaro barrel shells with a 

TOC



 29  The Fusée Céramique System, history, construction, dimensions and context

span of 16.4 m, supported by columns with centre-to-centre distances varying from 30 to 35 m and a 
cantilever of 14 m [Die87]. 
Structurally due to the undulation the forms of the double curved surfaces of the bovedas are stiffer 
and stronger than the single curved vaults constructed with fusées, consequently the span of the 
bovedas could be larger and the thickness lower. Actually the use of the fusées was not restricted to 
barrel vaults and could be used for double curved surfaces too, several domes were built with fusées, 
but generally the designers preferred a single curved vault to simplify the formwork. Thanks to the 
undulated form the roofs made by Diëste are much stiffer than the single curved vaults. The barrel 
vaults made in the Netherlands with the Fusée Céramique system are very slender, for some of these 
roofs the resistance against buckling was sometimes poor, this will be demonstrated in the following 
chapters. 
Due to asymmetric loads form-active structure systems are subjected to bending moments. Barrel 
vaults of masonry of concrete will crack when the bending stresses are larger than the normal 
compressive stresses. The fusée vaults could be reinforced on both sides above and below, which was 
effective for the asymmetrical live loads. Diëste designed the bovedas mostly with a catenary, so these 
vaults were compressed by the dead load; furthermore he stiffened the vaults with the longitudinal 
undulation to prevent buckling. To resist bending due to variable loads steel bars were positioned in 
the voids. For the cantilevers cables were laid in the top layer to post-tension the vaults. 

§  1.6 Conclusions

Generally the curvature of a low rise Fusée Céramique vault was following a parabola or catenary, the 
ratio of the rise to span was 1/8 and the thickness was varying from 100 mm to130 mm for vaults 
with one layer of fusées and varying from 180 mm to 210 mm for vaults with two layers of fusées.  
Comparing a parabola, cosine, circle segment and catenary shows that for these low rise vaults the 
differences between these curves are very small. The following chapters will analyse the effect of the 
curvature for the load transfer.
The fusée roofs were made in the same era as the shells designed by Diëste. The systems were 
developed simultaneously in France and Uruguay. Nevertheless in spite of the important differences 
both systems outwardly resemble each other. Both systems were used regionally. This induces the 
question of why these systems were not applied worldwide. The buildings constructed by Diëste were 
described in 1987 [Die87]. Possibly the technique was applied outside Uruguay too if the technique 
was described earlier. In the Netherlands just after WWII ceramic systems were not very rare, many 
systems were available and used, mostly for floors in residential apartment houses. For floors the 
Fusée Céramique system was not competitive to systems using beams and infill that did not need 
expensive formwork, but for curved roofs this system was competitive in the fifties and sixties of the 
XXth century for barrel vaults and domes with a span from 10 m up to 24 m. However in India the Guna 
Tube roofs are still made, apparently hybrid systems of ceramic tubes and concrete finishing are still 
competitive if the cost of labour is low.  
 
The following chapters describe the structural aspects. Chapter 2 reconstructs the design of a vault as 
described in the past. Chapter 3 analyses the second order and critical buckling load for arches and 
vaults.  Chapter 4 studies the time dependant effects of vaults composed of fusées, reinforcement 
and steel. The structural design of a vault is analysed in chapter 5. Chapter 6 describes methods to 
strengthen parabolic  vaults. Chapter 7 shows for these vaults the effect of the strengthening. Chapter 
8 discusses the sustainability and construction of infill elements. Chapter 9 analyses the structural 
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design of prefabricated circular vaults strengthened with slender steel elements. Chapter 10 describes 
the tests to validate the structural concepts. The conclusions and recommendations are given in 
chapter 11. 
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2 Analysis of the design of a Fusée 
Céramique vault in the past

In this chapter the methods of structural design for  fusée structures are discussed. To introduce the 
fusée system articles were written in technical journals and books.  This chapter follows the design 
of a roof as described by Van Eck and Bish in the journal Cement [Eck54]. The description of the 
calculations was quite condensed. Some information, probably assumed to be clearly evident to the 
readers half a century ago, was taken as granted and not explained but for modern readers many of the 
assumptions used are not as clearly evident. To learn from the past it is necessary to understand how 
the area, stiffness and stresses were calculated. To understand the methodology the details missing 
in the paper have been researched and added to the description. Originally the forces, stresses and 
dimensions were expressed in kg and cm. To accommodate the reader this notation is transferred into 
the modern SI-system.  

§  2.1 Structural design and validation of a vault in 1955

The design of a parabolic vault, described by Van Eck and Bish in Cement [Eck54], is used to show 
the theories and concepts current fifty years ago. The calculation is reconstructed step-by-step 
conforming to the theories practiced during the nineteen fifties. According to the given calculation the 
reconstruction has the following stages:

 – Defining the geometry and materials;

 – Analysis of the forces and moments;

 – Analysis of the second order effects and buckling force 

 – Analysis of the stresses.

φ    R

 a

qe
qg

f

FIGURE 2.1 Scheme of the vault subjected to an equally  
distributed permanent and asymmetrical live load.

Loads

The vault has a span of l = 24 m, half of the span a = ½ × 24 = 12 m and a rise of f = 3.0 m. The 
thickness of the vault is equal to 200 mm. The structure has to resist a live load pe =1.0 kN/m2 and  a 
permanent load pg =3.30 kN/m2. 

TOC



 32 Composite hollow core vaults

The permanent load is caused by the dead weight, finishing and ceiling:
 Dead weight:  2.90 kN/m2

 Finishing:   0.15 kN/m2

 Ceiling:   0.25 kN/m2

 Permanent load:  3.30 kN/m2 

Thrust

According to the Theories of Mechanics the thrust is calculated with the following expression: 
H = 1/8 q l2/f                     [2.1]

For a permanent and live load q = 4.3 kN/m, f = 3.0 m and l = 24 m the thrust is equal to: 
H = 1/8 ×4.3 × 242/3.0 = 103.2 kN. 

Section

In a section with a width of 1.0 m eleven fusées were placed with a spacing of 10 mm. Firstly a layer of 
liquid concrete with a thickness of about 25 mm was poured, next the fusées were pushed about 10 
mm into the concrete. The coverage on the fusées was approximately 15 mm. The centre-to-centre 
distance between the staggered elements is with a spacing of 10 mm equal to 80 + 10  = 90 mm.  If 
the fusées were built stepwise then the centre-to-centre distance of the two layers had to be at least  
½ × 90 × √3= 78 mm, see figure 1.2. Thus the thickness of the vault with fusées built step wise had to 
be at least: 

t > 2 × (15 + ½ × 80) + 78 = 188 mm ≈ 190 mm. 

Otherwise with two layers of fusées, positioned above each other, the thickness of the vault has to be 
at least: 

t ≥ 15 + 80 + 10 + 80 + 15 = 200 mm.

For the described vault a thickness of 200 mm was chosen. The fusées can be built in a staggered 
manner as well as with the centres positioned in a vertical line. 
The vault was reinforced with bars Ø8 – 180 mm in the top and bottom. In the past the Dutch code, 
GBV 1950 [C2], requires for floors with a thickness of 120 mm or more a cover on the reinforcement 
of 15 mm minimal. Van Eck and Bish did not mention any distribution bars; probably this vault was 
not reinforced with distribution bars. In practice the Fusée Céramique vaults were often partitioned 
by dilatations with a centre-to-centre distance of about 5.0 m. Vaults, spanning in one way, are 
mainly subjected to a normal load and a relatively small bending moments, acting parallel to the 
span, consequently the bending stresses acting perpendicular to the span are very small. The Fusée 
Céramique vaults can be compared with prefabricated pre-tensioned hollow core elements, which 
are frequently used in the Netherlands. These elements are also not reinforced with distribution bars. 
According to the GBV 1950 the cover on the main bars Ø8 had to be 15 mm, probably the main bars 
are positioned between the fusées.  
For the concrete, steel and fusées the area and second moment of the area is calculated and shown 
in the following tables for a part of the roof with a width of 1.0 m. The vault is assumed to be not 
reinforced with distribution bars. The main bars are laid between the fusées with a covering of 15 mm. 
The assumption is made that for the calculation of Ac and Ic  the reduction due to the area of the rebars 
was neglected.
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Area [mm2]

Fusées: Af = 22 ×¼ p× (802-602) = 48.4 × 103 mm2

Concrete: Ac = 200 × 1000 -  22 ×¼ p × 802  = 89.4 × 103 mm2

Rebars upper side: As =  ¼ p × 82 × 1000/180 = 279 mm2

Rebars, lower side: As =  ¼ p × 82 × 1000/180 = 279 mm2

TABLE 2.1 Area of the fusées, concrete and steel  for a section of the vault with b = 1.0 m.

Second moment of the area

Concrete: Ic = 1000×2003/12 - 22×¼ p 802×452 – 22×p ×804/64   = 399 × 106    mm4

Fusées: If = 22 × p ×(804- 604)/64+ 22× ¼ p × (802- 602)×452 = 128  × 106   mm4 

Steel: Is = 2 × 279 × (½  × 200 – 15 - ½ × 8)2 =      3.7 × 106 mm4

TABLE 2.2  Second moment of the area of the fusées, concrete and steel  for a section of the vault with b = 1.0 m.

Stresses and stiffness

The authors asserted that due to the load the vault is subjected to a normal stress of sc = 0.77 MPa, 
but did not describe the calculation of the stresses. In the past the assumption was made that the 
fusées and concrete were well connected. The demolition of building Q in Woerden showed that 
nearly all fusées were well bond to the concrete, only one element survived.   According to the Theory 
of Elasticity the stresses acting in the sections of the structure composed of concrete, fusées and 
reinforcement follows from:

si = N Ei with:  EA = Ec Ac + Ef Af  + Es As            [2.2]    
         EA

To calculate the stress we have to to define Young’s modulus of the section of the steel, fusées and 
concrete. The Young’s modulus of steel is Es = 2.1 × 105 MPa. The stiffness of a concrete structure 
depends on many variables such as compressive strength, shrinkage, creep and cracks. In the fifties 
generally the stresses in concrete and reinforcement were calculated with a ratio of the Young’s 
modulus for steel and concrete of ns = Es/Ec. In the article the stiffness of the fusées was not specified. 
According to experiments of Ros [Lan49] the stiffness of a fusée element is equal to: Ef = 27500 MPa. 
Nevertheless the deformations of the joints will affect the stiffness of the string, so for the calculations 
the stiffness of a string of fusées is smaller than the stiffness of a single element. Probably the 
designers used for calculations a reduced value: Ef < 27500 MPa. For fusee roofs in Dongen Bish used 
a stiffness of the fusées and concrete of respectively equal to Ef = 17000 MPa and Ec = 21000 MPa, 
thus ns = 10 and nf = 0.81. According to the Theory of Elasticity the stiffness can be defined with:  

EI = Ec Ic + Ef If  + Es Is    →        EI = Ec (Ic  + nf If  + ns Is )       [2.3]

Substituting the values for  Ec, Ic , If and Is into [2.3] gives for the vault that is not reinforced with 
distribution bars:

EI = 2.1 × 104 × (399 × 106 + 0.81 × 128  × 106 + 10 × 3.7 × 106) = 11.3 × 1012  Nmm2 

The stiffness given in the paper [Eck54] is equal to EI = 12 × 1012  Nmm2, the difference is about 
6%. In the past calculations were made with a sliderule, and thus were less accurate than present 
calculations made with calculators or computers. Due to the truncations the differences between the 
former calculations and the calculations of the present are unavoidable. Further it is possible that the 
calculation of the second moment of the area of concrete  Ic and fusées If, was simplified by neglecting 
the effect of respectively  n p D4/64 and  n p (D4- d4)/64, see table 2.3.
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Second moment of the area

Concrete: Ic = 1000 × 2003/12 - 22 × ¼ p 802 × 452   = 443 × 106   mm4

Fusées: If = 22 × ¼ p (802- 602) × 452   = 98  × 106  mm4

Steel: Is = 2 × 279 × (½  × 200 – 15 - ½ × 8)2 = 3.7 × 106 mm4

TABLE 2.3  Simplified calculation of the second moment of the area of the fusées, concrete and steel, neglecting n p D4/64 for Ic and 
n p (D4- d4)/64 for If

Then the stiffness is equal to:
EI = 2.1 × 104 × (443 × 106 +  0.81 ×  98  × 106 +10 × 3.7 × 106) = 11.7 × 1012 Nmm2 

EI ≈ 12 × 1012 Nmm2

Calculation of the normal stresses. 

According to the Theory of Elasticity the stress in a section, composed of fusées, concrete and steel, 
subjected to a normal force N is equal to:

sx   =               N Ex                                                          [2.4]
            Ec Ac + Ef Af  + Es As        

With sx is the stress in either the concrete, fusées or steel. Substituting nf = Ef/Ec and ns = Es/Ec into 
this expression gives the following formulae to calculate the stresses in the concrete, fusées and 
reinforcement:

sc   =               N                  ;       sf  =              nf N                ;  ss  =             ns N                
          Ac  + nf Af  + ns As               Ac  + nf Af  + ns As                         Ac  + nf Af  + ns As

With:  
Ec = 2.1 × 104  MPa; Ef = 1.7 ×105 MPa; nf = Ef /Ec = 0.81; Es = 2.1 ×105 MPa; ns = Es/Ec = 10;  Ac = 89.4 × 
103 mm2; Af = 48.4 × 103 mm2; As = 2 × 279 mm2.
Substituting these features into the formulae results for a force N in:

sc  =                                  N                                                                =             N           
          89.4 × 103 + 0.81 × 48.4 × 103 + 10 × 2 × 279         134184

sf   =      0.81 N     and  ss  =     10 N     
              134184                         134184

For the full load the thrust force is equal to H = 103.2 kN. The stress in the concrete is at the top of the 
vault, with N =H, equal to: 

sc  =  103200     = 0.77 MPa
          134184

This stress is equal to the stress given in the article. Probably this reconstruction describes the method 
used by the authors and the assumptions sufficiently accurate. Evidently the stress will increase to the 
supports .
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Buckling

The critical buckling load was calculated next using the following equation:
qcr =  EI [p2/f2 - 1]                    [2.5]
                   R3 

This formula is described by Timoshenko  [Tim52] and was defined for a circular arch for a radial 
load. For a shallow arch the curvature of a parabola approaches the curvature of a circle segment 
quite well, so to calculate the critical buckling force the authors approach the parabola as a segment 
of a circle with a radius R. For an arch, subjected to a radial load, the normal force is equal to N = q R. 
Thus the critical buckling force fis or an arch, subjected to an equal distributed radial load: Ncr = qcr R.   
Substituting qcr [2.5] leads to: 

Ncr = EI [p2/f2  - 1]                    [2.6]
                    R2  

For a circle segment the radius is constant; for a parabola the radius increases from the top to the 
supports. For the vault with a span l = 2 a, the radius at the supports was calculated with:

R =  a/sin f                                 [2.7]

For the parabolic vault the angle f is equal to 2 b; b is the angle between the diagonal, running from 
the crown to the support and the horizontal line through the supports. This angle was calculated 
with:  

tan b = f/a                                [2.8]

With f = 3.0 m, l = 24 m and a = 24/2 = 12 m the angle b follows from: tan b = f/a = 3.0/12 = 0.25; 
thus  b = 0.245 radians, f = 2 b = 0.49 radians and sin f = 0.47. 

The radius of the circle segment is equal to:  R = a/sin f = 12/0.47 = 25.6 m.

The stiffness of the vault was given: EI  =  12 × 1012 Nmm2.  Substituting R, EI and f into the expression 
[2.6] gives the following buckling load:

Ncr = 12 × 1012 × [p2/0.492 - 1]   = 734 × 103 N
                             256002 

Actually  the critical buckling load can be calculated more precisely as follows. The radius of a parabola 
varies, for a parabola the radius is equal to:

Rf =  a2 (1+ 4 f2/a2)1/2                    [2.9]
                     2 f   

Substituting the rise f and half of the span a = ½ × 24 = 12 m gives:
Rf =  122 (1+ 4 × 32/122)0.5    = 26.83 m
                     2 × 3    

For the parabolic vault the angle f between the tangent and the horizontal line through the supports 
can be calculated accurately with: 

tan f = 2 f/a                    [2.10]
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With f = 3.0 m, l = 24 m and a = 12 m the angle f follows from:   tan f = 2 f/a = 2 × 3.0/12  = 0.5 
Thus  f = 0.464 radians.  
The critical buckling force Ncr is equal to:

Ncr = EI [p2/f2 - 1]  = 12 × 1012  × [p2/0.4642 - 1] = 747.5 × 103 N
                    R2                               (26.83 × 103)2

This buckling force is slightly larger than the buckling force calculated for a circle segment. Next the 
ratio n was calculated by dividing the critical load Ncr by the normal force N:  

ncr = Ncr/N                     [2.11]

The ratio ncr  given by the authors was equal to: ncr = 6.8. Unfortunately the authors did not describe 
the magnitude of the buckling force and the calculation of the normal forces, to check the calculation 
we have to define the normal forces firstly.

Full load, normal force and buckling ratio

The Forces acting on the vault were calculated with the Theory of Elasticity. The vault was schematised 
as an arch supported with two simple supports.  The stiffness of the supports was neglected; actually 
the ties will lengthen so the supports will move sidewards. The effect of the assumptions made will be 
analysed and discussed later.

The vault is subjected to the dead load qg = 3.3 kN/m2 and a live load qe = 1.0 kN/m2 . Due to the 
symmetrical load q = 3.3 + 1.0 = 4.3 kN/m, the vault is subjected to compression.
Vertical reaction force acting at the support:  V = ½ q l = ½ × 4.3 × 24 = 51.6 kN

Horizontal reaction force acting at the support: H = q l2  =  4.3 × 242 = 103.2 kN                 
                                                        8 f            8 × 3
The normal force acting at the supports is equal to the sum of the vectors V and H:  

N = (H2 + V2)0.5 = 115.4 kN

For x = ½ a = 6.0 the normal force follows from: 
N = [N2 + (q x)2]0.5 = [103.22 + (4.3×6)2]0.5 = 106.4 kN 

For the full load the normal force acting just above the support is equal to N = 115.4 kN. The buckling 
load calculated in the article is equal to Ncr = 734 kN, so for the full load the buckling ratio is equal to:

ncr = Ncr/N = 734/115.4 = 6.4 

This value is smaller than the value given by the authors: ncr = 6.8. Possibly the buckling ratio was 
calculated for the average value of normal force acting halfway the support and top of the vault. The 
normal force acting halfway the top at x = 6.0 m, is equal to N = 106.4 kN. Then the buckling ratio is 
equal to:n = Ncr/N = 734/106.4 = 6.9. Van Eck and Bish asserted that for the vault the buckling load 
could be determined with the  expression of Euler:

Ncr = p2 EI                    [2.12]
            lc

2

For the vault the buckling length lc is was assumed to be equal to the length of the arch between the 
support and the top. Further the authors wrote that for the buckling ratio then the maximum normal 
force N had be used acting just above the support. Actually nowadays for arches the buckling length 
lc is assumed to be equal to y s, with s is the length between the top and support and y > 1.0. For low 
rise arches y is only slightly larger than 1.0. This will be shown in chapter 3. Van Eck and Bish give for 
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the buckling  ratio ncr, calculated with expression [2.11]: ncr = Ncr/N  = 6.7. Probably this value of n was 
calculated with a length of a circular segment s = R f. Substituting f = 0.49 radians and R = 25.6 m 
gives:

  s = R f = 25.6 × 0.49 = 12.5 m:

Ncr   = p2 EI    =  p2 × 12 × 1012    = 758 × 103 N ;       ncr = Ncr/N  = 758/115.4  = 6.6
                lc

2           (12.5 × 103)2

This value is slightly smaller than the value given by the authors. Probably this difference is only 
numerical and caused by truncation inherent by the use of a sliding ruler. Actually, as showed in 
paragraph 6, an accurate expression to define the length of the parabolic vault is:

s = f (1+ ¼ a2/f2)1/2  + ¼ (a2/f) × ln{2 f/a + (4 f2/a2 + 1)1/2 }             [2.13]

With a = ½ l = 12 m and f = 3.0 m:
s = 3.0 × (1+¼×122 /3.02)1/2  + ¼×(12.02/3.0) × ln{2 ×0.25 + (4 × 0.252+1)1/2 } = 12.48 m

The difference is very small, for a shallow vault the length of the parabola can be calculated as for a 
circular segment.

Asymmetric load, normal forces, second order and stresses 

An asymmetric load, such as wind  , subjects the vault to bending. The vault is assumed to be 
subjected to a live load of  qe = 1.0 kN/m2 acting asymmetrically at one side. The permanent load is 
equal to qg = 3.3 kN/m2. The vault is subjected to a minimum load qg =  3.3 kN/m2  at one side and 
a maximum load equal to qg +qe = 4.3 kN/m2 at the other side. The expressions for an asymmetrical 
load are given in chapter 6.
The vertical and horizontal reaction force acting on the supports are respectively:

VA = ½ qg × l + ¼ qe × ½ l = ½ × 3.3 × 24 + ¼ × 1.0 × ½ × 24   = 42.6 kN

VB = ½ qg × l + ¾ qe × ½ l = ½ × 3.3 × 24 + ¾ × 1.0 × ½ × 24   = 48.6 kN

H = qg × l2 + qe × l2  = 3.3 × 242 + 1.0 × 242 =   91.2 kN
        8 ×  f      16 × f          8 × 3             16 × 3

The resulting normal forces acting at the supports are respectively:
NA = (H2 + V2)0.5 = (91.22 + 42.62)0.5 = 100.7  kN  

NB = (H2 + V2)0.5 = (91.22 + 48.62)0.5 = 103.3  kN

The bending moment is equal to: 
Mo = qe × l2/64  =  1.0 × 242 /64=  9.0 kN/m                                                       

For x = ½ a = 6.0 the normal force follows from:  
N = [H2 + (VA - q×x)2]0.5 =  [91.22 + (42.6 - 4.3×6)2]0.5 = 92.7 kN 

The bending moments are increased by the second order effect due to the normal force and 
deformation, Van Eck and Bish give the following expression to include the second order effect:

M = Mo + DM = Mo +  N D ncr                    [2.14]
                                            ncr - 1 
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To define the deformation D, the curve of the deformation was represented as a sinusoidal curve and 
the deformation was calculated with:

D =  Mo l2                             [2.15]  
      4 EI p2       

The increase in the bending moment is equal to:    DM =  N D ncr  =  1.14 kNm           
                                                   ncr - 1
The bending moment including second order is equal to:   M = 9.0 + 1.14 = 10.14 kNm. 

According to the Theory of Elasticity the normal stress in the concrete is calculated with expression 
[2.4]: 

sc   =                  N Ec                                        .           
              Ec (Ac  + nf Af  + ns As)

Substituting  Ec = 2.1 × 104 MPa; Ef = 1.7 ×105 MPa; ns = Ef /Ec = 0.81; Es = 2.1 ×105 MPa; ns = Es /Ec = 
10,  Ac = 89.4 × 103 mm2,  Af = 48.4 × 103 mm2 , As = 2 × 279 mm2:

sc   =                                   N                                                                =       N    . 
          89.4 × 103 + 0.81 × 48.4 × 103 + 10 × 2 × 279      134184

For the asymmetrical load the normal force acting in the section halfway the top for x = 6.0 m, is equal 
to N = 92.7 kN:  sc  =  92700 /134184 = 0.69 MPa

The bending stress is calculated with:  sc = M z Ec/EI                       [2.16]

Where M = 10.14 × 106 Nmm; z = ½ × 200 mm; Ec = 21 × 103 MPa and EI = 12 × 1012  Nmm2 . The 
bending stress is equal to:

sc = 10.14 × 106 × 100 × 21 × 103   =1.78 MPa
                                 12 × 1012 

The resulting stresses due to the normal force and bending are equal to:    s = 0.69  ± 1.78 MPa
The maximum compressive stress is equal to:  s = -2.47  MPa
The maximum tensile stress is equal to:   s = +1.09 MPa

These stresses match well with the stresses given in the article: s = -2.47 and +1.09 MPa. 

The stresses are pretty low. To resist the tensile stresses the vault has to be reinforced with 
reinforcement steel bars. The calculation of the reinforcement was not described.

§  2.2 Ultimate stresses 

The maximum stresses calculated in the article are very low and well below the ultimate stresses given 
in the codes of that time. The authors did not explain why the maximum in service stresses had to be 
pretty small, nevertheless it was good practice to design the structure in this way and considerably 
limit the stresses. Firstly the ultimate stresses given in the past are described. Langejan gives the 
following allowable stresses [Lan49] as shown in table 2.4.
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Maximal allowable stress 
according to Langejan

Maximal allowable stress 
GBV1955

concrete compressive bending  stress fcu =           5.0 MPa       8.0  MPa

concrete compressive normal stress fcu =           5.0 MPa       6.0  MPa

concrete shear stress tu  =          0.4 MPa       0.5  MPa

steel QR24: compressive and tensile stress fsu = 140     MPa 140      MPa

TABLE 2.4  Allowable stresses  for concrete and steel accordng to Langejan [Lan49]  and the GBV1950 [C1]

Generally engineers have to design structures according to the building codes. Table 2.4 shows the 
ultimate stresses according to the GBV 1950 [C1]. For the fusées the strength was not mentioned 
in the GBV 1950 [C1]. Langejan asserted that experiments showed for the fusées an ultimate 
compressive stress equal to ffu = 100  MPa and a maximum bending stress equal to ffu = 13 MPa  
[Lan49]. For the design the ultimate stress is inevitably much smaller than the ultimate stress found 
experimentally. Possibly the designers limited for composite structures the ultimate compressive 
stress of the fusées to a maximum equal to the allowable stress of concrete, then the ultimate stress 
for the fusées is equal to ffu = 6 MPa. Nowadays the maximum values described in table 2.4  seem 
pretty low. At the present an ultimate value is defined as a minimal value, defined by subtracting the 
statistic uncertainly from the average value, so the ultimate stress fu is equal to: 

fu = xn - c s                       [2.17]

Where xn  is the average value, c is a parameter defined with the Theory of Probability and s is the 
standard deviation of the population wth n elements. 
Further the design loads are defined by multiplying the representative loads with a load factor. In 
the past the stresses due to the representative loads were compared with an allowable stress. The 
allowable stress is calculated by diving an average value by a safety factor. In the present the classes of 
concrete are based on the compressive strength found by testing cylinders or cubes. Since 1974 [C9] 
minimal twelve cubes with an edge length of 150 mm were tested according to the code demanded in 
the Netherlands. Next the characteristic compressive strength is found with:    fck,cube = x12 – c s  
According to the code of 1950 the compressive strength of concrete was defined by compressing 
testing at least three cubes with the average compressive strength at least 25 MPa. The edge length 
of the cubes had to be 200 mm minimal. Between the load and the cube a thin plate of cardboard 
had to be laid to distribute the load over the area. Later the code of 1962, VBC 1962 [C2], specified 
three classification K160, K225 and K 300. The strength of concrete specified in GBV 1950 [C1] can 
be classified as K250 to conform the classification of the VBC 1962 [C2]. The classification of the code 
of 1962 was different from the classification of the codes of 1974/1984 [C9], but the classification of 
1974/1984 does not differ much from the classification required in the Euro code [C6]. 
According to Van Boom [Boo77] the strength of cubes with a side of 150 mm without using a patch 
of cardboard is 16% larger than cubes with sides 200 mm. For the classes K160, K225 and K300, 
conform the code of 1962, Van Boom gives maximum values for the deviation equal to respectively s 
= 4.6 MPa, 6.1 MPa and 7.6 MPa according to the codes of 1974/1984 [C9]. These maximum values 
are based on a large number of experiments. For a large population the factor c is for a change of 5%  
equal to 1.64. Consequently the compressive strength can be calculated with:

fck,cube = 1.16 xn=∞ – 1.64  s                    [2.17’]

Table 2.5 shows the conversion of the classification of the VBC 1962 into the classification conform 
the Euro code 2 based on the strength of cubes. 
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Class average value 
xmean   [MPa]

Deviation s 
[MPa]

Compressive strength of cubes fck,cube 
[MPa]

Indication of the class conform the 
Eurocode 

K160 16 4.6 1.16 × 16     – 1.64 × 4.6 = 11 C9/11

K225 22.5 6.1 1.16 × 22.5 – 1.64 × 6.1 = 16.1 C12/15

K300 30 7.6 1.16 × 30     – 1.64 × 7.6 = 22.3 C18/22

TABLE 2.5 Classes conform VBC 1962 [C2] and the Euro code [C6]

For K250 (according to GBV 1950 [C3]) the deviation s will be about 6.6 MPa, then the compressive 
characteristic strength of the cubes is equal to:

fck,cube = 1.16 x12 -  1.64  s = 1.16 × 25 – 1.64 × 6.6 = 18.1 MPa

Thus the class K250 is approximately equal to the class given in the Eurocode [C9] C15/18. In 1950 
for structures of concrete the safety factor concerning the loads was 1.8 and the factor concerning the 
deficiencies and variety of the strength of the material was 1.15 so the allowable stress had to be:

fcu =  18/(1.8 × 1.15) = 8.7 MPa

So actually the ultimate compressive strength  for bending, fcu = 8 MPa, as described in GBV 1950, was 
quite reasonable compared with the maximum stress defined in the codes nowadays.

§  2.3 The second order and slenderness according to the GBV 1950

For columns, subjected to normal forces, the stresses are increased due to second order effects. For 
these structures, subjected to a compressive normal force N, the buckling load Ncr must be significantly 
larger than the normal force N. According to Euler the buckling force is calculated with [2.12]: 

Ncr =  p2 EI/lc 
2                    [2.12]

 The ratio ncr of the buckling force to the normal force is defined with [2.11]:  ncr  = Ncr/N. The stress 
in the section of a structural element due to a normal force must be smaller than the ultimate 
stress. According to the code for structures of reinforced concrete of 1950 [C1], the stress due to a 
compressive force, is calculated by:

s = N/A ≤ f’c/g                    [2.18]

So for a structure, subjected to a normal compressive force N, the stress is multiplied with a safety 
factor  g to include the effect of the second order. In the code for structures of reinforced concrete 
of 1950  the safety factor g was given in the following table with respect to the slenderness l. The 
slenderness l is defined with: 

l = lc / i                      [2.19]

The factor i is the radius of gyration, this factor is equal to:   
i = (I/A)½                         [2.20]

A is the area of the section and I is the second moment of area. The slenderness can be calculated also 
by substituting the radius of gyration into the expression for the slenderness:  

l = lc  (A/I)1/2                       [2.20’]

The GBV 1950 [C1] prescribed for structures subjected to a normal load the safety factor g with respect 
to a slenderness varying from 60 up to 140. 
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Slenderness l Safety factor g 

   60 1.0

   80 1.5

100 2.0

120 2.5

140 3.0

TABLE 2.6 The safety factor g with respect to the slenderness l according to the GBV 1950 [C1].

The reciprocal 1/g shows the reduction of the normal stress with respect to the slenderness, see table 
2.7. This factor 1/g is approximately equal to the reduction factor w that is used at the present for 
structures of steel or timber to describe the effect of buckling. For brittle structures such as concrete 
and masonry it is common practice to include the effect of buckling as an extra eccentricity of the 
normal load. 
The reduction of the maximum stress to include the second order effects can be derived as follows. 
Firstly the slenderness [2.19], buckling force [2.12] and stress [2.18] are substituted into the 
expression for the ratio ncr [2.11]:

ncr =   p2 E                          [2.21]
           l2 s    

To avoid failure by buckling, the maximum stress in a section subjected to a normal compressive load 
is reduced with a ratio g. Substituting su = fcu/g  into [2.21] to find the ratio of n results in: 

ncr =  p2 E  g                          [2.21’]
            l2 fcu     

With this expression for ncr the buckling ratio is defined for several values of the slenderness. 

Slenderness 
l 

Safety factor 
g

Factor
w =1/g

 Buckling ratio 
ncr  

Ultimate stress  
su ≤ fcu w.

60 1.0 1.0 9.6 6.0 MPa

80 1.5 0.67 8.1 4.0 MPa 

100 2.0 0.50 6.9 3.0 MPa 

120 2.5 0.40 6.0 2.4 MPa 

140 3.0 0.33 5.3 2.0 MPa 

160 3.5 0.29 4.7 1.7 MPa 

180 4.0 0.25 4.3 1.5 MPa 

200 4.5 0.22 3.9 1.3 MPa 

220 5.0 0.20 3.6 1.2 MPa 

240 5.5 0.18 3.3 1.1 MPa 

TABLE 2.7  Slenderness, buckling ratio, stress and the factor w  

The Dutch code for structures of concrete of 1950 [C1] requires that the ultimate compressive stress 
in a structure subjected to a normal force was equal to:  fcu = 6.0 MPa.  For centric loaded columns the 
ultimate stress was decreased to include the second order effects by dividing the ultimate stress with a 
factor g: s < fcu/g = 6.0/g,  g  is a safety factor depending on the slenderness l of the column. The ratio 
g is found in table 1 of the VBC 1950, according to article 3. Notice the factor g is proportional to the 
slenderness l. 
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FIGURE 2.2  The ratio w = 1/g  and the slenderness l

Table 2.7 shows the results for a slenderness l greater than 140 calculated by linear extrapolation of 
the values of the slenderness and g. The factor ncr is calculated with expression [2.11] for a concrete 
column with a Young’s modulus of Ec = 2.1 × 104 MPa and an ultimate stress of fcu = 6 MPa. The 
values of g shown in table 2.7 are identically to the values of g shown in the VBC 1950 for l ≤ 140, see 
table 2.6. For ncr = 10 the factor g  is equal to 1 and for ncr = 5.3  g  = 3.0. In the VBC 1950 the factor 
g  was not given for a slenderness l larger than 140. Probably the authors of the code of 1950 did not 
consider structural elements with a slenderness above 140 sufficiently safe. 

§  2.4 Validation of the calculation of the thrust for the two hinged vault

The vault is constructed on the building site and is spanning as a single element from support to 
support. The vault is supported by columns and edge beams. These supports cannot resist huge 
bending moments thus the supports are schemed as simple supports and the vault can be schemed 
as a two hinged arch. The magnitude of the thrust follows from the equations expressing the 
deformations of the arch due to the load and the thrust.

    x
y

  a

H
f

FIGURE 2.3 Half of a parabolic vault subjected to an equally distributed load q

The deformations of the curved element  with a span l = 2 a and a rise f subjected to an equally 
distributed load q and a horizontal force H acting at the supports are calculated in chapter 6. 
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The horizontal deformations of the curved element, supposing the supports do not resist a horizontal 
forces follows from:

Dq  = 4 q f a3                    [6.27]
           15 EIo        

The deformation of the curved element due to the force H acting on the supports is equal to:      
DH  = 8 H f2 a                    [6.28]
            15 EIo      

The deformation of the vault is reduced by the tie between the supports.  The deformation of the tie 
with length a is equal to:

DT = H a                             [2.22] 
         EAs           

The deformation of the supports follows from: D T = Dbq - DH . Substituting the deformations of the vault 
into this expression leads to:

  H a   =  4 q f a3  -   8 H f2 a                      [2.23]
  EAs        15 EIo         15  EIo         

H =  ½ q a2       with:  C = 15 EIo                                          [2.24] 
       f (1 + C)                         8 EAs f

2                     

If the steel tie is very stiff, then the factor C is very small and the thrust is equal to:  
 H = 1/8 q l2/f  = ½ q a2/f

The steel tie is selected according to the load and the maximum stress. According to the TBV 1955 
the stress had to be less than ss = 140 MPa. The vault is subjected to a load q = 4.3 kN/m, the span is 
equal to 24 m so a = ½ l = 12.0 m and the rise f is equal to 3 m. For a tie Ø36 mm, with an area of  As 
= 1017 mm2 , subjected to a thrust equal to H = 103.2 kN the stress is equal to:  s = 103200/1017 = 
101 MPa. Further the stiffness of the arch is equal to EI = 12 × 1012 Nmm2. Substituting a = 12 m,  f = 
3 m, q = 4.3 kN/m and EI = 12 × 1012 Nmm2  in the expression to determine the thrust H gives:

H =  0.99 × (½ q a2/f )                    

Due to the  elongation of the tie the thrust is about 1% smaller than calculated before. Thus the 
reduction of the thrust due to the deformation of the tie is very small. It is quite understandable that 
Van Eck and Bish neglected the deformation of the tie.

§  2.5 Approach of the surface load

The bending moment due to the surface load can be calculated easily by simplifying the surface load 
into a linear increasing load which is equal to q at the top and maximum at the footing qmax = q (1 + c). 
To simplify the calculation the assumption is made that the structure is hinged at the top. Then the 
structure is statically determinate. The effect of this assumption will be discussed in chapter 6. Due to 
the equally distributed load q the structure is subjected to a normal force. Due to the triangular load 
c q the structure is subjected to a normal force and a bending moment. The forces and moments are 
defined in chapter 6.
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FIGURE 2.4 Parabolic vault subjected to an increasing load q + c q. 

At a distance x from the top the load is equal to:  qx = q ds/dx. Substituting ds = dx ( 1 + (dy2/dx2)0.5 
gives for this load: qx = q ( 1 + dy2/dx2)0.5 .

 Substituting dy/dx = 2 f x/a2  gives:             qx = q (1 + 4 f2 x2/a4)0.5

For x = a the load is at maximum:                 qx =a = q (1 + 4 f2/a2)0.5

The factor c  follows for x = a from:           q (1 + c)  = q (1 + 4 f2/a2)0.5 →

c = (1+ 4 f2/ a2)½                       [2.25]

The vertical reaction V acting at the supports is equal to:  V = q a + ½ c q a      [2.26]

The thrust H follows from the equilibrium of bending moments around the top:
H f - V a +  ½ q a2 + 1/3 c q a2 = 0      

Substituting V:  H =  (½ q a2  + 1/6  c q a2)/ f   →      H =  ½ (1+ 1/3 c) q a2/f             [2.27]

The normal force acting at the vault is maximum equal to:      N = (H2 + V2)½  

Substituting H and V:            N = q a { [ (1+1/3 c) ½a/f]2 + (1+½ c)2 }½ 

The bending moment is at maximum for x = 2/3 a from the top, the maximum bending moment 
follows from [6.18]:

Mx = 2/81  c q a2                      [6.18]

The vault is subjected to the dead load qg = 3.3 kN/m2;  for a = 12 m and f = 3 m we find:
c = (1+ 4 × 32/122)½  - 1= 0.118
V = q a (1 + ½ c) = 3.3 × 12 × (1+0.118/2) = 41.94 kN  
H =  ½ q (1+  1/3 c) a2/f  =  ½  × 3.3 × (1+  1/3 0.118) ×122/ 3 = 82.3 kN
N = (H2 + V2) ½ = 92.4 kN
Mx = 2/81 × 0.118 × 3.3 × 122 = 1.4 kNm 

The vault is not subjected to bending to the dead load if the shape of the vault follows a catenary. The 
differences between a parabola and catenary are very small. 

The coordinates of the parabola follows from [1.1]:  y/f = (x/a)2     
            
The coordinates of a catenary follows from [1.4]:  y/f = [cosh (x/c) –1] c/f With c = H/q   
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To describe the catenary for a given span and rise Te Boveldt [Bov94] gives an expression to approach 
the coefficient c with:   

2a/c =       4 f/a                                [2.27]
              (1+ ½ f2/a2)1/2

In practice most vaults were designed with a ratio rise to span  f/a = ¼ , then c is equal to  2.031 a. 
Probably in the past most engineers, using a sliding rule, designed the catenary with c = 2 a. 
An accurate approach is found with c = 2.042 a, then  the coordinates of a catenary with f/a= ¼  
follows from:  

y/a = 2.042 × [cosh (0.4897 x/a) – 1]               [2.28]

The foll owing table shows the coordinates for the parabola and the catenary. The differences between 
the parabola and catenary are very small for a curve with a small ratio rise to span f/a. For the curve 
with f/a = ¼ the maximum difference is D/f = 0.005.

x/a Parabola y/a= Catenary y/a = Difference D/a =

0 0 0 0

0.1 0.0025 0.00245 0.00005

0.2 0.0100 0,00980 0.00020

0.3 0.0225 0,02208 0.00042

0.4 0.0400 0.03930 0.00070

0.5 0.0625 0.06152 0.00098

0.6 0.0900 0.08879 0.00122

0.7 0.1225 0.12116 0.00134

0.8 0.1600 0.15872 0.00128

0.9 0.2025 0.20157 0.00093

1 0.2500 0.24979 0.00021

TABLE 2.8 Coordinates for a parabola and the catenary  for f/a = ¼ 

Bending moment due to surface load

For a parabolic vault the bending moment due to the surface load is defined. The normal force follows 
the line of the system (the catenary), the bending moment due to the dead load is equal to:   M = N e, 
where e is the eccentricity following from:  e/a = (D/a) cos f 

For x/a = 0.7  the difference (D/a) is equal to 0.00134. For x/a = 0.7 the angle f follows from tan f = 
dy/dx = 2 f x/a2 = 0.35,  thus cos f = 0.944 . 
Then the eccentricity is:             e =  0.00134 × 12.0 × 0.944 = 0.0152 m

The bending moment due to the dead load is equal to:    M = N e = 92.4 × 0.0152 = 1.4 kNm.

Due to the increasing load the vault is subjected to bending moments. The bending moments due to 
this load are minor, significantly less than the bending moments resulting from an asymmetric load.
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§  2.6 Verification of the scheme and assumptions concerning the permanent load

The vault was schematized as an arch supported with a roller and a hinge which are joined with a tie. 
The force in the tie is calculated for the arch schemed as a statically determinate structure. Actually 
the  vault is statically indeterminate since the deformation of the tie can affect the magnitude of the 
force in the tie. If the force in the tie is larger or smaller than the force calculated for the statically 
determinate structure, then this structure is subjected to bending moments even if the structure is 
only subjected to a symmetrical load. Furthermore the dead load is an equally distributed surface load. 
For a symmetrical equally distributed load a parabolic arch will be subjected to normal forces only, 
but a parabolic arch subjected to an equally distributed surface load will also be subjected to bending 
moments. Nowadays the forces and bending moments in an arch can be calculated easily with a finite 
element program. 

The vault is subjected to an equally distributed surface load. At the centre the load is equal to qx = 3.3 
kN/m. At a distance x the load will be larger than the load at the centre, q x = 3.3 × ds/dx with:

 ds = dx (1+ dy2/dx2)½. 

Thus the load qx is calculated with:         
qx = 3.3 ×[1+ (dy/dx)2]½

The parabolic vault is described with the centre of the coordinates  at the top with [1.1]:
y = f x2/a2                     [1.1]

Differentiation gives the tangent:         
y’ = 2 f x/a2                     [2.29]

The length of a small part of the curve ds is defined with:  
ds = dx (1+ y’2)1/2                      [2.30]

Substituting y’ = 2 f x/a2  into the expression for ds:       
ds = dx (1+ 4×f2x2/a4)1/2                     [2.31]

For the parabolic vault with a rise f = 3.0 m and a span l = 24.0 m the ratio ds/dx is equal to:
ds/dx =  (1+ 4 × 3.02 x2/124)1/2  = (1+ 0.001736 x2)1/2

For dx = 1.0 m the dead load at a certain point x is equal to:   
qx = 3.3 × (1+ 0.001736 x2)1/2

The following table shows the dead load for the vault with a width of 1.0 m for dx = 1.0 m , the  
coordinates of nodes, the position of the members and the results of the calculations.

The dead load is increasing from the centre to the supports. Due to this dead load the vault is 
subjected to bending moments. These bending moments are minor, significantly smaller than the 
bending moments due to the asymmetrical live load. Due to the asymmetric live load the bending 
moments are identically to the bending moments calculated before. Actually the calculations made 
manually with a slide rule sixty years ago are surprisingly accurate.  

TOC



 47 Analysis of the design of a Fusée Céramique vault in the past

 x = y = dead load q G Node x =  y = Member

0 0 3.3 1 0 0 S1:      1-  2

1 0.021 3.303 2 2 0.92 S2:      2-  3

2 0.083 3.31 3 4 1.67 S3:      3-  4

3 0.188 3.326 4 6 2.25 S4:      4-  5

4 0.333 3.346 5 8 2.67 S5:      5-  6

5 0.521 3.371 6 10 2.92 S6:      6-  7

6 0.75 3.402 7 12 3.0 S8:      7 - 8

7 1.021 3.438 8 14 2.92 S9:      8-  9

8 1.33 3.479 9 16 2.67 S10:   9-10

9 1.688 3.524 10 18 2.25 S11:10-11

10 2.083 3.575 11 20 1.67 S12:11-12

11 2.521 3.63 12 22 0.92 S13:12-13

12 3.0 3.69/2 13 24 0 S14:   1-13

Member dead load dead load Live load sym. live load sym. live load asym live load asym

N = M = N = M = N = M =

S1 91.2 2.0 26.9 0 12.2 - 5.1

S3 85.7 1.5 25.4 0 12.4 - 9.1

S6 81.6 1.7 24.2 0 12.2   0

S10 85.7 1.5 25.4 0 13.0   8.9

S12 91.2 1.0 26.9 0 14.7   4.9

S13 81.4 0 24.1 0 12.1   0

TABLE 2.9 Normal forces and bending moments due to the dead load and the live load acting symmetrical and asymmetrical

§  2.7 Ultimate load bearing capacity

Nowadays the reinforcement has to be calculated according to Eurocode 2 [C6]. The calculation of 
the required reinforcement is based on a non-linear stress-strain diagram of the concrete and steel, 
the stress-strain diagrams of concrete and steel are simplified and schematized using a rectangular 
approximation. Due to the infill elements the section is not massive. The cover on the hollow core is cf. 
For a compressive zone kx h larger than cf the compressive zone has to be reduced. For this structure 
with two layers of fusée elements the normal compressive component is reduced with a force Ff acting 
opposite the reaction force due to the concrete reaction force Fc acting on the compressive zone x = kx h.

Features of steel

The stress in the steel  reinforcement must be less than the ultimate stress ss < fyd . The stress-strain 
diagram of the steel is bi-linear:  for   es < fyd/Es  the maximum stress follows from ss = es  Es   and 
for   fyd/Es  < es < esu  the maximum stress is equal to fyd. The design load follows from: fyd  = fyk/gs  with:           
gs = 1.15.  For FeB220: fyd  = 220/1.15 = 191 MPa, Es = 2 × 105 MPa.
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σs

εs = fyd/Es εud

fyd

FIGURE 2.5 The bi-linear stress-strain of the steel rebars 

Features of concrete

The quality of concrete is described with two numbers, the first one mentions the cylindrical strength, 
the second one the strength of cubes. For C12/15 the cylindrical strength is equal to 12 MPa and the 
strength of the cubes is equal to 15 MPa. The compressive stress in the concrete must be less than 
the ultimate stress: sc < fcd, with fcd  = fck/gc;   fck is the cylindrical strength, generally the safety factor is 
equal to: gc = 1.5. Thus for C12/15 the ultimate stress is equal to fcd  = fck/gc = 12/1.5 = 8 MPa. 

σc

εc = fcd/Ec = 0.00175 εcd = 0.0035
                   β kx

fcd

FIGURE 2.6  The bi-linear stress-strain of the concrete

Generally for concrete the stress-strain diagram is schemed parabolic, bi-lineair or rectangular. For 
the bilinear stress-strain diagram the strain is at maximum ecu = 0.0035. The ultimate stress increases 
linear for ecu ≤ 0.0035/2. The ultimate stress is constant for 0.00175 <ecu ≤ 0.0035. The bi-linear 
stress-strain diagram includes implicite the effect of the time dependent deformation due to creep. 
For the ultimate state the stiffness of the concrete follows from: Ecd = fcd /(0.5 ecu). Thus for C12/15  
Young’s modulus, including creep, is for the ultimate state equal to Ecd  = 8/(0.00175) = 4571 MPa.

At the present for the ultimate load bearing capacity  the stress-strain diagram can be schematized 
rectangular with s = fcd and a reduction factor for the depth b = 0.8 [C6]. The compressive zone is 
equal to x = kx h. The normal compressive component Fc acting at the compressed side of the concrete 
follows from:    Fc =   b kx h fcd  

Due to the fusées the normal compressive component is reduced with a force Ff  following from:
Ff = m Af  fcd  

where: m is the number of fusées
  Af  is the area of the fusées within the compressive zone b kx h

The specific deformation of the steel at the tensioned and compressed side of the section  follows 
respectively from:  

est = (1 – d/h – kx)/kx    and esc = (kx  - d/h)/kx 
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  With: d = distance from the centre of reinforcement  to the nearest side.

For ss < fyd/Es the stress in the steel reinforcement follows from:   ss = es Es;  
For ss > fyd/Es the stress in the steel reinforcement is equal to fyd,:  ss = fyd;  
fyd is the design load with: fyd  = fyk/gs  and gs = 1.15.

The sections of the vault are subjected to a normal force Nd acting eccentrically at a distance et from the 
centre. The reinforcement is placed symmetrically in the section, with et  = Md /Nd . 
The ultimate normal force and bending moment follows from respectively:

Nd = Fc - SFf  + Fsc - Fst                    [2.32]

 Md = (Fsc + Fsc) × (½ h - d) + Fc (½ h - b1 ) - Ff1 (½ h - z1) + Ff1 (½ h - z2)      [2.33]

Where:  Fst = Fsc = ½ As ss 

For the vault with two rows the effect of the fusées situated at the compressed side is:    Ff1 = Af1 sc 
For kx ≤ 1.25 cf/h:      Af1 = 0 ;  z1 = 0
For kx  = 1.25 × (cf/h + r/h)     Af1  = p r2/2;  z1 = t +(1-0.424) r 
For kx  ≥ 1.25 × (cf/h + 2 r/h)     Af1  =  p r2 ; z1 = t + r

For the vault with two rows the effect of the fusées situated at the tensioned side is:         Ff2 = Af2 sc

For kx ≤ 1.25 × (1 - cf/h - 2 r/h):   Af2 = 0 
For kx = 1.25 × (1- cf/h – r/h)     Af2  = p r2/2  z1 = t + (1-0.424) r
For kx ≥ 1.25 × (1 - cf/h -2 r/h)    Af2  =  p r2  z1 = t + r

Where: t = (h – 4 r – 2 cf )/2

Fst                     Ff    Fc    Fsc           

                   

β kx.h
      kx h

 εsc        εc                    
εst                       

C12/15; FeB220; w = 0.00279; d/h = 0.095
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FIGURE 2.7 Forces, stresses and specific deformations  for an 
eccentric loaded section with two rows of fusées 

FIGURE 2.8 Graph showing the ultimate bearing capacity of 
the vault

The calculation of a column is quite labour intensive, most engineers will use diagrams or 
spreadsheets to calculate the load bearing capacity of a section subjected to an eccentric normal force. 
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The graph, see figure 2.8,  illustrates the load bearing capacity for a vault with  C12/15;  Fe220;  d/h 
= 0.1 and a reinforcement w = At/(bh) = 2 × 279/200000 = 0.0028.  The graph shows on the vertical 
axis Nd/(b h fcd) and on the horizontal axis Md/(b h2 fcd). For a section subjected to a normal force the 
ultimate bending moment can be calculated also with the following table  

Nd/(bh fcd) Md/(b h h fcd)

-0.0268 0.0192

0.0527 0.0528

0.1200 0.0798

0.1250 0.0817

0.1696 0.0970

0.1973 0.1043

0.2249 0.1094

0.2695 0.1143

0.3445 0.1171

0.4212 0.1135

0.5253 0.0907

0.6185 0.0597

TABLE 2.10  Bearing capacity  for a vault with two layers of fusées C12/15; Fe220; d/h = 0.1; w = 0.0028

For the ultimate state the permanent and live load are increased with a load factor of respectively 1.2 and 
1.5.The permanent load is equal to qg = 1.2 × 3.3 kN/m. The live load is equal to qe = 1.5 × 1.0 kN/m.  The 
normal force for the permanent and asymmetrical load and the bending moment is equal to:

Nd = 1.2 × 85.7 + 1.5 ×  12.4 =  121.4 kN

Mo = 1.5 × 9.1 = 13.7 kNm

With fcd  = 12/1.5 = 8 MPa the ratio for the normal force is:        Nd      = 0.076      
                               b h fcd                    

Table 2.10 shows that for this normal force the maximum bending moment is equal to: 
      Md         = 0.062                        
  b h2  fcd  

Then the maximum bending moment the section can resist is: M = 19.8 kNm. To include the second 
order effects the ratio n has to be defined again for the ultimate state.

§  2.8 Ultimate state: stiffness and buckling 

The stiffness is affected by cracks and creep of the concrete. According to NEN-EN 1992-1-1 [C6] the 
stiffness can be approached for the ultimate state with: 

EI = K Ecd I0 + Es Is
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With:    K =  k1 k2  . k1 = √(fck/20)   k2 =      Nd l         fef  = ft MEf/MEd

                       1 + fef         Ac fcd 170  

Creep

According to the NEN-EN 1992-1-1 [C6] the specific creep is  calculated. The moulds were reused as 
fast as possible, but the time before the mould could be removed had to be at least 36 hours and the 
strength of the concrete had to be developed enough at this stage. To allow for this probably cement 
class N was used and the time t0 was at least 2 days. Generally warehouses were slightly heated, the RH 
was approximately 70%.
According to NEN-EN 1992-1-1, figure 3.1:

For RH = 50%  the specific creep is: f(∞,t0) = 4.8  
For RH = 80%  the specific creep is: f(∞,t0) = 3.6  

For RH = 70% the specific creep is:  f(∞,t0)  = 3.6 +  (80 - 70) × (4.8-3.6)  = 4.0
                                                        (80 – 50)

For a concrete structure subjected to a permanent compressive load the instantaneous specific 
deformation is e. Due to creep the specific deformation will increase with f e. The total deformation of 
the concrete is equal to e (1+f) with  f = 4.0.
According to the Eurocode the effective creep factor fef  follows from:

fef  = ft MEf/MEd 

Due to the permanent load the vault is subjected to a bending moment: 
MEf = 2/81 × 0.118 × q a2 =  2/81 × 0.118 × 3.3 × 122 = 1.4 kNm

The maximum moment due to the asymmetrical load is equal to: 
MEd  = 1.5 × 9 = 13.5 kNm

The effective creep factor fef  is equal to:  fef  = ft  Mrep/MEd = 4.0 × 1.4/13.5 = 0.41

For the instantaneous load Young’s modulus follows from: 
Et  = Ecd /(1+ fef )       →  Et =22500/(1+0.41) = 15957 MPa

The stiffness is according to Euro code [C6] calculated with:  EI = K Ecd I0+ Es Is

Es Is = 200000 × ½ × 558 × 2 × ( 100-19)2 = 0.73 × 1012 Nmm2

K  =   k1 k2  /( 1+ fef))         

Where:     k1 = √(fck/20) = (12/20)1/2 = 0.775 and  k2 =  Nd l /(Ac fcd 170)

The slenderness follows from [2.19]:l = lc / i  where lc  = s = 12.5 m and i =  √ I/A 

 Io = 1000×2003/12 – 2 × 11× p 602/4 × 452  = 5.4 × 108 mm4

Ac = 1000×200 – 2 × 11× p 602/4   = 137.8 × 103 mm2

 i =  √ I/A  = 63 mm

Substituting  s and i gives l = 198  
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k2 =     Nd l     =   121400 × 198      = 0.128
       Ac fcd 170    137800 × 8 × 170

K  =   k1 k2   = 0.775 × 0.128  = 0.066
         1+ fef                     1 + 0.5

EI = 0.066 × 15957  × 5.4 × 108  + 0.73 × 1012 = 1.3 × 1012 Nmm2

The stiffness described by Bish and Van Eck was equal to EI = 12 × 1012 Nmm2. Due to time-
dependent effects and cracking the stiffness is decreased substantially. Next the critical buckling force 
is calculated with equation [2.6].   Substituting f = 3.0 m; R = 25.6 m, EI = 1.3 × 1012 Nmm2; f = 0.49 
radians in [2.6] gives::
Ncr = EI [p2/f2 - 1]  =  1.3 × 1012 × [p2/0.492 - 1]   = 79.6 × 103 N

        R2     256002 

The design load Nd is equal to 121.4 kN so this force is larger than the buckling load Ncr. The structure 
cannot resist the loads including the load factors. 

§  2.9 Conclusions

The analysis shows that in the article written sixty years ago the effect of the time dependent 
deformations was underestimated. Due to the decrease of the stiffness the critical buckling force is 
decreased too. The critical buckling force is smaller than the normal force due to the design loads. This 
structure is not safe regarding the buckling load and has to be strengthened to meet the demands of 
the present.
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3 In-plane buckling of arches and vaults

Arches and vaults subjected to a transversal load can collapse due to in-plane buckling. Arches with 
a very small rise can change form from convex to concave. The structure will snap through . The 
deformation of an arch failing by snapping through is symmetrical. The deformation of an arch failing 
by buckling can be also asymmetrical. Vandepitte [4] showed that for a sinusoidal arch subjected to a 
sinusoidal load the asymmetrical buckling mode is more critical than the symmetrical snap through 
mode.  Generally, even for shallow arches, the asymmetric deformation induces the critical buckling 
load. In the past the critical buckling load was only defined for circular arches and vaults. Generally 
the Fusée Céramique vaults were designed with a parabolic curvature. Fortunately for shallow arches 
the differences between a parabola and a circular curve are minor. Nevertheless this chapter will study 
this problem. Usually the effect of the stiffness of supports on the critical buckling load is neglected. 
A tie joining the supports of an arch or vault will elongate and thus decrease the critical buckling load. 
Possibly neglecting the stiffness of the supports can overestimate the critical buckling load and cause 
failure by snap through. The effect of the flexible supports concerning the buckling load will be studied 
too. This chapter compares various theories to find the buckling load for shallow parabolic vaults 
with a ratio of rise to span of about f = 1/8 l . First the theories developed in the fifties describing the 
buckling force for arches deforming asymmetrically are looked at. Next more recent research to define 
the buckling load for the parabolic and circular vaults more precisely is taken into account. Finally the 
effect of the vertical hangers between arch and tie is considered.   

φ      Rφ

½ l = a

 q s

f

FIGURE 3.1 Two hinged vault ,subjected to radial load,  symmetric and asymmetric deformation 

§  3.1 Buckling

As shown in chapter two, Bish and van Eck defined for a Fusée Céramique vault the critical buckling 
load with the following formula defined by Timoshenko [Tim52] for the asymmetrical mode of a 
circular two hinged arch, subjected to a radial load, see expression [2.6]: 

Ncr = qcr R  =  EI (p2/f2 – 1)                   [2.6]
                                    R2 
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Where f is the angle describing the arch from the top to the support. The length of the circular 
arch between the supports is equal to 2 s. With s = R f the critical buckling for an asymmetrical de 
formation is equal to:

Ncr = p2 EI (1 - f2/p2)                    [3.1]
                     s2  

According to Euler the buckling force is equal to:  
Ncr = p2 EI                    [3.2]
            lc

2  

The buckling length of an arch 
 is equal to lc = y s. Substituting lc into [3.2] gives:

Ncr = p2 EI                    [3.3]
         (y s)2  

Comparing expression [3.1] and [3.3] shows that the factor y, defining the buckling length with 
respect to the length of the arch, has to be equal to:

y2 = 1/(1 - f2/p2)                     [3.4]

For  f < p the factor y 2 is larger than 1, consequently y > 1. The ratio of the rise and span of an arch is 
related to the angle f. For a circular arch the span and rise are respectively equal to l = 2 a = 2 R sin f 
and f = R (1 - cos f), thus the ratio f/a follows from:  

f/a  = (1- cos f)/sin f                      [3.5]

 
Table 3.1 shows the ratio factor y for several values of  f and the ratio f/a.

Angle f Angle f 
[radians]

 [1 - f2/p2] y = Ratio f/a = Ratio f/l

90o ½ p 0.750 1.154 1.0 0.500

75o  5 p /12 0.826 1.100 0.767 0.384

60o  p/3 0.889 1.061 0.577 0.289

45o p/4 0.938 1.032 0.414 0.207

30o  p/6 0.972 1.014 0.268 0.134

15o p/12 0.993 1.004 0.132 0.066

TABLE 3.1  The buckling length of a two hinged circular arch or vault 

For shallow curved arches with f < 30o the buckling length is nearly equal to the length of the arch s 
between the support and the top. Then the buckling force can be approached using the expression 
of Euler with lc = s. In the same period, halfway the twentieth century, Goldenblat and Sisow [Gol55] 
derived the critical buckling load qcr for circular tubes, subjected to an equally distributed radial load:

qcr =   E (t/R)3                       [3.6]
           4 (1- u2)

  Where u = the coefficient of lateral contraction.

For a section with a thickness t and width b the second moment of the area is equal to: I = b t3/12. 
Substituting the second moment of the area I into [3.6] gives for u = 0  a critical buckling load qcr  equal to:

qcr =  3 EI                    [3.6’]
             R3
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To including the effect of varying supports, Goldenblat and Sisow [Gol55] defined for circular arches, 
subjected to a radial load, the following expression:

Ncr = k EI                    [3.7]
            R2  

The factor k is a variable dependent on the boundary conditions. The following table shows k for two 
hinged arches, three hinged arches and arches with clamped supports.

Clamped supports 
k =

Two hinges 
k =

Three hinges 
k =

f/a = f/(2 a)

f = 90o 8 3 3 1.0 0.5

f = 75o 11.5 4.76 4.32 0.767 0.384

f = 60o 19.1 8 6.75 0.577 0.289

f = 45o 32.4 15 12 0.414 0.207

f = 30o 74.3 35 27.6 0.268 0.134

f  = 15o 294 143 108 0.132 0.066

TABLE 3.2  The factor k for a varying angle f and varying boundary conditions

The expression of the buckling force according to Goldenblat and Sisow [3.7] can be compared with 
the expression of Euler [3.3] with a buckling length  lc = y s, and s = f R. Then the factor y  follows 
from:

k EI   =   p2 EI       →  y2 = (p/f)2              [3.8]
   R2        (y f R)2                                               k 

Table 3.3 shows the factor y for circular arches subjected to a radial load with respect to the angle f.

Two hinged arch Y = Three hinged arch Y = f/a f/l

f = 90o 1.155 1.155 1 0.5

f = 75o 1.100 1.155 0.767 0.384

f = 60o 1.061 1.155 0.577 0.289

f = 45o 1.033 1.155 0.414 0.207

f = 30o 1.014 1.155 0.268 0.134

f = 15o 1.004 1.155 0.132 0.066

TABLE 3.3 The ratio y with respect to the rise f and span a 

Comparing table 3.1 and table 3.3 shows that for the two-hinged arch the buckling length according 
to Timoshenko does not vary much from the buckling length according to Goldenblat et al.  

Parabolic arch

For a shallow arch the curvature of a parabola does not vary significantly from an arch following a 
circle. Thus for parabolic low rise arches the expressions defined for circular arches are used often 
to define the buckling load. For deep arches the difference increases. Te Boveldt [Bov94] gives for 
parabolic arches the following table for the buckling length: lc = y s.  As described in chapter 2 the 
length s can be calculated for a parabola with:
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s = f (1+ ¼ a2/f2)1/2  + ¼ (a2/f)  ln{2 f/a + (4 f2/a2+1)1/2 }              [2.13]

Comparing table 3.2 and table 3.3 with table 3.4 shows for parabolic arches, especially if the rise 
increases, a larger buckling length than for a circular arch. For shallow arches with a rise to span ratio 
f/l < 0.2 the difference is small.

f/l = 0.05 f/l = 0.2 f/l = 0.3  f/l = 0.4 f/l = 0.5

Three hinges         y = 1.2 1.16 1.13 1.19 1.25

Two hinges           y = 1.0 1.06 1.13 1.19 1.25

Clamped supports y = 0.7 0.72 0.74 0.75 0.75

TABLE 3.4 The buckling length of parabolic arches lc =  y.s  with respect to the rise f and span l

§  3.2 Non-linear Analysis

Recently Pi et al [PiY02] and Moon et al [Moo07] researched the critical buckling load for respectively 
circular and parabolic shallow pin-ended arches, supposing unmovable supports. 

Circular pin-ended arches

Recently Pi et al [PiY02] defined for circular shallow arches a non-linear in-plane analysis.  For pin-
ended arches the critical in-plane symmetric buckling load causing snap through is equal to:

Ncr sym = p2 EI                      [3.9]
               (2 s)2  

Where (2 s) is the length of the arch between the supports.

According to Pi the in-plane asymmetric buckling load follows from:
Ncr asym = [ 0.26 ± 0.74 × (1- 0.63 p4/l2)1/2 ]  p2 EI            [3.10]
                                                                  s2  

With the slenderness l = s2/(R i) and the radius of gyration of the section i = (I/A)1/2

According to Pi the asymmetrical buckling mode is more critical in case:         l > 9.38  
Snap through is more critical in case:            l < 7.83

For circular arches the length s is equal to R f and the span is equal to  l = 2 a, with a = R sin f. 
Substituting the radius R = a/sin f into s = R f gives:  s = a f/sin f.  

Substitute s = R f and  s = a f/sin f  into the condition for the slenderness:  l > 9.38,  shows  the 
asymmetrical buckling mode is more critical for: 

 R f (a f/sin f)  > 9.38  →  i/a <  0.1066 f2                 [3.11]
            R i                           sin f
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For an arch or vault with a rectangular section and depth t the radius of the section is equal to i = 
0.289 t. Substituting the radius of the section into [3.11] gives: 

t/a < 0.369 f2/sin f                    [3.11’]

Generally the Fusée Céramique vaults were designed with a ratio f/a = ¼. Substituting tan f = 0.25 
and f = 0.245 radians into [3.11’] shows the asymmetrical buckling load is critical for:  

t/a < 0.09. 

The Fusée Céramique vaults were designed quite slender, with a thickness of 110 mm for a span up to 
14.4 m. For these vaults the switch is equal to: t/a = 110/7200 = 0.015 < 0.09, so the asymmetrical 
buckling mode is critical.

Parabolic pin-ended arches.

Moon et al [Moo07] researched the critical buckling load for parabolic pin-ended arches. For in-plane 
asymmetric buckling mode the critical buckling load is equal to:

Ncr asym =     p2 EI                        [3.12]
                   (2 y’ s)2  

For pin-ended arches the factor y’ is equal to 0.5, then the critical buckling length becomes:
Ncr asym = p2 EI                    [3.13]

                                 s2  

According to Moon the in-plane a-symmetric buckling load will be critical if the rise f meets the 
following condition:

 f > 1.85 p2 i/4   →   f/a > 4.565 i/a            [3.14]

Where i is the radius of gyration of the section:  i = (I/A)1/2

For a rectangular section with depth t the radius of the section is equal to: i = 0.289 t. Then snap 
through buckling will be critical if the ratio t/a is smaller than: t/a = 0.758 f/a. Generally the Fusée 
Céramique vaults were designed with a ratio f/a = ¼, then the asymmetrical buckling load is critical 
for: t/a < 0.19. 
For a Fusée Céramique vault with a thickness of 110 mm and a span of l = 14.4 m, the ratio t/a is 
equal to t/a = 0.015 < 0.19. Thus for this vault the asymmetrical buckling mode is more critical than 
snapping through.
Comparing the results as described by Pi and Moon for respectively a circular and parabolic vault  
shows the effect of the curvature. For a vault, with a ratio f/a = ¼, the switch, asymmetrical buckling 
mode more critical than snapping through,  is equal to: 

Circular vault,    f/a = ¼:   t/a < 0.09
Parabolic vault, f/a = ¼:  t/a < 0.19

Due to the curvature the switch is for a circular vault much smaller than for a  parabolic vault.
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§  3.3 Snapping through, including the movement of the supports

The expression defining the critical buckling load in case the vault deforms symmetrically, suppose 
unmovable supports. Actually due to the thrust ties, connecting the supports, will lengthen. Due to the 
displacement of the supports the structure can collapse. 

Three hinged truss

For a truss composed of two chords and a tie the effect of the lengthening of the tie is researched. 
A load F, acting at the top the beams, will shorten the beams and lengthen the tie. The structure is 
snapping through if the deformation of the top including the second order is equal to f. Consequently  
the length of the shortened chords is equal to the length of the lengthened tie. The section and 
Young’s modulus of the chords and tie are respectively Ab , Eb , AT and ET.

Due to the concentrated load F the tie and beams are subjected to the following normal forces:
tie:  H =  ½ F a/f; with: tan b = f/a           [3.15]     

chord:  N =  ½ F s/f   =   ½ F a                 [3.16]   
            f  cos b    

                       F

 f ∆ 

              β

                a

s

FIGURE 3.2  Truss subjected to concentrated load acting halfway the span.

According to the Theory of Elasticity the deformation of the tie, over a length a, and the chords is equal 
respectively to:

tie:  Dt  =    F a2                   [3.17]
                              2 f EAT        

chord:  Db  =   F s2     =          F a2                    [3.18]
                                                        2 f EAb      2 f EAb cos2b

Assuming the vertical deformation of the centre at the top is equal to D, the sagging is calculated using 
the equilibrium of the external and internal work:  

½ F D  =  2 (½ H DT  + ½ N Db)

Substitute H and N and divide the expression by F:
D  =  F a3  (   1   +  (s/a)3   )    →      D =   F a3 C             [3.19]
          2 f2     EAT       EAb                  2 f2 EAb    

With: C = (EAb/EAT   + 1/cos3b )  
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For a small ratio f/a the length of the chord is slightly larger than the length of the tie then s/a ≈ 1 and 
cos b ≈ 1. In practice the stiffness of the tie is often much than the stiffness of the chord, thus  EAT < 
EAb. Consequently the factor C will be larger than 1. 
For s/a ≈ 1 the factor C is: EAT/EAb = 1:    C = 2     

 EAT/EAb = ½:   C = 3   
 EAT/EAb = ¼:   C = 5   

   
The deformation of the ties increases the vertical displacement of the top and can cause snapping 
through. To be safe the effect of horizontal deformations of the supports must be included for swallow 
arches and vaults. For domes with a single grid the ratio f/a can be very small, but for arches and 
cylindrical vaults the ratio f/a is generally not smaller than ¼ . Then the asymmetrical buckling mode 
will be more critical. 
For a truss composed of a tie and two chords the effect of the ratio t/a will be studied. Due to the 
deformation of the top with D the rise decreases with f’= f - D , thus the normal forces increase:

Tie:            dH = F a  (       1           -  1)  →  dH =     F a D/f              [3.20]
                            2 f     (1- D/f)                                      2 f (1 - D/f)

Chords:    dN =  F s  (       1          -  1)       →  dN =   F  s D/f                       [3.21]
                             2 f     (1- D/f)                                             2 f (1 - D/f)

Due to the increase of the forces with dH and dN the top will deform further with D/m. Substituting 
dH, dN and the rise f’ =  f (1- D/f) into [3.19] gives:

D/m  =      F a3 C D/f                 with: C = (EbAb/EtAT   + 1/cos3b)          [3.22]
               2 f2 EAb (1 - D/f)3

                    

Substituting D [3.19] and D/m [3.22] into m = D/(D/m) gives:     m = (1 - D/f)3   
                       D/f    

The structure fails in case D/m  is larger than D, the maximum deformation follows from the condition 
m > 1: 

m = (1 - D/f)3   > 1    →   D/f  < 0.32
            D/f    

The maximum load Fu follows from D < 0.32 × f, substituting  D < 0.32 × f  into [3.19] gives:
  Fu  a3 C   <  0.32 f
 2 f2 EAb    

Fu  = 0.64 f3 EAb     with: C = (EAb/EAT   + 1/cos3b )                      [3.23]
              a3 C  

Due to the critical load the normal force acting at the chord is equal Nu = ½ Fu /sin b. Substituting Fu 
according to [3.23] and tan b = f/a into this expression gives:

Nu  =  0.32 f2   × EAb     with: C = (EAb/EAT  + 1/cos3b )             [3.24]
           a2 cos b      C

For a truss the force acting at the chords is increasing linear with 1/f. If the angle b  is very small, 
then the normal force acting at the chords will very large. Probably one of the chords fails by buckling. 
For the chords the buckling force Ncr follows from [3.2]. Substituting s = a/cos b into [3.2] gives the 
asymmetrical buckling force: 

Ncr = p2 EIb cos2b/a2                      [3.25]
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The structure will fail by asymmetrical buckling load if the critical buckling force according to [3.24] is 
larger than the critical buckling force according to [3.25]. 

 0.32 f2 EAb   >  p2 EAb (I/Ab) cos2b        →   (f/a)2 > p2 C (I/Ab) cos3b            
  a2  C cos b                       a2                                        0.32 a

For a rectangular section the ratio I/Ab is equal to I/Ab = t2/12. Substituting I/Ab gives: 
f/a >  t/a  × [cos3b EAb/EAT + 1]1/2   →  t/a  <            0.624 f/a                                  
                          0.624                                                     (cos3b EAb/EAT + 1)1/2  

If f/a is small then s will slightly larger than a, so s/a ≈ 1 and cos b ≈ 1.
In practice the ratio EAb/EAT will be larger than 1.  Decreasing the stiffness of the tie will increase the 
ratio EAb/EAt. Then the asymmetrical buckling mode will be critical for a smaller value of the ratio t/a.  
Generally the Fusée Céramique vaults were designed with a rise equal to f = ¼ a. Substituting f/a = ¼ 
gives the following values for the switch, the asymmetrical buckling will be critical if:  

EAb/EAT = 1:   t/a < 0.44 f/a   for f = ¼ a: t/a < 0.110
EAb/EAT = 2:   t/a < 0.35 f/a   for f = ¼ a: t/a < 0.088
EAb/EAT = 4: t/a < 0.28 f/a   for f = ¼ a: t/a < 0.070

The deformation of supports will decrease the symmetrical buckling force substantially. In practice the 
swallow Fusée Céramique vaults were designed with a ratio f/a = ¼ and a thickness of 110 mm for a 
span up to 15 m. For a vault with a span 2 a = 15 m the ratio t/a is equal to: t/a > 110/7500 = 0.015. 
This ratio is much smaller than the switch; the asymmetrical buckling mode is more critical than the 
snapping-through failure mode.

§  3.4 Two hinged vaults.

Two hinged vaults are stiffer than three hinged vaults. For a trough vault, subjected to a concentrated 
load at the top, the effect of fixing the joint at the top is studied. The structure is  composed of the 
vault with a section Ab and Young’s modulus Eb and a tie with a section At and Young’s modulus Et. 
The trough vault with a fixed joint at the top is statically indeterminate. The thrust H follows from 
the displacement of the roller support defined separately for the tie and the vault subjected to the 
concentrated load and thrust.

       y
               x

Η

a

f ∆top

∆hor

F

FIGURE 3.3 Trough vault subjected to a concentrated load acting at the top. 

The lengthening of the tie due to the thrust H is equal to:  DT = 2 H a  
                           EAT 
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Generally for the deformation of vaults the effect of the shear forces is quite small, then the 
deformation of the structure at a chosen point can be defined with the following expression:

D = ∫  Mx M’x ds  +  ∫ Nx N’x ds                  [3.26]
                 EI                      EA

With: Mx is the bending moment and Nx is the normal force acting in an element due to the load; M’x 
is the bending moment and N’x is the normal force acting in an element due to a concentrated force F 
= 1 acting at the chosen point, parallel to the deformation;

Due to the concentrated load F acting at the top the vault is subjected to: 
a bending moment,  Mx = ½ F x,  a shear force Vx = ½ F and a normal force Nx = ½ F sin b. 
Due to the thrust H acting at the supports the vault is subjected to:
a bending moment Mx =  H x f/a ,  a shear force Vx = H sin b and a normal force Nx = H/cos b.
 Successively the deformation of the facetted beam is defined at the top and at the roller support for 
the load F and the thrust.

Horizontal deformation of the roller support of the facetted beam due to the concentrated load F

Due to the concentrated load F the roller support of the beam will move outward. Substituting  Mx = ½ 
F x ,  M’x = x f/a , Nx = ½ F sin b,  N’x = 1/cos b  and ds = dx/cos b into [3.26] gives:

Db Fhor =  2 F ∫0
 a ½ f/a x2 dx    -  2 F ∫0

  a ½ sin b dx 
                           EIb cos b            EAb cos2 b

Integrating between x = 0 and x = a and substituting tan b = f/a gives:  
Db F hor  =        F f a2        -       F f                                    [3.27] 

                                3 EIb cos b      EAb cos b

Horizontal deformation of the roller support of the facetted beam due to the thrust 

Due to the thrust H the roller support of the beam will move horizontally. Substituting  Mx = H x f/a ,  
M’x = x f/a , Nx = H/cos b ,  N’x = 1/cos b  and ds = dx/cos b into (3.26) gives:

Db H hor = 2 H ∫0
 a f2/a2  x2 dx    +  2 H ∫0

 a dx    
                        EIb cos b                 EAb cos3b

Integrating between x = 0 and x = a gives:  
Db H hor   =     2 H a f2       +      2 H a                             [3.28]

                                  3 EIb cos b      EAb cos3b

Thrust

The thrust H follows from the deformation of the roller support:      Db F hor - Db H hor  = Dtie 
    2 H a f2        +     2 H a         +  2 H a  =      F f a2             -      F f             
 3 EIb cos b      EAb cos3b         EAt      3 EIb cos b      EAb cos b
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H = ½ F (a/f) C    with:   C =                            1 – 3 × I/(A a2)                                       [3.29]
                                                         1+ 3 Ib/(Ab f

2) × ( 1/cos2b + cos b EAb/EAt )

In practice the stiffness of the beam is larger than the stiffness of the tie: EAb > EAt , then the factor C 
will be smaller than 1: C < 1. For a rectangular section the ratio Ib/Ab is equal to Ib/Ab = t2/12. Then the 
factor C is equal to:

C =                         1 – ¼ (t/a)2                                                                         [3.29’]
        1+ ¼ (t/a)2 (a/f)2 ( 1/cos2b + cos b EAb/EAt )

Next the vertical deformation of the structure is calculated for the facetted beam subjected to a vertical 
load acting at the top and the thrust.

Vertical deformation of the vault due to the concentrated load acting at the top.

Substituting  Mx = ½ Fx,  M’x = ½ x, Nx = ½ F sin b,  N’x = ½ sin b  and ds = dx/cos b into [3.26] gives:

Db F vert = 2  F ∫a ¼ x2 dx    +  2 F ∫a ¼ sin2 b dx      
                     EIb cos b          EAb cos b

Integrating between x = 0 and x = a gives:  
Db F vert   =        F a3             +  F f2 cos b                      [3.30]

                                 6 EIb cos b       2 EAb a

Vertical deformation of the vault due to the thrust 

Due to the thrust H the top will deform vertically. Substituting Mx = H x f/a, M’x = ½ x, Nx = H/cos b ,  
N’x = ½ sin b  and ds = dx/cos b into [3.26] gives:

Db H vert  =  2 H ∫a ½ f/a.x2 dx   -  2  H ∫a ½ sin b /cos b dx 
                           EIb cos b                EAb cos b

Integrating between x = 0 and x = a gives:  
Db H vert  =         H f a2         -         H f                             [3.31]
                    3 EIb cos b      EAb cos b

The deformat ion of the vault at the top

The deformation of the structure at the top follows from:  Dtop = Db F vert  - Db H vert

Substituting [3.30] and [3.31] gives:
Dtop  =          F a3         +  F f2 cos b   -  H f a2 [ 1 – 3 Ib/(Ab a2) ] 
               6 EIb cos b       2 EAb a                   3 EIb cos b              

Substituting H gives:
Dtop   =       F a3           { 1 – C  +  3 Ib f2 cos2 b   +  3 Ib C    }            [3.32]
              6 EIb cos b                        Ab a4                 Ab a2              

For a rectangular section the ratio Ib/Ab is equal to Ib/Ab = t2/12. Then the deformation at the top is 
equal to:
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Dtop   = 2 F a (a/t)2 { 1 – C + ¼ (t/a)2 (f/a)2 cos2 b  +  ¼ C ×(t/a)2 }    → 
        EAb cos b                                                             

Dtop  =  2 F { (1 – C) (a/t)2  + ¼ (f/a)2 cos2 b  + ¼ C }             [3.32’]
  a        EAb cos b                                                             

The factor C shows the effect of the thrust. For C = 0 the structure is a section-active structure. The 
structure will fail if the bending stress exceeds the ultimate stress. Substitute C = 0 into expression 
(3.32’) to define the deformation of the section-active structure:

Dtop  =  2 F (a/t)2   + F (f/a)2 cos b        
  a          EAb cos b          2 EAb                                                  

For C = 1 the structure is a form-active structure. Substitute C = 1 into expression [3.32’] to define the 
deformation of the form-active structure:

Dtop   =  F [(f/a)2 cos2 b  +  1]        
 a                  2 EAb cos b                                                             

For the form-active structure with C = 1 decreasing the ratio f/a will increase the thrust. To prevent 
asymmetrical buckling the normal stress due to normal load has to be smaller than 1/ncr times the 
buckling stress defined with [3.25] for the chord:

s =  N  <  p2 EIb cos2b   →   Ib   >      ncr s a2              
         Ab        ncr Ab a2          Ab       Eb p2 cos2b

For a rectangular section the ratio Ib/Ab is equal to Ib/Ab = 1/12 t2, then the maximum stress follows 
from:

sc <  p2 Eb (t/a)2 cos2b   
                 12 ncr 

Halfway the twentieth century structures of concrete were designed with a ultimate stress equal to sc = 
8.0 MPa, a safety factor ncr = 5  and a stiffness equal to Ec = 21×103 MPa. For these structures  the ratio 
t/a had to be: t/a > 1/21.  For vaults with a smaller ratio t/a asymmetrical buckling will be critical. 

To prevent asymmetrical buckling of the structure the minimal stiffness follows for the chord from 
[3.25]:

Ncr = p2 EIb cos2 b  >  ncr H      →  EIb > ½ ncr F (a/f) a2 
                 a2                    cos b                        p2 cos3 b

For a rectangular section the ratio Ib/Ab is equal to Ib/Ab = 1/12 t
2 the minimal stiffness follows from:

EAb >  6 ncr F (a/f) × (a/t)2

                p2 cos3 b 

Substituting this stiffness into expression [3.32] gives for a form active structure with C = 1 the 
following deformation at the top:

Dtop <  p2 cos2 b (t/a)2 × (f/a) [(f/a)2 cos2 b  + 1]     
 a 12 n

For f/a = ¼ and t/a = 1/65 the deformation of the vault is equal to Dtop/a = 0.00005 and  Dtop/f = 
0.0002.  As showed before trusses do not fail by snapping through if the deformation is smaller then 
D/f  < 0.32; this vault will not fail by snapping through.
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Non-linear analysis for validation

The following analysis shows the effect of the parameters (rise, span, thickness, ultimate stress and 
stiffness) for the trough vault subjected to a concentrated force F acting at the top.Due to the normal 
force the vault is subjected to a normal stress equal to: s = H/cos b. Substituting H = ½ F C (a/f)  gives:

s = ½ F (a/f) C             with:    C =                                1 – ¼ (t/a)2                                                 [3.29’]
           Ab cos b                                       1+ ¼ (t/a)2 (a/f)2 ( 1/cos2b + cos b EAb/EAt  )

To prevent asymmetrical buckling the compressive stress must be smaller than the buckling stress:
sc = ½ F (a/f) C    <  p2 Eb (t/a)2 cos2b    with ncr > 1             [3.33]
           Ab cos b     12  ncr 

Due to the bending moment the structure is subjected to bending stresses:
s = ½ F a (1 - C)  ×      ncr           with ncr > 1  
           (Ab t/6)             (ncr-1) 

The stress due to the bending and compression must be smaller than the ultimate stress su:
s = ½ F (1 - C)×6 (a/t)  ×      ncr      +  ½ F C (a/f)   < su           [3.34]
                   Ab                              (ncr-1)       Ab cos b  

Next the deformation is defined with [3.32].

For a vault, with parameters t/a, f/a, su, Eb, Et and EAb/EAt , the deformation can be defined with the 
following procedure:

 – Define the factor C with [3.29];

 – Define the ultimate buckling stress [3.33];

 – Define and check the maximum normal stress with [3.34];

 – Define the deformation with [3.32].

THe maximum load F follows from the check for the ultimate buckling stress and the check for the 
normal and bending stress. To prevent asymmetrical buckling  the stress due to the normal force is 
at maximum: To prevent asymmetrical buckling the compressive stress must be smaller than the 
buckling stress [3.33], then the maximum load follows from:

s = ½ F/Ab  <   p2 Eb (t/a)2 ×(f/a) cos3b                  [3.33’]
                                       12 n C

The stress due to the bending and compression must be smaller than the ultimate stress su [3.34], 
then the maximum load follows from:

s = ½ F/Ab <                                              su                                                         [3.34’]
                             6 (1 - C) ×(a/t) ´ n/(n-1) + C (a/f)/cos b 

The maximum load follows from the minimum value of the stress s = ½ F/Ab defined with [3.33’] and 
[3.34’]. Substituting the maximum load into [3.32’] gives the deformation at the top. 

Dtop  =   (½ F/Ab) {4 (1 – C) (a/t)2  + (f/a)2 cos2b  +  C }              [3.32’]
 a                                       Eb cos b                                                             
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Example

Halfway the twentieth century structures of concrete were designed with a ultimate stress equal to sc 
= 8.0 MPa, a safety factor n = 5  and a stiffness Ec = 21× 103 MPa. For this structure the load transfer 
and deformation is defined for t/a  = 1/30, f/a = ¼, EAb/EAt = 3 and cos b = 0.97. Firstly the ratio C is 
defined [3.29’]:

C =                            1 – ¼ × (1/30)2                              = 0.98                       
        1+ ¼ × (1/30)2 × 42 × ( 1/0.972 + 0.97×3)

To prevent asymmetrical buckling the maximum load is defined with [3.33’]:
½ F/Ab  <  p2 × 21000 × (1/30)2 × (1/4) × 0.973    = 0.89 MPa
    12 × 5 × 0.98

The stress due to the bending and compression must be smaller than the ultimate stress, the 
maximum load is defined with [3.34’]:

½ F/Ab <                      8.0                                           = 0.94 MPa  
                     (1 – 0.98) × 6 × 30 ×  5/(5-1) + 0.98×4/0.97 

Comparing both values gives the maximum load: ½ F/Ab <  0.89 MPa. Substituting this load into 
(3.32’’) gives the maximum deformation at the top:

Dtop  =  0.89 × {4 (1 – 0.98) 302 + (¼)2 ´ 0.972 + 0.98}  = 0.003
   a                          21000 × 0.97                                                             

The deformation is very small, snapping through will not be critical.

Decreasing the ratio f/a

Next the ratio f/a is decreased,  f/a = 1/10 and cos b = 0.995:
C =                           1 – ¼ × (1/30)2                                         = 0.9                       
        1+ ¼ × (1/30)2 × 102 × ( 1/0.9952 + 0.995×3)

To prevent asymmetrical buckling the maximum load is defined with [3.33’]:
½ F/Ab  <  p2 × 21000 × (1/30)2 × (1/10) × 0.9953    = 0.42 MPa
        12 × 5 × 0.9

The stress due to the bending and compression must be smaller than the ultimate stress, the 
maximum load is defined with [3.34’]:

½ F/Ab <                  8                                                 = 0.25 MPa  
                      6 × (1 – 0.9) × 30 × 5/(5-1) + 0.9 × 10/0.995 

Comparing both values gives for the maximum load:  ½ F/Ab <  0.25 Mpa. Substituting this load into 
(3.32’’) gives the maximum deformation at the top:

Dtop  =  0.25 × {4 ×(1 – 0.9) × 302 + (1/10)2 × 0.9952 + 0.9} = 0.004
  a                                         21000  × 0.995 

The deformation is very small, snapping through will be not critical. Decreasing the ratio f/a will 
decrease the maximum load as well. 
To show the effect of the parameters t/a and f/a the following graph is constructed for the trough 
vault subjected to a concentrated load at the top where  ncr = 5, su = 8 MPa,  EAb/EAt = 3   and Eb = 
21000 MPa. For f/a = 0 the thrust is zero, the vault transfers the load as a plate subjected by bending. 
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Decreasing the ratio f/a increases the thrust and decreases the maximum load. Decreasing the depth t 
will  decrease the asymmetrical buckling resistance and decrease the maximum load too.

load/area 
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FIGURE 3.4 Graph showing the maximum load ½ F/A [MPa] for the trough vault subjected to concentrated load acting at the top 
for f/a varying from 0 to 0.5, with ncr = 5, su = 8 MPa, EAb/EAT = 3 and Eb = 21000 MPa.

§  3.5 Effect of the hangers

Adding a hanger between the top and tie will increase the resistance significantly. The tie, tensioned by 
the thrust, will push the top upward if the top is sagging and prevent the structure snapping through. 
The hanger is loaded by a compressive normal force and must be stiff enough to resist the buckling.

 f
           α 

          ½ l = a

s
 q

FIGURE 3.5  Two hinged arch, subjected to equally distributed, with n = 3 hangers 

Palkowski [Pal12] researched the increase of critical buckling load due to the use of ties and hangers. 
The number of the hangers as well as the position and inclination affect the critical buckling load for a 
parabolic pin-ended arch subjected to an equally distributed load. 

The critical buckling load for the asymmetric mode follows from:
qcr = k EI                     [3.35]
           l3  
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For a parabolic arch subjected to an equally distributed load the thrust is equal to:
H =  q l2                      [3.36]
        8 f       

Substituting qcr  [3.35] into [3.36] results in:  
Hcr   = k EI                     [3.37]
           8 f l                               

The maximum normal force acting at the vault at the supports is equal to:
N =  H/cos a                             [3.39]

Where a is the angle with the horizontal axis at the support, with tan a = y’ = 2 f/a
 Substituting Hcr  [3.37] into [3.39] gives:  

Ncr =       k EI                             [3.40]
          8 f l cos a        

The critical buckling force according to Euler [3.3] is equal to: Ncr = p2 EI/ (y s)2  The factor y follows 
from expression [3.40] and [3.3]: 

        k EI       =  p2 EI    →      y = p l   ×  (8 f cos a )½         [3.41] 
 8 f l cos a      (y s)2                                                                                                              s                ( k l )½     

Table 3.5 shows an increase of the buckling load qcr and a decrease of the factor y, if the number 
of hangers  is increased from m = 1  to  m = 3.  Consequently increasing the number of hangers will 
increase the capacity to resist loads.

f/l = 0.1 f/l = 0.2  f/l = 0.3  f/l = 0.4 f/l = 0.5

ratio s/l        0.513        0.549      0.602     0.667    0.739 

cos a        0.928        0.781      0.64     0.53    0.447

m = 1   factor k     28.7     45.5   47.2  44.3  38.6

               factor y        0.99       0.95     0.94     0.92    0.91

m = 3   factor k  101.6 112.4  90.9  68.2  51.5

               factor y       0.52       0.6     0.68     0.74    0.79

TABLE 3.5  Factor k and y  for a pin-ended arch with one vertical hanger (m = 1) and three vertical hangers (m = 3) for varying ratios of 
the rise to span f/l  [Pal12]         

§  3.6 The critical buckling load for arches with a convex tie.

As mentioned before Palkowski [Pal12] researched the increase of critical buckling load due to the 
use of ties and hangers. Due to the asymmetrical deformation of the arch the hangers at the side 
deforming upward are tensioned but the hangers at the side deforming downward are compressed. 
Generally the slender hangers can not resist compressive forces. To resist a compressive force the 
hangers must pre-tensioned, for example by curving the tie upward. The increase of the critical 
buckling force for a parabolic pin-ended arch with a tie curved upward is studied. The arch is subjected 
to an equally distributed load. The tie is curved upward with three hangers. The curvature of the tie is 
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equal to c f at the centre. Due to the curvature of the tie the hangers are subjected to the forces S. For a 
parabolic arch subjected to an equally distributed load and the force S the thrust follows from:

H =     q a2      +    S a                          [3.42]
       2 f (1-c)     f (1-c)        

f     f (1-c)
            

          ½ l = a

s
 q

S H

 f
            

          ½ l = a

s
 q

S+dS

S - dS

H

FIGURE 3.6 Two hinged arch, with 3 hangers and a convex tie, 
subjected to an equally distributed load.

FIGURE 3.7 Two hinged arch,  with 3 hangers and a convex 
tie, subjected to an equally distributed load, deforming 
asymmetrically. 

The tie can not stand any bending moment. The force S follows from the equilibrium of the bending 
moment at the top for  x = 0, Mx = 0 = 0.

Mx = 0 = 3/2 S a –  ½ a S - H c f = 0  →    S = H c f/a        [3.43]

Next the force S [3.43] is substituted into expression [3.42]:
H =     qcr a2       +   H c f a          →    H =      qcr a2                        [3.44]
       2 f (1-c)        a f (1-c)                                             2 f (1- 2 c)

Due to the buckling load the arch is assumed to deform asymmetrical. At a quarter of the span 
the deformation is equal to du. Further the deformation due to the buckling load is assumed to be 
sinusoidal with:dux = du sin (p x/s) Due to the deformation the forces acting on the outward hangers 
increase with dS = k du, k is resiliency of the tie.  The resiliency follows from the equilibrium of the 
bending moments acting on the tie:

M = H du - ½ dS ½ a  = 0     →     dS = 4 H du/a

Substituting dS = k du  gives:         k = 4 H/a          [3.45]

Due to the deformation u = du sin (p x/s) the arch is subjected to bending moments. 

Due to the anti-metrical loads dS acting at the hangers the arch is subjected to reaction forces acting 
at the supports ½ dS. the thrust dH follows from the bending moment at the top:

dH f = dS  ½ a – ½ dS a      →    dH = 0

At a quarter of the span the bending moment due to the load dS is equal to M = ¼ a dS. Due to the 
deformation and the force dS the bending moment acting on the arch is at a quarter of the span:  

Mx = a/2  = N du –  ¼ a dS

With dS = 4 H du/a  the bending moment acting at the arch is:     Mx = a/2   = N du – H du 
Due to this moment the deformation of the arch increases with du/ncr:

 du  = s2 (N – H) du                      [3.46]
 ncr             p

2 EI
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For the critical buckling load qcr the normal force increases to Ncr , and the deformation will increases  
to ncr (du/ncr):

 ncr du  = s2 (Ncr – Hcr) du       →   Ncr = p2 EI  + Hcr       [3.47]
  ncr                 p

2 EI                               s2

At the support the critical normal force is:  Hcr = Ncr cos a. Substituting the thrust into [3.47] gives for 
the buckling load: 

Ncr =         p2 EI                                [3.48]
           (1- cos a) s2

The critical buckling force according to Euler [3.3] is equal to: Ncr = p2 EI/ (y s)2  The factor y follows 
from expression [3.3] and [3.48]:

 p2 EI     =        p2 EI                 →    y = [1- cos a]1/2       [3.49]   
 (y s)2       (1-cos a) s2

For f/l = 0.1 the angle a follows from tan a = 0.4;  substituting cos a = 0.928 into [3.49] gives the 
reduction factor y is equal to: y = (1-0.928)1/2 = 0.14 .  So  for f/l = 0.1  the factor y is smaller than 
0.5. The buckling mode will increase so the buckling force of the arch with a length ½ s will be decisive, 
y = 0.5, this value is approximately equal to the value found in table 3.5.

§  3.7 The critical buckling load for arches connected with 
three hangers tensioned at one side.

Due to the asymmetrical deformation of the arch the hangers at the side deforming upward are 
tensioned but the hangers at the side deforming downward are compressed. Generally the slender 
hangers can not resist compressive forces. Neglecting the compressed  hangers the buckling of the 
arch or vault is only restricted by the hangers at one side. The increase of the critical buckling force for 
a parabolic pin-ended arch due to tensioned hanger at the upward curved side  is studied. 

The arch is subjected to an equally distributed load. Three hangers connect the tie with the arch.  For a 
parabolic arch subjected to an equally distributed load the thrust follows from 

Mx=a = 0:    H =  1/8 q l2/f 

 f
           α 

          ½ l = a

s
 q

dS

FIGURE 3.8 wo hinged arch, subjected to equally distributed, with n = 3 hangers and a convex tie

To define the buckling load the arch is assumed to deforms asymmetrical. For x = ½ a at a quarter 
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of the span the deformation is equal to u. Further the deformation of the arch is assumed to be 
sinusoidal  with:  ux = u sin (p x/s). 
Due to the curvature of the arch the hanger, between the tie and the side of the arch deforming 
upward,  is subjected to a tensile force dS. The hanger, between the tie and the arch deforming 
downward, is subjected to a compressive force, this slender tie will buckle and not transfer a normal 
force. The force acting on the tensioned hanger depends on the resiliency k of the tie: dS = k du . 
The tie can not stand bending moments. The force dS follows from the equilibrium of the bending 
moment at the top for  x = ½ a,  Mx =a/2 = 0.

Mx = a/2 = ¾ dS (½ a) – H u = 0    →    dS = 8/3 H u/a       [3.50]

The resiliency k of the tie  follows from S = k u, thus:   k = S/u = 8/3 H/a      [3.51]

Due to the force dS the arch is subjected to bending, the thrust follows from the equilibrium of 
bending moments at the top:

dH f = ¾ a dS  –  ½ a dS     →    dH = ¼ dS  a/f        [3.52]

At a quarter of the span, for x = ½ a from the top, the bending moment is: 
Mx = ½ a = ¼ dS (½ a) – (¼ dS a/f) ¼ f  ←  Mx = ½ a = 1/16 a dS     

With  dS = k u = (8/3 H/a) u  the bending moment is equal to: Mx = ½ a = 1/6 H u   

Due to the deformation u = du sin(px/s) and the force dS the arch is subjected to bending moments. 
At a quarter of the span the bending moment is equal to:

Mx = ½ a  = N u –  1/16 dS a       

With  dS = k u = (8/3 H/a) u   the bending moment due to the deformation and force dS is equal to: 
Mx = ½ a = N u  - 1/6 H u    

Due to the bending moments the deformation of the arch increases with u/ncr with:
du =   s2 (N du – 1/6 H u )                    [3.53]
 ncr                  p

2 EI

For the critical buckling load qcr the normal force will increase to Ncr and the deformation will increase 
to ncr  (du/ncr ) = du:

du =  s2 (Ncr du – 1/6 Hcr du)       
                     p2 EI

 The buckling load is equal to:  Ncr = p2 EI  +  1/6 Hcr             [3.54]
                      s2

At the support the critical normal force is:  Ncr = Hcr/cos a . Then the buckling load is equal to: 
Ncr =               p2 EI                                [3.55]
            (1- 1/6 cos a) s2

The critical buckling force according to Euler [3.3] is equal to: Ncr = p2 EI/(y s)2  The factor y follows 
from expression [3.3] and [3.55]:

p2 EI   =               p2 EI                    →     y = [1- 1/6 cos b‘]1/2      [3.56]
(y s)2       (1- 1/6 cos a) s2
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For f/l = 1/8 and cos a = 0.894 the reduction factor y is equal to :   y = (1 - 0.894/6)1/2 = 0.92

The reduction of the buckling length, if only the hanger is tensioned between the tie and vault 
deformed upward, is much smaller than the reduction of the buckling length if the tie is curved 
upward to tension all hangers continuously.

§  3.8 Conclusions

Usually the  effect of the stiffness of supports on the critical buckling load is neglected. A tie joining 
the supports of an arch will lengthen and thus decrease the critical buckling load. Possibly neglecting 
the stiffness of the supports can overestimate the critical buckling load and thus cause failure by snap 
through. For Fusée Céramique barrel vaults the asymmetrical buckling mode will be more critical 
than the symmetrical buckling mode. Constructing hangers between the tie and the vault reduces the 
buckling length and increases the buckling force. The buckling force is increased further if the tie is 
convex, so the hangers between the vault and tie are tensioned continuously. For slender arches and 
vaults it can be efficient to curve the ties upward and tension the hangers continuously to reduce the 
buckling length of the arch or vault..
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4 Including time dependent effects 

Structures of concrete are subjected to time dependent material behaviour such as shrinkage and 
creep.  Due to shrinkage and creep of concrete the deformations of the structure are increased. For 
structures composed of multiple materials, the time dependent deformations will cause stresses into 
these materials if the materials are tightly connected and this will change the load transfer. Scherpbier 
describes for reinforced concrete the effect of shrinkage and creep [Sch65]. This chapter describes the 
effect of the time dependent deformations concerning the load transfer for Fusée Céramique vaults 
subjected to a normal force.

§  4.1 Time dependent effects

Shrinkage

Due to shrinkage the concrete will deform. The specific deformation of the concrete due to the 
shrinking is named erc . For concrete we can distinguish between the shrinkage during the setting eca 

and the shrinkage due to drying ecd. The total shrinkage is the sum of these two:  erc= eca + ercd . 

Setting shrinkage

The setting shrinkage develops during the setting of the concrete just after the pouring and can be 
defined according to NEN-EN 1992-1-1, Euro code 2, table 3.2 [C6] with:    

eca = bar × 2.5 × (fck-10) × 10-6

  With: bar = 1 - e-0.2 √t  
   t = the time in days
   fck  = characteristic cylindrical strength of concrete

For example: for  C20/25 the characteristic cylindrical strength is fck = 20 MPa. The setting shrinkage is 
thus:

eca = (1 - e-0.2 √t) × 2.5 × (20-10) × 10-6  = 25 × 10-6 × (1 - e-0.2 √t)

Shrinkage due to drying

The specific deformation of the concrete due to the shrinkage due to drying depends on the humidity 
of the environment and the quality of the concrete. The shrinkage is non-linear during the time and 
can be described with:  

er cd  t = bdr (t/to) kh e rcd  t=∞ 

With:  kh depends on the fictional thickness h0, as shown in table 2: h0  = 2Ac/u  and Ac= area, u = 
perimeter
The ratio bdr (t/to) follows from: 
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b dr (t/to) =           (t - to )                
                         (t-t0) + 0.04 ×ho

3/2

t = time in days, to = time of the start of the drying usually when the concrete is cured.

Table 4.1 and table 4.2 show for the shrinkage the effect of the relative humidity and thickness.  

Environment Relative humidity RH Shrinkage C20/25

dry environment, for example an interior space 60% ercd   = 0.49 ×10-3

exterior 80% ercd   = 0.30 ×10-r

In a humid environment 90% ercd   = 0.17 ×10-3

In water 100% ercd   = 0

TABLE 4.1 The shrinkage of concrete ercd  for  C20/25, t = ∞ according to table 3.2 Euro code 2 [C6] 

h0 k0

    100 1.0

    200 0.85

    300  0.75

> 500 0.7

TABLE 4.2 The ratio k0  for the thickness h0  according to  table 3.3 Euro code 2 [C6]

Due to the shrinkage the concrete will deform, but the fusées and steel reinforcement will not shrink. 
For the Fusée Céramique vaults the concrete is bonded well to the fusées and reinforcement. So the 
deformations of the fusées, reinnforcement and concrete must be equal. The shrinkage of the concrete 
will be compensated by internal forces which will tension the concrete and compress the fusées and 
reinforcement.  To joint the fusée elements the cilindrical top is shoven in the rear of the next element. 
For a cilinder any section, not perpendicular to the main axis, follows an ellipsis. Due to the curvature 
of the vault the cilindrical top of a fusée element is connected at a few concentrated points with the 
cilindrical inner surface of the neighbouring element. During the construction of the vault the concrete 
fills the gaps partly. Due to the shrinkage of the concrete the fusées will be subjected to a compressive 
load. The joints, subjected to concentrated loads will deform. To include the deformation of the joints 
the assumption is made that due to the shrinkage of the concrete the specific deformation of the 
fusées is about:  erf = 0.1 ×10-3  = 0.01%. In a following paragraph the effect of this deformation will be 
analysed.

Creep

Creep is an increase of the deformation caused by a constant load during a certain time. For example 
a structure of concrete subjected to a compressive normal force will deform immediately elastically 
when the load is added. This initial deformation is named the instantaneous deformation. If the load 
is not changed, and held constant the deformation increases. This increased deformation is creep. 
The creep is increasing during the time the load acts on the structure. Thus the creep is the difference 
of the total deformation minus the instantaneous deformation. Generally the instantaneous 
deformation is named e0. For a long period with t = ∞ the increase of the deformation is  Det=∞ = e0 f, if 
the stress in the concrete is less than 0.45 fck. 
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The factor f depends on the quality of the concrete, the age of the concrete, the humidity of the 
environment, the thickness of the sections, the ratio area/surface h0 =2 Ac/u and the time to when 
the load is acting on the structure. The NEN-EN 1992-1-1, Euro code 2, gives tables that define the 
creep factor [C6]. Generally the creep factor of a structure of concrete with a relative humidity of 80% 
is varying from 2 to 3. The creep factor is calculated for C20/25 cement class N and a thickness of 130 
mm for several values of the time of loading t0 in the following table.

  t0 RH = 50% RH = 80%

t0 = 2 f = 4.8 f = 3.6

t0 = 5 f = 3.8 f = 2.9

t0 = 10 f = 3.0 f = 2.2

t0 = 30 f = 1.5 f = 1.2

TABLE 4.3  C20/25 class N, creep factor  according to NEN-EN 1992-1-1 Eurocode 2[C6]: figure 3.1:

If the load is removed the deformation does not return to zero immediately but is only partly reduced. 
Just after the removal of the load the deformation is reduced with a deformation more or less equal 
to the instantaneous deformation. After the removal of the load the deformation is decreased slowly. 
Finally only a small deformation remains. This process is shown in figure 4.1. Firstly the structure is 
subjected to a load at a time t = t1. The specific deformation is equal to the instantaneous specific 
deformation e0. For t = t2 the specific deformation has increased due to creep with ft2 e0.. The sum of 
the specific instantaneous deformation and the specific deformation due to the creep is equal to  
et = e0 (1 + ft2). Next the load is taken away at the time t2. The removal of the load can be modelled 
by loading the structure with a counter load equal to the first load. At the time t2 the deformation is 
reduced with the instantaneous specific deformation e0.  For a time t = t3 the specific deformation is 
increased by the creep too with ft3 e0 . After the time t2 the specific deformation follows from: 

et = e0 +  ft2 e0  - e0 - ft3 e0    

εt  
 
    
   ε0 
 

t1                     t2               t3

εo

FIGURE 4.1  Instantaneous specific deformation and creep in case a structure is subjected to a load from t1 till t2.

For roof structures the permanent load will mostly cause the creep. In the Netherlands the live loads, 
caused by heavy wind, snow or rain will only act for a short period on a roof, so the increased creep due 
to these loads can be neglected. 

TOC



 76 Composite hollow core vaults

§  4.2 Structures loaded by a normal force

For structures composed of several materials the time dependent deformation due to creep and 
shrinkage can affect the internal distribution of the load. Firstly structures of reinforced concrete 
subjected to a normal load are analysed, next structures composed of fusées and concrete and 
structures composed of fusées and reinforced concrete are analysed.

Reinforced concrete

For a structure of reinforced concrete the effect of the time dependent deformations is generally 
modest. Assume a reinforced concrete structure is subjected to a permanent compressive load N. Due 
to this load the instantaneous specific deformation of the steel and concrete is equal to e0. Due to the 
creep of the concrete the specific deformation will rise with f e0.Then the  total deformation is equal to 
e0 (1 + f). The steel rebars and concrete are attached well, so the deformation due to creep results in a 
deformation of the steel too. For the sake of the compatibility an internal force Fc tensions the concrete 
and the rebars are compressed by an internal force Fs. The sum of the internal forces necessarily 
equals to zero: SF = 0, so Fs = Fc. The magnitude of the internal forces thus follows from the equations 
describing the equilibrium of the forces and the compatibility. 

ε0

∆ε

Nc Ns

                        
Fs

                 εrc

 
ε0 ϕ

   Fc

FIGURE 4.2  Deformations due to shrinkage and creep and the compensating forces Fc  and Fs for reinforced concrete

The reinforced concrete structure is subjected to a normal compressive force N. At the time t = 0 the 
load is resisted by the concrete and rebars,  the normal force in the concrete is equal to Nc and the 
normal force acting in the rebars is equal to Ns. The sum of these forces is equal to the load:  
Nc + Ns = N. For a symmetrically loaded structure the specific deformation of the concrete is equal to 
the specific deformation of the reinforcement, thus: 

ec = es  = e0                      [4.1]

According Hooke’s law the forces in the concrete, fusées and reinforcement follow from:
Nc = AEc e0    and     Ns = AEs e0  

Substituting these expressions into [4.1]:   
e0  =  Nc     =  Ns                       [4.2]
           AEc       AEs

Substituting these specific deformations into the expression for the equilibrium of force results in:  
 N = (AEc  + AEs) e0  

With this formula the deformation for t = 0 can be calculated:
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e0 =                N                                         [4.3]
         AEc (1 + AEs/AEc)  

Next the stress in the concrete and the reinforcement is calculated with   sc = Ec e0  and  ss = Es e0.   

Due to the creep and shrinkage the deformation of the structure will increase with De. At time t the 
specific deformation of the structure is: et = e0  + De.  
For the concrete the specific deformation is increased due to the creep with e0 f and due to the 
shrinkage with erc. The deformation of the concrete and steel must be equal, so internal forces must 
equalize the differences. The concrete is loaded by an internal force Fc and the steel is subjected to 
an internal force Fs. Due to the internal force Fc acting on the concrete the specific deformation of the 
concrete decreases by:  Fc/AEc . During the time t  the specific deformation resulting from force Fc  is 
increased by creep with: 

Fc k f/AEc. 

The force Fc is not constant but increasing during the time t. The factor k compensates for the time 
dependency of this force. Scherpbier showed that this factor is equal to k = ½  [Sch65]. The specific 
deformation due to the internal force Fc including the creep is equal to:  

Fc (1+ k f)/AEc. 

For the concrete and the reinforcement the specific deformation is respectively equal to:   
et = e0  + De =   e0   + e0 f + erc  -  Fc (1+ k f)                 [4.4]
               AEc 

et = e0  + De =   e0  +   Fs                         [4.5] 
                                                    AEs 

The deformations are equal so the result of equation [4.4] is equal to the result of [4.5]. Furthermore 
the sum of the internal forces is necessarily zero, thus: Fc = Fs  = F:

e0  + e0  f + erc  -  F (1+ k f)   = e0  +   F          
                                                    AEc                        AEfs               

Next the force F is calculated with:       F =     (e0 f + erc) AEc                   [4.6]
           1 + k f + AEc/AEs 

 After time t the forces acting on the reinforced concrete and the reinforcement are respectively Nc – F 
and Ns + F.

Structure composed of concrete and fusées

For a structure composed of concrete and fusées the effect of the time dependent deformation is very 
significant if the cross-sectional area of the fusées approaches the cross-sectional area of the concrete. 
Assuming that the structure is subjected to a permanent compressive load, this load will result in 
an instantaneous specific deformation e0 . Creep will cause the specific deformation to increase with 
e0.f.  The total deformation is e0 (1 + f ).  Due to shrinkage and creep of the concrete, the structure 
deforms. The fusées and the concrete are attached good enough that they need to follow each other’s 
deformation. The deformation of the concrete is greater than the deformation of the fusées. As a result 
the fusées are subjected to an internal compressive force Ff. The same force Fc acts on the concrete in 
the opposite direction, so the internal force tensions the concrete. The internal forces are necessarily 
equal, thus:  Fc = Ff  = F. The magnitude of the internal forces follows from the equations describing the 
equilibrium of the forces and the compatibility of the materials. For a reinforced concrete structure 
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subjected to a normal compressive load the redistribution of the forces due to time dependent effects 
will now be described.

ε0

∆ε

Nc Nf

Ff

              
εrc

ε0ϕ

              Fc

εrf

FIGURE 4.3 Deformations due to shrinkage and creep and the compensating forces for a structure of concrete and fusées.

A structure is subjected to a normal force N, due to this normal force the concrete and fusees are 
subjected to respectively Nc and NF. The sum of these forces is equl to the load: Nc + NF = N. For a 
symmetrically loaded structure the specific deformation of the concrete and fusées is equal, thus: 

ec =  ef  =  e0                      [4.7]

According to the Theory of Elasticity the forces in the concrete and fusées are respectively: 
Nc = AEc  ec  and N f = AEf   ef  

Substituting these expressions into (4.7) gives:
e0  =  Nc  =  Nf                       [4.8]
           AEc    AEf

Substituting these specific deformations into the expression for the equilibrium of the forces:
N = AEc e0  + AEf e0                      [4.9]

With this expression we can calculate the immediate deformation at t = 0:
e0 =                 N                                                   [4.10]
        AEc [1 + AEf /AEc]      

The stress in the concrete and fusées is respectively equal to:  sc = Ec e0  and  sf = Ef e0.   

Due to creep and shrinkage the deformation of the structure will increase with De. At time t the 
specific deformation of the structure will be equal to: et = e0  + De. For the concrete component the 
specific deformation increases by creep with e0 f and by shrinkage with erc. For the fusées the specific 
deformation is assumed to be increased with erf  due to the deformation of the joints caused by the 
shrinkage of the concrete . The deformation of the concrete and fusées is equal, so the internal forces 
equalize the differences. An internal force Fc loads the concrete and an internal force Ff loads the 
fusées.  The sum of these forces is necessarily zero, thus:  Fc =  Ff  = F.
Due to the internal force Fc acting on the concrete the specific deformation of the concrete decreases 
by:   Fc/AEc.  
During time t, due to this force Fc ,   the specific deformation increases by creep with:  Fc k f/AEc. 
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The force Fc is not constant but increases during the time t, the factor k compensates for the time 
dependency of this force. Scherpbier showed that this factor is equal to k = ½  [Sch65]. The specific 
deformation due to the internal force Fc including the creep is equal to:   

et = Fc  (1+ k f)/AEc                    [4.11]

For the concrete the specific deformation is:     et = e0   + e0  f + erc  -  Fc (1+ k f)     [4.12]
                                                                                     AEc 

For the fusées the specific deformation is:     et = e0   + erf  +  Ff            [4.13]
                                                                 AEf 

Combining [4.12] and [4.13] with Fc = Ff = F gives:   e0   + e0  f + erc  -  Fc (1+ k f)  = e0   + erf   +  Fr          
                                                                                                                                                          AEc                                   AEf     
Next the force F is calculated with:      F =  (e0  f + erc - erf) AEc           [4.14]
                       1 + k f  + AE/AEf

After time t  the forces acting on the reinforced concrete and the fusees are respectively   Nc – F   and    
Nf + F.

Example

For building Q the forces acting at a section are calculated in chapter 5. Due to the permanent load the 
vault is subjected to a normal force equal to N = 48.9 kN. For this example the effect of the rebars is  
neglected. Young’s modulus and  Area for a width of 1.0 m are respectively: 
Concrete:  Ec = 21000 MPa, Ac = 74708 mm2

Fusées:  Ec = 17000 MPa, Ac = 24190 mm2

 Immediately deformation, t = 0. Due to the normal force N = 48.9 kN the specific deformation is:  
e0 =                   48900 × 21000                                      = 0.0247 ×10-3 
          (21000 × 74708 + 17000 × 24190)× 103  

The normal stresses and forces acting on respectively concrete and fusées  follows from: sx = e0  Ex 

Concrete:  sc = 0.0247 × 2.1×104= 0.52 MPa,   Nc =0.52 × 74708 =38.7×103 N
Fusées:  sc = 0.0247 × 1.7×104= 0.42 MPa,   Nc =0.42 × 24190 =10.2×103 N

Time dependent deformation, t = ∞.

Due to shrinkage and creep the load distribution changes. After time t the forces acting on the  
concrete and the fusées are respectively Nc – F and Nf + F. The force F follows from (4.14). 

F = (e0 f + erc - erf) AEc            
        1 + k f + AEc/AE

With:  e0  =  0.0247 ×10-3;  erf  =  0.10 × 10-3;  erc  =  0.38 × 10-3; f = 4.0 and  k = 0.5

F =  (0.0247×10–3 × 4.0 + 0.38×10–3 - 0.10×10–3) ×74.708×103×2.1×104  = 87.4  × 103 N 
          1 + 0.5× 4.0  + (74.708 × 103 × 2.1 × 104)/(24.29 × 103 × 1.7 × 104)
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After time t the forces acting on the concrete and the fusées are respectively:
Nc – F = -38.7 + 87.4 = +48.7 kN  sc = + 0.65 MPa
Nf + F = -10.2 -  87.4 = - 77.2 kN  sf =  - 3.18 MPa

Due to the time dependent deformations the fusee’s are compressed and the concrete section is 
tensioned.
Possibly for a not curved structure the joints between fusées don’t deform  much. Then the forces and 
stresses due to the time dependent the deformations will be much larger than for a curved structure.
The following calculation show the effect of the decreasing deformation of the joints, assuming  the 
fusées are jointed well so these joints do not deform: erf  =  0. After time t the forces acting on the 
reinforced concrete and the reinforcement are respectively Nc – F and Nf + F. The force F follows from 
(4.14). 

F = (e0 f + erc - erf) AEc            
        1 + k f + AEc/AE

With:  e0  =  0.0247 ×10-3;  erf  =  0;  erc  =  0.38 × 10-3; f = 4.0 and  k = 0.5

F =              (0.0247×10–3 × 4.0 + 0.38×10–3 ) ×74.708×103×2.1×104                    = 110.5  × 103 N 
          1 + 0.5× 4.0  + (74.708 × 103 × 2.1 × 104)/(24.29 × 103 × 1.7 × 104)

After time t the forces acting on the reinforced concrete and the reinforcement are respectively:
Nc – F = -38.7 + 110.5 = +   71.8 kN  sc = + 0.96 MPa
Nf + F = -10.2 -  110.5 = - 120.7 kN  sf =  - 4.99 MPa

Neglecting the deformation of the joints of the fusées due to the shrinkage of the concrete increases 
the forces and stresses substantially. 

Structure composed of concrete, fusées and steel 

Assuming a concrete structure is composed of concrete and fusées and reinforced with steel rebars, 
the structure is subjected to a permanent compressive load N. Due to this load the instantaneous 
specific deformation is equal to e0. Due to the normal force the concrete, fusées and steel are 
subjected to respectively a force Nc, Nf and Ns. The sum of these three forces is equal to the load:

 Nc  + Nf  + Ns = N                      [4.15]

For a symmetrically loaded structure the specific deformation of the concrete, fusées and 
reinforcement will be equal, thus: 

 ec = ef  = es =  e0.                      [4.16]

According to Hooke’s law the forces in the concrete, fusées and reinforcement follows from 
respectively:  Nc = AEc ec ;  Nf = AEf ef ;  Ns = AEs es  

Substituting these expressions into (4.16):   e0  = Nc  =  Nf   =  Ns           [4.17]
                    AEc     AEf         AEs

Substituting these specific deformations into the expression for the equilibrium of the forces [4.15]:
N = AEc e0  + AEf e0  + AEs e0                     [4.18]
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With this expression we can calculate the instantaneous deformation for t = 0:
e0  =           N                                     [4.19]
        AEc + A Ef  + AEs   

The stress in the concrete is: sc = Ec ec.   Substitution of e0  into this expression results in:
sc   = Ec  ec  = Ec  e0     →      sc   =                         Ec N                               →
                                                                AEc [1 + AEf/AEc  + AEs/AEc]   

sc   =         N            with:  mEA, t=0 = 1 + AEf/(AcEc)  + AEs/AEc         
           AEc mEA, t=0

ε0

∆ε

Nc           Nf            Ns

Ff            Fs

              εrc

ε0ϕ
              Fc

εrf

FIGURE 4.4 Time dependent deformations for a structure composed of concrete, steel  and  fusées 

Due to creep the specific deformation will rise with f e0. The total deformation is e0 (1+f). The 
magnitude of the internal forces follows from the equations describing the equilibrium of the forces 
and the compatibility. For a concrete structure composed of three materials, concrete, fusées and steel 
reinforcement, subjected to a normal compressive load the redistribution of the forces due to the time 
dependent effects will be described. Due to creep and shrinkage the deformation of the structure will 
increase with De. For a time t the specific deformation of the structure is :   et = e0  + De.  

For the concrete the specific deformation is increased due to the creep with e0 f. Due to shrinkage the 
specific deformation is increased with  erc. For the fusées the specific deformation will increase due 
to the deformation of the joints with erf. The materials of the composite structure are attached firmly 
thus the deformations of the three materials must be equal. For a time t the specific deformation of 
the structure is equal to: et = e0  + De. Due to the deformation of the concrete the fusées and steel must 
deform too. The steel and fusées are subjected to internal compressive forces respectively Fs and Ff. 
The concrete is subjected to an internal tensile force Fc. The internal forces are in balance, thus: 

Fc + Ff  + Fs = 0.

If the concrete is deformed and the fusées and reinforcement are lengthened then the tensile force in 
the concrete is compensated by the compressive forces in the fusées and reinforcement: 

Fc = Ff  + Fs .

Due to the internal force Fc acting on the concrete the specific deformation of the concrete decreased 
by Fc/AEc. During the time t  the specific deformation due to the force Fc  is increases by creep with 
Fc k f/AEc. The force Fc is not constant but increasing during the time t, the factor k compensates for  
the time dependency of this force. Scherpbier showed that this factor is equal to k = ½ [Sch65]. The 
specific deformation due to the internal force Fc including the creep is: 

et = Fc (1+ k f)/AEc .
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The specific deformation for the concrete is:      et = e0  + De =   e0  + e0 f + erc  -  Fc (1+ k f)     [4.20]
                              AEc 

The specific deformation for the fusées is:   et = e0  + De =   e0  + erf +   Ff          [4.21]
                                                                   AEf 

The specific deformation for the rebars is:   et = e0  + De =   e0  +   Fs           [4.22]
                                                       AEs 

Combining [4.21] and [4.22] results in:   e0  + erf +  Ff   = e0  +  Fs    →  Ff = Fs AEf    - erf AEf   [4.23]

                                                            AEf             AEs                      AEs

Combining [4.20] and [4.22] gives:       e0  + e0 f + erc  -  Fc (1+ k f) =   e0  +  Fs             →  
                                                                                                                                        AEc                         AEfs    

Fc =  -        Fs  AEc         +  (e0  f + erc) AEc                  [4.24]
              AEs (1+ k f)            (1+ k f)       

Substituting Ff  [4.23] and Fc [4.24] into the expression for the equilibrium of the forces: Fc = Ff  + Fs  
-     Fs AcEc      +   (e0 f + erc)  AEc  =  Fs AEf    -  erf AEf + Fs               
   AEs (1+ k f)              (1+ k f)                  AEs

Next the force Fs is calculated with:
Fs [ 1 +  AEf  +       Fs AEc          ] = (e0 f + erc ) AEc   +  erf AEf  

                            AEs      AEs (1+ k f)           (1+ k f)  
            

Fs = AEs [(e0 f + erc ) AEc/ (1+ k f) + erf AEf   ]                  [4.25]
                      AEc/(1+ k f) + AEf  + AEs 

With Fs the force Ff follows from [4.23]:  Ff = Fs AEf  -  erf  AEf                         
                   AEs  

The force Fc follows from the equilibrium of the internal forces:  Fc = Ff  + Fs 

After the time t the forces acting on the structure composed of concrete, fusées and steel become 
respectively for the concrete, fusées and reinforcement: Nc – Fc.;  Nf +  Ff;  Ns + Fs.. Chapter 5 shows for 
building Q the time dependent effects.

Example: calculation of the stresses including time dependent effects

For the parabolic vault, as described by Van Eck and Bish in Cement [Eck54], the stresses are 
calculated for loads acting immediately as well as for loads acting during a long time including time 
dependent effects.  The vault has a span of l = 24 m and a rise of f = 3.0 m. The thickness of the vault is  
200 mm.  
Permanent load width 1.0 m:  Dead weight:     2.9 kN/m
  finishing and ceiling:  0.4 kN/m
  Total permanent load:   3.3 kN/m

The stiffness of the concrete and fusées is still calculated with Ef = 21000 MPa. Young’s modulus, Area 
and second moment of the Area for the vault reinforced with distribution bars, width 1.0 m:
Concrete:  Ec =    21000  MPa  Ac = 89.4 × 103 mm2 Ic = 399 × 106   mm4

Fusées:  Ef =    17000   MPa  Af = 48.4 × 103 mm2 If= 128 × 106    mm4

Rebars:  Es = 2.1×105  MPa   As = 558 mm2  Is=      3.7 × 106 mm4
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Forces due to the permanent load

Vertical reactions acting at the supports:  V = ½ q l = ½ × 3.3 × 24 = 39.6 kN

Thrust:      H = q l2  =  3.3 × 242  = 79.2 kN
                                  8 f             8 × 3
For x = 6.0 m the resulting normal force is:   N = (V2 + H2)0.5 = 81.6 kN

Immediately deformation, t = 0, permanent load

Due to the normal force the concrete, fusées and steel are subjected to respectively a force Nc, Nf and 
Ns. The sum of these three forces is equal to the load:  Nc  + Nf + Ns = N 
According to the Theory of Linear Elasticity the forces in the concrete, fusées and reinforcement 
follows from: Nc = AEc ec;  Nf = AEf  ef ;   Ns =  AEs es  

Substituting now these forces in the expression of the equilibrium of forces: 
N = AEc ec  + AEf ef  + AEs es  

For a symmetrical loaded structure the specific deformation of the concrete, fusées and reinforcement 
will be equal, thus:  ec = ef  = es =  e0. 

e0  =    Nc   =   Nf   =  Ns   
           AEc     AEf     AEs   

Substitution of the specific deformations in the equation showing the equilibrium of the forces gives 
fot the specific deformation: 

e0 =             N                  =         N                 with:  mEA  t=∞ = 1 + AEf /AEc + AEs /AEc

         AEc + AEf + AEs         AEc mEA  t=∞  

 mEA t=∞  =  1 + 48.4 × 103 × 17000   +        558 × 2.1×105         = 1.5
                            89.4 × 103 × 21000        89.4× 103 × 21000

The specific deformation is:  e0 =                   81600                            = 0.029 ×10-3 

                                                                           89.4 × 103 × 2.1 × 104 × 1.5 

The normal stress and force in the concrete, fusées is and reinforcement is respectively with sx =  e0 Ex   

and Nx =sx Ax::

sc =  0.029×10-3× 2.1 × 104  = 0.61 MPa        Nc = 0.61 × 89.4 × 103 =  54.5×103  N       

sf  = 0.029×10-3× 1.7 × 104  = 0.49 MPa        Nf = 0.49 × 48.4 × 103 =  23.7×103  N               

ss =  0.029×10-3× 2.1× 105  =  6.09 MPa                                                               Ns = 6.09 ×  558  =       3.4×103   N          

Instantaneous deformation, t = 0, variable load

Symmetric live load, q = 1.0 kN/m. 
Vertical reactions acting at the supports: V = ½ q l = ½ × 1.0 × 24 = 12.0 kN
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Thrust:        H =  q l2  =  1.0 × 242 =   24.0 kN
                                  8 f            8 × 3

For x = 6.0 m the resulting normal force is:  N = (V2 + H2)0.5 = 24.73 kN

According to the Theory of Linear Elasticity  the specific deformation follows from: 
e0 =             N                  =        N                  with:  mEA  t=∞ = 1 + AEf /AEc + AEs /AEc

         AEc + AEf + AEs         AEc mEA  t=∞  

 mEA t=∞  =  1 +   48.4 × 103 × 17000   +        558 × 2.1×105       = 1.5
                              89.4× 103 ×  21000          89.4× 103 × 21000

Specific deformation is:     e0 =                          24730                      = 0.00878 ×10-3 
                                                               89.4 × 103 × 2.1 × 104 × 1.5 

The normal stress and force  in the concrete, fusées and reinforcement is respectively: 

sc =  0.00878×10-3× 2.1×104  = 0.184 MPa         Nc = 0.184×89.4×103 = 16.5 × 103  N       

sf  =  0.00878×10-3× 1.7×104  = 0.15   MPa         Nf = 0.15×48.4×103 =     7.3 × 103  N               

ss =  0.00878×10-3× 2.1×105  =  1.85   MPa                                                               Ns = 1.85 ×  558   =      1.0 × 103  N          

Instantaneous deformation, t = 0, variable load acting at one side

Asymmetric live load, q = 1.0 kN/m. Vertical reactions acting at the supports: 
VA = ¼ q × ½ l = ¼ × ½ × 1.0 × 24 = 3.0 kN 
VB = ¾ q × ½ l = ¾ × ½ × 1.0 × 24 = 9.0 kN

Thrust:   H =  q l2   =  1.0 × 242 = 12.0 kN  
                          16 f          16 × 3

Shear force for x = 6.0 m:  V x = 6 = ¾ q × ½ l - ¼  q × ½ l = 12.0 – 6.0 = 3.0 kN

For x = 6.0 m the resulting normal force is :  N = (V2 + H2)0.5 = 12.369 kN

According to the Theory of Linear Elasticity  the specific deformation is given by: 
e0 =              N                  
        AEc  + AEf   + AEs   

The specific deformation is :  e0 =        N                 
                                                                        AEc mEA  t=∞  

Where:   mEA t=∞  =  1 +   48.4 × 103 × 17000  +     558 × 2.1×105         = 1.5
                                           89.4× 103 ×  21000      89.4× 103 × 21000

Specific deformation is:    e0 =                       12369                        = 0.0044 ×10-3 
                                                              89.4 × 103 × 2.1 × 104 × 1.5 

The normal stress and force acting in the concrete, fusées and reinforcement is respectively: 
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sc =  0.0044 ×10-3× 2.1×104  = 0.09 MPa         Nc = 0.09 × 89.4×103 = 8.1 × 103  N       

sf  =  0.0044 ×10-3× 1.7 ×104  = 0.08 MPa         Nf = 0.08 × 48.4×103 =  3.9 × 103  N               

ss =  0.0044 ×10-3× 2.1×105  =  0.92 MPa                                                               Ns = 0.92 ×    558       =   0.5 × 103  N          

symmetric asymmetric

perm. Load live load perm. + live load live load perm. + live load

Shear force, x = 6.0 m V 19.8 kN 6 kN 25.8 kN      3 kN 22.8 kN

thrust: H 79.2 kN 24 kN 103.2 kN 12 kN 91.2 kN

Normal force: N 81.6 kN 24.7 kN 106.3 kN 12.4 kN 94.0 kN

TABLE 4.4 Resulting forces conform the Theory of Elasticity, for t = 0, x = 6.0 m

symmetric asymmetric 

stresses perm. Load 
MPa

live load 
Mpa

perm. + live  
MPa

live load 
MPa 

perm. + live 
load   MPa 

concrete normal stress sc  -0.61 -0.18 -0.80 -0.09 -0.70

 fusées: normal stress sf  -0.49 -0.15 -0.64 -0.08 -0.57

reinforcement,: normal stress ss -6.09 -1.85 -7.94 -0.92 -7.01

concrete: bending stress sc    0 ±1.78 ±1.78

TABLE 4.5 Resulting stresses conform the Theory of Elasticity, for t = 0, x = 6.0 m

Time dependent deformation

Due to the creep and shrinkage the deformation of the structure will increase. The assumption is made 
that for this vault the specific deformation of the concrete due to shrinkage is about erc = 0.4 × 10-3, 
and the specific deformation of the fusées due to the deformation of the joints is about erf   = 0.1 × 10-3.
Further for this vault the creep factor is assumed to be equal to f  = 3. Due to the creep and shrinkage. 
the normal load acting on a structure composed of fusées, steel and concrete will be redistributed over 
the components during the life time .The redistribution is calculated with internal forces.The steel and 
fusées are subjected to internal compressive forces respectively Fs and Ff.  and the concrete is subjected 
to an internal tensile force Fc. for the permanent load the internal force Fs is calculated with [4.25]:

Fs = AEs  [ (e0 f + esc) AEc/(1+ k f)  + esf AEf   ]                [4.25]
                      AEc / (1+ k f) + AEf  +AEs 

Fs=  558×210000 × [ (0.029×10-3×3 + 0.4×10-3)×89400×21000/(1+½×3) + 0.1×103×48400×17000] 

                    89.4×103× 21000/(1+ ½×3) + 48.4×103×17000) + 558×2.1×105

Fs =   31.1×103 N     

For the fusées the internal force Ff follows from:  Ff = Fs AfEf    - erf AfEf    →                                      
                   AsEs      

Ff = 31.1 × 103× 48.4 ×103× 17000  – 0.1 × 10-3 × 48.4 ×103× 17000  = 135.7 × 103 N 
           558 × 2.1 × 105 
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The force Fc follows from:  Fc = Ff  + Fs   →   Fc = 31.1×103 + 135.7×103 = 166.8 × 103 

After the time t = ∞ the forces and  normal stresses acting on the structure composed of concrete, 
fusées and steel become respectively:

Nc  – Fc = - 54.5×103 + 166.8 ×103  = +   12.3 × 103 N          sc = + 1.3 MPa        

Nf  + Ff   = -27.6×103 – 135.7 × 103  = - 163.3 × 103 N sf = -  3.4 MPa        

Ns +  Fs  =  -   3.4×103 –   31.1 × 103 = -    34.5 × 103 N              ss = -61.8 MPa                                                               

Possibly the tensile forces acting on the concrete are increased due to varying thermal expansion of the 
fusées and concrete.

Cracked structure

The concrete is tensioned so it is possible that concrete sections will crack. In a crack the load is 
transferred by the fusées and reinforcement. The force in the concrete is zero, thus: 
Nc  – Fc = 0.  The load is transferred by the fusées and the reinforcement:  

N = (Nc  – Fc) + (Nf  + Ff) + (Ns + Fs)        

The specific deformation of the fusées is equal to the specific deformation of the steel, thus:
et =  Ns+Fs   =  erf  +  Nf + Ff     →   (Nf  + Ff)  =   AEf  ( Ns + Fs   -   erf)  
          AEs                         AEf                                                                                                      AEs 

The force (Ns + Fs) follows from the equilibrium of forces: 

N = AEf  (Ns+Fs   -  erf ) +  (Ns + Fs)       →   (Ns + Fs)   =    AEf   erf   +  N          
                     AEs                                                 AEf /AEs  + 1 

(Ns + Fs )  = 48.4 × 103 ×1.7 × 104 × 0.1×10-3  +  81.6 ×103  = 20.4 × 103 N
                        48.4 × 103 × 1.7 × 104/(558 × 2.1× 105 ) +  1   

The force acting at the fusées follows from:  (Nf  + Ff)  =  AEf  ( Ns + Fs    -  erf   )  →  
                                                                                                                                         AEs                                                                

(Nf  + Ff)  =  48.4 × 103 × 2.1 × 104 × (     20.4 × 103            - 0.1×10-3 ) = 61.0 × 103 N 
                                                                                558 × 2.1×105  

The force acting on the concrete is:      Nc  = 0         
The force acting on the fusées  is:      (Nf  + Ff)   =  61.0 ×  103 N
The force acting on the reinforcement is:    (Ns  + Fs)   =  20.4 ×  103 N
The normal stress in the concrete is:     sc = 0 MPa        
The normal stress in the fusées is:      sf = (Nf  + Ff) /Af  = -    1.3 MPa        
The normal stress in the reinforcement is:    ss = (Ns  + Fs) /As =  - 36.6 MPa                                                               

Due to the cracking the stresses are decreased. The time dependent values are calculated for a creep 
factor f = 3. If the concrete is cracked then the compressive stress is nihil, so the loading acting on the 
concrete can be assumed as taken away. The concrete deforms by creep if it is subjected to a load, so 
the creep acts only during the period before the cracking. Thus the effect  of the creep is very limited. 
The resulting forces and stresses (exclusive of second order effects) are given in the following tables.
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  Normal force Internal force Resulting force Resulting stress 

concrete: -54.5 kN + 166.8 kN  +112.3 kN + 1.3 MPa 

fusées: -23.7 kN – 135.7 kN -  159.4 kN     3.3 MPa

Reinforcement -3.4    kN  -     31.1 kN            34.5 kN     -61.8 MPa     

TABLE 4.6  Resulting forces due to the permanent load, including time dependent effects t = ∞.

 Resulting force Resulting stress 

concrete:      0     kN          0 MPa 

fusées: -61.0 kN -   1.3 MPa

reinforcement -20.4 kN     -36.6 MPa     

TABLE 4.7  Forces and stresses due to the permanent load,  including time dependent effects t = ∞, in case the vault is  cracked.

§  4.3 Neglecting the fusées, load transfer by concrete and steel

The fusées can transfer the load only in case the fusées are joined properly, it is quite conceivable that 
due to bad handling the fusées are not joined together and thus cannot transfer any loads. To show the 
effect of the fusées the forces are calculated in the vault composed of reinforced concrete in case the 
fusées are not joined properly and cannot transfer the load. 

Instantaneous deformation, t = 0

Due to the normal force the concrete, fusées and steel are subjected to respectively a force Nc and 
Ns. The sum of these three forces is equal to the load: Nc  + Ns = N  According to the Theory of Linear 
Elasticity the forces in the concrete, fusées and reinforcement follow from: Nc = AEc ec  and Ns = AEs es. 
Substituting these forces into the expression of the equilibrium of forces:  N = AEc ec  + AEs es  

For a symmetrical loaded structure the specific deformation of the concrete and reinforcement will 
necessarily be equal, thus:  ec =  es =  e0. 

e0  =  Nc   = Ns   

         AEc         AEs

Substitution of the specific deformations in the equation of the equilibrium of forces results in: 
e0  =       N           e0  =        N           
         AEc  + AEs       AEc mEA t=∞

 Where:  mEA t=∞ = 1 + AEs    =  1 +        558 × 2.1×105      = 1.06
                                                   AEc                  89.4 × 103 × 21000

Specific deformation is:  e0 =                    81600                                = 0.041 ×10-3 

                                                                 89.4 × 103 × 2.1 × 104 × 1.06 

The normal stress in the concrete and reinforcement is respectively: 
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sc  = e0 Ec = 0.041×10-3 × 2.1 × 104  = 0.9  MPa        
ss  = e0 Es = 0.041×10-3 × 2.1 × 105  = 8.6  MPa                                                               

The forces acting on the concrete and steel are respectively:
Nc = sc Ac = 0.9 × 89.4 × 103 =  76.9 × 103  N       
Ns = ss As  = 8.6 × 558  =  4.8 × 103  N          

Time dependent effect t = ∞

Due to creep and shrinkage the deformation of the structure will increase with De. At time t =  ∞  the 
specific deformation of the structure is equal to: et=¥  = e0  + De.  Due to shrinkage the concrete deforms. 
The specific deformation of the concrete due to the shrinking is erc . For this structure the assumption 
is made that the specific deformation of the concrete due to shrinkage is erc  = 0.4 ×10-3. 
Due to creep a concrete structure subjected to a compressive load will deform during its life time 
with f e0 . The total deformation of the concrete is equal to e0 (1+f). For this concrete structure in 
compression the creep factor is assumed to be equal to f  = 3.  Due to the deformation of the concrete 
the steel must necessarily deform also. The steel is subjected to internal compressive forces  Fs and the 
concrete is subjected to an internal tensile force Fc. The internal forces are in balance, thus: Fc = Fs=F
The internal force F is calculated with [4.6]:       

F =     AEc ( e0  f + erc )           
     (1+ k f + (AEc)/AEs

F = (89.4 × 103 × 21000) × ( 0.041 ×10-3 × 3 + 0.4 × 10-3 )  = 53.0×103 N     
            1+ ½ × 3 + (89.4× 103 × 21000)/(558 × 2.1 × 105) 

The force acting on the concrete and reinforcement is respectively:
Nc  – F = -76.9 × 103 +  53.0 ×103 = -23.9 × 103 N          
Ns +  Fs  =  -4.8 × 103 –  53.0 ×103 = -57.8 × 103 N              

The normal stress in the concrete is:     sc = Nc/Ac =      -  0.3 MPa        
The normal stress in the reinforcement is :    ss = Ns/As = - 103.6 MPa                                                               

The concrete and steel are both compressed. For this structure it seems preferable to join the 
fusées badly so that the loads are transferred only by the steel and the concrete. Thus the concrete 
is compressed by the permanent load. The stiffness of the vault is not reduced by cracks caused by 
the redisribution of the load. The concrete is tensioned and perhaps cracked only due to bending 
moments caused by asymmetric loads.

§  4.4 Time dependent effects and increasing buckling risk

A structure subjected to a normal load can fail due to the buckling. Assume a column is subjected to 
a compressive normal load N acting centrically. The column is supported at the ends by hinges. The 
column is not completely straight but slightly curved. Halfway up the column the deformation is equal 
to u0.  Due to the normal load and the curvature the column is subjected to bending moments. The 
maximum moment acting halfway is equal to M0 = N u0 . The column will deform due to this bending 
moment with u0/ncr. 
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Due to the deformation  u0/ncr  the bending moment increases with:   M0/ncr =  N u0/ncr. 
The column will deform due to this bending moment with u0/ncr

2. Due to the deformation u0/ncr
2 the 

bending moment increases with M0/n2 = N u0/ncr
2, and so on.

The total deformation follows from:     utot = u0 + u0/ncr + u0/ncr
2 …=  u0  + u0/(ncr-1)

The total bending moment now becomes:   Mt = ncr M0/(ncr- 1)

Due to creep the deformation will increase. Assuming the increase of the deformation due to the creep 
is equal to Du∞. The bending moment increases to N Du∞. The increase of deformation follows from:

Du∞  =  f u0       +   N Du∞  ×  u0 (1+  k f )   
            (ncr- 1)        Mt                          (ncr- 1)      

Substituting Mt =  N ncr u0:  Du∞       f u0          +  (1 + k f) N Du∞ u0            →     
                                        ncr- 1       (ncr- 1)              N ncr u0                                        

Du∞  -  Du∞ (1 + k f)  =    f u0                →    Du∞ =           ncr  f u0             
                          ncr              (ncr- 1)                                     (ncr- 1) (n - k f - 1

The total bending moment is:    Mt∞ = N u0 ncr  + N Du∞            →                                                                              
        ncr - 1

Mt∞ =     ncr      ×     N u0     +    ncr  N u0 f                       →  Mt∞ = N u0  ncr ×  (ncr – k f - 1 + f)      
           (ncr- 1)    (ncr- 1)      (n - k f -1)                               (ncr - 1)          (ncr - k f -1

Due to the creep the bending moment is increased with the factor: 
          ncr - 1 – k f  + f          [4.26]
                      ncr - 1 -  k f 

For k = ½ the factor becomes:          ncr – 1 + ½ f            
                                                                        ncr - 1 - ½ f
For ncr = 5 en f= 3 the factor becomes 11/5,     Mt = M0 ×       5      ×  11/5 = 2.75 M0  
                                                                                                                           (5 - 1)      

Approach

In practice the increase of the second order effects is approximated often by reducing the stiffness EI0 
with a factor (1 + f), so: EI∞ = EI0/(1 + f). 
Due to the reduction of the stiffness the buckling ratio n is decreased with: ncr∞ = ncr/(1 + f). 
The bending moment including creep effects is:   Mt∞ = N u0 ncr∞ /(ncr∞ - 1)        
Substituting ncr∞ = ncr/(1+ f):           Mt∞ =  N u0  ncr/(1 + f)  
                                                                             ncr/(1 + f) - 1        
Multiply counter and nominator with (1+ f):    Mt∞ =     N u0    ncr     

                (ncr - 1 - f )       

Due to second order effect and creep the bending moment M0 increases with the factor ncr/( ncr -1 - f )   
For ncr = 5 and f= 3 the bending moment becomes:   Mt = 5 M0 > 2.75 M0  

Comparing the values with the values found for the former calculation shows that the result is negative 
especially for larger values of f.  The approach is on the safe side.
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Example including second order effects

For the parabolic vault, as described by Van Eck and Bish in Cement [Eck54], the second order effect 
is calculated for loads acting immediately as well as for loads acting during a long time including time 
dependent effects.  
t = 0, Young’s modulus, Area and second moment of the Area:
Ec =  2.1× 104 MPa   Ac = 89.4 × 103 mm2   Ic = 399     ×106 mm4 
Ef =  1.7× 104 MPa   Af = 48.4 × 103 mm2  If = 128     ×106  mm4  
Es = 21  × 104 MPa   As = 558 mm2           Is =     3.7 ×106  mm4

The stiffness of the structure is defined with:    EI t=∞  = EIc + EIf + EIs  

This expression can be rewritten into:     EI t=∞  = EIc mEI  t=∞   w   with:   mEI t=∞ = 1 + EIf/EIc + EIs/EIc 

Substituting the second moment of the area and Young’s modulus for concrete, fusées and 
reinforcement gives:

mEI t=∞ = 1 + 17000 × 128 ×106   +  2.1 × 105 × 3.7 × 106  = 1.35
                        21000 × 399 × 106           21000 × 399 × 106

The stiffness of the structure is: EIt=∞ = EIc × 1.35 = 21000 × 399 × 106 × 1.35 = 11.3 × 1012 Nmm2

For a vault the buckling force is defined conform the expression defined by Timoshenko, see [Tim52]:
Ncr =  EI [p2/f2 - 1]                    [2.6]
                      R2

The radius is equal to  R = 26.8 m and the angle is equal to f = 0.46 radians. Substituting these values 
into expression [2.6] to define the buckling force results in: 

Ncr =   11.3 × 1012  [p2/0.462 - 1]  = 718 × 103 N
                   26.82 ×106 

Asymmetrical loading, including creep

Loads:  dead load:  2.9 kN/m2

   finishing and ceiling:  0.4 kN/m2

   total permanent load:  3.3 kN/m2

   asymmetrical live load: 1.0 kN/m2

Due to the permanent load and asymmetrical live load the vault is subjected to the following forces 
and bending moments.
Vertical reactions:   VA = ½ qg × l + ¼ qe × ½ l = ½ × 3.3 × 24 + ¼ 1.0 × ½ × 24 = 42.6 kN/m
                                         VB = ½ qg × l + ¾ qe × ½ l = ½ × 3.3 × 24 + ¾ 1.0 × ½ × 24 = 48.6 kN/m
Thrust:  H = qg l2  + qe l2   =  3.3 × 242 + 1.0 × 242 =  91.2 kN/m                                   
         8 f      16 × f         8 × 3           16 × 3

The bending moment is at maximum for x = ¼ l, the normal force at this position is :
 V =  48.6 – 4.3 × ½ × 12 = 22.8 kN,   H = 91.2 kN  

 N = (V2 + H2)0.5 = 94 kN
Bending moment: Mo = qe l2  = 1.0 × 242 = 9.0 kNm
                   64               64            

TOC



 91 Including time dependent effects 

Due to the second order effects the bending moment will increase:  M = Mo + N D n     
                                                                           n -1 
The curvature of the bending moment is taken as sinusoidal. Using this assumption the deformation 
of the vault due to the bending moment can be calculated with:

D =       Mo l2           
       EI × 4 × p2       

Substitute EI, l and Mo:   D =    Mo  l2               →   D =   9 × 106 × 242 × 106    = 11.6 mm
                                                           EI × 4 × p2           11.3 × 1012 × 4 × p2      
 
 The ratio of the buckling and normal force is:     ncr = Ncr/N = 718/94 = 7.6

The bending moment including second order effects is:
Mt = Mo +  N D n    =  9.0 × 106 + 94 × 103 × 11.6 × 7.6  = 10.3 × 106  Nmm
                       n - 1                                            7.6 - 1

In practice the bending moment including second order effects is often calculated with:
Mt = Mo ncr  =  9.0 × 106 × 7.6   = 10.4 × 106  Nmm
         ncr - 1             7.6 - 1

This result is only slightly larger than the result calculated before. 

Due to the creep the deformations increase. The increase of the deformation can be considered as a 
decrease of the stiffness of the structure. According to expression [4.26] due to the creep the bending 
moment is increased with the factor:  

(ncr - 1 – k f  + f )/(ncr - 1 -  k f )                   [4.26]

For k = ½ the factor becomes:           (ncr – 1 + ½ f)/( ncr - 1  - ½ f)

With f = 3 the bending moment increases with a factor:      7.6  - 1 + ½ × 3  = 1.58
                                           7.6  - 1 - ½ × 3              
The bending moment inclusive this increase is:     Mt=∞ = 10.3 × 1.58 = 16.3 kNm
Conforming to the theory of elasticity the bending stress in the concrete is calculated with:

sc = Mt ¥  ½ t  Ec   →   sc   = ± 16.3 × 106  × ½ × 200 × 21000  =  ± 3.0 MPa
                EIo                                            11.3 × 1012

Due to creep the bending stresses acting on the concrete increases considerately.

Approach

In practice the increase of the second order effects is approximated often by reducing the stiffness EI0 
with a factor (1 + f), so: EI∞ = EI0/(1 + f ). Due to the reduction of the stiffness the buckling ratio ncr  is 
decreased with: ncr∞ = ncr/(1 + f ). 
The bending moment including creep effects is:       Mt=∞ = N u0 ncr∞ /(ncr∞ - 1)       
Substituting ncr∞= ncr/(1 + f) = 7.6/(1+3)  and N u0  = 9 kNm:   Mt=∞ =  9 × 7.6/4   = 19.0 kNm   
                                            7.6/4 - 1        
Comparing this values with the value found for the former calculation shows that the result of the 
approach is on the safe side.  
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§  4.5 Bending moments acting on a structure composed of concrete, fusées and steel

Assume a structure composed of concrete and fusées and reinforced with steel rebars is subjected 
to a bending moment M. This bending moment is resisted by the concrete, fusées and steel so these 
elements are subjected to respectively a bending moment Mc, Mf and Ms. Due to the creep the load 
transfer is changed. Firstly the instantaneous moments are defined next the effect of creep is analysed.
Instantaneous moments. Due to this moment the concrete, fusées and steel are subjected to 
respectively a bending Mc, Mf and Ms. The sum of these three moments is  the bending moment M:

 Mc + Mf + Ms = M                      [4.27]

For a symmetrical loaded structure the curvature of the concrete, fusées and reinforcement will be 
equal, thus: 

k =  Mc/EIc = Mf /EIf  = Ms/EIs                    [4.28]

With this equation the bending moment acting on the fusées and rebars can be expressed as 
follows: 

Mf  = Mc EIf /EIc                     [4.29]
Ms = Mc EIs/EIc                     [4.30]

Substituting these specific deformations into the expression for the equilibrium of the bending 
moments results in the following expression:

M = Mc +  Mc EIf /EIc   + Mc EIs/EIc                  [4.27’] 

With this expression we can calculate the bending moment acting on the concrete at t = 0:

Mc = M/mEI  ,  with:  mEI  =  [1+ EIF /EIc  + EIs/EIc]             [4.31]

Next the bending moments acting on the fusées Mf and rebars Ms are calculated with [4.29] and [4.30].

Time dependent effects

Due to creep the specific deformation will increase with f e0. The total deformation is e0 (1 + f).  The 
magnitude of the internal forces follows from the equations describing the equilibrium of the forces 
and the compatibility. For a concrete structure composed of three materials, concrete, fusées and steel 
reinforcement, subjected to a normal compressive load the redistribution of the forces due to the time 
dependent effects will be described. 

Ms/s           
Mc/z
Mf/f           

              
f   z   a

M

FIGURE 4.5 Bending moments acting on a element composed of fusées, concrete and rebars. 

For the concrete the curvature is increased due to creep with Mc f/EIc. The materials of the composite 
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structure are attached firmly thus the deformations of the three materials must be equal. For a time t 
the curvature of the structure is equal to Kt.  Due to the curvature of the concrete the fusées and steel 
must also deform. The steel and fusées are subjected to internal bending moment Us and Uf. The 
concrete is subjected to an internal moment Uc. The internal moments are in equilibrium, thus: 

Uc = Uf  + Us                       [4.32]

Due to the internal moment Uc acting on the concrete the curvature of the concrete is decreased with: 
Uc/EcIc. 
During the time t the curvature due to this moment Mc  is increased by creep with k × Uc× f/EcIc. 
The moment Mc is not constant, but increases over time t, the factor k compensates for the time 
dependency of this force, Scherpbier has shown that this factor is approximately equal to k = ½   
[Sch65].  The curvature of the concrete, fusées and steel rebars are equal: 

kt = Mc f/EIc  - Uc (1+ k f)/EIc = Uf/EIf  = Us /EIs              [4.33]

Thus:  UF  = [Mc  f  - Uc [1+ k f)] EIf /EIc             
[4.33’]
 Us  = [Mc  f  -  Uc (1+ k f)] EIs/EIc            [4.33’]
 
Substituting UF  and Us   into the equilibrium of internal moments [4.32]:

Uc = [Mc f  - Uc (1+ k f)] EIf /EIc   + [Mc f  - Uc (1+ k f)]  EIs/EIc      

Uc [1 + (1+ k f) EIf /EIc  +(1+ k f) EIs/EIc ] = Mc  f (EIF  + EIs)/EIc      

Uc  =  Mc f (EIf  + EIs)/(1+ k f)        .                  [4.34]
          EIc/(1+ k f) + EIf  + EIs  

Next the internal moments acting on the fusées and rebars are calculated with [4.33’] and [4.33’]. 
UF  = Mc f m EIf /EIc  and  Us  =  Mc  f m EIs/EIc    with:  m =             EIc/(1+ k f)             
                                E Ic/(1+ k f) + EIf  + EIs  

After the time t the bending moments acting on the concrete, fusées and steel become respectively:
concrete:   Mc –  Uc

fusées:   Mf  + Uf

reinforcement :   Ms  + Us

Example bending moments acting on a structure composed of concrete, fusées and steel

Assuming a structure composed of concrete and fusées and reinforced with rebars is subjected to a 
bending moment M, this bending moment is resisted by the concrete, fusées and steel. Thus these 
elements are subjected to respectively a bending moment Mc, Mf and Ms. Due to creep the load 
transfer is changed. Firstly the instantaneous moments are defined, next the effects of creep are 
analysed.

Instantaneous moments

Due to this moment the concrete, fusées and steel are subjected to respectively a bending moment Mc, 
Mf and Ms. Assume the structure is subjected to a moment M = 1.0 kNm = 106 Nmm. The sum of these 
three moments is equal to the bending moment M:

 Mc + Mf + Ms = M                      [4.27]
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The stiffness of the concrete, fusées and rebars is:
EIc  =  399 ×106 ×   21000   =  8.37 × 1012 Nmm2.
EIF =  128 ×106 ×   17000    = 2.18 × 1012 Nmm2. 
EIs  =     3.7 ×106 × 210000 = 0.78 × 1012 Nmm2.

For a symmetrically loaded structure the curvature of the concrete, fusées and reinforcement will be 
equal, thus: 

 k =  Mc/EIc =Mf /EIF   = Ms/EIs                      [4.28]

With this equation the bending moment acting on the fusées and rebars can be expressed as 
follows: 

Mf =  Mc EIF/EIc                     [4.29]
Ms = Mc EIs/EIc                      [4.30]

Substituting these specific deformations into the expression for the equilibrium of the bending 
moments [4.27]:

Mc = M/mEI   with:  mEI  = 1+ (EIF  + EIs)/EIc = 1 + (2.18 + 0.78)/8.37 = 1.35 

Mc = M/mEI  = M/1.35 = 0.74 kNm     

Next the bending moments acting on the fusées Mf and rebars Ms are calculated with respectively 
[4.29] and [4.20]:

Mf = Mc  EIF/EIc = 0.74 × 2.18/8.37 = 0.19 kNm    
Ms = Mc EIs/EIc  = 0.74 × 0.78/8.37 = 0.07 kNm    

Time dependent effects

Due to the creep the specific deformation will rise with f e0 . The total deformation is e0 (1+f).  For 
the concrete structure the curvature is increased due to the creep with Mc  f/EIc. The materials of the 
composite structure are attached firmly thus the deformations of the three materials must necessarily 
be equal. At time t the curvature of the structure is equal to kt.  Due to the curvature of the concrete the 
fusées and steel must also deform. The steel and fusées are subjected to internal bending moments Us 
and Uf. The concrete is subjected to an internal moment Uc. The internal moments are in equilibrium, 
thus: 

Uc = Uf  + Us                       [4.32]

Due to the internal moment Uc acting on the concrete the curvature of the concrete is decreased with: 
Uc/EIc.  During the time t the curvature caused by moment  Mc  is increased by creep with 
k Uc f/EIc. The moment Mc is thus not constant, but increases during the time t, the factor  k 
compensates for the time dependency of this force, Scherpbier showed that this factor is 
approximately equal to k = ½   [Sch65]. For this structure we assume for the creep f = 3. The intermal 
bending moment actting on the concrete follows from equation (4.33):

Uc =  Mc f (EIF  + EIs)/(1+ k f)              
           EIc/(1+ k f) + EIF + EIs  

Uc  =          0.74 × 3 ×(2.18  + 0.78) × 1012/(1+ ½ × 3)           = 0.42 kNm
            8.37 × 1012 /(1+ ½ × 3) +2.18× 1012 + 0.78 × 1012   

Next the internal moments acting on the fusées and rebars are calculated with [4.32’] and [4.32’’]. 
UF  = Mc f  m EIF/EIc  
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with:    m =         EIc/(1+ k f)            =                         8.37 ×1012/(1+ ½ × 3)                             =   0.53   
                       EIc/(1+ k f) +EIF + EIs     8.37×1012/(1+ 1

/2×3) + 2.18×1012 + 0.78×1012  

UF  = Mc  f m EIF/EIc  =  0.74 × 3 × 0.53 × 2.18/8.37 = 0.30 kNm
Us  = Mc  f m EIs/EIc =   0.74 × 3 × 0.53 × 0.78/8.37  = 0.11 kNm

At time t the bending moments acting on the concrete, fusées and steel become respectively:
concrete:    Mc  –  Uc = 0.74 – 0.42  = 0.32 kNm
fusées:    Mf  +  Uf  = 0.19 + 0.30 = 0.49 kNm
reinforcement :    Ms +   Us =  0.07 + 0.11 = 0.18 kNm
Due to creep the bending moment acting on the concrete is reduced considerately. 

§  4.6 Approach of the factor k

The previous chapters explain the effects of time dependent material behaviour on composite 
structures.  Structures of concrete deform immediately after being loaded. But after some time the 
deformations increase due to time dependent effects such as creep and shrinkage. For composites 
the time dependent deformations of concrete parts are prevented partly by composites as steel which 
do not deform or deform less than the concrete parts by time dependent effects. Due to the time 
dependent effects the loads are redistributed. For the composite structure the redistribution is defined 
by introducing internal forces acting on the parts. The internal forces are not constant but increase 
during the time. The deformation due to the internal force acting on the concrete is also increased by 
creep, with a factor k f. 

Scherpbier gives the following analysis to approach the factor k [Sch65].
Assume a column is subjected to a normal force N. Due to this load the column will deform and the 
strain is: e0 = N/EA . Next the column is fixed. Due to the creep the column will deform with: e0 f. 
The column is fixed so the deformation due to creep is prevented. To prevent creep deformation the 
column is subjected to a force Ft. This force is not constant but increases during the time. Due to this 
force Ft the column will deform: 

et = Ft k ft                                                                                              [4.34]
         EA 

The column is fixed, the deformation due to the creep is prevented by the force Ft , thus: 
 f t N  -  Ft k f t  = 0                    [4.35]
   EA          EA           

The internal force Ft increases during a long interval. If t = ∞ , the force is equal to F∞. The force is 
related to the deformation so:           Ft  = F∞ ft/f∞

At time t the deformation changes, so the strain is:    det = Ft f tdf t  = F∞ f tdf t/f ∞          
                                                          EA                  EA
Integrating the strain gives:          ∫det = ∫F∞ f tdft  ≈  ½ F∞ ft

2 + C     
                                      EA f∞            EA f∞  
For t = 0: Ft = 0 and df t = 0 , so C = 0:       et =  ½ F∞ ft

2             [4.36]
                                           EA f∞         
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Firstly we assumed the strain was [4.34]:      et =  k Ft ft  
                                              EA          
Substituting Ft = F∞ ft/f∞         et =   k F∞ ft

2         [4.37]
                                  EA f∞         

The strain calculated with expression [4.36] is equal to the strain calculated with [4.37] so k = ½. 
Actually this value approaches k, Scherpbier writes that k = ½ is often a very good approach. The factor 
k can be defined more accurate as follows for an internal force Ft increasing in time.

The factor k defined for an increasing force Ft 

Scherpbier describes the following analysis to define the factor k accurately [Sch65]. Assume a column 
is subjected to a normal force N. Due to this load the column will deform, the strain is: e0 = N/EA. Due 
to  creep the column will deform with e0 f. The column is fixed so the deformation due to the creep 
is prevented. To prevent creep deformation the column is subjected to a force Ft. This force is not 
constant but increasing during the time t. At a certain moment the strain due to the internal force Ft is: 

et =  Ft dft + dFt                       [4.38]
                           EA 
The column is fixed, the deformation due to the creep is prevented by the force Ft thus: 

Ndft  -   Ft dft  + dFt  = 0                    [4.39] 
 EA              EA

Assuming the internal force Ft is equal to pt N and substituting this value into [4.39]: 
N dft   -  pt N dft + N dpt = 0        →      (1- pt)  dft + dpt   = 0  →   

              EA                 EA
dft  = -    dpt                            [4.40]
              (1- pt)

Integrating [4.40] gives:   ∫dft  = - ∫     dpt      →  ft = - ln (1- pt)  + C                       
                  (1 - pt)

 For  t = 0: ft = 0, Ft = 0 so also pt = 0, so C = 0:    ft = - ln (1- pt)        [4.41]

The increase of the strain det due to Ft = pt N is:     det =  pt N dft                    [4.42]
                                              EA          
Substituting [4.41] into [4.42]:         det   =   pt N dpt                   
                                         EA (1 - pt) 
This expression can be written as:        det   = N (1 - 1 + pt) N dpt         
                                EA (1 - pt)         
This expression can be written as:        det   =  (-1 +     1       ) × N dpt     [4.43]
                                              (1 - pt)         EA       
Integrating [4.43] gives:           et =  N [-pt - ln(1 - pt)]  + C                       
                                                            EA
For t = 0: et = 0, Ft = 0 so also pt = 0, so  C = 0:      et  = N [- pt - ln(1 - pt)]           [4.44]
                                EA
With the factor k the specific deformation is:     et  = N pt  k ft            [4.34]
                                                                                                  EA
Substituting ft = - ln(1 - pt) [4.41] into [4.34] gives:  et  = -  N pt  k ln (1 - pt)                 [4.45]  
            EA
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The strain expressed with equation [4.44] is equal to the strain expressed with equation [4.45]. The 
factor k follows from:

-k pt ln(1 - pt) =  -pt - ln(1 - pt)       →         k  = 1/pt + 1/ln(1 - pt)  

Thus the factor k is depending on the ratio pt = Ft/N. The following table shows k for Ft/N varying from 
0.2 to 0.8.

Pt= Ft/N K

0.2 0.52

0.4 0.54

0.6 0.57

0.8 0.63

TABLE 4.8  The ratio k and pt  

Table 4.8 shows the factor k for several values of pt= Ft/N. The factor k is slightly larger than k = ½. 
Otherwise the creep is not constant but will decrease in time. So if a load is acting at a time t = t2 then 
the creep factor ft = t2 is smaller than the creep factor ft = t1  for a force acting at time t = t1. Consequently 
Scherpbier asserts that including the increasing creep with k = ½ will be a safe engineering approach 
[Sch65].

§  4.7 Conclusions

For a stucture composed of concrete, fusees and reinforcement the effect of the shrinkage and creep is 
significant. For the vault subjected to a compressive normal force,  creep and shrinkage of the concrete 
will change  the load transfer. Due to the time dependent deformations the normal force acting at the 
concrete covering the rebars and fusées decreases and the normal forces acting at the reinforcement 
and fusées increase. Possibly due to the redistribution of the load the concrete is tensioned. The 
concrete will crack if the tensile stress exceeds the maximum tensile stress. For the cracked zones the 
stress in the concrete is zero, the normal forces are transferred by the reinforcement and the fusées 
only. Thus in a cracked section the internal forces are changed, due to the decrease of the concrete 
tensile stress the compressive stresses in the fusées and steel are reduced too. 
According to the load transfer by the fusées and reinforcement the vault can be considered as an arch 
of ceramic elements joined with a reinforcement to resist bending moments due to asymmetric live 
loads. 
The internal forces are not constant but increasing during the time. Consequently the deformation due 
to these forces increases too. The deformation of the concrete caused by the internal force increases 
due to creep. This deformation is reduced with a factor k to compensate for the time dependency of 
the internal force acting at the concrete. Scherpbier showed that this factor is equal to k = ½  [Sch65]. 
The stiffness of the structure will be reduced highly by the tensile forces acting on the concrete due to 
the time dependent deformations. Probably the tensile forces acting on the concrete are increased due 
to varying thermal expansion of the fusées and concrete. Especially for cracked structures the stiffness 
will be reduced substantially. Consequently the buckling resistance will be lower. Possibly due to the 
change of the load transfer, caused by the time dependent deformations, these structures can become 
unsafe. Chapter 5 shows for a fusée vault the effect of the time dependent deformations and the 
reduction of the stiffness.  
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A solution for the reduction of the load transfer by the concrete could be an increase of the ductility of 
the infill. Reducing the stiffness of the infill will reduce the load transfer by the infill, and reduce the 
redistribution of the forces due to the time dependent deformations. Thus the loads will be transferred 
mostly by the concrete and steel rebars. Concerning the stiffness cardboard tubes will be a better infill 
than ceramic elements. Chapter 8  compares and discusses several infill elements.
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5 Analysis of the Fusée Céramique 
roof of building Q in Woerden  

In 1955 two buildings were constructed in Woerden near the medieval castle at the so called 
‘Defensieterrein’ for the Dutch army. A storage warehouse, labelled building Q, and a workshop 
for constructing and repairing tents, labelled building R. Both buildings were roofed with a Fusée 
Céramique vault. 
Building Q had a rectangular plan with a length of 85.745 m and a width of 20.24 m. The height of the 
gutter and the height to the top of the curved roof was respectively 4.92 m and 7.555 m. The thickness 
of the roof of building Q is only 130 mm, much thinner than advised by Van Eck and Bish [Eck54]. The 
span of the roof is 19.8 m. The ratio of thickness to span is very low at: t/l =130/19800 m = 1/152. 
The roof lights, centre to centre 15.015 m, provide the roof with expansion joints and separate the 
vault into independent parts.

  

FIGURE 5.1 Front of the workshop labelled building Q,  former 
Military complex, Woerden, The Netherlands

FIGURE 5.2 Demolishing building Q  in 2012.

Building R was smaller than building Q and was composed of three distinct parts. The centre of the 
workshop had a length of 41.9 m and a width of 17.04 m. The height of the gutter was 4.52 m. At the 
front and rear the building was extended with an annex. A small annex was made at the front, with 
a length of 4.94 m and a width of 13.08 m. The height of the gutter of the roof was 3.25 m.  A larger 
annex was made at the rear, with a length of 27.05 m and a width of 10 m. The height of the gutter of 
the roof was again 4.52 m. 
Both buildings used cylindrical piles with a length of 3.0 m as foundation, starting from the concrete 
beams at – 1.5 m  till – 4.5 m below the floor. Two diameters were used, piles with an inner diameter 
of 1.0 m and thickness of 100 mm and piles with an inner diameter of 1.15 m and a  thickness of 110 
mm. Building Q and R were pulled down in 2012. The redundancy of these buildings as demonstrated 
during demolition was amazing, heavy blows were needed to demolish the Fusée Céeramique roofs. 
To understand the amazing load bearing capacity of these roofs an analysis of the bearing capacity of 
building Q is made. The calculation is reconstructed conform the methods in usage in the Netherlands 
during the nineteen fifties. In 1955 Van Eck and Bish wrote an article in Cement [Eck54] describing 
the structural design calculations for a fusée roof. According to this analysis and the calculations made 
for a workshop in Dongen a reconstruction of the design and calculations of the fusée roof of building 
Q is made. Firstly the geometry and the features of the materials are defined. Next the forces, bending 
moments and stresses are calculated. Finally the calculations are validated using current methods.
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§  5.1 Geometry and loads 

The parabolic vault had a span of l = 19.8 m centre to centre, half of the span is equal to a = 9.9 m. 
The top of the roof was at 7.555 m above the ground floor. The bottom of the gutter was positioned 
at a height of 4.92 m. The thickness of the roof and gutter was respectively 130 mm and 180 mm, 
consequently the rise f of the vault was equal to:

f =  7.555 – 4.920 – (0.130 + 0.180)/2 = 2.48 m. 

The ratio of the rise and span was equal to f/(2 a)  = 1/8  .The structure was composed of concrete 
fusées and reinforced with steel. In a section with a width of 1.0 m a number of  eleven fusées were 
placed with a spacing of 10 mm. A fusée is a ceramic cylindrical element with a length of about 350 
mm, an outward diameter of Ø80 mm and a thickness of 10 mm. The centre-to-centre distance 
of the ceramic elements is equal to 90 mm. The thickness of the vault was 130 mm. The vault was 
reinforced with bars Ø8 – 180 at the top and bottom. The Dutch building code GBV 1950 [C1] requires 
for floors with a thickness of 120 mm or more a cover on the reinforcement of at least 15 mm. To 
resist the thrust, steel bars Ø32 were made at a centre-to-centre distance of 1.0 m. To decrease the 
deformations the bars were supported with three ties Ø8 mm hanging down from the vault.

90 mm

60 mm

80 mm

180 mm

t

FIGURE 5.3 Section of the Fusée Céramique  roof of building Q, thickness t =130 mm, reinforced with rebars Ø80-180. 

Stiffness, area, second moment of the area and Young’s modulus 

For a part of the roof with width of 1.0 m the areas of the concrete, fusées and steel are calculated in 
table 5.1. 

Area

Fusées: Af = 11 ×¼ p × (802-602) =   24.190 × 103 mm2

Concrete: Ac = 130 × 1000 -  11 ×¼ p 802  =   74.708 × 103 mm2

Rebars at the top: As =  ¼ p 82 × 1000/180 = 279  mm2

Rebars at the bottom: As =  ¼ p 82 × 1000/180 = 279  mm2

TABLE 5.1  Area of the fusées, concrete and steel 

For the concrete, steel and fusées the second moment of the area is calculated and shown in table 5.2. 
The thickness of the roof is equal to 130 mm, so the minimal cover is equal to 15 mm. Distribution 
bars were not used, the rebars Ø8 – 180 are positioned parallel to the span between the fusées with a 
covering of 15 mm at the top and bottom of the vault.

TOC



 101 Analysis of the Fusée Céramique roof of building Q in Woerden  

Second moment of the area [mm4]

Concrete Ic = 1000 × 1303/12 – 11 × p × 804/64    =   160.97 × 106  

Fusées If = 11 × p ×(804 - 604)/64   =     15.12 × 106  

Steel rebars 2×Ø8–180 Is = 2 × 279 × (½  × 130 – 15 - ½ × 8)2 =        1.18 × 106  

TABLE 5.2  Second moment of area of the fusées, concrete and steel 

According to the calculations made for a factory in Dongen, the Young’s modulus of the fusées, 
reinforcement and concrete is equal to respectively Ef =  1.7 × 104  MPa, Es = 2.1 × 105 MPa and Ec 
= 2.1 × 104 MPa.  The distribution and transfer of the loads is defined according to the Theory of 
Elasticity. The stiffness is calculated by multiplying the area and second moment of the area with the 
Young’s modulus. To simplify the calculation a ratio nf  and ns  is introduced with: nf = Ef/Es = 0.81 and  
ns = Es/Ec = 10. Thus EA and EI are calculated with respectively: 

EA = Ec (Ac + nf  Af  + ns As )                     [5.1]   

EI = Ec (Ic + nf  If  + ns Is )                     [5.2]

Substituting the values for  Ec, Ic, If and Is into these equations gives for this vault:
EA = 2.1 × 104 × (74.708 × 103 + 0.81 ×  24.19 × 103 + 10 × 2 × 279) = 2.1 × 109  N 

EI =  2.1 × 104 × (160.97 × 106 + 0.81 × 15.12 × 106 + 10 × 1.18 × 106) = 3.89 × 1012 Nmm2 

Loads

According to the Dutch building code of 1955 for roofs the live load was assumed as pe = 0.5 kN/m2. 
The mass of the concrete and fusées is respectively 2400 kg/m3 and 1800 kg/m3. Thus the permanent 
load and live load is equal to:

Dead weight of the vault:     pg  = 74.704 × 24 + 24.19 × 18 = 2.23   kN/m2

Finishing: 0.11 kN/m2

Tension bars: 0.06 kN/m2

Permanent load: 2.40   kN/m2

Live load: 0.50   kN/m2

§  5.2 Forces and bending moments

The Forces acting at the vault were calculated using the Theory of Elasticity. The vault was schematised 
as an arch resting on two simple supports. The stiffness of the supports was neglected; actually the ties 
will lengthen so the supports will move sideward. The thrust was calculated with the equilibrium of the 
bending moment around the top. Actually the bending moment at the top is not zero but the effect of 
this assumption is negligible as will be shown later.
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Permanent load

The vault is subjected to the dead load qg = 2.4 kN/m2. The calculation is made for a width of 1.0 m. 
The span is equal to 19.8 m, half of the span is equal to a = 9.9 m. The vertical and horizontal reaction 
force acting on the supports are respectively:

VA = VB = qg a =  2.4 × 9.9  = 23.76 kN ; H = qg a
2  =  2.4 × 9.92  = 47.424 kN      

         2 f          2 × 2.48  

The vault is subjected to a compressive normal force; the normal force acting at the supports is equal 
to the sum of the vectors V and H:    

N = (H2 + V2)0.5 = [47.4242 + 23.762]0.5 = 53.04 kN

For x = ½ a = 4.95 m the normal force follows from: 
N = [H2 + (q x)2]0.5 = [47.4242 + (2.4 × 9.9/2)2]0.5 = 48.9 kN

φ    R

 a

qg+qe

f      β 
s

φ    R

 a

qe
qg

f

FIGURE 5.4 The vault subjected to a symmetrical  
load due to the permanent and live load.

FIGURE 5.5 The vault subjected to the permant load  
and the asymmetric live load.

Full load

The vault is subjected to the dead load qg = 2.4 kN/m2 and a live load qe = 0.5 kN/m2. Due to the 
symmetrical live and dead load the vault is subjected to a load: q = 2.4 + 0.5 = 2.9 kN/m.  The span 
is equal to l = 19.8 m, half of the span is equal to a = ½ l = 9.9 m. The vertical and horizontal reaction 
force acting on the supports are respectively:
VA = VB = (qg + qe) a =  (2.4  + 0.5) × 9.9  = 28.7 kN;   H = (qg + qe) a2 = (2.4 + 0.5) × 9.92  =  57.3 kN  
           2 f                   2 × 2.48 

The vault is subjected to a compressive normal force, the normal force acting at the supports is equal 
to the sum of the vectors V and H:    N = (H2 + V2)0.5 = [57.32 + 28.72]0.5 = 64.1 kN

For x = ½ a = 4.95 m the normal force follows from:  
     N = [H2 + (q x)2]0.5 = [57.32 + (2.9×9.9/2)2]0.5 = 59.1 kN 

Asymmetric load

Due to an asymmetric load the vault is subjected to bending. Assume the vault is subjected to the live 
load acting at one side. The permanent load is equal to qg = 2.4  kN/m2. The live load is equal to qe = 
0.5  kN/m2. The vault is subjected to a minimum load qg =  2.4 kN/m2  at one side and a maximum 
load equal to qg + qe = 2.9 kN/m2 at the other side. The expressions for an asymmetrical load acting at 
a parabolic vault are given in chapter 6. 
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The vertical and horizontal reaction force acting on the supports are respectively:
VA =  qg a + ¼ qe a = 2.4 × 9.9 + ¼ × 0.5 × 9.9 = 25.0 kN
VB =  qg a + ¾ qe a = 2.4 × 9.9 + ¾ × 0.5 × 9.9 = 27.5 kN

H = qg a2 + qe a2  = 2.4 × 9.92 + 0.5 × 9.92 =  52.4 kN
          2 f       4 f         2 × 2.48       4 × 2.48

The resulting normal forces acting at the supports are respectively:
NA = (H2 + V2)0.5 = (52.42 + 25.02)0.5 = 58.0  kN  
NB = (H2 + V2)0.5 = (52.42 + 27.52)0.5 = 59.2 kN

The bending moment is equal to:  Mo = qe a2/16   =  0.5 × 9.92/16  =  3.1 kNm

  For x = ½ a = 4.95 the normal force follows from:  
N = [H2 + (VB – q x)2]0.5 =  [52.42 + (27.5 – 2.9×4.95)2]0.5 = 54.0 kN 

Buckling

The rise of the parabolic vault is rather small, to define the buckling force the curve is approached by 
a segment of a circle. The radius of a circular vault arch is defined in chapter 9. For a span of l = 2 a = 
19.8 m, a rise f = a/4 = 9.9/4 = 2.475 m the radius is equal to: 

R =  a2 + f2     = 9.92 + 2.4752  = 21.04  m              
            2 f                  2× 2.475

The angle f follows with a = 9.9 m and R = 21.04 m from :
 sin f = a/R = 9.9/ 21.04  = 0.47    →    f = 0.49 radians

Substituting this radius into the expression for the critical buckling force Ncr [2.6] gives:
Ncr= EI [p2/f2-1]   = 3.89 × 1012 × [p2/ 0.492 – 1] = 352 × 103 N
                   R2                      (21.04 × 103)2

In reality the curvature is parabolic. For a shallow vault the form of a parabolic vault is very close to 
a circular arch and the difference is negligible. To demonstrate the accuracy of this approach, the 
buckling force is also calculated for a parabola. For a parabola the angle b  between the tangent and 
the horizontal line through the supports can be calculated using: 

tan 2b =  2 f/a = 2 × 2.48/9.9 = 0.501  →     2 b = 26.610 = 0.465 radians

 The radius of a parabola varies. The radius for a parabola is defined with expression [2.9]: Substituting 
the rise f and a = 9.9 m into expression [2.9] gives:

Rf =  a2 (1+ 4 f2/a2)1/2    =  9.92 (1+ 4 × 2.482/9.92)0.5    = 22.1 m
                     2 f                                    2 × 2.48    

Substituting this radius into the expression for the critical buckling force Ncr  [2.6] gives:
                Ncr= EI [p2/f2-1]   =  3.89 × 1012 × [p2/ 0.4652 - 1] = 355 × 103 N
                                Rf

2                            (22.1 × 103)2

For this shallow arch the buckling force for a circular arch is almost equal to the buckling force for a 
parabolic  vault.
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As described in chapter 3 Moon et al [Moo07] researched the critical buckling load for parabolic 
pin-ended arches. For in-plane asymmetric buckling mode the critical buckling load is for pin–ended 
arches ,with a length s from the top to the supports, equal to:

Ncr asym =  p2 EI                    [3.13]
                     s2  

The in-plane a-symmetric buckling load will be critical if the rise f meets the following condition:
f/a > 4.565 i/a                    [3.14]

For: EA = 2.1 × 109  Nmm2 and EI  = 3.89 × 1012 Nmm2 the radius of gyration of the section is equal 
to:  

i = (I/A)1/2 = ( 3.89 × 1012 /2.1 × 109 )1/2 = 43 mm

For building Q the rise f is equal to 2.48 m. Snap through will be not critical if the rise fulfils the 
condition: f > 4.565 × 43 = 196 mm, so for this structure the asymmetric buckling load will be 
decisive.
The length s of a parabolic vault from the crown to the supports is defined in chapter 2:

s = f (1+ ¼ a2/f2)1/2   +  ¼ a2/f ×  ln{2 f/a + (4 f2/a2+1)1/2 }             [2.13]

Substitute f = 2.48 m, a = 9.9 m and  a/f = 4 :
s = 2.48 ×(1+ ¼ .42)1/2   +  ¼ × 9.9 × 4 × ln{ 2/4 + (4/16+1)1/2 }  = 5.545 + 4.763 = 10.31 m

 With [3.13] the critical buckling load is equal to: 
Ncr asym =  p2 EI  =  p2 × 3.9 × 1012  = 361 × 103 N     
                      s2          (10.31 × 103)2

For this shallow vault this result approximately equals the buckling load calculated using Timoshenko.

Buckling ratio, full load

For x = ½ × a the normal force is equal to N = 59.1 kN. Thus the ratio ncr of the buckling force and the 
normal force is equal to:   ncr = Ncr/N = 361/59.1 = 6.1 

Buckling ratio , asymmetrical load

For x = ½ × a the normal force is equal to N = 54 kN. Thus the ratio ncr of the buckling force and the 
normal force is equal to:   ncr = Ncr/N = 361/54 = 6.7 

Generally a ratio of ncr ≥ 5 was recommended. For the full load as well as the asymmetrical the ratio is 
larger than 5. So this structure meets the requirements. However time dependent effects and cracks 
will decrease the stiffness and critical buckling force over time. These effects will be considered later.  
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§  5.3 Calculation of the normal stress. 

Due to the normal force the concrete, fusées and steel are subjected to respectively a force Nc, Nf and 
Ns. The sum of these three forces is equal to the load: Nc  + Nf + Ns = N.  
According to the Theory of Linear Elasticity the normal force acting on the concrete, fusées or 
reinforcement follows from: Nx = A Ex ex. Substituting these forces in the expression for the equilibrium 
of the forces gives:

N = EAc ec  + EAf ef  + EAs es                     [5.3]

For a symmetrical loaded structure the specific deformation of the concrete, fusées and reinforcement 
will be equal, thus:  ec = ef  = es = e0. 

e0  =  Nc  =  Nf   =  Ns                        [5.4]
          EAc     EAf        EAs

Substituting the specific deformation e0 = Nc/EAc in equation [5.3] gives:
N =EAc e0 (1 + Af nf /Ac  + As ns /Ac ) 

e0   =                          N                                 =      N           with:  mEA  = (1 + Af nf /Ac  + As ns /A )     [5.5]
           E Ac (1 + Af nf /Ac  + As ns /Ac )      E Ac mEA              

According to the Theory of Elasticity the normal stress due to the normal force acting on the section of 
the vault is respectively for the concrete, fusées and reinforcement equal to: sx = Ex e0, Substituting the 
specific deformation into this expression gives:

sx   =    N Ex                           [5.6]
            EAc mEA   

Where:Ec = 2.1 × 104  MPa; Ef = 1.7 × 104  MPa;   Es = 2.1 × 105  MPa; nf =  Ef/Ec = 0.81; ns = Es/Ec = 10; 
  Ac = 74.708 × 103 mm2;  Af = 24.19 × 103 mm2 ; As = 2 × 279 mm2.

  mEA  = (1 + Af nf /Ac  + As ns /Ac) =  1 +  24190 × 0.81  +  558 × 10   = 1.34
                                           74708                  74708 

EA = EAc mEA = 2.1 × 104 × 74.708 × 103 × 1.34  = 2.1 × 109  N

Permanent load:  

Due to the permanent load the structure is subjected at a quarter of the span to a normal force equal 
to: N = 48.9 kN. The specific deformation is equal to:  

e0  =     N        = 48.9 × 103  = 2.33 × 10-5

         EAc mEA      2.1 × 109  

The normal stresses and forces acting on respectively concrete, fusées and the reinforcement are:                                                             

concrete: sc = 0.0233 × 10-3 × 2.1×104 = 0.49 MPa  Nc = 0.49 × 74.708×103= 36.6 × 103 N

fusées:  sf = 0.0233 × 10-3 × 1.7×104  = 0.40 MPa Nf = 0.40 × 24.19×103   =      9.6 × 103  N                     

rebars:  ss = 0.0233 × 10-3 × 2.1×105  = 4.90  MPa Ns = 4.90 × 558      =      2.7 × 103 N
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Normal and bending stress due to the asymmetrical load  

Due to the dead load and the asymmetrical live load the structure is subjected to normal stresses and 
bending stresses. At a quarter of the span the normal force is for the permanent and asymmetrical live 
load equal to  N = 54.0 kN. The specific deformation is equal to:  

e0  =        N        = 54.0 × 103  = 2.57 × 10-5

           EAc mEA       2.1 × 109  

The stresses are calculated with the expression:  sx   = eo Ex .The normal stresses and forces acting on 
respectively concrete, fusées and the reinforcement is equal to:                                                                        

concrete: sc = 0.0257 × 10-3 × 2.1×104 = 0.54  MPa Nc = 0.54 × 74.708×103= 40.3 × 103 N  

fusées:  sf = 0.0257 × 10-3 × 1.7×104  = 0.44 MPa Nf = 0.40 × 24.19×103   =     9.7  × 103  N                     

rebars:  ss = 0.0257 × 10-3 × 2.1×105  = 5.40 MPa Ns = 5.40 × 558      =     3.0  × 103 N

Due to the asymmetrical loading the vault is subjected to a bending moment equal to:
Mo = qe a2 =  0.5 × 9.92  = 3.1 kNm
            16              16

Conforming to the Theory of Elasticity the stress is:   sc  = M z Ec           [5.7]
                                          EI
Substituting EI = 3.89 × 1012 Nmm2 and Ec = 21000 MPa into this expression results in:

sc    =  3.1 × 106   × 130/2 × 21000   =  1.09 MPa
                       3.89 × 1012  

The ratio of the buckling force to the normal force is equal to: ncr = Ncr/N = 361/54 = 6.7  

Due to second order effects the bending stresses are increased with a factor ncr/(ncr-1):
     ncr     sc   =     6.7     × 1.09 = 1.28 MPa
  ncr- 1            6.7 – 1       
 

The maximum stresses due to compression and bending are thus equal to: sc  = - 0.54 ± 1.28 MPa  

The maximum compressive stress and maximum tensile stress are respectively:  sc  = - 1.82 MPa  and 
sc  = +0.74 MPa . Due to the bending the sections are subjected to a bending tensile stress, probably 
sections halfway the top are cracked due to the asymmetrical live load.

§  5.4 Calculation of the normal forces and bending moments with a computer program

To validate the analysis the normal forces and bending moments are calculated with a computer  
program, Matrix-frame. The structure is subjected to the permanent load, live loads, wind loads and 
snow loads. The equally distributed live load is equal to q = 0.5 kN/m.
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Node X Z Member dy/dx ds Permanent load

1 -9.9 2.48

2 -9.0 2.05 1-2 0.43 1.088 2.61

3 -8.0 1.62 2-3 0.38 1.07 2.57

4 -7.0 1.24 3-4 0.33 1.053 2.53

5 -6.0 0.91 4-5 0.28 1.038 2.49

6 -5.0 0.63 5-6 0.22 1.024 2.46

7 -4.0 0.41 6-7 0.18 1.016 2.44

8 -3.0 0.23 7-8 0.13 1.008 2.42

9 -2.0 0.1 8-9 0.07 1.002 2.41

10 -1.0 0.03 9-10 0.03 1.0 2.4

11 0 0 10-11 0 1.0 2.4

12 1.0 0.03 11-12 0 1.0 2.4

13 2.0 0.1 12-13 0.03 1.0 2.4

14 3.0 0.23 13-14 0.07 1.002 2.41

15 4.0 0.41 14-15 0.13 1.008 2.42

16 5.0 0.63 15-16 0.18 1.016 2.44

17 6.0 0.91 16-17 0.22 1.024 2.46

18 7.0 1.24 17-18 0.28 1.038 2.49

19 8.0 1.62 18-19 0.33 1.053 2.53

20 9.0 2.05 19-20 0.38 1.07 2.57

21 9.9 2.48 20-21 0.43 1.088 2.61

TABLE 5.3 Nodes, coordinates and permanent load for building Q

Permanent load

The permanent load acting at the top is equal to q = 2.4 kN/m.   Due to the curvature the permanent 
load increases from the top to the supports with: q = 2.4 (ds/dx). The permanent load acting at the 
supports is: 

qx = a = 2.4 [1 + (2 f/a)2]1/2 = 2.61 kN/m.

Wind loads

The wind load acting on the roof is calculated according to the Euro code NEN EN 1991-1-4-2005. 
The city of Woerden is situated at the frontier between South Holland and Utrecht. The height of the 
structure above ground level is 7.55 m. For an urban area II, partly without adjacent buildings, the 
wind load is for z = 7.0 m and for z = 8.0 m respectively: for z = 7.0 m: q(z) = 0.75 kN/m2 , for z = 8.0 
m: q(z)  = 0.79 kN/m2. Interpolation gives for z = 7.55:  q(z) = 0.75 + 0.04 × 0.55 = 0.77 kN/m2. The 
coefficients for internal pressure are for overpressure c = + 0.2 and for under pressure c = - 0.3.
For the coefficients to define the external wind load three areas are distinguished: A windward side, B  
at the top and C leeward side:

A   windward side:    c= -1.2 and c = + 0.1
B   at the top, sucking:  c = -0.82
C   leeward side, sucking:  c = -0.4

For sucking windloads the sign is negative, for compressive windload the sign is positive. 
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φ    R

 a

      qwind               B
A                   C

f

FIGURE 5.6 Wind load acting on the vault, zone A at the windward side, zone B at the top  and zone C at the  leeward side

Combining internal and external wind pressure two extreme wind loads arise, respectively with over 
pressure and under pressure:

over pressure    under pressure
A     pw = (-1.2 -  0.2)  × 0.77 = -1.08   pw = (+0.1 + 0.3)  × 0.77 = + 0.31
B     pw= (-0.82- 0.2) × 0.77 = -0.79   pw = (-0.82+ 0.3) × 0.77 = - 0.40
C     pw = (-0.4  - 0.2)  × 0.77 = -0.46   pw = (-0.4  + 0.3)  × 0.77 = - 0.08

 

FIGURE 5.7  Wind load with over pressure 

FIGURE 5.8 Wind load with under pressure

Snow loads

According to the NEN-EN 1991-1-3 the roof is subjected to a snow-load: psn  =  u3 × 0.7 kN/m2. 
The coefficient u3 depends on the ratio of the rise versus the span. Two alternatives are distinguished, 
the  snow load can be equally distributed or linearly increasing, see figure 5.9.

TOC



 109 Analysis of the Fusée Céramique roof of building Q in Woerden  

f

½ q sn max         q sn max

l
FIGURE 5.9 Linear increasing snow load with maximum at ¼ l

For an equally distributed load and a cylindrical roof with a ratio f/l = 1/8 the coefficient u3 is equal to 
u3 = 0.8: psn =  0.8 × 0.7 = 0.56 kN/m2. 

For a  linearly increasing snow load, with a maximum at ½ a, u3 follows from:  u3 = 0,2 + 10 ×  f/l

For f/l = 0,125 the coefficient u3 is equal to:     u3 = 0,2 + 10 × 0.125 = 1.45 

The maximum load acting at the roof is:      psn max =  1.45 × 0.7 = 1.02 kN/m2. 

FIGURE 5.10 Linear increasing snow load with maximum at x = a/2.

Output

The following figures and table show the results of the finite element analysis with Matrix-frame. 
Due to the permanent load the bending moments are pretty small. The maximum bending moment, 
M = 3.,1 kNm, is found for the variable load acting at one side of the vault. The bending moments 
due to the snow and wind loads are slightly smaller than the bending moments due to the live load.
The results are very close to those calculated earlier. The bending moment calculated using the 
finite element technique for the live load is equal to 3.09 kNm, this moment is identically to the 
bending moment calculated with the analytical method. The maximum bending moment due to the 
surface load is 0.51 kNm. This bending moment is much less than the bending moment resulting 
from the live load. Due to the wind load the tie is compressed, fortunately the compressive force is 
compensated by the tensile force due to the permanent load.

For the preliminary design of a vault in an early stage of the process it is often labour efficient to reduce 
the number of possible load combinations and design the structure with only one or two critical load 
combinations. For the design of this roof, subjected to rain, snow or wind , an asymmetric variable 
load of pe = 0.5 kN/m2  will be the critical variable load. 
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FIGURE 5.11 Bending moments due to the variable load q = 0.5 kN/m. 

 

FIGURE 5.12  Bending moments due to the linearly increasing snow load. 

 

FIGURE 5.13 Bending moments due to the wind load over pressure

FIGURE 5.14 Bending moments due to the wind load under pressure
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Member Load: NX VZ M

4 Permanent load - 51.18 1.33 0.45

Live load -    5.41 0.60 2.90

snow load -    8.29 0.26 1.23

wind over pressure    16.48 0.59 2.65

wind under pressure       5.93 0.34 3.08

10 Permanent load - 48.33 1.45 0.51

Live load -    4.93 1.39 1.11

 snow load -    7.87 0.43 1.50

wind over pressure    16.61 0.93 0.39

wind under pressure       5.72 0.33 1.30

16 Permanent load - 50.42 1.40 0.26

Live load -    5.10 0.14 3.09

snow load -   8.31 0.56 2.82

wind over pressure   16.72 0.34 2.19

wind under pressure      5.78 0.44 0.30

22, tie Permanent load   48.29 

Live load      4.95

snow load      7.85

wind over pressure -15.29

wind under pressure -   5.32

TABLE 5.4 Results, normal forces, shear forces and bending moments 

§  5.5 Calculation of the stresses including time dependent effects

The calculations shown are based on the Theory of Elasticity. Due to shrinkage and creep a structure of 
concrete will deform considerably. For a structure composed of several materials with varying features 
these time dependent effects will change the distribution of the loads. Especially the stresses due to 
the permanent loading are effected by the time dependent effects caused by shrinkage and creep. For 
most roofs the live loads act only for a short time on the structure, so for these loads the creep can be 
neglected. The dead load is acting on the structure during the life time, so the stresses due to the dead 
load are affected by the time dependent effects. For the parabolic vault, the stresses are calculated for the 
permanent loads acting directly as well as acting over a longer period, including time dependent effects.  

For the vault with a width of 1.0 m Young’s modulus, the Area and the second moment of the Area are 
respectively for the concrete, fusées and rebars:

Concrete Ec = 21000    MPa  Ac = 74.708 × 103 mm2  Ic = 160.97 ×106 mm4

Fusées Ef = 17000    MPa  Af = 24.190 × 103 mm2 If  =  15.12 × 106 mm4  

Steel Es = 2.1×105 MPa  As = 558 mm2 Is =      1.18 × 106 mm4
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Immediately deformation, t = 0, permanent load

For a width of 1.0 m the permanent load is equal to:           qg = 2.4 kN/m. 
For x = 4.95 m the resulting normal force is equal to           N = 48.9 kN.
Due to this normal force the specific deformation is:           e0 =      48900     =  0 .0233 ×10-3                                       
                                                           2.1 × 109   

The normal stresses and forces acting on respectively concrete, fusées and the reinforcement is equal to:                                                                      

concrete: sc = 0.0233 × 10-3 × 2.1×104 = 0.49  MPa Nc = 0.49 × 74.708×103= 36.6 × 103 N

fusées:  sf = 0.0233 × 10-3 × 1.7×104  = 0.40 MPa Nf = 0.40 × 24.19×103   =      9.6 × 103 N                     

rebars:  ss = 0.0233 × 10-3 × 2.1×105  = 4.90 MPA Ns = 4.90 × 558      =      2.7 × 103 N

Time dependent deformation

Creep and shrinkage will increase the deformation of the structure with De. For a time t =  ∞  the 
specific deformation of the structure is equal to: et=∞  = e0  + De.  Due to shrinkage the concrete and the  
fusées shorten. The specific deformation of the concrete due to the shrinkage is named  erc.. The steel 
and fusées don’t shrink. Due to the shrinkage of the concrete the joints of the fusées will deform. The 
assumption is made that the specific deformation of the fusées due to the deformation of the joints 
caused by the shrinkage of the concrete is equal to  erf   = 0.1 ×10-3. A decrease of this deformation will 
increase the internal forces.  

Shrinkage

According to the NEN-EN 1992-1-1 Eurocode 2 the specific deformation of the concrete due to 
shrinkage is calculated with: 

e rc = b(t,t0)  kh erc   and   b(t,t0) =              t - t0                  
                             t - to+ 0.04 ×√ho 

A section of the vault has a thickness of 130 mm and a width of about 5.0 m, the specific thickness 
follows from h0 = 2 A/u, with u is the circumference.

h0 =  2 × 130 × 5000   = 127 mm
         2 × (5000+ 130)

According to NEN-EN 1992-1-1 Eurocode 2 table 3.3:  for h0 = 100 mm,   kh = 1.0
        for h0 = 200 mm,   kh = 0.85

Interpolation for h0 = 127 mm gives:   kh = 0.85 + 0.5 × (200-127)/100 = 0.96

The shrinkage is affected by the relative humidity, according to NEN-EN 1992-1-1 Eurocode 2  table 
3.2. the shrinkage is:
For RH = 60% the specific shrinkage is:  erc  = 0.49 × 10-3  
For RH = 80% the specific shrinkage is:  erc  = 0.30 × 10-3  
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The warehouse was slightly heated, the RH was approximately 70%, then the specific shrinkage would be:  
erc  = b(t,t0) kh erc    with:   b(t,t0) =          t - t0                 
                                                                t - to+0.04 √ho 

for  t = ∞:  b(t,t0) = 1      erc = 1 × 0.96 × ½ ×( 0.49 + 0.3) 10-3 = 0.38 × 10-3  

Creep

Due to creep a concrete structure subjected to a compressive load will shorten during its life time. 
Depending on the environment the creep of concrete is about f = 1 to 4.  According to the NEN-EN 
1992-1-1 the specific creep is  calculated. The moulds were reused as fast as possible, but the time 
before the mould could be removed had to be at least 36 hours and the strength of the concrete had to 
be developed enough at this stage. To allow for this probably cement class N was used and the time t0 
was at least 2 days. The warehouse was slightly heated, the RH was approximately 70%.

According to NEN-EN 1992-1-1 figure 3.1:  for RH = 50% the specific creep is f(∞,t0) = 4.8  
       for RH = 80% the specific creep is f(∞,t0) = 3.6

For RH = 70% the specific creep is equal to:    f(∞,t0)   = 3.6 +   (80 - 70) × (4.8 – 3.6)   = 4.0
                                                                               (80 – 50)

For a concrete structure subjected to a permanent compressive load the instantaneous specific 
deformation is eo. Due to creep the specific deformation will increase with f eo. The total deformation 
of the concrete is equal to eo(1+f). For f(∞,t0) =4 the total deformation is: eo (1+4).  
Due to a normal load N acting on the structure composed of fusées, steel and concrete, the fusées, 
steel and concrete will be compressed. Due to creep and shrinkage the deformation of the concrete 
part increases. The concrete, fusées  and rebars are tightly connected, the deformation of the concrete 
must necessarily be equal to the deformation of the fusées and steel, so the load is redistributed. The 
redistribution is calculated as following. For a structure composed of concrete, steel and fusées the 
deformations of the three materials are equal, so due to the shortening of the concrete the fusées 
and rebars must also shorten. The steel and fusées are subjected to internal compressive forces 
respectively Fs and Ff. The concrete is subjected to an internal tensile force Fc. The internal forces are in 
balance, thus:   Fc = Ff  + Fs 

The magnitude of the internal forces follows from the equations describing the equilibrium of forces 
and the compatibility. 

The specific deformation for the concrete is equal to:  
et=∞ = e0 + De = e0   + e0 f + erc  -  Fc (1+ k f)           
                                                                    AEc 

The specific deformation for the fusées is equal to:    et=∞ =e0 + De = e0+ erf +   Ff        
                                                                           AEf 

The specific deformation for the rebars is equal to:   et=∞ =e0 + De = e0+   Fs                            
                                                     AEs 
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With these expressions an expression to calculate the force Fs is defined, see chapter 4. 
Fs = AEs [ (e0 f + erc ) Ac/(1+ k f)  + erf Af  nf   ]       
                      Ac / (1+ k f) + Af  nf  +As ns 

  Fs   =  (0.0233×10-3× 4 + 0.38×10-3)×74708/(1+½ × 4)+0.1 ×10-3×24190 0.81  = 0.275 × 10-3

AsEs                    74.708×103/(1+ ½ × 4) + 24.19×103× 0.81 +  558 × 10

Fs =  0.275 × 10-3 × 558 × 2.1×105 = 32.2 × 10-3 N     

    With Fs the force Ff  acting in the fusées follows from [4.23]:  Ff = Fs AEf  - erf  AEf                                       
                                   AEs

Ff = 32200× 24.19×103× 17000  –  0.1 × 10-3 × 24.19×103× 17000  = 71.9 × 103 N 
               558 × 2.1 × 105 

The force Fc follows from:  Fc = Ff  + Fs   →    Fc = 71.9 + 32.2 = 104.1 kN

After a long time, t = ∞, the forces acting on the structure composed of concrete, fusées and steel 
change and become respectively:

The force acting on the concrete is equal to:   Nc – Fc = -36.6 + 104.1  = + 67.5 × 103 N 
The force acting on the fusées concrete is equal to:   Nf + Ff  =   -9.6   –    71.9  = - 81.5 × 103  N 
The force acting on the reinforcement is equal to:   Ns + Fs  =  - 2.7    -    32.2  = - 34.9 × 103 N    

Probably the tensile forces acting on the concrete are increased due to varying thermal expansion of 
the fusées and concrete.                        

Cracked structure 

The concrete is tensioned, so it is likely that the concrete will crack due to the tensile stress. In a crack 
the tensile force acting in the concrete section is zero, so: Nc  – Fc = 0  In a crack the load is transferred 
by the fusées and the reinforcement:    N = (Nc  – Fc) + (Nf  + Ff) + (Ns + Fs) 

Substituting  Nc – Fc = 0 and  N = Nc  + Nf  + Ns into this expression gives:   Nc = Ff  + Fs   [5.8]

The specific deformation of the fusées is equal to the specific deformation of the steel:
et =  e0 +  Fs   = e0 +   er f +    Ff      →      Ff =  AEf  (   Fs   -   erf   )   
                 AEs                          AEf                                                            AEs

Substituting Ff into [5.8] to calculate Fs:
Nc = AEf  (  Fs  -   erf ) +  Fs        →     Fs =      AEf erf   + Nc             
                    AEs                                               A Ef /(AEs)  + 1 

With Nc = 36.6 × 103 N   the force Fs is:
Fs   = 24.19 × 103 × 1.7 × 104  × 0.1×10-3  +  36.6 ×103   = 17.2 × 103 N
            24.19 × 103 ×1.7 × 104/ (558 × 2.1×105) +  1   

The force acting at the fusées follows from:     Ff =  AEf  (   Fs     -  erf  )   →
                                                                                                                             AEs                                                                
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Ff =  24.19 × 103 × 1.7 × 104 × (   1 7.2 × 103            - 0.1×10-3 ) = 19.2 × 103 N 
                                                                    558 × 2.1×105  

The force acting on the concrete is equal to:   Nc           = 36.6 – 36.6 =      0             
The force acting on the fusées  is equal to:    Nf  + Ff  =  -9.6  - 19.2 = -28.8 kN    
The force acting on the reinforcement is equal to:   Ns  + Fs =  -2.7  - 17.2 = -19.9 kN    

In a cracked section the stresses acting in the fusées and rebars are decreased. The time dependent 
values are calculated for a creep factor f = 4. If the concrete is cracked then the stress is practically 
zero, so the concrete does not transfer any load. The concrete is only shortened by creep in case it is 
subjected to a load, so the creep only has an effect before cracking. Thus the effect  of the creep is very 
limited. The resulting forces and stresses (excluding second order effects) are given in the following 
tables. The stresses acting into the cracked section are less than in the uncracked section.

  Normal force
[kN] 

internal force
[kN] 

resulting 
force[kN] 

uncracked 
section stress 
[MPa] 

cracked section 
force [kN]

cracked section 
stress [MPa] 

Concrete: -36.6 + 104.1 + 67.5  + 0.9      0      0 

Fusées:  -9.6 –    71.9 -  81.5 -   3.4 -28.8 -   1.2 

Rebars: -2.7     -     32.2    -  34.9      - 63.0    -19.9 -35.7 

TABLE 5.5 Resulting forces and stresses due to the permanent load, including time dependant effects t = ∞, for a 
uncracked section and cracked section.

§  5.6 Stiffness

The stiffness of a structure of concrete can be calculated with a MN-k diagram. The curvature k of a 
structure loaded by a bending moment and a normal force is defined with: 

k = ec =      sc
                                        [5.9]

                    x       Ec kx h
 With:  h = the height of the section
    x = the height of the compresive zone
    kx = x/h

Next the stiffness is calculated with:   EI = M/k                [5.10]

The stiffness is minimal if the bending moment is at maximum. For a structure subjected to a relative 
small normal force the bending moment is at maximum if the stress in the reinforcement in the 
tensioned zone is at maximum, so ss = fs. Then the curvature follows from: 

ket =           fs/Es                                 [5.9’]
         (1 – d/h - kx) h

The section of a Fusée Céramique vault is not massive. To include the effect of the infill an imaginary 
force Ff acting at the interior of the fusées is defined. The stresses, forces and specific deformations in 
the concrete, reinforcement and infill follow from respectively:
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Concrete, compressive zone: sc  = Ec ec Fc  = ½ kx b h sc  ec

Reinforcement at the compressed side: ssc = Es esc Fsc = ½ w b h ssc  esc= ec (kx  – d/h)/kx

Reinforcement at the tensioned side: sst = Es est Fst = ½ w b h sst  est = ec (1 - kx - d/h)/kx

Infill, for kx > cf sf   = Ec ef Ff   = b m r2 sf  ef  = ec (kx  – cf)/kx

For a section subjected to a force N the equilibrium of forces and bending moment is respectively: 
N = Fc – Ff  + Fsc- Fst                    [5.11]
M = Fc (½ h – kx/3) + (Fsc + Fst ) × (½ h – d) - Ff (r - z)            [5.12]

For a structure subjected to a given normal force the stiffness is defined with a MN-k diagram. This 
diagram is made with the following procedure for a compressive zone kx decreasing from a maximum 
value to a minimal value. For the concrete ,to include the effect of the time dependent deformations 
and varying thermal expansion of the fusées and concrete, the tensile stresses are neglected.
Firstly the stresses and forces are defined with the equilibrium of forces [5.11]. Next the bending 
moment is calculated [5.12]. The curvature follows from expression [5.9]. The stiffness is defined with 
the MN-k diagram for a given bending moment with expression [5.10]. Successively for a decreasing 
value of the compressive zone the stresses, forces and bending moments are defined.

Fst                     Ff  Fc   Fsc           

                   

            kxh
h

 εsc      εc                    

εst                       

FIGURE 5.15 Forces and deformations in  a section of the fusee vault for  kx = ½   

Maximum compressive zone

The compressive zone is at maximum: kx = ∞. The bending moment is at minimum.
The forces acting at the concrete is equal to:      Fc = b h sc

The imaginary force acting at the interior of the fusées is:  Fc = p m r2 sc

  where:  m is the number of fusées 
    r is the radius of the interior of the fusées.
The force acting on the reinforcement in the compressed and tensioned zone is respectively:

Fsc = Fst = ½ ns w b h sc

The compressive stress acting in the concrete follows from the equilibrium of forces [5.11]
 N = sc (b h -  p m r2  + ns w b h)  →     sc =                       N                          
                                                                                            (b h - p m r2  + ns w b h)

The bending moment and curvature are zero: M = 0 and k = 0.
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The compressive zone is equal to the height of the section

Assume the compresive zone is equal to the height of the section:  x = h and kx  = 1. The stresses and 
forces acting at the concrete, infill and compressed rebars are respectively equal to:
The force acting on the concrete is:        Fc =  ½ kx b h sc

The imaginary force acting at the infill is:      Ff = - ½ m p r2 sc                                            
The force acting on the rebars at the compressed side:   Fsc =  ½ ns w b h (1 – d/h) sc

 The force acting on the rebars at the other side:     Fst =  ½ ns w b h (d/h) sc

The compressive stress acting in the concrete follows from the equilibrium of forces [5.11]
N = ½ kx b h sc -  ½ m p r2  sc  +  ½ ns w b h  sc 

 The maximum stress acting at the concrete is equal to:
sc =                                  N                                                   
             ½ kx b h – ½ m p r2 + ½ ns w b h 

The bending moment follows from [5.12]:
M = Fc (½ h – 1/3 h) – 2 × 2/3 m r2 sc (r/h) × 0.589 r +  ½ ns w b h (1 – 2 d/h) sc  (½ h – d) 

Next the curvature and stiffness are calculated with [5.9] and [5.10].

The stress in the tensioned rebars is zero

Assume the stress in the rebars at the tensioned zone is zero. The width of the compressive zone is 
equal to x = kx h = h – d. The stresses and forces acting at the concrete, infill and compressed rebars are 
respectively equal to:
The force acting on the concrete is:       Fc =  ½ kx b h sc

The imaginary force acting at the infill is:     Ff =  -  m p r2 (kx – ½) sc    
                                                                                                    kx                                                 
The force acting on the rebars at the compressed side:  Fsc =  ½ ns w b h (kx – d/h) sc/kx 

The compressive stress acting in the concrete follows from the equilibrium of forces [5.11]
N = ½ kx b h sc -  m p r2 (kx – ½) sc/kx  +  ½ ns w b h (kx – d/h) sc/kx

The maximum stress acting at the concrete follows from:
sc =                                               N                                                            
         ½ kx b h - m p r2 (kx – ½)/kx + ½ ns w b h (kx – d/h)/kx

The bending moment follows from [5.12]:
M = Fc h (½ – kx/3) – 2 × [2/3 m r2  sc r/( kx h) ] × 0.589 r +  Fsc (½ h – d)    

Next the curvature and stiffness are calculated with [5.9] and [5.10].
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Compressive zone equal to the width of the flange and the diameter of the fusées 

The stiffness is calculated for a compressive zone x = kx h with kx = 1 - cf/h, assuming sc < fc , ssc < fs and 
sst < fs. 
The  force acting on the concrete is equal to:    Fc =  ½ kx b h sc  
The force acting at infill is:         Ff = - m p r2 sc (kx – ½)       
                                                                                               b h kx 
Rebars at the compressed side:         Fsc = ½ ns w (kx – d/h) sc  /kx

Rebars at the tensioned side:          Fst = ½ ns w (1 - kx – d/h) sc/kx

                                         
The compressive stress acting in the concrete follows from the equilibrium of forces [5.11]

  N  = ½ kx sc - m p r2 (kx - ½) sc  +  ½ ns w (2 kx – 1) sc

 b h                             b h kx                                kx 

The maximum stress acting at the concrete follows from:
sc =                                             N                                                             
         ½ kx b h -  m p r2 (kx - ½)/kx + ½ ns w b h (2 kx –1)/kx

Provided the stress acting in the concrete and reinforcement does not exceed the maximum stress 
(thus sc < fc, , ssc < fs  and sst < fs ) the bending moment follows from: 

M = Fc (½ h – kx/3) + (Fst + Fsc) × (½ h – d) – 2 × 2/3 m r3 sc × 0.589 r
                         kx h

  The curvature and stiffness is calculated respectively with [5.9] and [5.10].

Compressive zone is equal to half of the height of the section

Assume the compressive zone is equal to half of the height of the section: x = kx h = ½ h.   
The  force acting in the concrete  is equal to:    Fc =  ¼ b h sc  
The force acting at the infill is:         Ff = – 2/3 m r3 sc      
                                                                                         ½ b h2  
Rebars at the compressed side:         Fsc =   ½ ns w (½ – d/h) sc

                                                                   kx 
Rebars at the tensioned side:          Fst =   ½ ns w (½ – d/h) sc

                                           kx 
The compressive stress acting in the concrete follows from the equilibrium of forces [5.11]

   N  = ¼ sc - 4/3 m r3 sc     →          sc =                    N                       .
 b h                       b h2                                            ¼ b h -  4/3 m p r3/h  

Provided the stress acting in the concrete and reinforcement does not exceed the maximum stress 
(thus sc < fc, ssc < fs  and sst < fs ) the bending moment follows from: 

M = Fc (½ h – kx/3) + (Fst + Fsc) × (½ h – d) – (4/3 m r3 sc/h) × 0.589 r       

The curvature and stiffness is calculated with respectively [5.9] and [5.10].
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Compressive zone smaller than half of the height 

Assume the compressive zone is smaller than half of the height of the section: kx = ½ and the steel  
stress is smaller than the maximum stress: sst < fs. 
The force in the reinforcement in the tensioned zone is:  Fst =  ½ w b h ss     
The concrete force is:          Fc =  ½ b kx h sc 
The stress in the infill is:         Ff =  – m b r2 sf  
For kx ≤ ½:   sf = sc (kx - cf/h)   and   b =  (sin f – f cos f – sin3f/3) 
                                     kx                                                                                       1 - cos f 

The angle f describes the sectional surface of the tubular infill, with 0 < f < p, subjected to a linearly stress.
The stress in the reinforcement in the compressive zone is:  ssc  =  ns sc (kx - d/h) /kx 
 The stress in the reinforcement in the tensioned zone is:   sst  =  ns sc (1 - kx - d/h)/kx ≤ fs               

                                                                                                 
The equilibrium of the vertical forces is: 

  N  = ½ sc kx  -  sc (kx – cf/h) m b r2 + sc ½ ns w (2 kx - 1)
b h                                 kx b h                                      kx

 The compressive stress acting in the concrete follows from the equilibrium of forces:
sc  =  N                                                             .
          ½ kx b h -  (kx – cf/h) m b r2/kx  + ½ ns b h w (2 kx - 1)/kx

The bending moment follows from: 
  Me    = ½ kx sc  [(½ – kx  /3 ) - sc (kx - cf/h) m b r2(r – z) + ½ w (sst   + ssc ) (½ - d/h)  
 bh2

                                                                                                              kx  b h2

with:   z = 2/3 sin3f (1 + ¼ cos f) – (¼ + cos f) × ( f – sin f cos f)

                                                               sin f - f cos f – sin3f/3

For kx = (½ r + cf)/h:  f = p/3, b = 0.252;  r - z = 0.79 r
For kx = ½:  b = 2/3 ;  r – z = 0.589 r

The curvature and stiffness is calculated respectively with [5.9] and [5.10].

Steel stress exceeds the maximum stress

If the steel stress execeeds the maximum stress then the forces and bending moments are calculated, 
assuming the steel stress in  the tensioned zone is at maximum, ss = fs. The compressive stress acting 
in the concrete follows from the equilibrium of forces:

sc  =  N/(b h) +  ½ w b h fs                                   
           ½ kx b h - (kx – cf/h) m b r2/kx  + ½ ns b h w (kx – d/h)/kx

The moment follows from: 
  Me   = ½ kx sc (½ – kx /3) - sc (kx -cf/h) m b r2(r – z)  + ½ w (fs + ssc) (½ - d/h)  
  b h2

                                                                                                           kx b h2
                                            

Next the curvature is calculated with [5.11]:      ket =             fs/Es                     .       
                                        (1 – d/h - kx) h
Finally the stiffness is found with [5.10]:       EI = Me/ke   
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Compressive zone smaller than the width of the flange  

The force acting on the infill is zero for a compressive zone smaller than the width of the flange,  kx 
< cf/h. Assume the concrete stress is smaller than the maximum stress and the stress acting in the 
reinforcement is smaller than the maximum stress, thus  sc < fc,   ssc < fs , and sst < fs.

The stress in the reinforcement in the compressive zone is:  ssc  =  ns sc (kx - d/h) /kx

The stress in the reinforcement in the tensioned zone is:   sst  =  ns sc (1 - kx - d/h)/kx ≤ fs 

The equilibrium of the vertical forces is:          N  = ½ sc kx +  sc ½ ns w (2 kx – 1)
                     b h                                kx

Thus the concrete stress is:          sc =                   N/(b h)                      ≤ fc,                      
                         ½ kx + ½ ns w (2 kx - 1)/kx

The bending moment follows from:
 Me   = ½ kx fc (½ – kx/3)  + ½ w (sst + ssc) (½ - d/h)                 
b h2

                                                                        

If the steel stress exceeds the maximum stress then the forces and bending moments are calculated, 
assuming the steel stress in  the tensioned zone is at maximum, ss = fs. 
The compressive stress acting in the concrete follows from the equilibrium of forces:
  sc  =                 N  +  ½ w b h fs                           < fc,   

             ½ kx b h + ½ ns b h w (kx – d/h)/kx

The bending moment follows from:     Me   = ½ kx fc (½ – kx /3 )  + ½ w (fs + ssc) (½ - d/h)  
         b h2

                                                                        

The compressive zone must be enlarged if the concrete stress exceeds the maximum stress. 

Provided the stress in the reinforcement does not exceed the maximum stress, the minimum 
compressive zone follows from the equilibrium of forces, with sc = fc  and sst < fst:

½ kx min
2 +  ½ ns w (2 kxmin – 1) -  N kx min  = 0

                                                                 b h fc                            

The coefficient kx min  follows from:     kx min =  - (ns w -   ns N     )  +/-  [ (n sw  -   ns  N    )2 + n w ]1/2                                       
                                                       b h fc                      b h fc      

This expression can be used if the stress in the reinforcement does not exceed the maximum stress 
and the compressive zone is smaller than the flange, so the compressive zone has to fulfil the following 
conditions:
     ns sc (1 - d/h)   ≤  kx min  ≤  cf/h
                  fs + n sc

The bending moment follows from:    Me   = ½ kx fc (½ – kx /3)  + ½ w (sst + ssc) (½ - d/h)  
        b h2

                                                                        

Next the curvature and stiffness is calculated as showed before.

Stiffness of the cracked section, serviceability state

For the given section with A = 1000 × 130 mm2 the stiffness is defined for several values of kx with k 
= ec/x for the serviceability state. The vault is tensioned by the time dependent effects. Probably the 
structure will be cracked, thus for the concrete the tensile stresses are neglected. 
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Reinforcement Fe220: d/h = 0.15;  Es = 200000 MPa; fs = 220 MPa; w = At/(b h) = 0.0043; 
Concrete C12/15:  fc = 12 MPa; E = 27000 MPa; 
 ns = Es/Ec = 200000/27000 = 7.4;  ns w = 0.032  

Due to the permanent and asymmetrical load q = 0.5 kN/m the normal load is equal to N = 54 kN and 
the bending moment is equal to M = 3.1 kNm. 

kX = k × 10-6 [1/mm] M     [kNm] EI  × 1012   [Nmm2]

1 0.299 1.490 4.991

0.731 0.540 2.219 4.109

0.5 1.045 2.730 2.614

0.385 1.738 3.205 1.844

0.337 2.323 3.564 1.534

0.300 3.070 4.000 1.303

0.269 4.095 4.580 1.118

0.195 12.836 9.308 0.725

0.177 15.758 9.407 0.597

TABLE 5.6 Moment and curvature for the vault
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FIGURE 5.16 M-N-k  diagram serviceability state, for a normal force equal to N =54 kN 

Table 5.6 gives for the normal load, Nrep = 54 kN,  the bending moments, curvatures and stiffness for 
several values of the compressive zone of the section with a length x = kx h. The MNk-diagram shows 
the curvature with respect to the bending moment. 
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For M = 3.1 kNm the curvature is defined by interpolating between respectively:
M = 2.730 ×106  Nmm;  k = 1.045 ×10-6 mm-1

M = 3.205 ×106  Nmm;  k = 1.738 ×10-6 mm-1

k = 1.045 ×10-6 + (1.738-1.045) ×10-6 ×  n (3.1 -2.73)   =  1.585 × 10-6  mm-1
                                                                                          3.205 - 2.73

The stiffness follows from EI = M/k. 
EI = M/k = 3.1 × 106/(1.585 × 10-6) =  1.96 × 1012    Nmm2

Buckling

The critical buckling force is calculated with  expression [3.13] for the parabolic vault with a length s = 
10.31 m and a stiffness equal to EI = 1.96 ×1012 Nmm2.

Ncr asym =  p2 EI = p2  × 1.96 × 1012    = 182 × 103  N                
                     s2            (10.31 × 103)2

Asymmetrical load

For x = ½ × a the normal force is equal to Nrep = 54 kN. Then the ratio ncr of the buckling force and 
the normal force is equal to:  ncr = Ncr/N =182/54 = 3.4  The ratio ncr is smaller than the ration ncr 
calculated before according to the methods practiced fifty years ago. Generally a ratio of ncr ≥ 5 was 
recommended. 
Due to the second order the bending moment M = 3.1 kNm increases: 

M = 3.1 × 3.4/(3.4 - 1) = 4.4 kNm . 

The second order effect increases the bending moments substantially.

§  5.7 Ultimate bearing capacity

Nowadays the reinforcement has to be calculated according to the Eurocode 2 [C6]. The section is not 
massive, due to the Fusee Céramique elements the section is reduced with a number of hollow cores. 
The calculation of the required reinforcement is based on a non-linearly stress-strain diagram of the 
concrete and steel. The cover on the hollow core is cf. For a compressive zone kx h larger than cf the 
compressive zone has to be reduced with fusées. 

Features of steel

The stress in the steel  reinforcement must be less than the ultimate stress ss ≤ fyd; The stress-strain 
diagram of the steel is bi-linear: for   es ≤ fyd /Es  the maximum stress follows from  ss = es Es;  and for  
fyd/Es  < es < esu  the maximum stress is equal to fyd ,  fyd is the design load with: fyd  = fyk /gs  and gs = 
1.15.
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 Features of concrete

The quality of concrete is described with two numbers, the first one mentions the cylindrical strength, the 
second one the strength of cubes. For C12/15 the cylindrical strength is equal to 12 MPa and the strength 
of the cubes is equal to 15 MPa.. The compressive stress in the concrete must be less than the ultimate 
stress: sc ≤ fcd; with fcd  = fck/gc ,where  fck is the cylindrical strength. Generally the safety factor is equal to: 
gc = 1.5. Thus for C12/15 the ultimate stress is equal to fcd  = fck/gc = 12/1.5 = 8 MPa. The strain is at 
maximum ecu = 0.0035. For the ultimate state the stiffness of the concrete is equal to Ecd = fcd /(0.5 × ecu). 
For C12/15 Young’s modulus is equal to Ecd  = 8/(0.00175) = 4571 MPa.
In the past the stress-strain diagram was schematised parabolic or bilinear. According to the Euro- code 
the stress-strain diagram of the concrete is schemed rectangularly with sc = 0 for ec < 0.2 × 0.0035 and sc 
= fc for ec ≥ 0.2 × 0.0035. The height of the compressed zone x = kx h is reduced with a factor b = 0.8. Thus 
the normal compressive component Fc acting at the compressed side of the concrete follows from:

Fc =  b b kx h fcd =  0.8 × kx b h fcd                   [5.14]

Due to the fusées the normal compressive component is reduced with a force Ff  following from:
Ff =  m Af  fcd  

With: m is the number of fusées  
 Af is the area of the fusées within the compressive zone b kx h

The specific deformation of the steel at the tensioned and compressed side of the section follows 
respectively from:

  est = (1 – d/h – kx)/kx   and  esc = (kx  - d/h)/kx 
  
  With: d = distance from the centre of reinforcement  to the nearest side.
 
For es < fyd/Es the stress in the steel reinforcement follows from:  ss = es Es  
For es > fyd/Es the stress in the steel reinforcement is equal to fyd:  ss = fyd 

  Where fyd is the design load with: fyd  = fyk/gs  and gs = 1.15.

The sections of the vault are subjected to a normal force Nd acting eccentric at a distance et from the 
centre. The reinforcement is placed symmetrically in the section. The ultimate normal force and 
bending moment follows from respectively:

Nd = Fc - Fcf  + Fsc - Fst                    [5.15]

 Md = (Fsc + Fst ) × (½ h - d)  +  Fc (½ h - 0.4 kx h ) - Ff  z            [5.16]
With:             
        Fst = Fsc = ½ As ss

For:                 kx  ≤ 1.25  cf/h;      Af  = 0     Ff = 0      z/r = 0  
                         kx  = 1.25 (½ r +cf)/h:  Af  = 0.614 r2   Ff = m  0.614 r2 fcd    z/r = 0.705     
                         kx  = 1.25 (r + cf)/h:  Af  = ½ p r2   Ff = m  ½ p r2 fcd     z/r = 0.424     
                         kx  ≥ 1.25 (1.5 r + cf)/h: Af  = 2.527 r2   Ff = m 2.527 r2 fcd    z/r = 0.171     
                         kx  ≥ 1.25 (2 r + cf)/h:  Af  = p r2    Ff = m p r2 fcd      z/r = 0    
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FIGURE 5.17 The stresses and forces acting on a section 
subjected to an eccentric normal force

FIGURE 5.18 Graph, the bearing capacity of the vault for: 
C12/15; Fe220; d/h = 0.15; w = 0.0043. 

Nd/(b h fcd) Md/(b h2 fcd)

-0.0627 0.0192

-0.0227 0.0368

0.0735 0.0727

0.1592 0.1033

0.2000 0.1164

0.2692 0.1347

0.3378 0.1471

0.3804 0.1496

0.4536 0.1362

0.5551 0.1121

0.6396 0.0885

TABLE 5.7 Bearing capacity  vault  C12/15; Fe220; d/h = 0.15; w = 0.0043 

The calculation of an element subjected to a normal force and bending moment column is quite 
labour intensive, most engineers will use diagrams  or spreadsheets to calculate the loadbearing 
capacity of a section. The sections of the vault are subjected to a normal force Nd acting eccentric at a 
distance et  from the centre. The reinforcement is placed symmetrically in the section. 

For a structure with C12/15, Fe220 and d/h = 0.15 and a reinforcement  w = As/(b h)= 0.0043 = 
0.43%   table 5.7 shows the bearing capacity with on the vertical and horizontal axis respectively: 

  Nd          and     Md                                            
b h fcd              b h2 fcd  

For the ultimate limit state the permanent and live loads are increased with a load factor of 
respectively 1.2 and 1.5.
The permanent load is: qgd = 1.2 × 2.4 = 2.9    kN/m. 
The live load is:  qed = 1.5 × 0.5 = 0.75 kN/m.  
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The vertical and horizontal reaction force acting on the supports are respectively:
VAd =  qg a + ¼ qe a = 2.9 × 9.9 + ¼ × 0.75 × 9.9 = 30.6 kN
VBd =  qg a + ¾ qe a = 2.9 × 9.9 + ¾ × 0.75 × 9.9 = 34.3 kN

Hd = qg a2 + qe a2  = 2.9 × 9.92 + 0.75 × 9.92 = 64.7 kN
            2 f        4 f          2 × 2.48         4 × 2.48

The bending exclusive second order moment is equal to: 
Md = qe a2 /16  = 0.75 × 9.92 /16 =  4.6 kN

For x = ½ a = 4.95 the normal force follows from:  
Nd = [H d

2 + (VA d - q d  x)2]0.5 =  [64.72 + (30.6 – 2.9 × 4.95)2]0.5 = 66.7 kN

Table 5.7 gives for the normal force the ultimate bending moment, with fcd  = 12/1.5 = 8.0 MPa:
     Nd      = 0.064     →         Md        = 0.069
  b h fcd                                                 b h2 fcd  

The ultimate moment the section can resist is equal to Mu = 9.3 kNm.

Stiffness of the vault with embedded fusée element for the ultimate state 

The stiffness of a structure of concrete can be calculated with a MN-k diagram. Probably the vault is 
cracked; for a cracked structure the stiffness can be calculated with expression [5.10]: EI = Me/ke . 
Where Me is the bending moment if the reinforcement reaches the maximum stress. The curvature 
(kappa) k of a structure loaded by a bending moment and a normal force follows from [5.9]:  

k  =     sc                          [5.9]
        Ec kx h

Due to the fusees the section of a Fusée Céramique vault is not massive. The compressive zone of 
a section of a Fusée Céramique vault can be smaller or larger than the compressed flange with a 
thickness cf. The bending moment Me is defined for kx < cf/h and kx > cf/h. Again the curvature and 
stiffness for the maximum bending bending moment is defined with the procedure showed before for 
serviceability state.
For the given section with A = 1000 × 130 mm2 the features of the section for the  ultimate state are:
Reinforcement  FeB220: d/h = 0.15; Es = 200000 MPa; fs = 220/1.15= 191 N/mm2; w = At/(b h) = 
0.0043;  Concrete C12/15: fc = 12/1.5 = 8.0 MPa; Ec = 27000/1.2 = 22500 MPa; 
For a concrete structure subjected to a permanent compressive load the instantaneous specific 
deformation is e. Due to creep the specific deformation will increase with f e. The total deformation of 
the concrete is equal to eo (1 + f),  with  f = 4.0: 

Ect = Ec/(1+f) =  22500/(1+f) =  4500 MPa 

Actually the live load is acting on the roof during a short time. To include the creep Vis and Sagel 
[Vis91] advises to define the stiffness for a reduced bending moment,  M = 0.8 Md, with a Young’s 
modulus following from the stress-strain diagram: Ect = fc/ec  with ec = 0.00175.  
For C12/15:  Ect = 8/0.00175 = 4571 MPa. 
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According to the Euro-code Young’s modulus can de calculated with an effective creep factor fef  
following from: fef  = ft MEf/MEd  Due to the permanent load the vault is subjected to a bending moment:

MEf = 2/81 × 0.118 × q a2 =  2/81 × 0.118 × 2.4 × 9.92 = 0.69 kNm

The maximum moment due to the asymmetrical load is equal to MEd  = 4.6 kNm, substituting this 
moment into [5.23] gives the creep factor fef :  

fef  = ft Mrep/MEd = 4.0 × 0.69/4.6 = 0.6

For the instantaneous load Young’s modulus follows from: 
Ect  = Ecd /(1+ fef )  = 22500/(1+0.6) = 14063 MPa

For the permanent and the asymmetrical live load the normal force and bending moment are 
respectively Nd = 66.7 kN and Md = 4.6 kNm. The following diagram and table show for the vault 
subjected to this load the stiffness.
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FIGURE 5.19 MN-k  diagram for N =66.7 kN (UGT) 

kX = kappa × 106  [1/mm] M  [kNm] EI × 1012  [Nmm2]

Infinitive 0 0

1    0.68 1.85 2.713

0.731    1.24 2.80 2.253

0.5    2.48 3.75 1.512

0.385    4.59 4.93 1.074

0.337    6.08 5.55 0.912

0.269 12.68 8.80 0.694

0.212 20.64 9.07 0.439

TABLE 5.8 Stiffness of the vault, UGT 

For M = 4.6 kNm the stiffness is defined by interpolating between respectively:
M = 3.75  × 106 Nmm;  k = 2.48 × 10-6 mm-1 
M = 4.93  × 106 Nmm;  k = 4.59 × 10-6 mm-1 

k = 2.48 ×10-6 + (4.59-2.48) ×10-6 ×  (4.6  – 3.75)  =  4.0 × 10-6  mm-1 
                                                                                4.93 – 3.75

EIct  = Md/k = 4.6 × 106/ (4.0 × 10-6) =  1.15 × 1012  Nmm2
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Buckling ultimate state 

For the vault with a length s = 10.31 m, a stiffness equal to EI = 1.18 × 1012 Nmm2, and y = 1 the 
critical buckling force is: 

Ncr  =   p2   EI  =   p2   × 1.15 × 1012    =  106.8 × 103 N             
             (y s)2       (10.31 × 103)2

For x = ½ a the normal force due to the permanent an asymmetric live load is equal to Nd = 66.7 kN. 
Thus the ratio n of the buckling force and the normal force is equal to:ncr = Ncr/N = 106.8/66.7 = 1.6
The ratio ncr is very small so the increase due to the second order is substantially. The bending moment 
inclusive of second order effects is:   

Md = 4.6 × 1.6/(1.6 - 1) = 12.3 kNm > Mu   (with Mu  = 9.3 kNm)

For the calculation of the buckling length the effect of hangers was neglected. The following analysis 
shows the effect of the hangers for the buckling load. The reduction of the buckling load due to the 
hangers between the tie and vault is described in chapter 3. For a vault with three hangers with one 
hanger tensioned due to the upward deformation the factor y follows from [3.56]:     
  y = [1- 1/6 cos a]1/2. 
For f/l = 0.125 and cos  a= 0.894 the reduction factor y  is:   y = (1- 0.894/6)1/2 = 0.922.  
For the vault with a length s = 10.31 m and a stiffness EI = 1.18 × 1012 Nmm2, the critical buckling 
force is: 

Ncr  =  p2 EI =        p2    × 1.15 × 1012         =  125.6 × 103 N
           (y s)2    (0.922 × 10.31 × 103)2

Thus the ratio ncr of the buckling force and the normal force is equal to:ncr = Ncr/N = 125.6/66.7 = 1.9
The ratio ncr is very small, in practice it is recommended to design a structure so ncr ≥ 5. The increase 
due to the second order is substantially. The bending moment inclusive of second order effects is:  

Md = 4.6 × 1.9/(1.9 - 1) = 9.7 kNm > Mu 

The structure does not meet the demands of the present. To be safe the structure must be 
strengthened and stiffened. Chapter 6 shows techniques to strengthen and stiffen vaults and chapter 
7 shows the effect of the strengthening for this vault. 
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6 Strengthening parabolic vaults

Introduction

The sections of arches and vaults subjected to varying load combinations are often simultaneously 
loaded by normal forces and bending moments. To resist the bending moments the thickness of these 
arches and vaults must be increased or these structures need to be strengthened. Strengthening 
arches and vaults with diagonals helps to decrease the bending moments; consequently these 
strengthened arches and vaults can be designed with a very low thickness. Increasing the number of 
the hangers connecting the arches and vaults with the ties increase the resistance. Palkowski [Pal12] 
showed for parabolic arches the increase of the critical buckling load due to the effect of ties and 
hangers. The number of the hangers as well as the position and inclination affects the critical buckling 
load. Curving the ties, between the supports, slightly upward helps to increase the load bearing 
capacity too. In the past the Russian engineer V.G.Shukhov strengthened the half circular arches of 
the Gum warehouse in Moscow [Bel77] with cables running from the supports to varying points at the 
arches dividing the arches in segments, as is shown in figure 6.1. These cables prevent the sideward 
deformation of the a rches, which is caused by both horizontal and asymmetrical loads.  A half circular 
arch is curved more than a parabola or a catenary. Consequently the system line of a half circular arch 
is positioned outward from the line of the thrust. Due to the permanent load the structure is bending 
outward, this deformation will be explained in chapter 9. The cables running from the supports to the 
arch prevent the arch deforming outward and reduce the bending moments due to the permanent 
load considerably. Thus the cables running from the supports to the arch are very effective for a half 
circular vault, but are less effective for a deep parabolic vault.

FIGURE 6.1 Half circular arch strengthened with pre-stressed cables.

For shallow parabolic arches and vaults diagonals running from the supports to the top decrease 
the bending moments caused by asymmetric loads considerably and increase the critical buckling 
load. This chapter analyses the effect of the diagonals for these shallow parabolic curved vaults 
under varying load conditions, such as for example an equally distributed load, a surface load and 
an antimetric load. To show the effect of the diagonals the bending moments and normal forces 
are defined firstly for a non-strengthened vault and later as well for the strengthened vault. The 
expressions defined for the normal forces and bending moments are very useful for the preliminary 
design. Varying parameters shows the effect of changing curvature, rise and dimensions. The bending 
moments are described according to the Theory of Elasticity. In practice arches are designed with two 
hinged supports, as well as two hinged supports and an extra hinge at the top.  
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The analysis of a statically determinate structure is much easier than the analysis of a statically 
indeterminate structure. Firstly the statically determinate structures are analysed for parabolic vaults. 
Later it will be showed that the results defined for the statically determinate vaults can be used for the 
statically indeterminate structures as well. 

§  6.1 A general description of the features of parabolic vaults

For a vault following a parabola the centre of the coordinates is placed on the top, see figure 6.2. 
Assume the half of the length is equal to a so the span is equal to 2 a. The parabola is described with:

y = f x2/a2                    [6.1]

Differentiation gives the inclination of the tangent:    y’ = dy/dx = 2 f x/a2     [6.2]

The second derivative of the parabolic curve is constant:  y’’ =  2 f/a2       [6.3]

        Rφ

φ

   x
y

a

f

FIGURE 6.2 The parabolic vault, the centre of the X and 
Y-axis is positioned at the top 

The length of a parabola

The length of the parabola can be defined mathematically as follows. The length of a small part of the 
parabolic vault, ds, is equal to: ds =  dx (1+ dy2/dx2)1/2 . The length of the vault is defined by integrating 
ds: s = ∫ds.  Substituting dy/dx [6.2] gives: 

s = ∫ (1+ 4 f2 x2/a4)1/2 dx  

This expression can be simplified with:       s =  2 f/a2 × ∫(¼ a4/f2 + x2)1/2 dx  

According to Sherwood et al [She58] this expression is integrated for the interval between x = 0 and x 
= a:

s = 2 f/a2  × ½ × [ x (x2 + ¼ a4/f2)1/2  + ¼ a4/f2 × ln{x +  [x2+ ¼ a4/f2]1/2 }  ]x = 0 x = a     

s = f/a2  [ a (a2+ ¼ a4/f2)1/2  +  ¼ a4/f2 × ln{a +(a2+ ¼ a4/f2)1/2 } – ¼ a4/f2 × ln(½ a2/f) ]  

s = f (1+ ¼ a2/f2)1/2  +  ¼ a2/f × ln{a + (a2 + ¼ a4/f2)1/2 }  - ¼ a2/f × ln(½ a2/f )    

s = f (1+ ¼ a2/f2)1/2   +  ¼ a2/f × ln{2 f/a + (4 f2/a2+1)1/2 }             [6.4]

For f = ¼ a the length s is equal to 1.04  a.

TOC



 131 Strengthening parabolic vaults

The radius of the parabolic vault

The curvature of the vault is equal to 1/R; the radius of a parabola varies, so the curvature of the 
parabola also varies. A small part of the length of the arch ds is defined with: ds = Rf df. This expression 
can be written as:    Rf = (ds/dx) × (dx/df)
The variation of df over a small piece with length dx is equal to:    df/dx = d(dy/dx)/dx = y’’.
Substituting ds and df/dx into the expression for the radius Rf gives:   Rf = (1+ y’2)1/2  
                                   y’’
Substituting  y’ and y’’  into this expression gives:        Rf =  (1+ 4 f2 x2/a4)1/2 [6.5]  
                                                            2 f/a2     
For x = 0  and for x = a the radius is respectively equal to:  

Rf=0 = ½ a2/f   and   Rx=a =  ½ a2/f × (1+ 4 f2/a2)1/2             [6.6]

For a parabolic vault the radius Rf inc reases for an increasing value of x.

§  6.2 Three hinged parabolic vault

For a statically determinate three hinged parabolic vault the forces and bending moments are defined 
for several loads.

φ    Rφ

         f
a = ½ l

q

f    H 

     VA

H

VB

β 

φ    Rφ

a = ½ l

q

f   H 
      VA

  H
VB

FIGURE 6.3 Three hinged parabolic vault subjected to a 
symmetrically equally distributed load q

FIGURE 6.4  Three hinged parabolic vault subjected to an 
asymmetrically equally distributed load q 

Three hinged parabolic vault subjected to an equally distributed load 

Firstly the load transfer is analysed for a parabolic vault, which is simply supported and hinged at 
the top. The structure is statically determinate. The forces and bending moments are defined for 
a symmetric and asymmetrical load which is equally distributed over the length of the arch. The 
parabola with the centre of the coordinates in the top is described again with: y = f x2/a2.
The vault is subjected to an equally distributed load q. The vertical reactions acting at the supports 
at the left and right side, VA and VB , are equal to: VA = VB  = q  a. The thrust H, acting at the supports, 
follows from the equilibrium of the moments around the hinge at the top. 
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For the right part we find:       M= H × f - VB  a + ½ q a2 = 0    

Substituting VB  =  q a  into this expression:  
 H =  q a2/ f –   ½ q a2/f     →         H =  ½ q a2/f          [6.7]

Next the bending moments are defined. For the right part the bending moment Mx at a certain 
distance x1 from the centre follows from:                 Mx1 = H y1  – ∫ q (x1-x) dx     
      
Substituting y1 = f x1

2/a2  [6.1] and  H = ½ q a2/f  [6.7] into this expression and integrate between x = 0 
and x = x1:

  Mx1 = ½ q a2/f  × f x1
2/a2   –  q x1

2 
 + ½ q x1

2  →    Mx1 = 0      

For any value of x = x1 the bending moment is zero. The parabolic vault subjected to an equally 
distributed load is not loaded in bending. For this symmetrically loaded arch the same result is found 
for the left part. This vault is subjected to normal forces Nx only. The normal forces can be calculated 
with:  Nx = (H2 + Vx

2)½

Three hinged parabolic vault subjected to an asymmetrically equally distributed load

The three hinged parabolic vault will be subjected to bending if the vault is loaded asymmetrically. 
Assume the vault is simple supported, hinged at the top and subjected to an equally distributed load q 
acting al the right part. The structure is statically determinate. 
The vertical reaction acting at the support at the right side, VB, is defined with the equilibrium of the 
bending moments around the support at the left side:

VB  × 2 a = q  a × 3/2 a   →          VB  = ¾ q a     

The reaction VA at the support at the left side follows from the equilibrium of the vertical load and 
reactions:  

VB + VB  = q a;  VB  = ¾ q a  →          VA  = ¼ q a  

The thrust H acting at the supports follows from the equilibrium of the moments around the hinge at 
the top. For the left part we find:

H f - VA a = 0    →           H =  ¼ q a2/f        [6.8]

For the right part of the arch the thrust H follows from the equilibrium of the moments around the 
hinge at the top too.          H f - VB a + ½ q a2 = 0    
To define H substituting VB  = ¾ qe a  into this expression:       H = ¾ q a2/ f – ½ q a2/f   
Again the thrust is equal to:           H = ¼ q a2/f    

For the vault subjected to a vertical load the thrust does not vary. For the left part the bending moment 
Mx at a distance x from the support at the left side follows from:  

Mx = H y - ¼ q a x
Substituting H = ¼ q a2/f  and y = f x2/a2   gives:  

Mx =  (¼ q a2/ f ) × f x2/a2  - ¼ q a x   →       Mx =  ¼ q x2  - ¼ q a x    [6.9]

The bending moment is at maximum for dMx/dx = 0. Differentiating  expression (6.9) gives: 
dMx/dx = ½ q  x -  ¼ q a  = 0     →         x =  ½ a     
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So the bending moment is at maximum for x = ½ a. To define the maximum moment x = ½ a  is 
substituted into the expression for Mx  :

Mx max = ¼ q (½ a)2 - ¼ q a × ½ a    →        Mx max = - 1/16 q a2      [6.10]

Due to this bending moment the arch will be tensioned at the outer side. 

For the right part the bending moment is equal to:   Mx = ¼ q a x + H y - ½ q x2        
Substituting the thrust H =  ¼ q a2/f  into this expression: 

Mx = ¼ q a x + (¼ q  a2/f) × f x2/a2 - ½ q x
2   →     Mx =  ¼ q a x – ¼ q x2 

This expression is identical to the expression defined for the bending moment at the left part of the 
arch [6.9]. Again the maximum moment is found for x = ½ a. Evidently for the right part the maximum 
moment is equal to the maximum moment defined for the left part of the vault [6.10], thus: 
Mx max = 1/16 q a2 . Due to this bending moment the arch will be tensioned at the inner side.

a = ½ l
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        VB
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VB

φ    Rφ

a = ½ l

q
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     VA
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FIGURE 6.5 Parabolic vault subjected to an anti-metrically  load q FIGURE 6.6 Parabolic vault subjected to an increasing load q 

Three hinged parabolic vault subjected to an anti-metrically load

An asymmetrically load q acting at one side can be considered as the combination of an equally 
distributed load equal to ½ q and an anti-metrically load. ½ q. For a vault subjected to an antimetrical 
load q the bending moments and normal forces will be defined. Assume the vault  is simple supported, 
hinged at the top and subjected to an equally distributed load q acting upward al the left part and 
acting downward at the right part. The structure is statically determinate. 
The vertical reaction acting at the support at the right side, VB, is defined with the equilibrium of the 
bending moments around the support at the left side:

VB  × 2 a = q  a  × 3/2 a - q a × ½ a    →     VB  = ½ q a ↑     

The reaction VA at the support at the left side is equal to:    VA  = ½ q a ↓   

The thrust H acting at the supports follows from the equilibrium of the moments around the top. 
For the right part we find:          H × f - VB a + ½ q a2 = 0    

To define H substituting VB  = ¾ q a  into this expression:  H =  ½ q a2/f – ½ q a2/f   = 0   [6.11]

For the right part the bending moment Mx at a distance x from the support at the left side follows from: 
          Mx = H y  + ½ q a x  - ½ q x2
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Substituting H = 0 and y = f x2/a2   gives:       Mx =  ½ q a2 (x/a - x2/a2)   [6.12]

The bending moment is at maximum for dMx/dx = 0. Differentiating  expression [6.9] gives: 
dMx/dx = ½ q a

2 ( 1/a – 2 x/a2 )  = 0   →        x =  ½ a     

So the bending moment is at maximum for x = ½ a. To define the maximum moment x = ½ a  is 
substituted into the expression for Mx  :

Mx max = ½ q a2 × ( ½ - ¼ )     →      Mx max = 1/8 q a2       [6.13] 
    

Due to this bending moment the vault will be tensioned at the inner side. 

For a vault subjected to an asymmetrical load  q the structure can be considered as loaded by 
the combination of an equally distributed load ½ q and an antimetically load ½ q. For this load 
combination the thrust H and bending moment M is equal to respectively:

H = ½ × (½ q) a2/f  + 0 = ¼ q a2/f           Mmax =  1/16 q a2        

Three hinged parabolic vault subjected to a symmetric triangular load

The three hinged parabolic vault is subjected to bending in case this vault is subjected to a load 
increasing linearly from the centre to the supports. Assume the parabolic vault is simply supported, 
hinged at the top and subjected to an increasing load q which is zero at the top and maximum at the 
base q. The structure is statically determinate. The vertical reaction acting at the support A and B is 
equal to: VA = VB  =   ½ q a. The thrust H acting at the supports follows from the equilibrium of the 
moments around the centre at the top. 

H f - V a + 1/3 q a2 = 0      →              H =  1/6 q a2/f         [6.14]

The normal force acting at the vault is at maximum for x= a, with:  Nx=a = (H2 + Vx=a
2)½ 

Substituting H and V: 
Nx=a  = [(1/6 q a2/f )2 +( ½ q a)2 ]½       →       N = ½ q a [1 + 1/9 q a2/f2 ]½ 

The bending moment Mx at a distance x from the top follows from: 
Mx = H  y – ½  × 1/3 q  x3/a      →       Mx =  (1/6 q a2/f) × f x2/a2 –  1/6 q x3/a 

This expression can be simplified into:       Mx =  1/6 q (x2 –  x3/a)       [6.15]

The bending moment is at maximum for dMx/dx = 0. the position of the maximum moment is found 
by differentiating expression [6.15]: 

dMx /dx = 1/6 q (2 x –  3 x2/a)  = 0   →       x =  0  or  x = 2/3 a     

The bending moment is at maximum for x =  2/3 a, substituting x =  2/3 a  into expression [6.15] results 
in:

Mx = 1/6 qe [ (2/3 a)2 –  (2/3 a)3/a ]    →      Mx = 2/81  q  a2         [6.16]
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Three hinged vault subjected to a surface load

Due to a dead load the vault will be subjected to a force increasing from the top to the supports which 
is equal to q at the top and maximum at the base with: qmax = q ds/dx = q (1+(y’)2)½  
Substituting  y’ = 2 f x/a2  into this expression:    qmax = q  [1 + (2 f x/a2)2]½  
At the supports for x = a the maximum load is equal to: qmax = q  (1+ 4 f2/a2)½  

For a low rise vault the increase of the load is quite small. For f = a/4 the maximum load at the 
support is equal to qmax = 1.118 q. To simplify the calculations for low-rise vaults the dead load is 
assumed to be increasing linearly from q at the top to (1+c) q at the support. For these low-rise vaults 
the parameter c can be found by assuming for the linearly increasing load the maximum load at the 
support equal to the maximum load for the dead load, thus:  

qmax = q × (1+ 4 f2/a2)½    = q (1 + c)   →    c = (1+ 4 f2/a2)½  - 1  

For f = ¼ a the parameter c is equal to 0.118. For the three-hinged parabolic arch subjected to a 
linearly increasing load the bending moments are defined as follows. The structure is statically 
determinate. Due to the triangular load the structure is subjected to a normal force and a bending 
moment. 
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FIGURE 6.7 Parabolic vault subjected to a equally distributed 
load q and an increasing load c q 

FIGURE 6.8 Parabolic vault, subjected to an asymmetrical load q 
increasing from the centre to the support 

The vertical reaction V acting at the support A or B is:          V = q a  + ½ c q a  
The thrust H follows from the equilibrium of bending moments around the top:

H f - V a +  ½ q a2 + 1/3 c q a2 = 0      

Substituting V: 
H =  (½  q a2  +  1/6  c q a2)/ f   →       H =  (1+  1/3 c ) × ½  q a2/f          [6.17]

The maximum normal force acting at the vault is:    N = (H2 + V2) ½ 

Substituting H and V:  N = [ (½ q a2/ f  × (1+ 1/3 c ))2 +  (q a + ½ c q a)2   ]½   →

 N = q a × { [½ a/f  × (1 + 1/3 c)]2 + (1 + ½ c)2 }½  

The bending moment is at maximum for x =  2/3 a from the top: 
Mx = 2/81  c q a2                      [6.18]
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Asymmetric load increasing linearly from the top to one support

The vault is subjected to an asymmetric equally distributed load q acting at a half of the vault. The 
minimum and maximum vertical reactions are respectively equal to: Va = 1/12 q a  and Vb = 5/12 q a 
The thrust is calculated with the equilibrium of moments round the centre. Placing a virtual hinge 
at the top, means the bending moment acting on the top is zero. For the left side of the vault the 
equilibrium of bending moments around the support is equal to:
For the left side:  M = H  f -  Va  a  = 0 → H  =  1/12  q a2/f        [6.19]

The bending moment at a distance x from the top follows from:           
 Mx =  H  y  + Va x  –  ½ q (x/a) x2/3 

Substituting H, Va, y, gives: Mx =  1/12  q a2/f  × f x2/a2  + 1/12 q a x  – 1/6 q (x/a) x2     →
 

 Mx  = 1/12  q x2 +  1/12  q a x  - 1/5 q x3/a          

The position of maximum moment is found by differentiating this expression:
dMx  =    q x/6  +  q a2 /12– ½  q x2  = 0      →        x/a = (1 + √7)/6  = 0.6076  
 dx                   

To find the maximum moment the value of x is substituted into the expression for the bending 
moment:

Mx max =  0.044 q a2                      [6.20]
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∆
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FIGURE 6.9 Parabolic vault, subjected to a concentrated load F. The line of thrust is dotted 

 

Three hinged parabolic vault subjected to a concentrated load acting at the top

The three-hinged parabolic vault will be subjected to bending if this vault is loaded by concentrated 
load acting vertically at the centre. Assuming the arch is simply supported and hinged at the top. The 
structure is statically determinate. 
The vertical reaction acting at the support at the left VA, and right side VB, is equal to: VA = VB  = ½ F. 
The thrust H acting at the supports follows from the equilibrium of the moments around the hinge at 
the top. For the left part we find:

H f - VA a = 0  →          H =  ½ F a/f          [6.21]

The bending moment Mx at a distance x from the support at the left side follows from: 
Mx = H y – ½ F x  

Substituting H = ½ F a/f   and y = f x2/a2 :  →   Mx =  ½ F a/f × (f x2/a2 )  - ½ F x  
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This expression can be simplified into:       Mx =  ½ F a (x2/a2  - x/a)             [6.22]
 
The maximum bending moment is found for dMx/dx = 0. Differentiating the expression for the 
bending moment: 

dMx/dx = ½ F a (2 x/a2   -  1/a) = 0   →       x =  ½ a  

The maximum bending moment is found for x =  ½ a. Substituting x = ½ a  into the expression for Mx  

gives the maximum moment:
Mx =  ½ F a ( ¼ a2/a2   -  ½ a/a)    →       Mx max = - F a/8       

The bending moment is negative, due to the bending moment the vault is tensioned at the outer side. 

Three hinged parabolic vault subjected to a concentrated horizontal load acting at the top

The three-hinged parabolic vault will be subjected to bending if this vault is loaded horizontally by 
concentrated load acting at the centre. Assuming the arch is simply supported and hinged at the top. 
The structure is statically determinate. Due to the force H acting at the top both supports are subjected 
to a force ½ H. The vertical reaction forces acting at the supports follow from the equilibrium of the 
moments around the hinge at the top. For the left part we find:

H f - VA a = 0    →           Va  =  ½ H f/a      
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a

FIGURE 6.10 Parabolic vault, subjected to a concentrated load H. The line of thrust is dotted

The bending moment Mx at a distance x from the support at the left side follows from: 

Mx = ½ H y – V  x  

Substituting V = ½ H f/a   and y = f x2/a2 :     Mx =  ½ H f × (x2/a2   -  x/a)    [6.24]
 
The bending moment is at maximum for dMx/dx = 0. Differentiating the expression for the bending 
moment: 

dMx/dx = ½ H f (2 x/a2   -  1/a) = 0   →       x =  ½ a  

So the bending moment is at maximum for x =  ½ a. Substituting x = ½ a  into the expression for Mx  to 
define the maximum moment:

Mx =  ½ H f  ( ¼ a2/a2   -  ½ a/a)    →       Mx max = - F a/8       

The bending moment is negative, due to the bending moment the vault is tensioned at the outer side.
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§  6.3 Example, three hinged vault

For a three-hinged vault following a parabola the normal forces and bending moments are defined for 
several loads. The span is equal to  l = 2 a = 14.4 m, the rise is of the swallow vault is equal to f = l/8 
= 1.8 m.  The structure is composed of concrete fusées and reinforced with steel. In a section with a 
width of 1.0 m a number of eleven fusées are placed with a spacing of 10 mm. The centre-to-centre 
distance of the ceramic elements is equal to 90 mm. The thickness of the vault is 110 mm. To resist 
the thrust, steel bars Ø25 are made at a centre-to-centre distance of 1.0 m. The vault is reinforced 
with bars Ø8 – 180 at the top and bottom. Distribution bars are not used, the rebars Ø8 – 180, parallel 
to the span, are positioned between the fusées with a covering of 15 mm at the top and bottom of the 
vault. According to the calculations made for a factory in Dongen, the Young’s modulus of the fusées,  
concrete C12/15 and reinforcement is respectively equal to Ef =  1.7 × 104  MPa,  Ec = 2.7 × 104 MPa 
and Es = 2.0 × 105 MPa. For a part of the roof with width of 1.0 m the areas and second moment of the 
area of the concrete, fusées and steel are calculated:

Area

Fusées Af = 11 × ¼ p × (802-602) = 24.19 × 103 mm2 

Concrete Ac = 110 × 1000 -  11 ×¼ p 802  = 54.71 × 103 mm2 

Rebars at the top As =  ¼ p × 82 × 1000/180 = 279 mm2 

Rebars at the bottom As =  ¼ p × 82 × 1000/180 = 279 mm2

Second moment of the Area

Concrete Ic = 1000 × 1103/12 – 11 × p ×804/64  = 88.80 × 106 mm4  

Fusées If = 11 × p (804 - 604)/64   = 15.12 × 106 mm4  

Rebar’s 2Ø8-180 Is = 2 × 279 × (½ × 110 – 15 - ½ × 8)2 = 0.76 × 106    mm4  

The distribution and transfer of the loads is defined according to the Theory of Elasticity. The stiffness 
is calculated by multiplying the area, A, and second moment of the area, I,  with the Young’s modulus. 
To simplify the calculation a ratio nf  and ns  is introduced with: nf = Ef / Es = 0.63 and  ns = Es / Ec = 7.4. 
Thus EA and EI are calculated with respectively: 

EA = Ec (Ac  + nf  Af  + ns As )                     [6.25]   

EI = Ec (Ic  + nf  If  + ns Is )                     [6.26]

Substituting the values for  Ec, Ic , If and Is into these equations gives for this vault:
EA = 2.7 × 104 × (54.71×103  + 0.63 ×  24.19×103  + 7.4 × 2 × 279) = 2.0 ×109  N

EI  = 2.7 × 104 × (88.80×106  + 0.63 × 15.12×106  + 7.4 × 0.72 × 106) = 2.8 ×1012 Nmm2 

This roof is designed for a live load p = 1.0 kN/m2. The mass of the concrete and fusées is respectively 
2400 kg/m3 and 1800 kg/m3. The permanent load  is equal to:
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Dead weight of the vault:     pg  = 0.055 × 24 + 0.024 × 18 = 1.75   kN/m2

Finishing and ceiling: 0.25 kN/m2

Permanent load: 2.0   kN/m2

Permanent  load

Due to the dead load the vault is subjected to a surface load equal to: qg = 2.0 kN/m2. At the supports 
for x = a the maximum load is equal to:   qmax = q (1+ 4 f2/a2)½  

To simplify the calculations for low rise vaults the dead load is assumed to be increasing linearly 
from q at the top to (1+c) q  at the support. For these low-rise vaults the parameter c can be found by 
assuming for the linearly increasing load the maximum load at the support equal to the maximum 
load for the dead load, thus:  

qmax = q (1+ 4 f2/a2)½    = q (1 + c)    →      c = (1+ 4 f2/a2)½  - 1       
          

For f = ¼ a  the parameter c is equal to 0.118. 

φ    Rφ

a = ½ l

q + c q

f     H 

      VA

H

VB

β 

FIGURE 6.11 Parabolic vault subjected to an equally 
distributed load q and an increasing load c q

The vertical reaction V acting at the support A or B is equal to: 
V = q a + ½ c q a = 2.0 × 7.2 × (1.0 + 0.118/2)  = 15.3 kN  

The thrust H follows from expression (6.17):    H =  (1+  1/3 c ) × ½ q a2/ f  = 29.9 kN  

For x = ½ a  the vertical force Vx is equal to:    
Vx = ½ a  = ½ q a + ½ c q × ½ a × ½ = ½ q a [1 + ¼  c]  = ½  × 2.0  × 7.2 × [1 + ¼ × 0.118] = 7.4 kN

The bending moment is at maximum for x =  2/3 a from the top, the maximum bending moment 
follows from expression (6.18): 

Mmax = 2/81  c q a2  =  2/81   × 0.118 × 2.0 × 7.22  = 0.3 kNm

For x = ½ a this bending moment is a litle bit smaller than the maximum moment. The maximum 
bending moment follows from expression (6.15):   Mx =  1/6 q (x2 –  x3/a)      [6.15]
Sunstituting x = ½ a gives: 

Mmax = 1/48  c q a2  =  1/ 48  × 0.118 × 2.0 × 7.22  = 0.25 kNm
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These bending moments are much smaller than the maximum bending moment due to an 
asymmetrical live load. 
The normal force acting at the vault at a distance x= ½ a from the top the normal force is equal to: 

Nx = H cos f + Vx sin f  

Substituting for x = ½ a the thrust H, the shear force Vx and f=14.036o :   
Nx = 29.9 × cos f + 7.4 × sin f = 30.8 kN

Live load

For the three hinged vault subjected to a live load qe = 1.0 kN/m2  the vertical reaction acting at the 
supports VA and VB follows from:        VA = VB = qe a = 1.0 × 7.2 = 7.2 kN
The thrust follows from [6.7]:         H =  ½ qe a2/f = ½ × 2.0  × 7.22/1.8 = 14.4 
kN 
For x = ½ a the normal force is equal to:       Nx= a/2 = (H + Vx)

½ = (14.42 + 3.62)½ = 14.8 kN

Asymmetric live load  

The vault can be subjected to a live load acting asymmetrically. Assume the vault is subjected to load q 
= 1.0 kN/m acting at the right side. The vertical reaction acting at the support at the left side, VA,  and 
the right side  VB are respectively:

VA = ¼ qe a   →          VA  = ¼  × 1.0 × 7.2 = 1.8 kN    
VB = ¾ q a    →         VB  = ¾ × 1.0 × 7.2  = 5.4 kN  

The thrust H follows from [6.8]: H =  ¼ qe a2/f   →   H =  ¼ × 1.0 × 7.22/1.8 = 7.2 kN

The asymmetrical load can be considered as a combination of an equally distributed load equal to  
½ q and an anti-metrical load equal to ½ q. Due to the anti-metrical load the vault is subjected to a 
maximum bending moment at maximum for x =  ½ a.  Substituting q and a into [6.13] gives:
Mx max =  ± 1/8 × (½ q a2)   →         Mx max = ± 1/8 × 0.5 × 7.22 = -3.24 kNm

For x = ½ a  the force Vx is for the unloaded side equal to:  Vx = ¼ q a = ¼  × 1.0 × 7.2  = 1.8 kN ↓ 

The normal force follows from:  Nx = H cos f + Vx sin f.  
For  x = ½ a   f = b , the normal force is equal to:         Nx = 7.2 × cos b  + 1.8 × sin b = 7.4 kN

Stresses

The stresses acting in the concrete, due to the normal forces and bending moments according to the 
Theory of Elasticty follow from:

sc = N Ec  ±  M z Ec

         AE            EI
With: z= ½ ×110 = 55 mm; AE = 2.0 × 109  Nmm2;  Ec   =  2.7 × 104 MPa; EI= 2.8 × 1012 Nmm2

Table  6.1 shows the forces, bending moments and stresses due to the permanent and asymmetric 
load for x = ½ a.The stresses due to the normal compressive forces are quite small. For the 
combination of the permanent and asymmetrical live load the tensile bending stresses are not 
compensated by the compressive stresses due to the normal forces.  
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Load H 
[kN] 

 V  
[kN]

N x = ½ a 
[kN]

sc = N × Ec / AE 
   [MPa]

M 
 [kNm]

sc = M × z × Ec/ EI 
[MPa]

perm. Load 29.9 15.3 30.8 -0.42     0.25  ± 0.13 

sym.live load 14.4    7.20 14.8 -0.20     0      0 

asym.live load 7.2    5.40   7.4 -0.10 ± 3.24  ± 1.72 

TABLE 6.1 Forces, bending moments and stressses due to the permanent load and the live load acting in the 
concrete for x = ½ a from the top. 

§  6.4 Two hinged parabolic vault

For a three-hinged curved element the thrust can be calculated with the equations describing the 
equilibrium of forces and bending moments. A two-hinged vault is statically indeterminate. To 
calculate the thrust expressions describing the deformations of the arch due to the loads and thrust 
are also required. Next the deformations of the supports are calculated for an equally distributed 
load q and a horizontal force H acting on the supports. The structure is schemed as a curved beam 
supported by two rollers and subjected to an equally distributed load. Due to the symmetry of form 
and load the top does not move horizontally. To define the horizontal deformation of the roller 
supports the structure is schematised as clamped at the top. Firstly the deformations of the roller 
supports are calculated for the half curved element subjected to an equally distributed load and 
next the deformations of the roller supports are calculated for an horizontal force acting at the roller 
support. Actually the curved element is supported with two hinges able to resist the thrust. The 
horizontal deformations of the hinges is zero, then the deformation DH of the force H is equal to the 
deformation Dq of the curved element due to the distributed load. The horizontal force H follows from 
this expression describing the compatibility: SD = 0. Thus the vault is schematised as a parabolic 
curved element clamped at the top, subjected to an equally distributed load q and a horizontal force H 
acting at the roller. The bow of the arch is equal to f, the span of half of the curved element is equal to 
a, the centre of the coordinates is defined at the top. The parabola is described with the function: 
y = f x2/a2.

Deformation due to the distributed load q

Assuming the curved element is subjected by an equally distributed load q. Due to this load the 
element is subjected to a bending moment:          Mx = ½ q (a2-x2)   

A small part of the curve ds is subjected to a bending moment Mx, Due to this moment this part is 
subjected to a rotation df, with df = Mx /EI. The horizontal deformation due to the rotation of the 
small part is equal to:            d x = Mx (f-y)/EI  

The total deformation Dx is equal to the sum of the deformations of every part of the curve. Decreasing 
the length of the small parts ds will improve the calculation. Thus the horizontal deformation is 
calculated by integration of the expression for dx over the length of the curve between the centre and 
the support.

Dx = ∫ Mx (f-y) ds         
                  EI
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 Substituting the bending moment Mx into this expression results in:
Dx =  ½ q ×  ∫ (a2-x2) (f-y) ds        
                              E Ix 

    x
y

  a

H
f

FIGURE 6.12  Half curved parabolic vault subjected to equally distributed load q. aption

The analysis is simplified if the element is constructed with a height increasing from the centre to the 
supports so  Ix = I0 ds/dx , see [Tus52]. The effect of the increased height is minor if the bow is much 
smaller than the span or when ½ f/a is small. Now the expression can be formulated as:

Dx =  ½ q × ∫ x=0 x=a (a2-x2) × (f - f x2/a2)  ds                              
                                   E I0 × ds/dx                                

This expression can be simplified to:        Dx =  ½ q f ∫ x=0 x=a (x4/a2 +a2-2x 2) dx 
                                                    E I0      
Integration between x = 0 and x = a gives:

Dx=a = ½ q f  (x5/5a2 + a2x - 2x3/3a2)| x=0 x=a     →     Dx=a =  4 q f a3        [6.27]
                                     E Io                                                                             15 E Io      

Deformation due to the horizontal force H 

The bending moments acting on the curved element are significantly reduced when the supports 
are changed from rollers into hinges so the thrust can be resisted. To define the thrust we load the 
rollers with a horizontal force H acting inward. Due to this force both rollers are moved inward. The 
deformation due to the force H is calculated as follows. Firstly the bending moments resulting from 
the force H are calculated:

Mx = H f (1 - x2/a2)            

A small part of the curve dx is subjected to a bending moment Mx, Due to this moment this part is 
subjected to a rotation df. With df. = Mx/EI. The horizontal deformation due to the rotation of the 
small part is equal to:

 dx = Mx (f-y)/EI             

The total deformation is equal to the sum of the deformations of every part of the curve. So the 
horizontal deformation is calculated by integration of the expression for Dx over the length of the curve 
between the  centre and the support.
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Dx =  ∫ Mx (f-y) ds         
                  EI  

Substituting the bending moment Mx   into this expression:
Dx =  ∫ H f (1-x2/a2) × (f-y) ds                   
                           E Ix 

The analysis is simplified when the element is constructed with a height increasing from the centre to 
the supports so  Ix = Io ds/dx. Then the expression can be modified to:

Dx =  ∫ H f  (1-x2/a2) × (f - f x2/a2) ds   →      D x =   H f2 ∫ (1-x2/a2)2 dx  
                       E I0 ds/dx                                                                                   E I0 

This expression can be reduced to:       Dx =  H f2 ∫ (x4/a4 + 1 - 2x2/a2) dx    
                                                             E I0                                               
Integration between x = 0 and x = a gives:
D x = a =  H f2 (x5/(5a4)+ x - 2x3/(3a2))| x=0 x=a     →    D x=a = 8 H f2 a        
[6.28]
                      E I0                                                                                                     15  E Io      

Defining the thrust for the equally distributed load

If the support is very stiff and cannot deform then the deformation due to the distributed load must be 
equal to the deformation of the thrust, SD = 0. Now the thrust H follows from the equations [6.27] and 
[6.28]:

   8 H f2 a   =  4 q f a3      →         H  =  ½ q a2   
   15  E Io        15 E Io                                           f

Deformation due to a linearly increasing load q

Assuming the curved element is subjected by a load linearly increasing from the centre to the 
supports: qx = q x/a. At the support the load is at maximum and equal to q. Due to this load the curved 
element is subjected to a bending moment:

Mx = 1/6 q a2 (1- x3/a3)               

    x
y

  a

H
f

q

FIGURE 6.13 Half curved parabolic vault subjected to linearly increasing load 
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A small part of the curve ds is subjected to a bending moment Mx. Due to this moment this part is 
subjected to a rotation df, with df = Mx /EI. The horizontal deformation due to the rotation of the 
small part is equal to: 

dx = Mx (f-y)/EI  

The total deformation Dx is equal to the sum of the deformations of every part of the curve. Thus the 
horizontal deformation is calculated by integration of the expression for dx over the length of the curve 
between the centre and the support.

Dx = ∫ Mx (f-y) ds         
                                EI 

Substituting the bending moment Mx into this expression results in:
Dx  =   q a2  f ×∫ (1- x3/a3) × ( 1 -x2/a2) ds   
                                      6 E Ix  

The analysis is simplified if the element is constructed with a height increasing from the centre to the 
supports so  Ix = I0 ds/dx , see [Tus52]. The effect of the increased height is minor if the bow is much 
smaller than the span or when f/a is small. Now the expression can be formulated as:

Dx  =   q a2 f ×∫ (1- x2/a2 - x3/a3)  + x5/a5) dx     
                                      6 E I0 

Integration between x = 0 and x = a gives:
Dx  =   q a2 f × [x – 1/3 x3/a2  - 1/4 x4/a3   + 1/6 x6/a5 ] |x=0 x=a     →  Dx=a =  7  q f a3                                    [6.29]  
                                                  6  E Io                                                             72  E Io

Deformation due to the horizontal force H 

The bending moments acting on the curved element are significantly reduced when the supports 
are changed from rollers into hinges so the thrust can be resisted. To define the thrust we load the 
rollers with a horizontal force H acting inward. Due to this force both rollers are moved inward. The 
deformation due to the force H follows from [6.28] calculated as follows. 

Dx=a =  8 H f2 a                    [6.28]
             15 E Io      

Defining the thrust for the linearly increasing load

If the support is very stiff and cannot deform then the deformation due to the load must be equal to 
the deformation of the thrust, SD = 0. Now the thrust H follows from the equations [6.28] and [6.29]:

   8 H f2 a  = 7 q f a3         →       H  =  35 q a2        [6.30]  
   15 E Io       72  E Io                                                192 f

Due to this load the thrust the curved element is subjected to a bending moment:
Mx = 1/6 q a2  (1- x3/a3) -  H (f - y)    

Substituting H and y = f x2/a2 into this expression gives:
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Mx = q a2   [1/6  - 1
/6 x3/a3 – 35/192 × (1- x2/a2)]     → Mx = q a2  [ 35/192 x2/a2 – 1/6 x3/a3 - 3/192 ] 

 
For x = 0 the bending moment is equal to:      Mx=0 = - 1 /64 q a2  = -0.015625 × q a2

The bending moment is at maximum for dM/dx = 0, differentiating Mx gives:
dMx/dx = q a2  × [+ 70/192 x/a2 – ½ x2/a3 ]  

The maximum bending moment is found for x/a = 0  and  x/a = 35/48 .
For x/a = 0 the bending moment is equal to:     Mx=0  = -  0.015625 × q a2

For x/a =35/48 the bending moment is equal to:    Mmax = + 0.016682 × q a2

For the three hinged vault the maximum bending moment is found for x = = 2/3 a: 
M max = 2/81 q a2 = 0.0246914 × q.a2                [6.16]

For the two-hinged vault the bending moments are smaller than for the three-hinged vault. In 
practice the supports will deform slightly, for example due to the lengthening of the tie. Due to the 
deformation of the tie the thrust will decrease, so the bending moment at the top will decrease and 
the bending moment for x > 0 will increase. 

Conclusions

For the parabolic two hinged vault subjected to an equally distributed load the thrust is equal to the 
thrust calculated for a three hinged vault, provided the supports do not deform. For the three hinged 
vault subjected to an equally distributed load the bending moments are equal to zero, so for the 
equally distributed load the two hinged vault is also subjected to normal forces only. 
For the parabolic two hinged vault subjected to a linearly increasing load the thrust is slightly larger 
than the thrust for a three hinged vault, provided the supports do not deform. The bending moments 
are smaller than the maximum bending moment calculated for the three-hinged vault, subjected to a 
linearly increasing load. 
In practise the tie, connecting both supports, will lengthen, generally the lengthening of the tie will 
be quite small, but nevertheless due to this deformation the thrust will decrease. For a two-hinged 
vault, subjected to an equally distributed load, the structure will be subjected to bending due to the 
decrease of the thrust. For a two-hinged vault, subjected to a linearly increasing load, the bending 
moment at the top will decrease and the bending maximum moment  for x > 0 will increase, due to 
the lengthening of the tie and the reduction of the thrust. Often for statically indeterminate arches 
and vaults the thrust can be calculated easily, if the supports cannot deform much, by considering  the 
vault as a statically determinate vault with a fictive hinge at the top. 

§  6.5 Parabolic vault, strengthened with a simple truss composed of two diagonals

Strengthening a vault with two diagonals ties running from the supports to the top increases the 
resistance much. Thanks to these diagonals the bending moments are reduced substantially. To 
decrease the bending moments due to the asymmetrical loads the vault is strengthened with the ties 
running diagonally from the crown to the supports. The span and rise of the arch is equal to respectively 
2 a and f. The diagonals are running from the top to the supports. The inclination of these diagonals 
is equal to b, with tan b = f/a. The strengthened vault is statically determinate, the distribution of 
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the loads is effected by the stiffness of the vault and the truss. To analyse the transfer of the loads the 
deformations of the truss and vault will be defined for a concentrated load acting at the top, an equally 
distributed load and an anti-metrical load. The structure is assumed to be prefabricated and composed 
of two parts connected with a hinge at the top. The structure is schemed as a three hinged vault resting 
on two simple supports. To simplify the analysis the elongation of the tie is neglected.

 F
∆

                            
       S                   f

 a

β 

H      ∆ 

                              

β 

S    f

a

FIGURE 6.14 Deformation of the trussed frame composed of 
two diagonals due to a concentrated vertical force F acting at 
the top 

FIGURE 6.15 Deformation of the trussed frame composed of 
two diagonals due to a concentrated horizontal force H acting 
at the top 

The deformation of a simple truss composed of two diagonals due to concentrated loads 

The deformation of the truss, subjected to a vertical load F, acting at the top, follows from:
DTF =                F a                                     [6.31]
           2 AT ET cos b sin2 b

The deformation of the truss, subjected to a horizontal load H, acting at the top, follows from:
DTH =          H a                                [6.32] 
           2 AT ET cos3 b

The deformation of the vault  

The center of the coordinates of the parabolic three hinged vault is positioned at the top, see figure 
6.2. The deformation of the vault at a chosen point is defined according to the Theory of Maxwell-
Mohr with:

D =  ∫ M’ M ds  +  ∫ N’ N ds                     [6.33]
                   EI                    EA

With:
M’ is the bending moment due to a force F = 1 acting at the chosen point  parallel to the deformation; 
M = the bending moment due to the load;
N’ = the normal force due to a force F = 1 acting at the chosen point parallel to the deformation; 
N = the normal force due to the load.

The deformation of the vault subjected by vertical concentrated force acting at the top

The vault is subjected to a concentrated force F acting at the top. Due to this load the thrust is equal to:  
H =½ F a/f. The bending moment follows from:

Mx = ½ F x – H y =  ½ F a (x2/a2   -  x/a)               [6.22]

For the parabolic vault the normal force is equal to:
Nx =  H cos f  + Vx sin f      →          Nx =  H cos f (1 + Vx tan f/ H)
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 Substituting tan f =  y’ =  2 f x/a2  and  Vx =  ½ F and H = ½ F a/f  into this expression gives:
Nx =  ½ F (a/f) cos f (1+ 2 f2 x/a3 )                   [6.34]

For low rise vaults cos f is approximately equal to cos b, substituting cos f = cos b gives:
Nx =  ½ F (a/f) × cos b × (1+ 2 f2 x/a3 )        

Substituting M’x , Mx , N’x  and Nx into expression [6.33] gives:
DF  = F a2   ∫0 a [ x2/a2 - x/a]2 ds   +    F a2 cos2 b  ∫0 

a  [  1 + 2 f2  x  ]2 ds
         2 EI                                                     2 AE f2                          a3

For low rise vaults the length ds is approximately equal to dx/cos b. Integrating this expression 
between the boundaries x = 0 and x = a  gives:

DF   =         F a3           +    F a cos b  [  a2 +  4 f2   + 2  ]             [6.35]
            60 EI cos b            2 AE           f 2     3 a2       

For f= ¼ a the deformation is equal to:      DF   =        F a3              +  217 F a cos b    [6.35’]
                         60 EI cos b        24 AE f2           

Assume the truss is subjected to a vertical force a F and the vault is subjected to a force (1 - a) F.  At 
the top the displacement  of the vault is equal to the displacement of the truss, the factor a follows 
from:

D F ( 1 - a) = a DTF   →      a = DF/(DF  + DTF)           [6.36]

Example

For the vault described previously  the deformation is defined if the structure is strengthened with two 
diagonals and subjected to a vertical force F = 1.0 kN. Again the span and rise are equal to l = 2 a = 
14.4 m and  f = 1.8 m. The tangent of the angle between the diagonals and tie is equal to tan b = 0.25, 
then cos b = 0.97.  The stiffness of the vault is equal to: AE = 2.0 × 109 N and EI = 2.8 × 1012 Nmm2. 
The area and Young’s modulus of the diagonals Ø100-4 are respectively AT = 1206 mm2 and 2×105 
MPa. 
The deformation of the truss due to a force F = 1.0 kN is according to [6.31] equal to: 

DTF =                   1.0 × 103 × 7200                      = 0.26 mm    
            2 × 1206 × 2.0 × 105 × cos b sin2 b

The deformation of the vault due to the concentrated load equal to  F = 1.0 kN is according to [6.35’] 
equal to: 

DF   =   1.0 × 103 × 72003        +   217 × 1.0 × 103 × 7200 × cos b  = 2.29  + 0.03  mm
           60 × 2.8 ×1012 ´ cos b                  24 × 2.0 × 109     

Substiuting the deformation of the truss DTF and vault DF into [6.36]:  a =         2.29 + 0.03          = 0.9  
                          2.29  + 0.03 + 0.26

The force acting at the truss is equal to a F = 0.9 kN, thus the better part of the concentrated load F 
acting at the top of the vault is transferred by the truss. The diagonals are subjected to a force:

 S = ½ a F/sin b = 1.86 kN. 
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The deformation of the vault subjected by a horizontal concentrated force acting at the top

The vertical reaction forces acting at the supports is equal to: H f - VA a = 0  →   Va  =  ½ H f/a   
   
The bending moment Mx at a distance x from the support at the left side follows from [6.24]: 

Mx =  ½ H f (x2/a2   -  x/a)                   [6.24]

Thus for a concentrated  force H = 1 acting at the top the bending moment  is equal to:
Mx =  ½ f (x2/a2   -  x/a)                    [6.24’]

For a vault the normal force is equal to: 
Nx = ½ H cos f + Vx sin f      →         Nx = ½ H cos f (1 + Vx tan f/H)

 For a low rise vault the angle f is very small, so cos f  ≈ cos b. Substituting tan f = y’ =  2 f x/a2 and Va  =  
½ H × f/a  into this expression gives:

Nx =  ½ H cos b ( 1 + 2 f2 x/a3)                  [6.37] 

Thus for a concentrated  force H = 1 acting at the top the normal force is equal to:
Nx =  ½ cos b (1 + 2 f2 x/a3 ) 

Substituting M’f, Mf,  N’f  and Nf into [6.31] gives:

DH = 2 × ½ × ½ H f2 × ∫0 a [ x2/a2 - x/a]2 ds  +  2 × ½ × ½ H cos2 b × ∫0 a  [ 1 + 2 f2 x  ]2 ds
                   EI                                                                       AE                                              a3

For a low rise vault the length ds is approximately equal to dx/cos b. Integrating this expression gives:
DH =       H f2   a         +  H a cos b (1 + 4/3 f4/a4  + 2 f2/a2)                  [6.38]
           60 EI cos b                          2 EA 

For f = ¼ a the deformation is equal to:  DH  =         H a3              +  217 × H cos b        [6.38’]
                           960×EI cos b        384 × AE           

Assume the truss is subjected to a vertical force a H and the vault is subjected to a force (1 - a)  H. At 
the top the displacement  of the vault is equal to the displacement of the truss, the factor a follows 
from:

D H  ( 1 - a ) =  a DTH  →        a = D H/(D H  + DTH)          [6.39]

Example

For the strengthened vault described previously the deformation is defined for the vault, subjected to a 
horizontal force H = 1.0 kN.
The deformation of the truss due to a force H = 1.0 kN is according to [6.32] equal to: 

DTH  =    ½ × 103 × 7200        = 0.016 mm    
            206×2×105 × cos3 b

The deformation of the vault due to the concentrated force H = 1.0 kN is equal to: 
DH  =          103×7.23× 109                +   217 × 103×7200 × cos b  =  0.143 + 0.002 mm
           960 ×2.8 ×1012 ×cos b                384 × 2.0 × 109
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Substiute the deformation of the truss and vault into [6.39]:  
  a =          0.143 + 0.002           = 0.9  

           0.143+ 0.002 + 0.016

Thus the force acting at the truss is equal to a.H = 0.9 kN. The truss transfers the better part of the 
concentrated horizontal force. The force acting at the diagonals is equal to S = ½ aH/cos b = 0.5 kN. 

Equally distributed load

The vault is subjected to an equally distributed load q. The vertical reactions acting at the supports 
at the left and right side, VA and VB , are equal to: VA = VB  = q a. The thrust H, acting at the supports 
follows from [6.7]:        H =  ½ q a2/f      
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FIGURE 6.16 Vault strengthened with two diagonals, 
subjected to an equally distributed load

FIGURE 6.17 Vault strengthened with two diagonals, 
subjected to an increasing load

For an equally distributed load the bending moments are equal to zero. This vault is subjected to 
normal forces Nx only. The normal forces are calculated with:  

Nx = H cos f + Vx sin f       →       Nx = H cos f (1 + q x tan f )     

Substituting H into this expression gives for a low rise vault:
Nx = ½ q a2/f  × cos b  [1 + 4 (f/a)2 × (x/a)2]     

For a vault subjected to a concentrated load F the normal force follows from [6.34]:
Nx =  ½ F a/f × cos b  (1+ 2 f2 x/a3 )   

The deformation of the vault at the top is defined with the Theory of Maxwell/Mohr with [6.33]:
D =  ∫ M’ M ds  +  ∫ N’ N ds                     [6.33]
                EI                         EA

The length of a small piece of the parabola follows from:  ds = dx/cos f     Substituting Nx and ds  into 
[6.33] gives:

Dq  =   2  q.a3 cos b × ∫0
a [1+ 4 f2 x2/a4 ]  × [1 + 2 f2 x/a3)2]  dx

                  4 EA f2

Integrating this expression gives:        Dq   =  q a2 cos b × (  a2 + 7 +  2 f2  )  [6.40]
                            2 EA             f2     3      3 a2        

TOC



 150 Composite hollow core vaults

For f = ¼ a:        Dq   =   443 × q a2 cos b   →      Dq =  9.229 × q a2 cos b      [6.40’]
                                                        48 EA                                          EA

Assume the truss is subjected to a vertical force a F and the vault is subjected to a force a F. At the top 
the displacement of the vault is equal to the displacement of the truss. The factor a follows from:

Dq  -  a D F  = a DTF      →    a = Dq /(DF  + DTF)       [6.41]

Example
For the vault, described previously the deformation is defined for q = 1.0 kN/m.Due to a vertical force 
F = 1.0 kN the deformation of the truss is equal to: 

DTF   =              103 × 7200                            = 0.26 mm    
              1206 × 2 ×105 × sin2b cos b

Due to the equally distributed load q = 1.0 kN/m the deformation of the vault is according to [6.40’] 
equal to:

Dq  =  9.229×72002 cos b  = 0.23 mm
                 2.0 × 109  

The deformation of the vault due to the concentrated force  F = 1.0 kN is according to [6.35’] equal to: 
DF   =    1.0 × 103 × 72003      +   217 × 1.0 × 103 × 7200 × cos b   = 2.29  + 0.03  mm
            60 × 2.8 ×1012 cos b                      24 × 2.0 × 109

Assume the truss is subjected to a vertical force a F and the vault is subjected to a force a F. The factor 
a follows from [6.41]:       a = Dq /(DF  + DTF)

Substituting Dq = 0.23 mm, DF = 2.29 + 0.03 mm and DTF = 0.26 mm: 
   a =                0.23                 = 0.9  

           2.29 + 0.03 + 0.26

Thus the force acting at the truss is equal to a F = 0.9 kN and the force acting at the diagonals is equal 
to  S = ½ a F/sin b = 0.5 kN. The better part of the equally distributed load is transferred by the vault.

Linearly increasing load

A load is linearly increasing from the top to the supports. At the supports the maximum load is equal 
to q. At a distance x from the top the load is equal to qx = q x/a. For this load the deformation at the 
top will be defined.
The vertical reaction acting at the support A and B is equal to:  VA = VB  = ½ c q a. 
The thrust H acting at the supports follows from [6.14]:    H =  1/6 c q a2/f      
   
The bending moment Mx at a distance x from the top follows from [6.15]: 

Mx =  1/6 c q a2 (x2/a2 –  x3/a3)                    [6.15’]

The normal force acting at the vault is equal to:   Nx = H cos f (1 + Vx  tan f) 

Substituting H = 1/6  q a2/f and Vx = ½ q x2/a  gives with cos f  ≈ cos b :  
Nx  = 1/6 c q a2/ f  × cos b [ 1 + 6 x3 f2/a5 ]                 [6.42]
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The deformation of the vault at the top is defined according to the Theory of Maxwell-Mohr with:
D =  ∫ M’ M ds  +  ∫ N’ N ds                     [6.33]
                 EI                      EA

For a concentrated vertical force F = 1 acting at the top the bending moment follows from [6.22]:
Mx =  ½ a × (x2/a2 - x/a)                    [6.22’]

For a vault subjected to a concentrated load F = 1 the normal force follows from [6.34’]:
Nx =  ½ a/f × (1+ 2 f2 x/a3) cos b                 [6.34’]

Substituting M’f, Mf , N’f  and Nf into [6.33] gives with ds ≈ dx/cos b:
Dcq =     c q a3    ∫0 a [x2/a2-x/a] × [x2/a2–x3/a3] dx +  q a3 cos b ×∫0 a [1+2 f2 x]×[1+ 6 f2 x3 ] dx  
          6 EI cos b                                                                    6 AE f2                      a3                     a5

Integrating this expression gives:
Dcq = -        c q a4         +   c q a4 cos b  ×  [ 1 + 5 f2   + 12 f4  ]          [6.43]
             360 EI cos b          6 AE f2                      2 a2        5 a4

For f = ¼ a the deformation is equal to:   Dcq  = -       c q a4                + 373  c q a2 cos b    [6.43’]
                            360 EI cos b              120 AE           

Assuming the truss is subjected to a vertical force a F  acting downward and the vault is subjected to 
a force a F acting upward. At the top the displacement of the vault is equal to the displacement of the 
truss. The factor a follows from:

Dq  -  a D F  = a DTF  →   a = Dq/(DF  + DTF)              [6.41]

Example

For the vault, described previously the deformation is defined for a linearly increasing load qx = c q x/a 
with q = 1.0 kN/m. 
Due to a vertical force F = 1.0 kN the deformation of the truss is equal to: 

DTF =              103 × 7200                  = 0.26 mm    
         1206×2×105 × sin2b cos b

Due to the linear increasing load qx = q x/a with c q = 1.0 kN/m the deformation of the vault is 
according to (6.43’) equal to:

Dc.q = -           1.0  × 72004            + 373 × 1.0 × 72002 cos b = -2.75 + 0.08 
               360 × 2.8 × 1012 cos b         120 × 2.0 × 109                  

The deformation of the vault due to the concentrated force  F = 1.0 kN is according to [6.35’] equal to: 

DF = 1.0 × 103 × 72003   +  217 × 1.0 × 103 × 7200  = 2.29  + 0.03  mm
           60 × 2.8 ×1012                   24 × 2.0 × 109

Assume the truss is subjected to a vertical force a F acting downward and the vault is subjected to a 
force a F acting upward. The factor a follows from [6.41] : a = Dq /(DF  + DTF)

Substituting Dq = 0.227 mm, DF = 2.29 + 0.03 mm and DTF = 0.26 mm gives:
a  =      - 2.75 + 0.08         = -1.0  
          2.29 + 0.03 + 0.26
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Thus the force acting at the truss is equal to a F = -1.0 kN, the negative sign shows the force a F is 
acting downward ↓. The force acting at the diagonals is equal to S = ½ a F/sin b = -2.06 kN.  The better 
part of the linearly increasing load is transfered by the vault.

Deformation of the vault due to an anti-metrical load

For a vault subjected to an anti-metrical load q the vertical reaction acting at the support at the left 
and right side are respectively equal to: VA  = -½ q × a ↓ and VB  = ½ q × a↑ . The thrust is equal to zero.

a = ½ l

q

f      H

        VB

   H

VB

FIGURE 6.18 Vault subjected to an antimetrical load

For the right part the bending moment Mx follows from [6.12]:   Mx = ½ q a2 (x/a - x2/a2) 

The normal force follows from:      Nx = Vx sin f. 

For a low rise vault the angle f is quite small so cos f ≈ cos b.  Substituting Vx  = q x - ½ q a and  tan f = 
2 f x/a2 gives:

  Nx = q f (2 x2/a2  - x/a) cos b                  [6.44]

Due to an anti-metrical load the vault will deform horizontally to the left side. The deformation of the 
vault at the top is defined according to the Theory of Maxwell-Mohr with (6.33):

D =  ∫ M’ M ds  +  ∫ N’ N ds                     [6.33]
                 EI                      EA

For a concentrated  force H = -1 acting at the top the bending moment and normal force are 
respectively equal to: Mx = -½ f (x2/a2   -  x/a)  and Nx =  -½ (1 + 2 f2 x/a3) cos b 

Substituting M’f, Mf,  N’f  and Nf into (6.32) gives with ds ≈ dx/cos b:
Dq  =   2 q f a2    × ∫0 a [ x2/a2 –x/a]2 dx + q f cos b × ∫0 

a [2 x2/a2-x/a] × [-1 – 2 f2 x/a3] dx
           4 EI cos b                                                      AE                

Integrating this expression gives:     Dq  =        q f a3             -  q a f cos b × [ 1 + 2 f2  ]  [6.45]
                             60×EI cos b             6 AE                    a2  
For f/a = ¼ the deformation is equal to:   Dq  =       q a4                      -  3 × q a2 cos b      [6.45’]
                           240×EI cos b          64 × AE       

Due to a horizontal force H the deformation of the vault follows from [6.38]:
DH =       H f2 a         +  H a cos b (1 + 4/3 f4/a4  + 2 f2/a2)                [6.38]
            60 EI cos b                         2 EA

TOC



 153 Strengthening parabolic vaults

For f/a = ¼  the deformation is equal to:   DH =            H a3            +  217  H cos b      [6.38’]
                           960  EI cos b          384  AE           

The deformation of the truss, subjected to a horizontal load H acting at the top, follows from [6.32]:
DTH  =       H a                              [6.32]
            2 AE cos3 b

Assume the truss is subjected to a force a H acting to the left side and the vault is subjected to a force  
a H acting to the right side. At the top the displacement  of the vault is equal to the displacement of 
the truss, the factor a follows from:

D q - a DH  =  a DTH    →      a = Dq /(D H  + DTH)         [6.46]

Example

For the vault, described previously, the deformation is defined for an antimetrical load q = 1.0 kN/m. 
The deformation of the vault due to the anti-metrical  load q = 1.0 kN/m with f = ¼ a follows from 
(6.45’): 

Dq  =         1.0 × 72004                -  3 × 1.0 × 72002 cos b  = 4.12 - 0.001
            240 × 2.8 × 1012 cos b          64 × 2.0 × 109                                                   

The deformation of the truss due to a force H = 1.0 kN is according to (6.32) equal to: 
DTH =       ½ × 103 × 7200           = 0.016 mm    
            1206× 2 × 105 × cos3 b

The deformation of the vault due to the concentrated force H = 1.0 kN is equal to: 
DH  =          103 ×7.23  × 109       + 217 × 103 × 7200 × cos b =  0.142 + 0.002 mm
             960 × 2.8 ×1012 cos b           384 × 2.0 × 109

Substituting the deformation of the truss and vault into [6.46] gives:
a =           4.12   -   0.001          = 25.5  
         0.142 + 0.002 + 0.016

Due to the anti-metrical load q = 1.0 kN/m the truss is subjected to a force a H = 25.5 kN acting to the 
left. The diagonals are subjected to a force S = ± ½ a H/cos b = ± 13.1 kN.

§  6.6 Example three hinged vault, strengthened with truss composed of two diagonals.

To show the effect of the strengthening the three-hinged vault described in paragraph 6.3 is 
strengthened with two diagonals running from the supports to the top. The span is equal to  l = 2 a 
= 14.4 m. The rise is of the swallow vault is equal to f = l/8 = 1.8 m.  The structure is composed of 
concrete fusées and reinforced with steel. In a section with a width of 1.0 m a number of  eleven fusées 
are placed with a spacing of 10 mm. The centre-to-centre distance of the ceramic elements is equal to 
90 mm. The thickness of the vault is 110 mm. To resist the thrust, steel bars Ø25 are made at a centre-
to-centre distance of 1.0 m. The vault is reinforced with rebars Ø8 – 180 at the top and bottom with a 
covering of 15 mm at the top and bottom of the sections of the vault. Distribution bars are not used. 
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For a part of the roof with width of 1.0 m the areas and second moment of the area of the concrete, 
fusées and steel are calculated before.According to the calculations made for a factory in Dongen, the 
Young’s modulus of the fusées,  concrete C12/15 and reinforcement is respectively equal to Ef =  1.7 
× 104  MPa,  Ec = 2.7 × 104 MPa and Es = 2.0 × 105 MPa   The distribution and transfer of the loads is 
defined according to the Theory of Elasticity. The stiffness is calculated by multiplying the area and 
second moment of the area with the Young’s modulus. To simplify the calculation a ratio nf  and ns  is 
introduced with: nf = Ef / Es = 0.63 and  ns = Es/Ec = 7.4. Thus EA and EI are calculated with respectively: 

EA = Ec (Ac + nf Af  + ns As )                     [6.25]   

EI = Ec (Ic  + nf If  + ns Is )                     [6.26]

Substituting the values for  Ec , Ic , If, , Is , Ac , Af, , As , nf and ns, into the equations [6.25] and [6.26] gives 
for this vault:

EA = 2.7 × 104 × (54.71 × 103  + 0.63 ×  24.19 × 103  + 7.4 × 2 × 279) = 2.0 × 109  N 

EI  = 2.7 × 104 × (88.80 × 106  + 0.63 × 15.12 × 106  + 7.4 × 0.72 × 106 ) = 2.8 × 1012 Nmm2 

This roof is designed for a live load equal to pe = 1.0 kN/m2 and a  permanent load  equal to qg = 2.0 kN/m2.

Permanent load

Due to the dead load the vault with a width of 1.0 m is subjected to a surface load equal to: qg = 2.0 
kN/m. At the supports for x = a the maximum load is equal to: qmax = q (1+ 4 f2/a2)½  

To simplify the calculations for low-rise vaults the dead load is assumed to be increasing linearly 
from q at the top to (1+c).q at the support. For these low-rise vaults the parameter c can be found by 
assuming for the linearly increasing load the maximum load at the support equal to the maximum 
load for the dead load, thus:  

qmax = q  (1+ 4 f2/a2)½    = q (1 + c)     →   c = (1+ 4 f2/a2)½  - 1

For f = ¼ a the maximum load at the support is equal to qmax = 1.118 q, thus the parameter c is equal 
to 0.118. 
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FIGURE 6.19 Parabolic vault subjected to an increasing load q (1+ c x/a)

The vertical reaction V acting at the support A or B is equal to:

V = q a + ½ c q a = 2.0 × 7.2 × (1.0 + 0.118/2)  = 15.25 kN  
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The thrust H follows  from expression [6.17]:  H =  (1+  1/3 c ) × ½ q a2/f  = 29.93 kN  

For an equally distributed load q = 1.0 kN/m the force a F acting at the truss is equal to 0.09 kN. Thus 
for an equally distributed load q = 2.0 kN/m the force is equal to a F = 0.18 kN. The compressive force 
S acting at the diagonals is equal to:  S = ½ a F/sin b = -0.37 kN.

For a linearly increasing load  c q = 1.0 kN/m the force F acting at the truss is equal to –1.0 kN . Thus 
for an equally distributed load c q = 0.118 × 2.0 kN/m the force is equal to F = -0.24 kN. The force S, 
tensioning the diagonals, is equal to:  S = ½ a F/sin b =  +0.49 kN.

For a concentrated vertical force F acting at the top the bending moment follows from [6.22]:
Mx =  ½ F a (x2/a2   -  x/a)                   [6.22]

For x = ½ a the bending moment due to the concentrated force is equal to M = - 1/8 F a. Substituting 
the concentrated force a F = 0.18   - 0.24 = -0.06 kN gives:  

Mx=a/2 =  - 0.06 × 7.2/8 =  -0.05 kNm 

For the linearly increasing load c q  the bending moment for the not-strengthened vault follows from 
(6.15):

Mx =  1/6 c q (x2 – x3/a)                      [6.15]

For x = ½ a this bending moment is equal to: Mx=a/2 = 1/48  c q a2.

 Substituting for the increasing permanent load c = 0.118 and q = 2.0 kN/m gives:  
Mx=a/2 = 1/48   × 0.118 × 2.0 × 7.22  = +0.25 kNm

Thus the resulting bending moment due to the load and the upward force F is equal to: 
Mx=a/2 = +0.25 – 0.06 = +0.19 kNm

At a distance x from the top the normal force is equal to:  Nx = H cos f × (1 + Vx tan f)

Substituting for x = ½ a the thrust H, Vx and tan b = f/a, b = 14.036o gives:
Nx=a/2 = 29.93 × cos b + [2.0 × 3.6 × (1 + 0.118/4)] × sin b  -0.06/(2 sin b) = 30.7 kN
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FIGURE 6.20 Parabolic vault subjected to an equally 
distributed live load 

FIGURE 6.21 Parabolic vault subjected to an asymmetric  
liveload q. 
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Live load

For the three hinged vault subjected to a live load qe = 1.0 kN/m2  the vertical reaction acting at the 
supports VA and VB follows from:   VA = VB = qe a = 1.0 × 7.2 = 7.2 kN
The thrust follows from (6.7):   H =  ½ qe a2/f  = ½ × 2.0  × 7.22/1.8 =14.4 kN 

For an equally distributed load q = 1.0 kN/m the force F acting at the truss is equal to 0.09 kN. The 
compressive force S acting at the diagonals is equal to:  S = ½ F/sin b = 0.19 kN.

For a concentrated vertical force F acting at the top the bending moment follows from [6.22]:
Mx =  ½ F a (x2/a2   -  x/a)                   [6.22]

For x = ½ a, the bending moment is equal to Mx=a/2 = - 1/8 F.a.  Substituting a F = 0.09 kN gives:
Mx=a/2 =  - 0.09 × 7.2/8 =  -0.08 kNm 

The normal forces acting at the vault are reduced slightly due to the upward force a F = 0.09 kN acting 
at the top of the vault. For x = ½ a the normal force is equal to:  

Nx=a/2 = - (H + Vx)
½ + ½ a F/sin b   

 
Nx=a/2 =  - (14.42 + 3.62)½ + ½ × 0.09 /sin b  = 14.84 – 0.19 =14.65 kN

Asymmetric live load       

The vault can be subjected to a live load acting asymmetrically. The assumption is made that the vault 
is subjected to a load q = 1.0 kN/m acting at the right side. The vertical reaction acting at the support 
at the left side, VA,  and the right side  VB are respectively:

VA = ¼ q a   →       VA  = ¼  × 1.0 × 7.2 = 1.8 kN    
VB = ¾ q a    →       VB  = ¾ × 1.0 × 7.2  = 5.4 kN  

The thrust H follows from [6.8]: H =  ¼ q a2/f   →   H =  ¼ × 1.0 × 7.22/1.8 = 7.2 kN

The asymmetrical load can be considered as composed of an equally distributed load equal to ½ q and 
an anti-metrical load equal to ½ q. Thus this asymmetrical load can be considered as the combination 
of a symmetrical load q = ½ × 1.0 = 0.5 kN/m and an anti-metrical load q = ½ × 1.0 = 0.5 kN/m. Due 
to the antimetrical load the vault is subjected to bending moments. For x = ½ a the bending moment 
is at maximum:

M x=a/2 = ± 1/8 × (½ q) × a2  →          Mx=a/2 = ± 1/8 × 0.5 × 7.22 = -3.24 kNm

For an equally distributed load q = 1.0 kN/m the force F acting at the truss is equal to 0.09 kN.  
Thus for q = 0.5 kN/m the force a F acting at the truss is equal to 0.045 kN. For x = ½ a the bending 
moment due to this force a F acting at the top of the vault is equal to M = 1/8 a F a. Substituting a F = 
0.045 gives:

Mx=a/2 =  -0.045 × 7.2/8 = - 0.04  kNm 

Due to the asymmetrical load the vault will deform sideward. The truss will decrease the horizontal 
deformation. The asymmetrical load can be considered as the combination of a symmetrical load q = 
½ × 1.0 kN/m and an anti-metrical load q = ½ × 1.0 kN/m. 

Due to the anti-metrical load q = 1.0 kN/m the truss is subjected to a force  a.H = 25.5 kN.  Thus for an 
anti-metrical load equal to q = 0.5 kN/m the truss is subjected to a force:  a H = 12.75 kN. 
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The force S acting at the diagonals is equal to:         S = ½ a H/cos b = ± 6.6 kN.

Due to the force S acting at the diagonal at the right side the vault is subjected to a bending moment:
 Mx = (S cos b) y  - (S sin b) x  

For x = ½ a the bending moment due to the force S is equal to:  Mx = S cos b × ¼ f – S sin b × ½ a 
Substituting S = 6.6 kN and f = 1.8 m gives:    Mx=a/2  = 2.9 kNm. 

For the unloaded side the resulting bending moment due to the asymmetrical load is equal to:
Mx=a/2 = -3.24 + 2.9  - 0.04 = - 0.38 kNm  

The minimum normal force acting for x = -½ a  at the unloaded side follows from:  
Nx=a/2 = -H cos b  - Vx sin b + S cos2 b  + S sin2 b = -7.2 × cos b  - 1.8 × sin b  + 6.6 = - 0.8 kN 

For the loaded side the resulting bending moment due to the asymmetrical load is equal to:
Mx=a/2 = + 3.24 - 2.9  - 0.04 = + 0.3 kNm,   

For x = ½ a  the maximum normal force is equal to:  
Nx=a/2 = -H cos b  - Vx sin b - S cos2 b - S sin2 b  = -7.2 × cos b  - 1.8 × sin b  - 6.6 =  -14.0 kN

Stresses

The stresses acting in the concrete, due to the normal forces and bending moments according to the 
Theory of Elasticity follow from: sc = N Ec  ±  M z Ec

                AE           EI
With: z= ½ ×110 = 55 mm; AE = 2.0 × 109  Nmm2;; Ec = 2.7 × 104 MPa; EI= 2.8 × 1012 Nmm2T

Table  6.2 shows for the strengthened vault the forces, bending moments and stresses due to the 
permanent and asymmetric load for x = ½ a.

Load H [kN]  V 
[kN]

N x =a/2

[kN]
sc = N × Ec / AE
[MPa] 

M  
[kNm]

sc = M × z × Ec/ EI 
[MPa]

perm. Load 29.9 15.25 -30.7 - 0.41  -0.19  ± 0.10 

sym.live load 14.4 7.20  -14.7 - 0.20 - 0.08  ± 0.04 

asym.live load
unloaded side

  7.2 1.80  -  0.8 - 0.01 - 0.38  ± 0.20 

asym.live load
loaded side

  7.2 5.40  -14.0 - 0.19 +0.30  ± 0.16 

TABLE 6.2  Forces, bending moments and stresses due to the permanent load and the live load. 
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Conclusions

Comparing table 6.1 and 6.2 shows that the strengthening with the diagonals reduces the bending 
moments and stresses. Especially for vaults, subjected to an asymmetrical live load, the strengthening 
with diagonals reduces the bending moments due to this load substantially. For the described vault 
the normal forces compensate for the better part the tensile bending stresses. 

Calculation with computer program

For a two-hinged vault strengthened with two diagonals a calculation is made with a computer 
program, Matrixframe, with ties Ø25 and diagonals Ø100-4. The center of the coordinates is 
positioned at the crown. The nodes are numbered from the top to the supports. The following table  
shows the results for the permanent load and the asymmetrical live load acting at the right side.

The computer calculation shows that due to the strengthening the bending moments are quite small. 
The chosen length of the elements of the curved vault effects the bending moments. Due to the 
facetting the bending moments are increased with a bending moment. Increasing the number of the 
nodes and decreasing the length of the elements will decrease these bending moments. 

The length of the elements is equal to dx = 0.9 m. For the permanent load this bending moment is at 
maximum equal to:

M = 1/8 q ds2 = 1/8 × 2.0 × 0.92 = 0.2 kNm.

For the permanent load the thrust is equal to H = 29.4 kN. At the top the normal force is equal to H = 
29.7 kN. Due to the tensile forces S = + 0.3 kN acting at the diagonals the normal force acting at the 
top is smaller than the thrust. 
For the three hinged vault the thrust is equal to H = 29.9 kN. For the design of a two hinged vault the 
thrust can be approached by assuming a third hinge at the top. 
For the two hinged vault the bending moment acting at the top is equal to M = 0.51 kNm. According 
to the analyse for a not strengthened two hinged vault the bending moment at the top is for x/a = 
0 equal to: Mx=0 = - 1 /64 q.a2. Substituting q = 0.118 × 2.0 kN/m gives M = 0.19 kNm, this bending 
moment is smaller than the bending moment calculated with the computer for the two hinged vault 
strengthened with diagonals. Due to the strengthening the vault is subjected to an upward force equal 
to F = 0.38 kN. Due to this force the bending moment acting at the top is increased.
For the asymmetrical load the thrust is equal to H = 7.2 kN and the forces acting in the ties are S = + 
6.7 kN and S = – 6.8 kN. The asymmetrical load can be considered as composed of a symmetrical load 
q = 0.5 kN/m and an antimetrical load q = 0.5 kN. Due to the symmetrical load q = 0.5 kN/m both 
diagonals are subjected to a force: S = -0.27 × 0.5/2.0 =  -0.07 kN. Due to the antimetrical load the 
diagonals are subjected to a force S = 6.75 kN.
The force acting at the diagonals is, according to the analysis for the three hinged vault, equal to S = 
6.6 kN. This force is slightly smaller than the force acting at the diagonals according to the computer 
calculation. Both calculations match well. 
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Node X coord. Y- coord. Member load case moment normal force shear force

1 0 0 1-2 perm. 0.18 -29.7 0.94

2 0.9 0.028 2-3 0.18 -29.9 0.93

3 1.8 0.112 3-4 0.20 -30.2 0.93

4 2.7 0.253 4-5 0.25 -30.5 0.97

5 3.6 0.45 5-6 0.32 -31.0 0.96

6 4.5 0.703 6-7 0.36 -31.7 0.88

7 5.4 1.012 7-8 0.36 -32.4 0.92

8 6.3 1.378 8-9 0.29 -33.2 1.03

9 7.2 1.8 9-18,     thrust +29.4

10 -0.9 0.028 1-9,       diagonal + 0.3

11 -1.8 0.112 1-2 asym. load 0.18 -13.7 0.60

12 -2.7 0.253 2-3 0.30 -13.8 0.57

13 -3.6 0.45 3-4 0.37 -13.9 0.50

14 -4.5 0.703 4-5 0.40 -14.4 0.46

15 -5.4 1.012 5-6 0.36 -14.7 0.49

16 -6.3 1.378 7-8 0.29 -15.0 0.51

17 7.2 1.8 8-9 0.18 -15.4 0.54

18 0 1.8 9-18,     thrust + 7.2

1-9        diagonali + 6.7 

1-17,    diagonal -  6.8

TABLE 6.3  Output calcularion computerprogram for the two-hinged vault strengthened with diagonals 

Approach

For the design of vaults, strengthened with diagonals, the force S acting at the diagonals can be 
approached for an asymmetrical load q by assuming a virtual hinge at x = ½ a. The force S follows for 
the anti-metrical load q’, with q’ is half of the asymmetrical load q, from:

S × ¼ f cos b =  q’ a2/8     →  S = 1/2 q’ a2    
                 f cos b   

§  6.7 Vaults strengthened with diagonal ties 

Probably some of the remaining Fusee Céramique vaults made halfway the twentieth century have 
to be strengthened to meet the present demands. Architecturally it will be interesting to strengthen 
these structures with thin elements. However a slender tie, subjected to a compressive normal force, 
will fail by buckling. The previous chapters showed that due to asymmetrical loads the diagonals 
running from the top to the supports are subjected to a tensile force at the loaded part of the vault 
and subjected to a compressive force at the unloaded part of the vault. For vaults,strengthened with 
diagonal ties, the compressed tie can not resist any compressive load and has to be removed from the 
scheme of the structure. Thus the vault ,subjected to an asymmetrical load, is schemed as a structure 
strengthened with only one tie at the loaded side. The following analyses show the effect of the 
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strengthening with slender diagonals not able to resist normal forces for an equally distributed and a 
linearly increasing load acting asymmetrically at the structure.
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FIGURE 6.22 Parabolic vault strengthened with ties subjected 
to a linearly increasing asymmetrical load.The dotted tie is 
compressed and removed from the scheme

FIGURE 6.23 Parabolic vault strengthened with ties subjected 
to an asymmetrical load. The dotted tie is compressed and 
removed from the scheme

Parabolic vault, subjected to a linearly increasing load

The vault is subjected to an asymmetric equally distributed load q acting at the right half of the vault. 
The minimum and maximum vertical reaction are respectively equal to: 

Va = 1/12 q a   and    Vb = 5/12 q a. 

The thrust is calculated with the equilibrium of moments round the centre. Assume a virtual hinge is 
made at the top, then the bending moment acting on the top is zero. For the left side of the vault the 
equilibrium of bending moments around the top is equal to:
For the left side:  M = H f -  Va a  = 0  →  H  =  1/12 q a2/f      [6.19]

To calculate the force S the structure is made statically determinate by introducing an imaginary hinge 
at x = ½ a. As showed before the effect of the virtual hinge is small. 
The bending moment follows from:         Mx =  H y + Va x – (½ q x2/a) × 1/3 x  

For x = ½ a the bending moment is:
Mx  =  1/12 q a2 f × ¼  a2   + 1/12 q a × ½ a  - 1/48 q a2   =  1/24  q a2  
                         f a2                                         

The force S follows from:   
S × ¼ f cos b =  q a2/24    →   S =       q a2                 [6.47] 
            6 f cos b

For the left side the bending moment at a distance x from the centre follows from:  Mx =  H y  - Va x  
Substituting H, Va, gives:                  Mx  = q a2 f x2    -  q a x       
                                                                              12 f a2            12          
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The bending moment is at maximum for dM/dx = 0, differentiating Mx gives:
Mx  = q x/6    - q a/12 = 0 →    x = ½ a  

For x = ½ a the bending moment is: Mx  = q a2    - q a2   =  - q a2  = 0.0208 q.a2  
                     48         24              48

For the  not-strengthened vault the bending moment  follows from [6.20]:  Mx max =  0.044 q a2  
Thanks to the strengthening the bending moment, due to the asymmetrical linearly increasing load, is 
halved.

Parabolic vaultstrengthened with a tie, subjected to an asymmetric equally distributed load 

The vault is subjected to an asymmetric equally distributed load q acting at a half of the vault. The 
structure is schemed as strengthened with the tensioned tie only; the compressed tie is taken away 
from the scheme.
The vertical reactions are respectively equal to: Va = ¼ q a  and Vb = ¾ q a. 

The thrust is calculated with the equilibrium of moments round the centre. Again the thrust follows 
from expression [6.8].           H  =  ¼ q a2/f 

For two hinged low-rise vaults the vertical forces, bending moments and thrust do not vary much form 
the forces and bending moments acting on a three-hinged vault. To calculate the force S the structure 
is made statically determinate by introducing an imaginary hinge at x = ½ a. The bending moment 
follows from:          Mx =  H y + Va x – ½ q x2     

For x = ½ a, the bending moment is:
Mx  = ¼  q a2 f × ¼  a2   +  ¼ q a × ½ a   -  ½ q × ¼ a2  = q a2/16  
                     f a2                                         

The force S follows from:   S × ¼ f cos b =  q a2/16    →  S =  ¼ q a2       [6.48]
                    f cos b

For the left side the bending moment at a distance x from the centre follows from: Mx =  H y  - Va x   

for x = ½ a the bending moment is: Mx  = ¼  q a2 f × ¼ a2   -  ¼ q a × ½ a =  - q a2/16        
                       f  a2                                      

This bending moment is equal to the bending moment calculated for the not-strengthened vault. 
Thus for this vault subjected to an asymmetrical equally distributed load the bending moment at the 
unloaded side is still equal to the bending moment acting in the not strengthened vault.  

Tensioning the diagonals  

At the loaded side the diagonal is tensioned but at the unloaded side the diagonal is compressed. 
The bar can be constructed as a tie only in case the diagonal is subjected to a tensile force due to the 
dead load, which is larger than the compressive force due to the asymmetric live load. If the tension 
in the diagonal due to the dead load is insufficient to compensate for the compression, due to the 
asymmetrical load, then the diagonals must be tensioned to compensate the compressive force. 
Due to a post-tensioning of the diagonals with a force P the vault will be subjected to bending 
moments: P e .For x = ½ a the distance between the parabolic vault and diagonal is equal to ¼ f , so the 
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eccentricity e follows from: e = ¼ f cos a  with cos a = a/(a2+f2)1/2 .Thus the bending moment acting at 
the vault is:  

P × ¼ f ×  a/(a2+f2)1/2                     [6.49]

For a vault subjected to an asymmetrical load the force S follows from expression [6.48]:   
S × ¼ f cos a =  q a2/16    →    S = ¼ q a2             [6.48]
            f cos b

For the left side the bending moment at a distance x from the centre follows from: Mx =  H y  - Va x   
For x = ½ a the bending moment is:

Mx  = ¼  q  a2 f × ¼  a2   -  ¼ q a × ½ a   =  - q a2/16         
                       f  a2                                           

If the post tensioning force P is equal to the force S acting on the diagonal defined with expression 
(6.22) then the bending moment is:

M = a2 q × (1 + f2/a2)1/2   ×       ¼ f                   →   M = q a2    
                 4 f                                 (1 + f2/a2)1/2                                        16    

Due to the post tensioning the vault is subjected continuously to a bending moment equal to the 
bending moment caused by the asymmetrical live load.

Tensioning the diagonals with a strut

To reduce the bending moment due to the post-tensioning it is profitable to tension the diagonals by 
constructing a vertical strut halfway the span between the top of the vault and the tie with a length 
larger than f so the tie is inclined downward with an angle a. Due to the dead load the diagonals 
are stressed. The structure is statically indeterminate. As showed before for a vault subjected to 
concentrated force acting at the top the better part of the load will be resisted by the diagonals. For 
the design of the vault the assumption is made that the concentrated load is resisted by the diagonals 
only.
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FIGURE 6.24 The parabolic vault is asymmetrical loaded. The tie is inclined downward. A vertical strut is made halfway the 
span between the tie and the vault  to tension the diagonals..

Assume the force acting at the diagonal is Sd and the force acting on the tie is St. The force in the strut, 
Fstrut , and the forces in the diagonals and tie follows from:

Fstrut  = Sd sin b  = St sin a   →      Sd  = St sin a/sin b          [6.50]

The thrust is resisted by the ties so:      H = Sd cos b  + St cos a         [6.51]
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Substituting [6.50] into [6.51]:      St [sin a/tan b  + cos a ] = H

The forces in the tie and diagonals are respectively:
   St =         H  tan b                                   Sd =             H tan a                                 [6.52]
         cos a [tan a + tan b]                                             cos b [tan a +tan b] 

Next the angle a is selected in such a way that the diagonals are stressed if the vault is subjected to an 
asymmetrical load.

Conclusions

Strengthening with slender diagonals reduces the bending moments due to a linearly increasing 
load but does not reduce the bending moments due to an asymmetrical load for the not loaded side. 
Nevertheless the ties will reduce the horizontal displacements due to the asymmetrical load or the 
wind load. Further the ties will reduce the buckling length too. So strengthening with ties will be 
helpful to increase the resistance of the vault. Tensioning the ties to prevent the ties being subjected 
to a compressive normal force is effective, if the vault is not loaded by the downward component of 
the post tensioning force. To prevent the vault being subjected to this component the tie between the 
supports has to be inclined and jointed with a vertical strut. The angle a has to be chosen carefully to 
tension the ties continuously, even in case the vault is subjected to an asymmetrical load.

§  6.8 Parabolic trussed vault

For shallow vaults the distances between the vault and diagonals are quite small. For x = ½ a the 
distance between the vault and ties running from the supports to the top is only ¼ f. With a small 
strut this distance can be increased. The diagonals are connected with the tie running horizontally 
to increase the tensile forces. Integrating the diagonals and ties reduces the length of the elements. 
Structurally the trussed vault resembles the Polonceau truss. 
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FIGURE 6.25 Trussed vault subjected to a symmetrically loading Caption

For the design and to show the distribution of the loads an analyse is made for several loads. The 
parameters of the trussed arch are the span l = 2 a, the rise f and the angle a and b for the web bars. 
The trussed vault is simplified into a statically determinate truss with straight hinged bars. The nodes 
are numbered clockwise. 
The length of the strut at the centre is equal to  ¾ f , the length of the other two struts is equal to ½ f . 
The angle between the diagonals and the horizontal are equal to a and b with:  

tan a = ¼ f/(½ a) = ½ f/a    and  tan b = ¾ f/(½ a) = 3/2 f/a. 
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To simplify the analysis of the forces acting on the ties and struts the structure is assumed to be 
loaded only by concentrated forces acting on the joints. For every node the forces acting at the bars are 
defined with the vertical and horizontal equilibrium of the forces SV = 0 and SH = 0.

Equally distributed load

The truss is subjected to an equally distributed load, due to this load the nodes are subjected to 
concentrated forces equal to F, with F= ½ q a. For every node the forces acting at the bars are defined 
with the vertical and horizontal equilibrium of the forces SV = 0. SH = 0. SM = 0.

Node 5: SM5 = 0: S45 = (3/2 F a – F × ½ a)/( 3/4 f )   →    S45 = 4/3 F a/f
Node 2, SM2= 0:S34 cos a = 3/2 F × ½ a/(½ f) = 3/2 F a/f      →   S34 = 3/2 F (a/f)/cos a 
           S34 sin a = 3/2 F (a/f) × tan a  
Substituting tan a = ½ f/a gives:          S34 sin a = 3/2 F (a/f) × ½ f/a  = 3/4 F
Node 3, SH3= 0:            S23 cos b = S34 cos a 
Substituting S34 cos a  gives: S23 = 3/2 F (a/f) /cos b  →   S23 sin b = [3/2 F (a/f)/cos b] × sin b  
           S23 sin b =  3/2 F (a/f) × tan b
Substituting tan a = 3/2 f/a gives:          S23 sin b = 3/2 F (a/f) × 3/2 f/a  = 9/4 F
Node 4, SH4= 0:  S45 = S34 cos a - S14 cos b   →    
Substituting S34 cos a and S45  gives:         S14 cos b = [3/2 Fa/f – 4/3 F a/f] 
           S14 cos b =  1/6 F a/f
S14  sin b = [1/6 F (a/f)/cos b] × sin b     →       S14  sin b = 1/6 F(a/f) × tan b  
Substituting tan b = 3/2 f/a gives:          S14 sin b = 1/6 F (a/f) × 3/2 f/a  = ¼ F
Node 4:SV4 = 0:             S24 = S14 sin b + S34 sin a     
Substituting S34 sin a  = 3/4 F and S14 sin b  = ¼ F gives:    S24 = ¼ F + ¼ F = ½ F
Node 2, SH2 = 0:            S12 cos a = S23 cos b 
Substituting S23 cos b =3/2 F × a/f:         S12 = (3/2 F×a/f )/ cos a 
           S12 sin a = 3/2 F × a/f × tan a  
Substituting tan a = 1/2 f/a  gives:           S12 sin a = 3/2 F (a/f) × 1/2 f/a  = ¾ F

As all ties are tensioned only and thus not loaded in compression these elements can be dimensioned 
very slender.
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FIGURE 6.26 Trussed vault subjected to an asymmetrically loading

Trussed vault, asymmmetrically loaded.

The truss is subjected to asymmetric loading. Due to this load node 1 and 2 are subjected to respectively 
a   load  ½ F and F with F = q a/2. For every node the forces acting at the bars are defined with the vertical 
and horizontal equilibrium of the forces SV = 0, SH = 0, SM = 0, reactions R7 = ½ F and R3 =  F. 
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Node 5: SM5 = 0:          S45 = (F × a – F × ½ a)/(3/4 f)   →   
        S45 = 2/3 F a/f
Node 2: SM2 = 0:         S34 cos a = F ½ a/(½ f)  →   
        S34 = F (a/f) / cos a        
        S34 sin a = F (a/f) × tan a    
Substituting tan a = ½ f/a  gives:        S34 sin a = F (a/f) × ½ f/a  = ½ F
Node 3:  SH3 = 0:         S23 cos b = S34 cos a   
Substituting S34 cos a =F × a/f  gives:      S23 = F (a/f) / cos b
        S23 sin b = F (a/f) × tan b 
Substituting tan b = 3/2 f/a  gives:        S23 sin b = F (a/f) × 3/2 f/a  = 3/2 F
Node 4, SH4 = 0:         S45 = S34 cos a - S14 cos b    
S14 cos b = F a/f –  2/3 F a/f = 1/3 F a/f  →    S14 sin b =  1/3 F (a/f) × tan b  
Substituting tan b = 3/2 f/a gives:       S14 sin b = 1/3 F (a/f) × 3/2 f/a  = ½ F
Node 4:  SV4 = 0:         S24 = S14 sin b + S34 sin a  →     
        S24 = ½ F – ½  F = 0 
Node 2:  SH2 = 0:         S12 cos a = S23 cos b =   
Substituting S23 cos b = F × a/f  gives:     S12 = F (a/f)/cos a 
        S12 sin a = F (a/f) × tan a  
Substituting tan a = 1/2 f/a gives:        S12 sin a =  F (a/f) × 1/2 f/a  = ½ F
Node 7, SM8 = 0:         S67 cos a = ½ F × ½ a/(½ f)   →  
        S67 = ½ F (a/f)/ cos a
        S67 sin a = 1/2 F (a/f) × tan a    
Substituting tan a = ½ f/a  gives:        S67 sin a = 1/2 F (a/f) × ½ f/a  = ¼ F
Node 7:  SH7 = 0:           S78 cos b = S67 cos a  →
Substituting S67 cos a = ½ F × a/f :       S78 = ½ F (a/f)/ cos b
        S78 sin b =  ½ F (a/f) × tan b
Substituting tan b = 3/2 f/a  gives:       S78 sin b = ½ F (a/f) × 3/2 f/a  = 3/4 F
Node 6:  SH6 = 0:         S56 = S67 cos a - S16 cos b  →     
        S16 cos b = ½ F (a/f) –  2/3 F (a/f)  →
        S16 cos b  = -1/6 F a/f
        S16 sin b = 1/6 F (a/f) × tan b  
Substituting tan b = 3/2 f/a gives:        S16 sin b = 1/6 F (a/f) × 3/2 f/a  = ¼ F
SV6 = 0: S68 = S16 sin b + S67 sin a  →       S68 = ¼ F + ¼ F = ½ F
Node 8, SH8 = 0:         S18 cos a = S78 cos b =  ½ F × a/f   → 
        S18 = [½ F a/f ]/ cos a 
        S18 sin a = ½F (a/f) × tan a  
Substituting tan a = 1/2 f/a gives:          S18 sin a =  ½ F (a/f) × 1/2 f/a  = ¼ F

Due to the concentrated load the tie S16 is compressed, S16  = -[1/6 F a/f]/cos b. Probably this tie is 
tensioned  if the equally distributed load is larger than the concentrated load. Comparing the forces 
acting in the ties for the equally distributed load and the concentrated load shows that the tie is 
tensioned if the concentrated load due to the live load is smaller than the concentrated load due to the 
permanent load.

Concentrated load acting at the top

The truss is subjected to concentrated load F acting at the top. For every node the forces acting at the 
bars are defined with the vertical and horizontal equilibrium of the forces SV = 0; SH = 0; SM = 0.
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Node 5: SM5 = 0:        S45 = 1/2 F a/(3/4 f)    →   S45 = 2/3 F a/f
Node 2: SM2 = 0:        S34 cos a = 1/2 F × ½ a/(½ f)   → 
       S34 = 1/2 F (a/f)/ cos a
       S34 sin a = 1/2 F (a/f) × tan a    
Substituting tan a = ½ f/a gives:       S34 sin a = 1/2 F (a/f) × ½ f/a  = 1/4 F
Node 3:  SH3 = 0: S23 cos b = S34 cos a   
Substituting: S34 cos a = 1/2 F × a/f       S23 = 1/2 F (a/f)/cos b
       S23 sin b =1/2 F (a/f) × tan b
Substituting:  tan b = 3/2 f/a           S23 sin b = 1/2 F (a/f) × 3/2 f/a  = 3/4 F
Node 4:  SH4 = 0:        S45 = S34 cos a - S14 cos b  →   
S14 cos b = 1/2 F a/f – 2/3 F a/f  →      S14 cos b =  - 1/6 F a/f
       S14 sin b = 1/6 F (a/f) × tan b  
Substituting: tan b = 3/2 f/a         S14 sin b = 1/6 F (a/f) × 3/2 f/a  = ¼ F
Node 4:  SV4 = 0:         S24 = S14 sin b + S34 sin a   → 
       S24 = ¼ F + ¼ F = ½ F
Node 2:  SH2 = 0:        S12 cos a = S23 cos b = 1/2 F a/f  →
       S12= 1/2 F (a/f)/ cos a 
       S12 sin a = 1/2 F (a/f) × tan a  
Substituting tan a = 1/2 f/a  gives:     S12 sin a = 1/2 F (a/f) × 1/2 f/a  = ¼ F
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FIGURE 6.27 Trussed vault subjected to a concentrated force acting at the top

Due to the concentrated load the tie S14 is compressed: S14  = - 1/6 F (a/f)/cos b .Probably this tie is 
also tensioned if the equally distributed load is larger than the concentrated load. Comparing the 
forces acting in the ties for the equally distributed load and the concentrated load shows that the tie is 
tensioned if the concentrated load due to the live load is smaller than the concentrated load due to the 
permanent load. 

Table 6.4 shows the results for the parameters, F, a, f, a and b. For low rise vaults cos a is approximately 
equal to 1, then a reduction of the ratio f/a will increase the forces acting on the elements nearly linearly. 
Trussed vaults are visually very transparent, architecturally these structures emphasizes the spatiality of 
the inner space. Due to the convex form the vertical strut running from the crown to the tie is smaller than 
the rise. Thus the normal forces acting on the vault and bars are increased due to due to the reduction of 
the lever arm. The effect of the reduction of the lever arm can be studied by varying the ratio f/a. If the live 
load is larger than the permanent load it can be profitable to increase the angle a.
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Member  F1 F1 , F2 , F8 asym. ½ F1 , F2

S12 = -        F a        
        2 f  cos a              

-      3 F a    
        2 f cos a                 

-    F a     
      f cos a                  

S23 = -         F a     
        2 f cos b 

-     3 Fa       
         2 f cos b  

-      F a     
       f cos b 

S14 = -         F a       
           6 f cos b                 

       F a       
        6 f cos b  

        F a       
       3 f cos b 

S34 =       ½ F a    
     f cos a   

   3  F a     
     2 f cos a   

      F a      
      F cos a   

S456=         2/3 F a/f       4/3 F a/f              2/3 F a/f

S24 = ½ F ½ F 0

S18 = -        F a       
          2 f cos a                

-   3 F a    
        2 f cos a                  

-      F a      
         2 f cos a                  

S78 = -    ½ F a  
       f cos b   

-     3 F a      
       2 f cos b  

-        F a       
           2 f cos b  

S16 = -      F.a  
  6 f cos b                

   F a     
6 f cos b

-      F.a       
          6 f cos b     

S67 = ½ F a     
   f cos a  

    3 F a      
   2 f cos a  

        F a    
     2 f cos a  

S68 = ½ F ½ F     ½ F

TABLE 6.4 Forces acting in the trussed vault with tan a  = ½ f/a and tan b = 3/2 f/a

§  6.9 Conclusions

This chapter shows the effect of strengthening parabolic vaults with ties. Several concepts are 
analysed.  To strenghten an existing vault adding a truss composed of two diagonals is effective. The 
diagonals will not increase the dead weight significantly. For vaults subjected to an asymmetric live 
load the diagonals can be subjected to compression, consequently the stiffness of these diagonals 
must be increased to prevent buckling. Post-tensioning the diagonals is not very effective. Due to the 
post-tensioning the vault is subjected to a concentrated force acting at the centre causing bending 
moments. By preference the diagonals are tensioned with a vertical strut constructed between the 
vault and the tie. The tie between the supports is inclined downward to create an upward force at 
the top, this force will tension the diagonals continuously. For vaults subjected to a substantial 
live load trussed vaults are very effective. Generally the compressive forces acting at the ties due to 
asymmetrical loads will be compensated by the tensile forces due to the permanent load, so the ties 
of a trussed vault can be very slender.  For trussed vaults the struts and web bars have to be connected 
to the vault, this will raise the cost of construction, especially for the renovation of an existing vault. 
Consequently for a renovation  it is advisable to strengthen these vaults with simple trusses composed 
of two diagonals.
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7 Strengthening the Fusée Céramique 
roof of building Q in Woerden 

It was demonstrated in chapter 5 that the fusée roof of building Q had to be strengthened to resist the 
loads. Chapter 6 shows how the structure can be strengthened. Two alternatives are developed: the 
structure is strengthened with two diagonals running from the supports to the top and the structure 
is strengthened as a trussed arch. The vault has a span of l = 2 a = 19.8 m centre to centre. The rise f of 
the roof is equal to 2.48 m. The ratio of the rise and span is equal to: f/l  = 1/8 . According to the code of 
1955 for roofs the live load was equal to pe = 0.5 kN/m2. The permanent load is equal to: pg = 2.4 kN/
m2. For a segment of the roof with width of 1.0 m the areas and the second moment of the area of the 
concrete, fusées and steel are shown  in table 7.1.

Area [mm2]  Second moment of the area [mm4]  YOUNG’S MODULUS [MPA]  

Fusées: Af = 24.19  × 103 Ic = 160.97 × 106    Ef = 1.7 ×104 

Concrete: Ac = 74.708 × 103 If = 15.12 × 106   Ec = 2.1 ×104 

Rebars: As =  2 × 279 Is = 1.18 × 106  Es = 2.1 ×105 

TABLE 7.1  Area and second moment of the area of the fusées, concrete and steel 

The stiffness AE and EI are calculated by multiplying the area and second moment of the area with the 
Young’s modulus. To simplify the calculation a ratio nf  and ns  is introduced with: nf = Ef /Es = 0.81 and  
ns = Es /Ec = 10, EA and EI are calculated with respectively [6.25] and [6.26]: 

EA = Ec (Ac  + nf  Af  + ns As) = 2.1 × 109  N        

EI = Ec (Ic  + nf  If  + ns  Is)  = 3.89 × 1012 Nmm2       

To show the effect of the strengthening methods for building Q three alternatives are analysed, the 
non-strengthened vault, the vault strengthened with diagonals and the trussed vault.
  

  pe

a = ½ l

q + c q

f     H 

      VA

H

VB

β 

FIGURE 7.1 Vault, strenghtened with two diagonals, subjected to the permanent load  
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§  7.1 Non strengthened vault

The Forces acting at the vault were calculated with the Theory of Elasticity. The vault was schematized 
as an arch resting on two simple supports.  The stiffness of the supports was neglected, actually the 
ties will lengthen so the supports will move sideward. The thrust was calculated with the equilibrium 
of bending moment around the top. Actually the bending moment at the top is not zero, the effect of 
this assumption is negligible as will be shown later.

Permanent load

The vault is subjected to the dead load at the top this load is equal to qg = 2.4 kN/m2. The calculation is 
made for a width of 1.0 m. The span is equal to l = 19.8 m, half of the span is equal to a = ½ l = 9.9 m. 
Due to the curvature of the vault the permanent load increases from the top to the supports, with: 

qmax = q  ds/dx = q [1+ (y’)2]½   with:  y’ = 2 f x/a2 

Substituting y’ gives the for the increasing surface load:  qmax = q  [1+(2 f x/a2)2]½  
For x = a the maximum load is equal to:        qmax = q  (1+ 4 f2/a2)½  

With f = 2.48 and a = 9.9 m the maximum load is equal to: 
qmax = q (1+ 4 × 2.482/9.92)½  = 1.1185 q

The increase in the load isn’t large, to analyse this structure the increasing load is modelled as a 
combination of  an equally distributed load q and a linearly increasing load qinc: 

qmax = q + qinc = (1 + 0.1185) × 2.4 kN/m.

For the eqully distributed load q = 2.4 kN/m the forces are calculated as follows:
The vertical and horizontal reaction force acting on the supports are respectively:

VA = VB = qg a =  2.4 × 9.9  = 23.76 kN

H = qg a2  =  2.4 × 9.92  =  47.424 kN
           2 f         2 × 2.48        

For the increasing load qinc = 0.1185 × 2.4 kN/m the forces and bending moments are calculated as 
follows:
The vertical reaction acting at a support is equal to:  

VA = VB  = ½ qinc × a = 0.1185 × 2.4 × 9.9/2 = 1.41 kN

The thrust H acting at the supports follows from the equilibrium of the moments around the centre at 
the top. 

H × f - V a + 1/3 qinc a
2 = 0   →               

H =  1/6 qinc  a
2/f =  1/6  0.1185 × 2.4 × 9.92/ 2.48 = 1.87 kN 

The bending moment Mx at a distance x from the top follows from [6.12]: 
Mx =  1/6 qinc (x2–  x3/a)   
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The bending moment is maximum when x =  2/3 a, substituting x =  2/3 a  into the expression for Mx 
results in:

Mx = 1/6 qinc  [ (2/3 a)2–  (2/3 a)3/a ]    →    Mx = 2/81  qinc  a
2   

Mmax = 2/81  × 0.1185 × 2.4 × 9.92  = 0.69 kNm

Due to increasing load the vault is subjected to:    V = 23.76 + 1.41 = 25.2 kN
         H = 47.424 + 1.87 = 49.1 kN

The normal force follows from: N = (H2 + V2)½  , for x = ½ a = 4.95 m the normal force is: 
N = [H2 + ( ½ q a + 1/8 qinc a)2]0.5 

N = [49.12 + (2.4 × 9.9/2+ 0.1185 × 2.4 × 9.9/8)2]0.5 = 50.6 kN

Variable load

The vault is subjected to a live load qe = 0.5 kN/m2. Due to the symmetrical live load the vertical and 
horizontal reaction force acting on the supports are respectively:

VA = VB = qe  a =   0.5 × 9.9  = 4.95 kN

H = qe a2 =  0.5 × 9.92  =  9.9 kN
         2 f          2 × 2.48        

For the permanent surface load and variable load the vertical and horizontal reaction force acting on 
the supports are respectively:

V = 25.2 + 4.95 = 30.2 kN,  H = 49.1 + 9.9 =  59.0 kN;

For x = ½ a = 4.95 m the normal force follows from:   N = [H2 + ( ½ q a + 1/8 qinc a + ½ qe a)2 ]0.5  

N =[ 59.02 + (2.4× 9.9/2+ 0.1185 × 2.4 × 9.9/8 + 0.5 × 9.9/2)2 ]0.5  = 60.8 kN 

Asymmetric load

Due to an asymmetric load the vault is subjected to bending. Assuming that the vault is subjected to a 
live load acting on one side equal to qe = 0.5  kN/m2.  The vertical and horizontal reaction forces acting 
on the supports are respectively:

VA =  ¼ qe a = ¼ × 0.5 × 9.9 = 1.24 kN
VB =  ¾ qe a = ¾ × 0.5 × 9.9 = 3.71 kN

H =  qe a2  = 0.5 × 9.92 =  4.94 kN
           4 f         4 × 2.48

The bending moment is equal to: Mo = qe a2   =  0.5 × 9.92  =  3.1 kNm                                      
        16                 16            
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For the permanent surface load and asymmetrical variable load the vertical and horizontal reaction 
force acting on the supports are respectively:

VB = 25.2 + 3.71 = 28.91 kN
H =  49.1 + 4.94 =  54.04 kN

For x = ½ a = 4.95 the shear force is equal to:
V = ½ qg a + 1/8 qinc + ¼ qe a = 2.4× 9.9/2+ 0.1185 × 2.4 ×  9.9/8 + 0.5 × 9.9/4  = 13.5 kN 

For x = ½ a = 4.95 the normal force due to the permanent surface load and the variable load is equal 
to:  

N = [ H2 + (½ qg a + 1/8 qinc + ¼ qe a )2 ]0.5 =  [54.042 + 13.52]0.5 = 55.7 kN 

§  7.2 Vault strengthened with two diagonals

The vault is strengthened with two diagonals running from the top to the supports. The diagonals will 
decrease the bending moments for the asymmetrical live load and the surface load increasing from 
the top to the supports.
For the linearly increasing surface load the maximum bending moment is:

Mmax  = -0.01304 × qinc a
2   = 0.01304  × 0.1185 × 2.4 × 9.92  = 0.36 kNm

For the design of this structure the force S acting on the diagonal is approached with the expression 
described in chapter 6:

Sd  =      Mx=a/2      
           ¼ f cos b   

Substituting cos b = 1/(1+f2/a2)1/2:       Sd  =   Mx=a/2  (1 + f2/a2)1/2  
                    ¼ f    

For the linearly increasing load the bending moment is for x = ½ a equal to:  Mx=a/2 = q a2/48

Sd  =  q a2 (1 + f2/a2)1/2    =   0.1185 × 9.92 × (1 + 2.482/9.92)1/2 = 0.4 kN
                 48 × ¼  f           48 × ¼ × 2.48

The strengthened vault subjected to the asymmetrical live load is not loaded by bending moments. 
The force acting at the diagonals Sd follows from:

Sd  =    Mx = a/2     =  Mx=a/2  (1 + f2/a2)1/2      
         ¼ f cos b                     ¼ f               

For the anti-metrical load q’ the bending moment is equal to: Mx=a/2 = q’ a2/8 with q’ = ½ q, thus:

Sd  =±  1/2 q a2 (1 + f2/a2)1/2  = ±  1/2 × 0.5 × 9.92 × (1 + 2.482/9.92)1/2 = ±5.1 kN 
                         8 ×1/4 f                                                   8 × ¼ × 2.48
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At the left side, which is not loaded by the asymmetrical live load, the diagonal is compressed. The 
diagonal must be so stiff that this element does not fail by buckling: Nbuc  > ncr Nd. For the design of the 
diagonal it is advisable to apply a factor n ≥ 4 for the design load. 

Nbuc  =      p2 EI        ≥  ncr  Nd               
              (a/cos b)2     

Due to the permanent load the diagonal is tensioned, the load factor is equal to: gg = 0.9 . Due to the 
asymmetrical load the diagonal is compressed, the load factor is equal to: ge = 1.5. The diagonal is 
subjected to a normal compressive force:   

Nd = -(-0.9 × 0.4 + 1.5 × 5.1) = -7.29 kN.

Substituting a = 9.9 m, cos b = 0.97, Es = 2.0 × 105 MPa, ncr = 4, Nd = 7.29 kN gives:

Nbuc  =  p2 × 2.0 ×105  × I  ≥  4 × 7290 N   I ≥ 1.54 × 106 mm4,                 
                 (9900/0.97)2        

The diagonal can be dimensioned quite slender , for example with a steel tube  Ø101.6-4.5 with  I = 
1.62 ×106 mm4.

Post-tensioning

The diameter of the diagonal can be decreased if the diagonal is subjected to tensile  forces only. Then 
the tensile force from the load has to exceed the compressive force caused by the asymmetric live load. 
If the tension in the diagonal due to the dead load is insufficient to compensate for the compression 
caused by the asymmetrical load then the diagonals can be post-tensioned. Due to a post-tensioning  
force P the vault is subjected to a bending moment MP:
    MP = P e = P × (¼ f cos a) = 5.1 × (¼ × 2.48  × 0.97 )= 3.1 kNm

This bending moment is equal to the bending moment due to the asymmetrical live load, M = 3.1 
kNm. So post-tensioning of the diagonals seems not very effective. Otherwise due to the post-
tensioning of the diagonals both diagonals are tensioned and reduce the buckling length of the vault 
considerately. 
For the ultimate state the loads must be multiplied with a load factor. For the post-tensioning the load 
factor is 1.0 so the bending moment is MPd = 1.0  × 3.1 kNm. Further the post-tensioning does not 
generate second order moments. For a variable load the load factor is 1.5 , so the bending moment 
due to the asymmetrical live load is exclusive second order equal to  Med = - 1.5  × 3.1 = 4.65 kNm. 
Consequently the post-tensioning reduces the second order effect and bending moments.

Tensioning the diagonals by lengthening of the strut at the centre

The diagonals can be tensioned by introducing an upward force acting at the top of the vault. This 
force can be created if tie is connected with a single strut at the centre with the top of the vault, see 
figure 7.2. Lengthening of the strut will move the tie downward. Thus the strut is compressed and the 
top of the vault is subjected to an upward vertical force. This force provides a tensile force acting on the 
diagonals. The angle between the horizontal line through the supports and the tie is called a. 
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FIGURE 7.2  Parabolic vault, the diagonals are tensioned 
by the upward force in the strut

Assume the force acting at the diagonal is Sd and the force acting on the tie is St. The forces Sd and St 
are defined in chapter 6, expression [6.52].

St =          H  tan b                             Sd  =                H  tan a                                             [6.52]
       cos b [tan a + tan b]                       cos a  [tan a + tan b] 

Next the angle a  is selected in such a way that the diagonal ties are stressed if the vault is subjected to 
the asymmetrical load. For Sd = 5.1 kN,  H = 54.04 kN, tan b = 0.25 and cos b = 0.97 the tangent of a is 
defined with [6.52]: 

 tan a = cos b [tan a + tan b]  Sd /H    →  tan a ≥   cos b × tan b × Sd / H 
         (1-cos b  Sd /H)

tan a ≥ 0.97 × 0.25 × 5.1/54.04 = 0.025
                  (1-0.97 × 5.1/54.04)

The sagging of the tie has to be 0.25 m at minimum. It is advisable to increase the sacking slightly. 
For a sagging of 0.25 m, tan b = 0.025, cos b = 1.0, sin a = 0.243, H = 54.04 kN, the force acting in the 
tie and diagonal are respectively:

St =              H  tan b                =        54.04 × 0.25            = 49.1 kN                
       cos b [tan a +  tan b]         1 × [0.023 + 0.25] 

Sd =             H tan a                 =       54.04 × 0.023          =   5.1 kN   
          cos a [tan a + tan b]      0.97 × [0.023 +0.25]

In this analysis the stiffness of the vault is neglected so actually the forces acting on the diagonals will 
be slightly smaller. The ties must be attached well to the vault. Due to the tensile forces the joints will 
be subjected to shear forces and  tensile forces.  It can be diffcult to attach bolts firmly with the Fusée 
Céramique vault. The thickness of the vault is small and the space between the fusées is only 10 mm. 
A bolt positioned in a fusée element will not be able to resist a substantial pulling force.

Buckling

As described in chapter 3 Moon et al [Moo07] researched the critical buckling load for parabolic pin-
ended arches. For in-plane asymmetric buckling mode the critical buckling load for pin–ended arches 
is:

Ncr asym =  p2 EI/s2                             [3.13’]
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Thanks to the diagonals the vault is supported at the top, the buckling length of the vault is halved and 
equal to half the length of the vault between the top and supports:  lc = ½ s.The inplane asymmetric 
buckling load will be decisive in case the rise f meets the following condition:

 f /a > 4.565 × i/a                    [3.14]

The radius of gyration of the section is equal to: i = (I/A)1/2  For: EA = 2.1 × 109 Nmm2 and EI  = 3.89 × 
1012 Nmm2 the radius of gyration of the section is equal to: 

i = (I/A)1/2 = [3.89 × 1012 /2.1 × 109 ]1/2 = 43 mm

For the vault the rise f is 2.48 m. Snap through will be not decisive if the distance f’ of the diagonal and 
the vault exceed:

f’ > 4.565 × 43 = 198 mm. 

The distance of the vault and the diagonal is equal to f’ =  ¼ f = 2.48/4 = 0.62 m. Consequently for this 
structure the asymmetric buckling load will be decisive. The length s of the vault between the top and 
support is equal to:

s = f (1+ ¼ a2/f2)1/2   +  ¼ a2/f × ln{2 ×f/a + (4 f2/a2+1)1/2 }             [6.4]

Substituting f = 2.48 m, a = 9.9 m and  a/f = 4:
s = 2.48 × (1+ ¼ × 42)1/2   +  ¼ × 9.9 × 4 × ln{ ½  + (4/16 +1)1/2 }    = 5.545 + 4.763 = 10.31 m  
  

 With a buckling length equal to  ½ s = 5.15 m the critical buckling load is equal to: 
Ncr asym = p2 EI  =  p2 × 3.89 × 1012 = 1448 × 103 N     
                 (½ s)2              51502

Asymmetrical load

For x = ½ × a the normal force is equal to N = 57.5 kN. Thus the ratio n of the buckling force and the 
normal force is:  ncr = Ncr/N = 1448/57.5 = 25 

Generally a ratio of ncr ≥ 5 was recommended (for representative loads). For the full load as well as the 
asymmetrical load the ratio ncr is larger than 5. Due to the diagonals the second order effect is reduced 
considerately, but time dependent effects and cracks will decrease the stiffness and the critical 
buckling force. The effect of this will be considered later.

  Calculation of the normal and bending stress. 

According to the Theory of Elasticity the normal stress due to the normal force acting on the section of 
the vault follows for the concrete, fusées and reinforcement from:

sx   =    N Ex    with mEA  = 1+ mf Ec Af  + ms Ec As           [5.6]

                 EAc mEA

Due to the dead load and the asymmetrical live load the structure is subjected to normal stresses and 
bending stresses. At a quarter of the span the normal force is equal to N = 57.5 kN.

mEA  = 1+ mf Ec Af  + ms Ec As = 1.34

EcAc mEA = 2.1 × 104 × 74.708 × 103  ×  1.34 = 2.1 × 109  Nmm2 
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The stress in the concrete, due to the normal load, is: sc  =  0.58 MPa                          
  
Thanks to the diagonals the vault is no longer subjected to a bending moment, but if the diagonals are 
post-tensioned then the vault is subjected to a bending moment, MP = 3.2 kNm.

sc  = M z E = 3.2 × 106 ×110/2 × 2.1 ×104 = 0.95 MPa
            EI                      3.89 × 1012   

The resulting stresses due to the bending and normal force are:  
compressive stress:   sc  = -0.58  - 0.95  = - 1.53 MPa
tensile stress:  sc  = -0.58 + 0.95  =  +0.37 MPa

For the concrete sections creep and shrinkage increases the tensile stresses, possible the vault will be 
cracked.  The cracks will reduce the stiffness of the vault, consequently the critical buckling force is 
reduced.

   Verification with computer program

For the structure strengthened with diagonals the deformations, forces and bending moments are 
calculated with a computer program (Matrixframe). The structure is subjected to the surface load Q = 
2.4 kN/m increasing to the supports, A live load of q = 0.5 kN/m and the wind load. Table 7.2 shows 
the coordinates and permanent load.

Node X Z Member dy/dx ds Permanent 
load

1 -9.9 2.48

2 -9.0 2.05 1-2 0.43 1.088 2.61

3 -8.0 1.62 2-3 0.38 1.07 2.57

4 -7.0 1.24 3-4 0.33 1.053 2.53

5 -6.0 0.91 4-5 0.28 1.038 2.49

6 -5.0 0.63 5-6 0.22 1.024 2.46

7 -4.0 0.41 6-7 0.18 1.016 2.44

8 -3.0 0.23 7-8 0.13 1.008 2.42

9 -2.0 0.1 8-9 0.07 1.002 2.41

10 -1.0 0.03 9-10 0.03 1.0 2.4

11 0 0 10-11 0 1.0 2.4

12 1.0 0.03 11-12 0 1.0 2.4

13 2.0 0.1 12-13 0.03 1.0 2.4

14 3.0 0.23 13-14 0.07 1.002 2.41

15 4.0 0.41 14-15 0.13 1.008 2.42

16 5.0 0.63 15-16 0.18 1.016 2.44

17 6.0 0.91 16-17 0.22 1.024 2.46

18 7.0 1.24 17-18 0.28 1.038 2.49

19 8.0 1.62 18-19 0.33 1.053 2.53

20 9.0 2.05 19-20 0.38 1.07 2.57

21 9.9 2.48 20-21 0.43 1.088 2.61

TABLE 7.2 : Coordinates of the vault

The wind load acting on the roof is calculated according to the Euro code NEN EN 1991-1-4-2005. 
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The city of Woerden is situated at the frontier between Zuid-Holland and Utrecht. The height of the 
structure is 7.55 m. For an urban area II, without adjacent buildings, the wind load is interpolated for 
respectively z = 7.0 m and z = 8.0 m, with for z = 7.0 m: qz=7.0 = 0.75 kN/m2 and for z = 8.0 m: qz=8.0 = 
0.79 kN/m2 . Interpolation gives for z = 7.55:  qz =7.55 = 0.75 + 0.04 × 0.55 = 0.77 kN/m2

The coefficients for internal pressure are for overpressure c = + 0.2 and for under pressure c = -0.3.

The coefficients for the external wind load are:

area A:  windward side, sucking and pressure: c= -1.2 and c = + 0.1
area B:  at the top, sucking;   c = -0.82
area C:  leeward side, sucking:   c = -0.4

Combining the internal and external wind pressure, two extreme wind loads arise, respectively with 
over  and under pressure:

            over pressure                                 under pressure
A:   p = (-1.2  -  0.2) × 0.77 = -1.08   p = (+0.1 + 0.3) × 0.77 = + 0.31
B:   p = (-0.82- 0.2) × 0.77 = -0.79   p = (-0.82+ 0.3) × 0.77 = - 0.40
C:   p = (-0.4  -  0.2) × 0.77 = -0.46   p = (-0.4  +  0.3) × 0.77 = - 0.08

Snow loads

According to the NEN-EN 1991-1-3 the roof is subjected to a snow-load: psn  =  u3 × 0.7 kN/m2. 
The coefficient u3 depends on the ratio of the rise versus the span.

f

½ q sn max         q sn max

l

FIGURE 7.3 linearly increasing snowload acting on the 
vault with a maximum at x = a/2

Two alternatives are distinguished, the snow load can be equally distributed or linearly increasing,. 
For an equally distributed load and a cylindrical roof with a ratio f/l = 0.125 the coefficient u3 is equal 
to u3 = 0.8:  and psn =  0.8 × 0.7 = 0.56 kN/m2.

For a  linearly increasing snow load, with a maximum at ¼ l , u3 follows from: u3 = 0.2 + 10 ×  f/l

For f/l = 0.125 the coefficient u3 is equal to:    u3 = 0.2 + 10 ×  0.125 = 1.45. 
The maximum load acting at the roof is:     psn max =  1.45 × 0.7 = 1.02 kN/m2.
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Output

The following table shows the results of the analysis with  the computer program Matrixframe.

Due to the diagonals the bending moments are much smaller than for the non-strengthened vault. 
The maximum bending moment resulting from the wind load is equal to M = 1.09 kNm. This moment 
is about half the bending moment acting in the non-strengthened vault, M = 3.1 kNm, due to the live 
load. 

Member Load: Nx Vz M

4 permanent load -51.22 1.31 0.50

Live load left -10.31 0.24 0.13

snow load -  5.81 0.29 0.10

wind over pressure   20.51 0.85 0.80

wind under pressure    0.57 0.51 1.09

6 permanent load -49.78 1.44 0.37

Live load left -10.01 0.31 0.15

 snow load - 6.57 0.23 0.20

wind over pressure 20.55 0.68 0.30

wind under pressure   0.49 0.89 0.70

10 permanent load -48.36 1.42 0.29

Live load left - 9.72 0.34 0.06

snow load - 6.38 0.22 0.15

wind over pressure 20.55 0.72 0.34

wind under pressure   0.53 1.44 0.25

22 tie permanent load +48.19 

Live load left +4.96

snow load +7.39

wind over pressure -15.12

wind under pressure - 6.24

24, diagonal permanent load  -0.12 

Live load left +4.90

snow load - 1.05

wind over pressure - 4.19

wind under pressure + 6.28

25, diagonal permanent load - 0.12 

Live load left - 5.05

snow load + 5.31

wind over pressure + 2.83

wind under pressure + 2.44

TABLE 7.3  Results of the calculations with the computerprogram: normal forces, shear forces and bending moments 
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FIGURE 7.4 Bending moments due to the windload  underpressure 

 

FIGURE 7.5 Bending moments due to the windload overpressure 

Post-tensioning

Due to the asymmetrical load and the wind load the diagonals are tensioned or compressed. To resist 
a compressive force the diagonals must be stiff enough to resist buckling or must be post-tensioned. 
The maximum compressive force acting at the diagonal is –5.05 kN. The post-tensioning of the 
diagonal has to be at least equal to this compressive force, so  P = 5.05 kN. Due to a post-tensioning 
force P the vault is subjected to a bending moment MP:
    MP = P × e = P × (1/4 f) × cos a = 5.05 × (2.48/4) × 0,97 = 3.04 kNm

Tensioning the diagonals with the strut 

To prevent a compressive load acting on the diagonals tie is constructed with a declination of 0.25 m. 
Due to the trust the strut halfway the span is subjected to a normal forces acting upward. This force is 
solved into to components parallel to the diagonals, loading the diagonals with a tensile force.

Due to the permanent load the diagonals are subjected to a tensile normal force N= 2.62 kN. But 
due to the asymmetrical live load or the wind load one of the diagonals is subjected to a compressive 
normal force of respectively – 4.79 kN and – 4.98 kN. Thus the normal compressive force is partly 
compensated by the tensile normal force due to the permanent load. To compensate the compressive 
force acting at the diagonal we can increase the declination of the tie or stress the diagonals artificially 
with a post-tensional force.
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FIGURE 7.6  Bending moments due to the snow load for the vault with an inclined tie to tension the diagonals. 

Member Load: Nx Vz M

4 permanent load -51.96 1.31 0.57

live load left -10.28 0.24 0.14

snow load -  6.77 0.29 0.11

wind over pressure   20.42 0.85 0.78

wind under pressure    0.53 0.51 1.08

6 permanent load -49.52 1.41 0.41

live load left -9.99 0.31 0.16

 snow load - 6.53 0.24 0.21

wind over pressure 20.47 0.69 0.29

wind under pressure   0.46 0.88 0.71

10 permanent load -48.11 1.49 0.48

live load left - 9.70 0.35 0.07

snow load - 6.35 0.21 0.16

wind over pressure 20.47 0.74 0.37

wind under pressure   0.49 1.45 1.02

22 tie permanent load +45.52 

live load left +4.68

snow load +6.98

wind over pressure -14.28

wind under pressure - 5.89

24, diag-
onal

permanent load  +2.62 

live load left +5.16

snow load - 0.66

wind over pressure - 4.98

wind under pressure + 5.94

25, diag-
onal

permanent load +2.62

live load left - 4.79

snow load + 5.69

wind over pressure + 2.05

wind under pressure + 2.12

TABLE 7.4 Results, normal forces, shear forces and bending moments for the vault with an inclined tie and vertical strut 

TOC



 181 Strengthening the Fusée Céramique roof of building Q in Woerden 

Buckling

Due to the permanent load and the windload with underpressure member 4 of the vault , see table 
7.4, is subjected to a normal force and bending moment  equal to:
 N  = 51.96 + 0.53 = 52.5     kN
 M =    0.57 + 1.08 =     1.65 kNm

For the serviceability state the stiffness is defined before in chapter 5 with the MNk-diagram, see 
figure 5.16, and table 5.6. 
For Md = 1.65 kNm the stiffness is defined by interpolating between respectively:

M = 1.490   × 106 Nmm:  k = 0.299 × 10-6 mm-1 
M = 2.219  × 106 Nmm:  k = 0.540 × 10-6 mm-1 

k = 0.299 ×10-6 + (0.54-0.299) ×10-6 ×  (2.219  – 1.65)  = 0.487 × 10-6  mm-1 
                                                                        2.219- 1.490

EI = M/k = 1.65 × 106/ (0.487 × 10-6) = 3.387 × 1012  Nmm2

The critical buckling force is calculated  for the parabolic vault with a buckling length ½ s = 5.150 m:
Ncr asym =  p2 EI  = p2 ×  3.387 × 1012  = 1261 × 103 N
                      s2                                  51502

Thus the ratio ncr of the buckling force to the normal force is:   ncr = Ncr/N = 1261/52.5 = 24

Generally a ratio of ncr ≥ 5 was recommended, thus for the serviceability state the structure meet the 
demands. 

§  7.3 Ultimate load bearing capacity

Nowadays the reinforcement has to be calculated according to the Eurocode 2. The calculation of the 
required reinforcement is based on a non-linearly stress-strain diagram of the concrete and steel,  as 
described in chapter 5. The calculation of the resistance of a column or wall is quite labour intensive, 
so most engineers use diagrams or spreadsheets to calculate the load bearing capacity of a section 
subjected to an eccentric normal force. 

Design loads

For the ultimate state the permanent and live load are increased with a load factor of respectively 1.2 
and 1.5.
Due to the permanent load and the windload with underpressure member 4 of the vault , see table 
7.4, is subjected to a normal force and bending moment  equal to:
 Nd  = 1.2 × 51.96 + 1.5 × 0.53 = 63.2   kN
 Md =  1.2 × 0.57 + 1.5 × 1.08 =      2.3  kNm
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Stiffness of the section, ultimate state

As showed before in chapter 5 the stiffness is defined for the given section with A = 1000 × 130 mm2 
for the ultimate state with the  following table and MN-k diagram. Probably the vault is cracked; for 
a cracked structure the stiffness can be calculated with expression [5.10]: EI = Me/ke . Where Me is 
the bending moment if the reinforcement reaches the maximum stress. The curvature (kappa) k of a 
structure loaded by a bending moment and a normal force follows from [5.9]:  

k  =     sc       
        Ec kx h

Due to the fusees the section of a Fusée Céramique vault is not massive. The compressive zone of a 
section of a Fusée Céramique vault can be smaller or larger than the compressed flange with a thickness 
cf. The bending moment Me is defined for kx < cf/h and kx > cf/h. Again the curvature and stiffness for the 
maximum bending bending moment is defined with the procedure showed before  in chapter 5.
Features of the section: 
Reinforcement: Fe220, Es = 200000 MPa, fsd = 220/1.15 = 190 MPa,w = At/(b h) = 0.00429,  d/h = 
0.15; Concrete: C12/15: fc = 12/1.5 = 8 MPa , Ecd = 27000/1.2= 22500 MPa. 

According to the Euro-code Young’s modulus can de calculated with an effective creep factor fef  
following from [5.23]:  fef  = ft MEf/MEd  

Due to the permanent load the vault is subjected to a bending moment:     MEf  = 0.57 kNm
The maximum moment due to the asymmetrical load is equal to MEd  = 2.3 kNm. Substituting these 
moments into [5.23] gives the creep factor fef :  

fef  = ft Mrep/MEd = 4.0 × 0.57/2.3 = 0.99

For the instantaneous load Young’s modulus follows from: 
Ect  = Ecd /(1+ fef )  = 22500/(1+0.99) = 11306 MPa

For the permanent and the asymmetrical live load the normal force and bending moment are 
respectively Nd = 63.2 kN and Md = 2.3 kNm. The following diagram and table show for the vault 
subjected to this load the stiffness. The ratio Young’s modulus steel/concrete is: ns = Es/Ec = 
200×103/11306 = 17.7 .
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FIGURE 7.7 M-N-k  diagram for Nd=63.2 kN, ultimate state 
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kx = kappa × 106 [1/mm] M [kNm] EI × 1012  [ Nmm2]

Infinitive 0 0

1   0.79 1.76 2.23

0.731   1.44 2.68 1.86

0.5    2.92 3.69 1.26

0.385    5.57 5.06 0.91

0.337    7.56 5.90 0.78

0.269 14.92 8.58 0.58

0.252 26.81 8.90 0.33

TABLE 7.5  Stiffness of the vault, UGT 

For Md = 2.3 kNm the stiffness is defined by interpolating between respectively:
Md = 1.76  × 106 Nmm:  k = 0.79 × 10-6 mm-1 
Md = 2.68  × 106 Nmm:  k = 1.44 × 10-6 mm-1 

k = 0.79 ×10-6 + (1.44-0.79) ×10-6 ×  (2.3  – 1.76)  =  1.17 × 10-6  mm-1 
                                                                   2.68 – 1.76

EId = M/k = 2.3 × 106/ (1.17 × 10-6) =  1.97 × 1012  Nmm2

With this stiffness the critical buckling force is calculated with  expression [3.13] for the parabolic 
vault and a length from the top to the supports equal to s = 0.5 × 10.31 m.

Ncr asym =  p2 EId = p2 × 1.97 × 1012  = 733 × 103 N
                       s2                51502

For the asymmeyrical load the normal force is for x = ½ a  equal to Nd = 66.7 kN. Thus the ratio ncr of 
the buckling force and the normal force is equal to:    ncr = Ncr/Nd = 733/63.2 = 11.6 
The bending moment inclusive of second order effects is:  Md = 2.3 × 11.6/(11.6-1) = 2.5 kNm.

C12/15; FeB220; w = 0.0043; d/h = 0.15
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FIGURE 7.8 Graph showing the bearing capacity of the vault for: C12/15; Fe220; d/h = 0.15; w = 0.0043. 
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Nd/(b h fcd) Md/(b h2 fcd)

-0.0627 0.0192

-0.0227 0.0368

0.0735 0.0727

0.1592 0.1033

0.2 0.1164

0.2692 0.1347

0.3378 0.1471

0.3804 0.1496

0.4536 0.1362

0.5551 0.1121

0.6396 0.0885

TABLE 7.6 Bearing capacity  For C12/15; Fe220; d/h = 0.15; w = 0.0043

For te vault with C12/15, Fe220 and d/h = 0.15 and a reinforcement  w = At/(b h) = 0.0043  the 
bearing capacity is defined with table 7.6 and the graph, see figure 7.8. For the permanent load and 
the wind load the normal force is for x = ½ a  equal to Nd = 63.1 kN. Table 7.6 gives for this normal 
force the ultimate bending moment, with fcd  = 12/1.5 = 8.0 MPa:

     Nd       = 0.061       →         Md           = 0.069
  b h fcd                                                 b h2 fcd  

The ultimate moment the section can resist is equal to Mu = 9.3 kNm. This moment is much larger 
than the calculated  bending moment inclusive of second order  effects:  M = 2.5 kNm. Due to the 
strengthening the vault can transfer the loads safely.

§  7.4 Parabolic trussed vault

The structure is strengthened with ties as in a Polonceau truss. To show the  distribution of the loads 
the trussed arch is simplified into a statically determinate truss with straight bars connected by hinges.

f

½ a

F
   1 a

8         2

7 6 β     5         4 a      3

                                                                 3/2 F 3/2 F

FIGURE 7.9 Trussed arch, subjected to a symmetrically loading 

The span and rise of the arch is equal to respectively 2 a = 19.8 m and f = 2.48 m. The length of the 
strut at the centre  is equal to  ¾ f  = 1.86 m, the length of the two other struts is equal to ½ f = 1.24 m. 
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The angle between the diagonals and the horizontal is equal to a and b with  tan a = ½ f/a = 0.125 and 
tan b = 3/2 f/a = 0.188 thus cos a = 0.992 and cos b = 0.936. The nodes are counted clockwise. 

To simplify the analysis of the forces acting in the ties and struts the structure is assumed to be loaded 
by concentrated forces acting on the joints. For every node the forces acting at the bars are defined 
with the vertical and horizontal equilibrium of the forces SV = 0 and SH = 0.

Equally distributed load

The truss is subjected to an equally distributed load, this load subjects the nodes to concentrated 
forces equal to F, with F= q× a/2,  a = 9.9 m and f = 2.48 m the load is equal to:  F= 2.4 × 9.9/2 = 
11.88 kN. Further cos a = 0.992 and cos b = 0.936 .Due to the permanent load the normal forces 
acting on the elements are:

S12 =  (3/2 F × a/f )/cos a = - 71.7    kN

S23 =  (3/2 F × a/f)/cos b  = - 76.0    kN

S34 =  (3/2 F × a/f)/cos a  = + 71.1   kN

S45 =  4/3 F  × a/f = + 63.2   kN

S14 =  (1/6 F × a/f)/cos b = +   8.44 kN

The vault is compressed and all ties are tensioned.

Trussed vault, asymmetrically loaded.

The truss is subjected to an asymmetrically load q = 0.5 kN/m. Due to this load node 1 and 2 are 
subjected to respectively a  load of  ½ F and F with F = q a/2. Thus:

F1 = ½ × 0.5 × 9.9/2 =  1.2375 kN
F2 = 0.5 × 9.9/2 = 2.475 kN

Due to the asymmetrical live load the normal forces acting on the elements are:

S12 =  (F × a/f)/ cos a  = -    9.46 kN

S23 =  (F × a/f)/ cos b = - 10.55 kN

S34 =  (F × a/f)/ cos a = +   9.96 kN

S45 =   2/3 F × a/f = +   6.59 kN

S14 =  (1/3 F × a/f)/ cos b  = +   3.52  kN

S18 =  (½ F × a/f)/ cos a  = -   4.98  kN

S78 =  (½ F × a/f)/ cos b  = -   5.28  kN

S16  =  (1/6 F× a/f)/ cos b  = -  1.76  kN

S67 =  (½ F × a/f)/ cos a = + 4.98  kN

Due to the asymmetrical load the tie S16 is compressed: S16  = -1.76 kN,  but due to the permanent 
load this tie is tensioned S16  = S14 = -+8.44 kN. The normal force due to permanent load is larger than 
the force due to the asymmetric load so this tie is tensioned too.  Actually the loads acting at the vault 
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are distributed and not concentrated at the nodes, the vault is thus subjected to bending also. Further 
the small struts connected with the vault at a quarter of the span are positioned perpendicular to the 
curve. With a computerprogram, Matrixframe, the forces and bending moments are defined accurately 
for varying loads.

FIGURE 7.10 Trussed vault, bending moments due to thepermanent load

 Member Load Nx  [kN] Vz  [kN] M  [kNm]

S1 Permanent load -75.88 2.20 1.14

Live load right side -   4.6 0.26 0.26

Live load left side -10.88 0.21 0.05

wind over pressure   25.44 0.75 0.26

wind under pressure      5.60 1.31 1.12

S4 Permanent load -72.94 2.45 1.17

Live load right side -   4.60 0.32 0.23

Live load side left -10.32 0.27 0.08

wind over pressure    25.43 0.57 0.49

wind under pressure      5.62 1.04 1.46

S6 Permanent load -71.38 3.06 2.46

Live load side right -   4.57 0.52 0.66

Live load side left -10.03 0.38 0.13

wind over pressure    25.45 1.09 0.39

wind under pressure       5.50 0.27 1.04

S10 Permanent load - 69.97 2.91 1.57

Live load side right -    4.59 0.34 0.19

Live load side left -    9.72 0.26 0.21

wind over pressure    25.44 1.27 0.62

wind under pressure       5.56 1.12 0.83

S44 Permanent load +63.26 

Tie Live load side right +  6.51

Live load left side +  6.51

wind over pressure -19.84

wind under pressure -  7.99

S37 Permanent load     7.09 

diagonal Live load right side -2.08

Live load left side +3.44

wind over pressure -4.56

wind under pressure 3.09

TABLE 7.7  Trussed vault, normal forces, shear forces and bending moments 
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FIGURE 7.11 Trussed vault, bending moments due to the wind over-pressure

 

FIGURE 7.12 Trussed vault, bending moments due to the under-pressure

 Due to the smaller lever arm the normal forces are about a  factor 4/3. larger than calculated for the 
vault strengthened with diagonals. Due to the permanent load the vault is subjected to a bending 
moment equal to M =  2.46 kNm. This bending moment is nearly as large as the bending moment 
acting in the non strengthened vault, M = 3.1 kNm, due to the live load. The tensile forces acting at ties 
due to the permanent load always exceed the compressive forces due to the asymmetrical loads and 
the wind loads. The ties can thus be dimensioned very slender.

§  7.5 Conclusions

The structure can be strengthened sufficiently with the described methods. Due to the strengthening 
the bending moments are decreased, the buckling length is halved and the critical buckling force is 
increased. Strengthening with diagonals is a very effective method. However the diagonals can be 
subjected to compressive forces. To prevent buckling the diagonals can not be constructed with ties, 
nevertheless the forces are pretty small so these elements can be quite slender. The strengthening 
with diagonals is very effective for the renovation of Fusée Céramique vaults if the structure does 
not meet the demands of the present  The joints of the diagonals with the top of the vault are mainly 
subjected to a compressive force perpendicular to the vault  and a shear force parallel to the vault. 
Alternatives are researched to prevent any compressive normal force acting on the ties. Supporting 
the top with a vertical strut running to the tie which is inclined downward will introduce an upward 
force. This upward force will tension the ties.Attaching ties firmly to a Fusée Céramique vault can be 
difficult. The joints of the ties with the top of the vault are  subjected to a tensile force perpendicular 
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to the vault and a shear force parallel to the vault. The resistancy of a bolt constructed into an infill 
will be poor. To simplify the details the Fusée Céramique vault are by preference strengthened with 
diagonals capable to resist tensile and compressive forces. Strengthening a vault with a truss is also an 
interesting alternative. Unfortunately the normal forces and bending moments acting on the elements 
of the trussed vault exceed the bending moments acting on the vault strengthened with diagonals. 
Nevertheless due to the statically indeterminacy the trussed vault is a very reliable structure.  
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8 Re-designing the Fusée Céramique vaults

Generally most roofs are designed to resist the relatively modest loads caused by wind, snow, rain 
and so on. Possibly it would be better to increase the resistance of roofs so these roofs can be used 
for example leisure or to produce food and solar energy. Green roofs can contribute much to the 
ecosystem and climate. A green roof can retain water to reduce the capacity of the sewing system, 
decrease the extreme temperatures in an urban area and help to clean the atmosphere from pollution.  
For these roofs the live and permanent loads are much higher than the loads due to wind, rain or 
snow, so these roofs must be designed stronger and stiffer than for conventional roofs. The cost of 
construction will rise but the benefits will be significant. In the past the Fusée  Céramique vaults were 
constructed very slender, especially due to the ceramic infill elements the self-weight and the need for 
cement were minimal. Nowadays it is again important to minimise the need for cement to reduce the 
embodied energy and CO2 emission of buildings. Form-active structures can transfer very efficiently 
with a minimum thickness and reduced need for material the loads for green roofs, accessible for 
public, or the loads due to installations, machines and equipment to produce food and energy. In 
the past the Fusée Céramique system was competitive. Nowadays this system has to be updated 
and redesigned to meet present day demands. This chapter focuses on the redesign of these form-
active concrete vaults capable of transferring substantial loads, so these roofs are useful for all kind of 
activities. Especially the construction method and the selection of the infill elements will be explored 
to reduce the environmental impact of these vaults.  

§  8.1 Environmental load of floors

Nowadays roofs are designed to resist a modest live load. To create roofs useful for leisure, production 
of energy and food, the load bearing capacity of roofs has to be increased, so these roofs can transfer a 
live load comparable to the live load acting on a floor. 

Type Thickness 
[mm]

 Class Mass 
[kg/m2]

Embodied energy 
[MJ /m2]

CO2 
[kg/m2]

Concrete slab made in situ 170 7a 430 1272   99.3 

Wide slab floor including concrete finishing and 16 kg/m2 
reinforcement

50  + 120 3c 424 1207   99.9

Prefabricated rib-cassette elements 250 6a 220    796   58.0

Ceramic elements supported by concrete beams, with a 
concrete finishing

150 + 40 6c 274    889   64.8

Prefabricated hollow core elements 150 6a 252    625   52.3

Miltiplex supported by timber joists 45  × 200 3b   22      22   42,8

Multiplex supported by timber joists,
sustainable production

45  × 200 1a   22      22 -14,3

Prrefabricated gas concrete elements 6a 150    732   63.9

PS elements supported by prefab. concrete beams 200 5c 205    636   47.3

TABLE 8.1 Mass , embodied energy and CO2 emission for floors with a span of 7.2 m [Nib12]
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The research institute Nibe classified the environmental load for several floor systems. Table 8.1 shows 
for some floor systems with a span of 7.2 m the classification concerning the environmental load 
according to this institute [Nib12]. 
In practice concrete floors are used widely, nevertheless the environmental load of a massive concrete 
floor slab is substantial. The weight, embodied energy and CO2 emission of prefabricated rib-cassette 
and prefabricated hollow core elements is about the half of the embodied energy and emission of 
a concrete slab made in situ. The minimum weight, embodied energy and emission are found for 
multiplex floors supported by timber joists. 
Increasing the span will increase the mass and environmental impact non-proportionally. Generally 
the span of a roof on a workshop, factory, warehouse or sporting halls is larger than the span of a floor 
in a office building, which generally does not exceed 10-12 m. For the design of a roof with a long 
span reducing the self-weight is quite important. Floors are constructed with a horizontal surface, but 
roofs are constructed with a curvature or inclination to drain rainwater and snow. Due to the curvature 
form-active structures are very efficient. For these structures the need of material and self-weight is 
minimal. For the barrel vault of building Q in Woerden, with a span of 19.8 m, the thickness versus 
the span ratio was only 130/19800 = 1/152. Due to the ceramic infill elements the need for cement 
and the self-weight was reduced respectively 27% and 41%.  Consequently the emission of CO2 and 
the embodied energy was reduced as well. Possible the footprint and environmental impact can be 
reduced further. To select infill elements the features of varying materials concerning environmental 
load, production, construction, form, strength and stiffness are researched.

§  8.2 Uplift infill elements during construction 

Light infill elements float upward during construction, if the weight of the elements is less than the 
upward load due to the density difference. For a fusée  Ø80-60 with a mass of mfusee = 1800 kg/m3 and 
a length l = 1.0 mthe weight is equal to:

W  = p/4 × (802 - 602) × 18 × 10-6 = 0.04 kN

According to Archimedes the upward force Fup caused by the liquid concrete is equal to the volume 
times the mass of the liquid concrete. For a length l = 1.0 m the upward force  in liquid concrete with a 
density of mm = 2400 kg/m3 is equal to:

Fup  =  p mm r
2  = p × 24 × 0.042 = 0.12 kN  
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FIGURE 8.1 Uplift of the infill element pushed in the first layer FIGURE 8.2 Uplift acting on the infill while the second layer is 
poured 
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The elements must be fixed firmly to the mould or must be ballasted if during the construction the 
upward force Fup is larger than the weight W. For the Fusée Céramique vaults pouring the liquid 
concrete in two layers solved this problem. Firstly a thin layer of liquid concrete of about 2.5 cm was 
poured, the fusées were pushed into the liquid concrete to a depth of about 1 cm. Next the second 
layer of liquid concrete was poured onto the semi-cured first layer. The elements have to be pushed 
into the liquid concrete to prevent the uplift with a dept d. This depth can be described with polar 
coordinates:

d = r [1 - cos f0]                    [8.1]

The upward force acting on the element follows per unit length l follows from:
Fup  =  mm ×  [∫0

f0 2 × 1/2 × r2
 df -  2 × 1/2 × r2 × sin f × cos f ]  →

Fup  =  mm r2  [f0 - 1/2 sin (2 f0) ]                    
[8.2]

Example

A fusée with radius r = 40 mm, length  l =1.0 m is pushed into the liquid concrete with mm = 24 kN/
m3. Assume  f0 = ¼ p radians, the depth d  is equal to: d =r × [1 - cos f0] = 12 mm 
The upward force  per unit length l is equal to:  

Fup  =  24 × 0.042 × [¼ p – ½ sin (½ p)] = 0.011 kN  

The upward force acting on the fusées is smaller than the weight W = 0.04 kN, thus the infill does not 
float.

Upward force during the construction of a second layer

Next the upward force is calculated during the construction of the second layer if the liquid concrete 
rises to a certain level h above the first layer h0. The height of the liquid concrete h varies during the 
construction and is at maximum equal to the depth of the structure ht minus the depth h0 of the first 
layer poured previously.  Assume the cover on the infill element at the upper side is equal to c. During 
the construction the liquid concrete rises slowly till the height h of the liquid concrete is equal to hmax= 
ht – h0. For a circular infill element with a radius r the height h with h < ht - c - h0 is described with:

h = r (cos f0 - cos f1)                    [8.3]

The pressure of the liquid concrete  acting on the infill depends on the depth z below the surface 
temporary at a height h1 . The pressure of the liquid concrete is equal to: pz = mm z, with z follows from:

z = r (cos f - cos f1)                    [8.4]

The radial force acting on a small part of the element per unit length l with a width r df is equal to: 
dFf  = mm z r df 

The vertical component of this force is equal to: dFfv  = dFf cos f ,  with f0 ≤ f  ≤ f1. 

The upward force acting at the infill is calculated by integration of dFfv   over the interval f0 ≤ f  ≤ f1:
Fup  =  2  ∫ dFfv = 2  r2 mm ∫f0 f1[cos2f - cos f1 × cos f] df   
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Integrating this expression between f =f0  and f = f1:
Fup = r2  mm  [-sin f1 × cos f1 - sin f0 × cos f0  + f1 - f0 + 2 × sin f0 × cos f1]      
 [8.5]

Table 8.2 shows for a liquid concrete layer, raised till a height h, the upward force acting at the infill 
with radius r = 40 mm. Assume the angle f0 is equal to f0 = ¼ p. Then the infill is pushed into the first 
layer over a depth: 

d  = r  [1 - cos (¼ p)] = 12 mm. 

The height of the liquid concrete varies during  construction and is described for f0 = ¼ p with [8.3].
h = r (cos (¼ p) - cos f1) 

The following table shows that if the upward force is less than the weight, the infill will not float.

 f1  = height: h/r = cos (¼ p)  - cos f1 h  [mm] FUP /( l r2 mm)  FUP / l   [kN/m]

½ p h/r = cos (¼ p) - cos (½  p  ) = 0.707 28 0.285 0.011
¾ p h/r = cos (1/4  p ) - cos (3/4 p ) = 1.414 57 0.571 0.022

p  h/r = cos (¼ p) – cos (p) = 1.707 68 0,442 0.017

TABLE 8.2 Uplift force Fup acting on an infill in a liquid concrete with varying rise for r = 0.04 m,  a length  l = 1.0 m and f0 = ¼ p 

Fixing infill elements

Casting the concrete in several layers is time consuming and increases the cost. The concrete can also 
be poured in one single stage, provided the uplift force acting at the infill is resisted. For a bridge over 
the canal Buinen-schoonoord in the Netherlands the infill tubes were fixed with a steel frame that 
was bolted to the mould [Rij59]. For a curved prefabricated element, the reinforcement, following the 
curve of the element and connected firmly to the infill,  can resist the upward load acting on the infill 
elements easily, this will be showed with the following example. 

Example

Assume a roof is composed of prefabricated elements. The length of the prefabricated element is a 
= 8.0 m and the rise of the prefabricated element is equal to f = a/16 = 0.5 m. The centre-to-centre 
distance of the infill elements with a diameter of 80 mm is 90 mm. the elements are reinforced with  
Ø6-180 at both sides.  For a width of 1.0 m the upward load acting on the infill elements is:

q = 11 × p × r2 × 24 = 11 × p × 0.042 × 24 = 1.33 kN/m

For a prefabricated element with a length a = 8 m and f =0.5 m, a width b = 1.0 m the tensile force is 
equal to:

F = 1/8 q a2/f   →        F = 1/8 × 1.33 × 82/0.5 = 21.3 kN

During the construction the force has to be resisted by the rebars 2Ø6-180. The stress is equal to:  
 s = F/As= 21300/(2×157) = 68 MPa < fs 

The stress is smaller than the ultimate stress fs for the reinforcement.
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Cassettes

The liquid concrete will not push the infill elements upward if these elements are connected well to the 
bottom of the mould and the liquid concrete cannot flow between the infill and bottom of the mould. 
The infill elements can be a part of the mould or made of prefabricated cassettes with a brim fitting to 
the mould. The section of the vault can be considered as composed of T-elements, see figure 8.3. 

t

hi   h

bi

b

z

FIGURE 8.3  Cassette infill elements, connected to the bottom of the mould, to prevent uplift.

§  8.3  The strength of the tubular infill elements

During the construction the infill elements have to resist the loads when the liquid concrete is poured 
into the mould. For an infill with the centre at a depth z the radial load acting at the surface is:

pf1 = mm  z  + mm r  cos f1                     [8.6]

Due to the first part of this equation the element is subjected to a normal compressive force and due 
to the second part of the equation the element is subjected to bending.

z

  r cos φ

  r

F

φ1         

   φ    
p = mm(z+r)

r

FIGURE 8.4  Loads  acting on an infill element during the construction.

Firstly the load is analysed as if the element is fixed to the mould at the top, see figure 8.4. To describe 
the bending moments the element is split into two equal parts. At the top both parts are clamped. At 
the bottom of the element the bending moment is supposed to be Mf0. The bending moment for an 
angle f = f1 follows from:

Mf1  = Mf0  - ∫ (mm r cos f × r df) × r sin (f1 - f) df

Substituting sin (f1 - f) = sin f1 × cos f - cos f1 × sin f  gives:
Mf1  = Mf0  - mm r2 × ∫f=0 f1  [sin f1 × cos2 f -  cos f1 × sin f  × cos f ] r df
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Integrating between  f = 0 and f = f1  gives:     Mf1  = Mf0 - ½ mm r3 sin f1 × f1    
[8.7]

For an angle f = 0 the rotation is zero and Mf1  = Mf0.  For an angle f > 0 the rotation follows from:
∫ f = 0

 f   Mf  r df  -  ∫ f=0
 f    ½ mm r3 sin f ×  f × r df

              EI                                      EI

For an angle f = p  the rotation is zero. Integrating between f = 0 and f = p   gives:
∫ f=0

f=p  Mf  r df  - ∫ f=0
f=p  ½ mm r4 × (sin f × f) df  = 0

                     EI                                                 EI                                             

 Mf0 r  p   =  ½  mm  r4  × [ - f cos f + sin f ]0
p  →  Mf0 = ½ mm  r3 

      EI                                       EI

 Substituting Mfo in [8.7] gives:        Mf  =  ½ mm  r3 × [1 - sin f ×  f ]  [8.8]

The bending moments are at maximum for f = 0 and f  = p:  Mf=0 = ½ mm r3  and  Mf=p = ½ mm r3

For a fusée with a radius of r=0.04 m the bending moment is: 
Mf=0 = Mf=p = ½ mm r3  = ½ × 24 × 0.043 = 0.000768 kNm/m

z

  r cos φ

  r
p = mm (z+r)

r

F

φ1         

   φ    
Mφ0

Mφ=p

z

  r cos φ

  r
p = mm (z+r)

r
φ1         

   φ    
Mφ0

Mφ=p

½ F

FIGURE 8.5 Loads acting on infill element fixed to the mould 
at the top. 

FIGURE 8.6 : Loads acting on infill element during 
construction the infill is fixed to the mould at the side.

The stress acting in a fusee element follows from s = M/W . For a tube with thickness 10 mm the 
modulus of the section is W = 1000 × 102/6 mm3 , then the bending stress is equal to:

s = 0.5 × 10-3 MPa

The upward force follows from:           F = 2 mm r2 × ∫f=0
f1 cos2f df 

Integrating between f = 0 and p gives:       F =  2 × ½ p m r2  

Due to this load the fusée is subjected to a normal force and normal stress:
 s = ½ F/(t l) = ½ p × 24 × 0.042 × 103/(10×1000)  = 6 × 10-3  MPa

The calculated stresses are quite low, to resist the normal force and bending moments the fusée 
elements can be made thinner. 

Next the load is analysed as if the element is fixed to the mould at the sides, see figure 8.6. To describe 
the bending moments the element is split into two equal parts. At the top both parts are clamped. At 
the bottom of the element the bending moment is supposed to be Mf0. Due to the eccentric load the 
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element is subjected to horizontal forces H. These horizontal forces follow from the equilibrium of 
bending moments:

2 r H = 1/2 F r – (Mo + Mp),     →         H = 1/4 F – ½ (Mo + Mp)/r   

Substituting 1/2 F = ½ p m r2 gives:        H = ¼ p m r2   – ½ (Mo + Mp)/r    [8.9]

The bending moment for an angle f = f1 follows from:
Mf1  = M0  + H r (1-cos f1) - ∫f=0

f1  mm r cos f × r sin (f1 - f) r df     

Substituting H and sin (f1 - f) = sin f1 cos f  - cos f1  sin f   gives:

Mf1=½M0 (1+cos f1)- ½Mp (1-cos f1)+¼ p m r3(1-cos f1)-mmr3∫f=0
f1[sin f1 cos2f-cosf1 sin f cos f] df 

Integrating between  f = 0 and f =f1 gives:

Mf1 = ½ M0 (1 + cos f1) - ½ Mp (1 - cos f1) + ¼ p m r3 (1- cos f1) - ½ mm r
3  f1 sin f1      

For f1 = f:
Mf= ½ M0 (1+cos f)- ½ Mp (1-cos f) + ¼ p m r3(1-cos f) - ½ mm r

3  f sin f          [8.10]

Due to the bending moments the surface of the tube rotates. For an angle f = 0 the rotation is zero 
and Mf1  = Mf0.  For an angle f1  the rotation follows from:  q = ∫f=0

f1 Mf1 r df  
                               EI                                                            
q  =  ∫f=0

f1 M0 (1 + cos f) r df   - ∫f=0
f1 Mp (1- cos f) r df  +  mm r4 ∫f=0

f1  ½ p (1- cos f) - f sin f df
                             2 EI                                               2 EI                               2 EI

Integrating between  f = 0 and f = f1  gives:
q  = M0 (f1+sin f1) r   -  Mp ( f1-sin f1) r  +  mm r4 [½ p ( f1- sin f1)- (-f1 cos f1 + sin f1)]
                   2 EI                            2 EI                                               2 EI

For  f = p the rotation is zero: 
0  = M0 (p + 0) r   -  Mp (p - 0) r   +  mm r4 [½ p ( p - 0)- (p + 0)]     →   M0 = Mp - mm r3 (1/2 p –1)

                         2 EI                        2 EI                                        2 EI

Substituting M0 into expression [8.10] gives:
Mf= ½ [Mp - mm r3 (1/2 p –1)] × (1 + cos f) - ½ Mp (1 - cos f) + ½ mm r3 [1/2p (1- cos f) - f sin f]

Mf = Mp cos f + 1/2 mm r3 [-p cos f + 1 + cos f - f sin f]

For f = p the bending moment is equal to:
Mp  = - Mp + 1/2 p mm r3 [p + 1 - 1 - p × 0]  →  Mp  = ¼ p mm r3 =  0.785  mm r3

Next this bending moment Mp is substituted the expression for Mf   for f = 0:
M0 =  ¼ p mm r3  + ½ mm r3 ( -p + 1 + 1)   →  M0 = ½ mm r3 [2- ½p]= 0.2146 × mm r3

For a fusée with a radius of 40 mm the bending moment is: 
Mf=p = ¼ p m r3 = ¼ p  × 24 × 0.043 = 0.0012 kNm/m

For a tube with thickness 10 mm, the modulus of the section is equal to:     W = 1000×102/6 mm3; 
The stress acting in a fusee element follows from:  s = M/W     →         s = 0.00072 MPa
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This stress is very small, to resist the bending stresses due to the pressure of the liquid concrete the 
fuse elements can be dimensioned thinner.

§  8.4 The length and curvature of the oblong infill elements

To follow the curvature of the vault infill elements, positioned parallel to the curvature, must be bent. 
A tube can be curved elastically if the diameter is limited and the stress due to the bending does not 
exceed the maximum stresses. The ratio of diameter versus length of the infill elements depends on 
the features of the chosen material.
The deformation of an element subjected to an equally distributed load is equal to:

D =   5 q l4                          [8.11]
        384 EI

For an element supported at the ends the maximum bending moment is equal to M = q l2/8. Due to 
this bending moment the stress is at maximum s = M/W, W is the modulus of the section equal to W 
= I/z. For a symmetrical section with a thickness t  the distance z from the centre to the upper of lower 
side is  ½ t , thus I = W× t/2. Substituting the bending moment, stress and modulus of the section into 
the expression of the deformation gives:

D =  5  s  l2
                     [8.12]

       24 E t

Generally for a Fusée Céramique vault the ratio rise to the span was about f/l = 1/8.  An infill with a 
length equal to the length of the vault must be curved so that the ratio of the deformation to the span 
is equal to D/l  = f/l = 1/8.  Substituting this ratio into the expression for the elastic deformation gives 
the following expression for the ratio of thickness to span:

 t/l  =  5 s                      [8.13]
             3 E

For steel S235 with a maximum stress of 235 MPa and a Young’s modulus of 2.1 × 105 MPa  the ratio 
thickness/span is 1/536 = 0.0187. For a span of 8 m the thickness of the infill is 14.9 mm. 
For timber with a maximum stress of 10 N/mm2 and Young’s modulus of 104 MPa the ratio thickness/
span is 1/600 = 0.0167.  For a span of 8 m the thickness of the infill is 13.3 mm. 

The diameter of an infill that is to be curved elastically has to be quite small. A practical solution to 
overcome this problem is composing the infill of several tubes, for example by composing the infill 
elements with an organic material as bamboo, bundled in tubular shoves. The infill elements can be 
made also of small timber elements curved one by one and glued together. Elements can be curved 
also non-linearly. For example steel tubes can be forged, bamboo elements and PVC tubes can be 
curved by heating. The infill can be composed also of small straight elements jointed together as a 
chain. The Fusée Céramique elements were made as cylindrical bottles with a conical end so the top of 
an element could be pushed into the rear of the next element. The length of the individual parts has 
to be low to allow them to follow the curvature of the vault. The maximum length of the elements is 
defined by the curvature and the tolerance Dt.
For a circle segment the radius R is equal to:      R = ½ (a2+f2)/f        [8.14]

The facetted elements follow the chords of the circle. For an element with length l and a tolerance Dt 
the radius is: 
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R = ½ (1/4 l2+ Dt2)/Dt                      [8.15]

For a circular segment the radius is constant. With [8.14] and [8.15] the length of the element follows 
from:   

(1/4 l2+ Dt2) = (a2+f2) Dt /f    →       l = 2 × [ (a2+ f2) Dt/f -  Dt2 ]1/2   

The tolerance is much lower than the span and the rise, neglecting Dt2 results in:
l = 2  a  [ (1 + f2/a2) Dt/f  ]1/2                   [8.16]

Example

For a vault with span 2.a = 16 m, a rise f = 2.0 m and a tolerance of 5 mm the maximum length of a 
facetted infill element is:   l  = 2 × 8.0 × [ (1 + (¼)2) × 0.005/2.0 ]1/2 = 0.82 m

§  8.5  Form, strength and stiffness

The shape and position of the infill elements affects the area, the second moment of the area and 
the modulus of the section. Consequently the structural efficiency of the vault is also affected.  Three 
alternatives are compared, a massive section, a section with tubular infill elements and a TT-section 
constructed with boxes.
For a massive section, a height h and a width b the area A and second moment of the area I follows 
from:

A = b h                     [8.17]

I = 1/12 b h3                     [8.18]

For a section, with a height h, a width b and a number of n tubular infill elements with diameter di the 
area A and second moment of the area I follows from:

A = b h  - n p di
2                    [8.19]

I = 1/12 b h3 - n  p di
2                    [8.20]

For a multiple T-section, with a height h, a width b and a number of n infill elements with height hi and 
width bi the area A, the centre of gravity z and second moment of the area I follows from:

A = b h  - n bi hi                    [8.21]

 z = ½ b h2  - n × ½ bi hi
2                    [8.22]

             b h  - n bi  hi 

I = b h [1/12 h2 + (z – ½ h)2 ] - n bi hi [
1/12 hi

2  + (z – ½ h)2 ]            [8.23]
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Section  height
[mm] 

infill
height
[mm]

infills 
width
[mm]

Center of 
gravity z 
[mm]

Area [mm2] Second 
moment of the 
Area [mm4]

Modulus of the 
section [mm3]

dead load 
[kN/m2]

h hI bI

Massive 110 - - ½ × 110 11.0 × 104   1.109 × 108 2.02 × 106 2.64

11 tubular infills 110 60 ½ × 110    7.9 × 104   1.039 × 108 1.89 × 106 1.90

TT-section 110 60 400 74    6.2 × 104   0.433 × 108 0.59 × 106 1.49

TT-section 180 130 400 124    7.6 × 104   1.86 × 108 1.49 × 106 1.82

4×4 balls - 250 250 180 180 125 14.8 × 104 10.96 × 108 8.76 × 106 4.83

TABLE 8.3 Area and second moment of the area for several sections with a width b = 1.0 m and length  l = 1.0 m

Table 8.3 shows that tubular infill elements reduce the area and reduce the second moment of the 
area and the modulus of the section only slightly. 
Next a TT-section is considered, see figure 8.3. The volume of the infill elements can be increased if 
the elements are a part of the mould and not surrounded by the liquid concrete. Attaching the infill 
elements to the bottom of the mould will prevent uplift by the liquid concrete so the liquid concrete 
does not have to be poured in two layers. This will speed up the production. By preference the infill 
elements are a part of the mould and reused several times. The infill elements are removed when 
the mould is separated from the concrete. Reusing the infill elements several times will reduce the 
environmental load of the infill elements. Further the specific surface of the roof is increased, this will 
increase the accumulation of heat and cold in the roof structure and reduce the energy to warm and 
cool down the interior. Architecturally the surface is not smooth, a grid of small cassettes is shown.
Using rectangular infills reduces the need for cement and the weight, but to fill the space between the 
boxes properly the spacing has to be enlarged.  For an element with a height of 110 mm and two boxes 
with a height of 60 mm and a width of 400 mm the volume is 56% of the volume of a massive vault, 
but for this TT-section the second area of the section and the modulus of the section decrease quite 
much. To increase the stiffness and strength the height of the TT section is increased to 180 mm. For 
this element with a height of 180 mm and boxes with a height of 130 mm and a width 400 mm the 
volume is 69%  of the volume of a massive vault. 
Concerning the production and assembly it is much easier for cilindrical vaults to position the 
elements perpendicular to the span, the consequences will be shown in the following paragraph. In 
the same way it would be easier to use spherical balls for double curved forms. 
In practice floors are made composed of a prefabricated wide slab plate with spherical infill elements 
and a top layer cast in situ. The depth of these floors varies from 250 to 400 mm. The reduction of the 
weight is about 20%. For a floor with sperical infill elements Ø180, center-to-center 250 mm, the 
deph will  be at least 250 mm. The wide slab plates are jointed with the top layer, the joints can be 
considered as fixed joints. Due to the fixed joints the structure can be composed of several wide slab 
plates and can be schematised as a two hinged vault.

§  8.6 Embodied energy and footprint

In the past Jaques Couëlle was inspired by bamboo, possibly an infill of a natural material such as 
bamboo can perform better than a ceramic element. Table 8.4 shows for varying materials the mass, 
embodied energy and emission of CO2  
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 Product Density [kg/m3] Energy [MJ/kg] CO2 burden [kg/kg ]

Low carbon steel 7800 – 7900 30.0 – 35.0 2.2 – 2.8 [Ash12]

Brick 1900 – 2100 2.2 – 3.5 0.2 – 0.23 [Ash12]

Concrete 2200 – 2600 1.0 – 1.3 0.13– 0.15 [Ash12]

Soda lime glass 2440 – 2490 14.0 –17.0 0.7 – 1.0 [Ash12]

Rigid polymer foam LD 36 – 70 105– 110 3.5 – 4.0 [Ash12]

Bamboo 600 – 800 4.0 – 6.0 0.3 –  0.33 [Ash12]

Wood 600 – 800 7.0 – 8.0 0.4 –  0.46 [Ash12]

Cardboard 600 - 800 24.8 1.32 [Ham08]

TABLE 8.4  Overview of CO2 burden and embodied energy for some materials 

Comparing brick and concrete shows that brick has a higher embodied energy than concrete but 
a slightly lower CO2 emission. However for a hollow element the mass and embodied energy will 
be much lower than for a massive element, consequently the mass and embodied energy of a roof 
construction is decreased by using ceramic elements. The embodied energy for bamboo and wood 
according to Ashby seems rather high. Nibe gives for timber floors made in the Netherlands an 
embodied energy of about 1.0 MJ/kg. Cardboard tubes can also be an interesting alternative. For 
example cardboard is composed of about 95% recycled material. Nevertheless cardboard is not used 
much for structures, mostly because the strength and stiffness are pretty low. Halfway the twentieth 
century infills cardboard tubes were embedded in concrete floors to reduce the weight and use of 
cement. Possibly cardboard tubes can reduce the environmental burden of vaults. Ashby does not 
describe this material, the embodied energy and CO2 burden for cardboard is adopted from the 
inventory described by Hammond et al [Ham08]. 

For a vault  with a thickness of 110 mm the weight, embodied energy and CO2 emission is defined for 
varying infills. Table 8.5 shows the  results for this vault. Figure 8.7 compares the weight, embodied 
energy and CO2 burden for vaults with varying infills with a massive vault.

Percentage weight, embodied energy, emission for vaults 
with varying infills with respect to a massive vault
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FIGURE 8.7 The weight, embodied energy and CO2 emission for vaults with varying infill with respect to a massive vault. 
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Product mass Volume weight Embodied Energy CO2

kg/dm3 m3 kg MJ/kg        MJ/m2 kg/kg kg/kg

Massive concrete vault   2.4 0.1100 264         1.1 290.4 0.14 37.0

Fusée Céramique  Ø80-10   1.8 0.0242    43.5         2.8 121.9 0.21    9.1

Concrete   2.4 0.0547 131.3         1.1 144.4 0.14 18.4

Concrete + fusée Ø80-10 174.8 266.4 27.5

Glass  Ø80-10   2.5 0.0130    32.4      15.5 502.2 0.85 27.5

Concrete   2.4 0.0547 131.3        1.1 144.4 0.14 18.4

Concrete + glass Ø80-10 163.2 639.6 45.9

steel tubes  Ø80-1   7.85 0.0030    21.4      32.5 696.5 2.50 53.6

Concrete   2.4 0.0547 131.3         1.1 144.4 0.14 18.4

Concrete +steel tubes Ø80-1 152.7 840.9 72.0

Bamboo Ø60-10   0.7 0.0173    12.1         5.0 60.5 0.31    3.7

Concrete   2.4 0.0789 189.4         1.1 208.3 0.14 26.5

Concrete + bamboo Ø60-10 201.5 268.8 30.2

Timber, Ø60   0.7 0.0310    21.7         7.5 163.3 0.43    9.4

Concrete   2.4 0.0789 189.4         1.1 208.3 0.14 26.5

Concrete + timber Ø60 211.1 371.6 35.9

rigid polymer foam Ø60   0.05 0.0311       1.6   107.5 167.2 3.70    5.8

Concrete   2.4 0.0789 189.4        1.1 208.3 0.14 26.5

Concrete + polymer foam Ø60 134.2 375.5 32.3

Cardboard  Ø60-1.4   0.7 0.0028       2.0      24.8    49.2 1.32    2.6

Concrete   2.4 0.0789 189.4         1.1 208.3 0.14 26.5

Concrete + cardboard Ø60-1.4 191.4 257.5 29.1

TABLE 8.5  The weight, CO2 burden and embodied energy for varying infills embedded in a vault with a depth of 110 mm.

The infills can be ranked with respect to the weight, embodied energy or CO2 burden. Table 8.6 shows 
a ranking of the infills concerning the embodied energy and CO2 emission with respect to respectively 
the embodied energy and CO2 burden of a massive vault [%]. 

Embodied energy % CO2 burden %

Cardboard    88.7 Fusée Céramique    74.5

Fusée Céramique    91.7 Cardboard    78.8

Bamboo    92.6 Bamboo    81.9

Timber logs 128.0 Foam PS    87.3

Foam PS 129.3 Timber logs    97.1

Glass bottles 222.7 Glass bottles 124.3

Steel tubes 288.1 Steel tubes 193.8

TABLE 8.6 Ranking the infill for the embodied energy and CO2 burden with respect to a massive vault with a depth of 110 mm. 

The cardboard tubes and Fusée’s Céramique elements perform quite well. Possible the embodied 
energy and emission of the fusées can be reduced in a hot and dry climate further, in case the fusées 
are sun dried and not forcibly dried in an oven. Especially for tropical areas the energy needed for 
production and transport of bamboo is low, for these areas an infill of bamboo can be a good solution. 
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The embodied energy for timber logs seems very huge; probably the energy needed for production and 
transport is smaller in wooded areas such as Norway, Finland, Sweden and Germany. 

§  8.7 Prefabrication

Prefabrication of the vault increases the quality and can reduce the production cost. The prefabricated 
elements are made in a hall with a more or less controlled inner climate so the production is not 
disturbed by bad weather. Further the construction of a prefabricated vault is much safer for the 
construction workers. Otherwise the cost and environmental load of the transport of the prefabricated 
elements can be high if the infrastructure is poor and the factory is far from the site. To speed up the 
process the liquid concrete is by preference not poured in two stages to prevent uplift. In a production 
hall it is possible to use a frame to temporarily ballast the infill or to attach the infill firmly to the 
reinforcement and prevent the uplift till the concrete has set. The moulds made for prefabricated 
elements can be reused many times, consequently the environmental burden will be much less 
than for a mould used only once at the building site. An efficient way to save the cost and burden of 
infill is to make cavities in the concrete by extrusion of the liquid concrete through a nozzle. In the 
Netherlands the prefabricated hollow core concrete plates are competitive to other systems. 
For prefabricated structures the elements are by preference identical and symmetrical with a constant 
curvature to avoid mistakes in positioning an element not fitting at that position. To produce identical 
elements the form of the vault is by preference circular. As shown before structurally circular segments 
are less effective than elements following a parabola. However chapter 1 shows for low rise vaults 
that the differences between the curvature of a circle segment, parabola and catenary s are small. 
Furthermore strengthening and stiffening the structure with diagonals will reduce the bending 
moments and increase the load bearing capacity substantially.  
Prefabricated elements can be reinforced, pre- and post-tensioned. Structurally tensioning the 
reinforcement is very effective. Due to the tensioning, the reinforcement is stressed and the concrete 
is compressed continuously. Consequently the vault is not cracked or at least less cracked and much 
stiffer than a reinforced but not tensioned structure. Generally prefabricated hollow core flat elements 
are pre-tensioned and made in a production hall by extrusion. These elements are nearly flat. For 
a pre-tensioned curved element the tensioned steel strands, following the curvature of the vault, 
must be supported well. Due to the curvature the supports of the strands have to resist a substantial 
downward force. Curved hollow core elements can be post-tensioned too; the strands are positioned in 
gains and tensioned when the liquid concrete is set and strong enough to resist the tensioning.

§  8.8 Positioning tubes perpendicular to the span 

Generally tubes of cardboard or ceramic are produced without a curvature. To follow the curvature of 
a vault the elements have to be bent. Bending tubes of cardboard will cause dimpling and cracks. To 
follow the curvature the tubes must be facetted and jointed with an inclination. Concerning production 
and assembly, it is much easier for cylindrical vaults to position straight elements perpendicular to the 
span. Structurally positioning tubes perpendicular to the span can increase the shear stresses and will 
cause bending stresses. The structure will transfer the loads as a so-called Vierendeel-truss. 
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A Vierendeel-truss subjected to a lateral load will be subjected to bending moments; these moments 
will cause compressive and tensile stresses in the upper and lower flange. Due to the punched web 
these stresses are slightly higher than the stresses in a massive beam. A structure subjected to 
bending moments is subjected to shear too. To transfer the shear force over the punched web of the 
Vierendeel truss, the chords and struts will be subjected to bending moments. 

z

V          c

FIGURE 8.8 Transfer of the shear force for a punched structure.  

For a structure with tubular infill elements with radius r and centre to centre distance c the bending 
moments acting on the flanges due to the shear force Vd are approximately equal to: 

Mfl = ¼ V c 

The struts between the infill have to resist a bending moment two times the bending moment acting 
on the flanges:

 Mstrut = ½ V c                     [8.24]

Furthermore the strut between the infill has to resist the shear force, Vstrut = dM/dx. Between two tubes 
the shear force Vstrut    is equal to the horizontal force H. This force follows from the sum of the bending 
moments acting at the strut divided by the lever arm z:   

Vstrut = S Mstrut /z  →  Vstrut = 2 × (½ V c)/z    →   Vstrut =V c/z    [8.25]

Next the mean shear stress, acting at the strut with a thickness t and width b follows from:
t mean = V strut/(b t)                      [8.26]

Vierendeel trusses for vaults

Actually the Vierendeel truss is very efficient for form-active vaults. Generally form active vaults are 
subjected to normal forces. Due to the infill the normal force is transferred by the upper and lower 
part of the section. The compressive normal stresses at the upper and lower side are larger than the 
stresses acting on a massive section. The vault will be not cracked if the normal compressive stresses 
are larger than the tensile bending stresses. The stiffness of an uncracked section is much larger 
than the stiffness of a cracked section. Increasing the normal compressive stresses can increase the 
stiffness of the vault, consequently for a concrete vault adding infill can increase the stiffness. For 
vaults the bending moments are minor, so the shear forces are quite small too, even if the vault is 
subjected to a concentrated load. This will be shown for the following Vierendeel truss, subjected to 
two concentrated loads acting at a distance c just beside the centre. 
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Model

A prefabricated vault is composed of two segments. To simplify construction and assembly the radius 
of the vault is constant, the line of the system follows a circle segment. Of course for circle segments 
the load transfer is less effective than for a parabola or a catenary. However for low rise vaults the 
differences are insignificant. The following chapter describes the load transfer for vaults with a 
constant radius, strengthened with ties.  The circle segment with centre at the top is described with 
polar coordinates, the x-coordinate and y-coordinate follow from:

x = R sin f  and  y = R (1- cos f)                  [8.27]

The span of the vault is equal to l = 2 a. The coordinates of the supports are calculated with expression 
[8.28] with f = 2 b  , so  a = R sin (2 b) .
The rise f follows from:          f = R × [1- cos (2 b)]      [8.28]

The angle b follows from:         tan  b  = f/a         [8.29]

f

 a
   β     

 
     R

 
   
β    β 

F

FIGURE 8.9  Prefabricated vault, subjected to a concentrated load. 

Assume for this model a width equal to b =  200 mm, a height h = 120 mm, a radius R = 1.905 m and 
an angle b equal to b = 15o  thus 2 b = 300.  Infill elements Ø60-100, so the centre to centre distance 
c is 100 mm.  The length of the half vault is equal to   s = 2 R b. Substituting R = 1.905 m and b = 150 
gives  s =  1.0 m, thus with c = 100 mm the number of infill elements is equal to n = 10. The vault is 
subjected to a concentrated load F = 10.0 kN acting at the top. The span  l follows from l = 2 a = 2 R sin 
300 = 1.905 m. The rise f follows from [8.28]: 

f = R (1- cos 300) = 0.255 m.

For the statically determinate three hinged vault the thrust follows from:
H = F a/f =  ½ × 10.0 × ½ × 1.905/2/0.255 = 18.67 kN

 Actually the two-hinged vault is statically indeterminate. Chapter 9 describes the load transfer for 
circular statically indeterminate vaults. The thrust follows from expression [9.38’];

H =    ½ F [½ sin2(2 b) + cos (2 b) × [1- 2 b sin(2 b)] – cos2(2 b) ]   
                 b + 2 b cos2(2b) – 3/2 sin(2 b) × cos(2 b)     

Substituting b = 15o and ½ F = 5.0 kN gives:
H =    5.0 × [ ½ sin2(30) + cos (30) × [1- (p/6) ×  sin(30] – cos2(30)]  = 14.36 kN
             (p/12) ×(1+ 2 cos2 (30)) – 3/2 sin (30) × cos (30)     
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 The bending moment  follows from expression [9.39];
Mf= 0 =    ½ F R sin(2 b) - H R(1-cos (2 b) ] 

Substituting b = 15o and ½ F = 5.0 kN gives:
Mf= 0 =    5.0 × 1.905 × sin(30) - 14.36 × 1.905 ×  [1- cos(30)]   = 1.1 kN

The shear force acting at the struts follows from (8.25):  Vstrut = V c/z    

Substituting V = ½ × 10.0 kN,  z = 0.09 m and c = 0.1 m gives:  Vstrut = 5.0 × 0.1/0.09 = 5.556 kN 

The shear stress follows from [8.26]:  tmean = V/(b t)  = 5556/(200×40) = 0.69 MPa 

Due to the curvature the normal forces and shear forces acting at the chords of the vierendeel truss 
decrease from the top to the support. 

Nf =  Nx cos f + Vx sin f  and  Vf = -Nx sin f + Vx cos f 

Computer analysis

For the model an analysis with a computer program, Matrixframe, is made. The thickness of the 
vertical struts of the Vierendeel truss is equal to 100 – 60 = 40 mm. The lever arm follows from z 
= 0.06 + 2×0.03/2 = 0.09 m. The radius of the upper and lower chord of the Vierendeel truss are 
respectively: Ru = 1.905 + 0.09/2 = 1.95 m and Rl = 1.905 – 0.09/2 = 1.86 m. Table 8.7 shows the 
results.

Node X = Y = Member nodes M N V Member. nodes M N V

1 0 0 1 1-2 0.14 -17.55 2.26 21 1-12 0.14 -2.22 3.12

2      
0.102

0,003 2 2-3 0.11 -13.10 1.94 22 2-13 0.21 -0.43 4.55

3 0.204 0.011 3 3-4 0.09 -9.10 1.69 23 3-14 0.19  0.35 4.08

4 0.305 0.024 4 4-5 0.07 -5.81 1.36 24 4-15 0.15  0.11 3.38

5 0.405 0.043 5 5-6 0.06 -3.10 1.09 25 5-16 0.13 -0.12 2.76

6 0.505 0.066 6 6-7 0.05 -1.09 0.77 26 6-17 0.10 -0.16 2.07

7 0.603 0.095 7 7-8 0.03 -0.22 0.43 27 7-18 0.06 -0.31 1.34

8 0.699 0.130 8 8-9 0.02 0.85 0.16 28 8-19 0.03 -0.31 0.65

9 0.793 0.169 9 9-10 0.02 0.85 0.16 29 9-20 0 -0.34 0.01

10 0.885 0.261 10 10-11 0.03 0.27 0.41 30 10-21 0.03 -0.30 0.60

11 0.975 0.09 11 12-13 0.14 6.17 2.41 31 11-22 0.01 0.41 0.28

12 0 0.093 12 13-14 0.12 1.52 2.16

13 0.097 0.100 13 14-15 0.09 -2.68 1.82

14 0.194 0.113 14 15-16 0.07 -6.15 1.47 support

15 0.291 0.131 15 16-17 0.07 -8.97 1.23 1 H = -20.6

16 0.387 0.153 16 17-18 0.05 -11.10 0.62 2 H = 9.4

17 0.481 0.181 17 18-19 0.04 -12.48 0.48 22 H = 11.2

18 0.575 0.214 18 19-20 0.02 -13.14 0.16 22 V = 5.0

19 0.667 0.251 19 20-21 0.02 -13.15 0.18

20 0.757 0.293 20 21-22 0.03 -12.53 0.47

21 0.844 0.207

22 0.930 0.228

TABLE 8.7  Computer analysis of the Vierendeel truss: geometry , coordinates, forces and bending moments   
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FIGURE 8.10 Half of the Vierendeel truss. 

The vertical reaction force and thrust acting at the support node 22 are respectively equal to:  V = 5.0 
kN and H = 11.2 kN. At the top the horizontal forces are respectively H1 = 20.6 kN and H12 = + 9.4 kN. 
The bending moment at the top is equal to: 
 M = ( H1 – H12) × ½ z    →  M = (20.6 + 9.4) × ½ × 0.090  = 1.35 kNm

The shear force acting at a flange is at maximum for member 11, this shear force is equal to: 
Vfl = 2.41 kN.  According to [8.26] the shear stress is:     

tmean =   V    =    2410       = 0.4 MPa   
               b t      200 × 30

The shear force acting at a strut is at maximum for member 22, this shear force is equal to: 
Vfl = 4.55 kN.  According to [8.26] the shear stress is:     

tmean =  V    =     4550       = 0.57 MPa    
               b t      200 × 40

The shear forces and stresses approached with the previous simple calculation are slightly larger than 
the shear forces and stresses calculated with the computer analysis. The approach is on the safe side 
and can be used to design the vaults in an early stage of the design process.
Comparing the analysis with the computer and the previous analysis of the vault shows that the thrust 
H = 11.2 kN, according to the computer analysis, is smaller than the thrust calculated previously for  
the vault H = 14.36 kN. The modelling causes this difference. The height of the Vierendeel truss is 120 
mm; the radius of the lower chords is Rlow = 1.86 m. The span is equal to l = 2 a =  2 × 0.93 m this span 
is smaller than the span of the vault calculated previously with 2 a with a = 0.9525 m. Further at the 
top the Vierendeel is subjected to two horizontal forces H1 = 20.6 kN and H12 = -9.4 kN. Due to the 
bending moment M = 1.35 kNm the thrust H = 11.2 kN acts at the top with an eccentricity e = M/H = 
0.12 m. So the rise is for the Vierendeel practically equal to: 

f ‘ = + Rlow  [1-cos (2 b)] + ½ × z   

Substituting, Rllow= 1.86 m and z = 0.09 m gives for f’ and f’/f:  
f ‘ =  1.86 × ( 1- cos 30o) + ½ × 0.09  = 0.294 m;   f’/f = >  0.294/0.255= 1.15 

Due to the increase of the rise  and the decrease of the span the thrust calculated with the computer 
analysis is smaller than the thrust calculated for the vault previously. For a vault with a larger span the 
effect of the thickness of the Vierendeel will be much smaller.
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Table 8.7 and figure 8.10 show that the bending moments due to the concentrated load decrease 
from the top to the support. This conforms to theory. Due to the curvature, the normal forces and 
shear forces acting at the chords of the Vierendeel truss decrease from the top to the support with 
respect to f. 

Nf =  Nx cos f + Vx sin f  and   Vf = -Nx sin f + Vx cos f 

The system with tubes perpendicular is validated further with experiments. These tests are described 
in chapter 10. 

Conclusions

Due to the curvature of the structure the shear forces and bending moments are decreasing from the 
loaded node to the supports. The bending stresses and shear stresses in the weakened sections above 
and adjacent to the tubes are pretty small. The tubes do not affect the load bearing capacity of the 
vault, if the maximum shear stress between the tubes is smaller than the ultimate stress. 
Due to the infill elements the normal compressive stresses will be larger than the normal stresses 
calculated for a massive section. The vault will be uncracked if the normal compressive stress 
compensates the tensile bending stress. Thus adding the infill elements increases the normal 
compressive stresses and increases the stiffness of the vault.    

§  8.9 Selection

The demonstrated possibilities have advantages and disadvantages. The site, the specific design 
specifications, and the preferences of the designers and the demands of the government affect the 
selection. 
As stated before prefabrication is often lucrative, provided heavy equipment is available, the 
infrastructure is good, and the building site is not far from the production hall. For a building to be 
constructed at a remote site, for example on a small island far from any prefab workshop, the vault 
can be made in situ or with prefabricated elements produced in moulds in a temporary workshop at 
the side. The choice of the infill elements depends on the availability of the materials too. Transport 
over long distances will increase the cost, the embodied energy and the CO2 emission. In some tropical 
areas bamboo will be available easily, in other areas bundles of cardboard tubes, reeds or branches of 
willows will be available near the site and can be used as good substitute. Using cassettes to integrate 
the infill elements with the mould will help to speed up production and reduce the environmental 
burden. Otherwise the thickness of the vault with cassettes will be larger than for a vault with tubular 
infill elements. As shown before TT-elements have some disadvantages, the height and specific 
surface are both less than the height and specific surface of vaults with infill elements, generally 
the cost of TT-elements are higher than the cost of prefabricated hollow core elements. Structurally 
elements constructed with infill elements are stiffer and stronger than TT-elements, so these elements 
can be dimensioned thinner.  If the inner space has to be lighted by daylight than it can be interesting 
to use infill elements with a height equal to the height of the vault. After construction the infill 
elements are removed and lights are placed in the openings. Structurally this vault with light openings 
can be considered as a grid of beams. 
The selection of the infill elements is also affected by the construction. In the past the Fusée 
Céramique vaults were made at the building site. To prevent uplift, the liquid concrete was poured in 
two layers. To follow the curvature the fusées were not very long and jointed in the mould. Nowadays 
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structures are by preference prefabricated. The moulds of a prefabricated vault can be reused many 
times and this will reduce the waste. To avoid mistakes and increase the repetition the elements are 
by preference circularly curved. To reduce the weight and footprint the prefabricated mould can be TT 
elements, extruded hollow cores, or tubular infill elements of an organic material as bamboo, timber, 
cardboard or reed. The depth of bamboo branches will vary, this will effect the technique of production 
and the quality of the products. 

To prevent uplift by the liquid concrete the following possibilities arise: 

 – The concrete is poured in two stages, the infill elements are pushed in the first layer; 

 – The concrete is poured in one stage, the cavities are made by extrusion;

 – The concrete is poured in one stage; the tubular infill elements are connected well to 
the mould to resist the uplift. 

 – The concrete is poured in one stage; cassettes are integrated to the mould and reused many times.

Structurally the infill elements must not be very stiff. For the vaults with Fusée Céramique elements 
the concrete sections were tensioned due to the time dependent deformations. By preference the 
concrete vault is compressed. To avoid a transfer of the load due to the time dependent deformations 
the infill has to be flexible. 

For cardboard the Young’s modulus is quite small,  E ≈ 1000 N/mm2, much smaller than the young’s 
modulus of concrete, so the effect of the time dependent deformations is small. The better part of 
normal load will be transferred by the concrete and reinforcement. 
The cardboard tubes decrease the embodied energy and CO2 emission of the vaults. In the Netherlands 
cardboard is recycled for 95%. The cost and weight are reasonable. The strength and stiffness are poor, 
so generally cardboard is not used much for structures, nevertheless the Japanese architect Shigeru 
Ban designed several projects composed of cardboard tubes structures [McQ08]. In the nineteen fifties 
cardboard tubes were used as infill elements for floors with a large span to reduce the self-weight. 
More recently cardboard tubes have been used to the reduce the weight of the floors for the city hall of 
Almelo [Scha15]. Furthermore the tubes are still used as non-reusable moulds for columns. 
Cardboard tubes cannot be curved easily; to follow the curvature of the vault the tubes must be 
facetted. The tubes do not have to be curved if the tubes are positioned perpendicular to the span. 
Concerning the production it will be profitable to position the tubes perpendicular to the span. 
Structurally positioning the tubes perpendicular to the span will increase the normal stresses and 
the shear stresses. For vaults the increase of the normal stresses will reduce the tensile bending 
stresses and possibly prevent the structure of cracking and a reduction of the stiffness. Furthermore 
strengthening the vaults will minimize the bending moments and the shear, consequently for these 
vaults the structural disadvantage due to the position of the tubes perpendicular to the span, are 
small. 
The following chapter shows the load transfer for vaults, strengthened with ties, that follow a circular 
segment, with infill elements positioned perpendicular to the span.
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9 Prefabricated vaults composed 
of circle segments  

Introduction prefabricated vaults 

Prefabrication of a concrete structure will increase the quality and reduce the production cost. 
Prefabricated elements are made in a workshop with a controlled environment. The fabrication is thus 
not affected by bad weather. Generally prefabricated structures have to be partitioned into individual 
elements to allow transportation to the building site.  The elements can be quite large if the site is 
close to a waterway, otherwise the elements have to be small enough to be transported by trucks over 
roads. By preference prefabricated structures are composed of identical components. This simplifies 
assembly and reduces the number of moulds required. Due to the constant radius cylindrical vaults 
can be partitioned easily into identical elements. This reduces the number of required moulds and 
simplifies the assembly. Structurally circular vaults are best suited to equally distributed radial 
loads. For any other type of loading the line of the system is not equal to the line of thrust, so the 
sections are subjected to bending moments. Strengthening the vault with diagonals reduces bending 
moments and increases the compressive normal forces acting at the sections of the vault. Sufficient 
strengthening prevents the structure from cracking by bending stresses and also increases the 
stiffness. This chapter describes the load transfer for prefabricated vaults with a constant radius 
composed of identical segments. Firstly the transfer of the loads is described for a non-strengthened 
vault. Next several alternatives are described to strengthen these vaults with diagonals to increase the 
stiffness and reduce the dimensions, self-weight and the environmental load.

§  9.1 The description of the coordinates of circle segments 

A circular vault with a constant radius can be described using a Cartesian Coordinate system. The 
following expression describes the vault if the centre of the coordinates is positioned at the crown:

x2 + (y - R) 2 = R2   →        y2 – 2 R y + x2 = 0          [9.1]

Thus for any x the coordinate y is calculated with:   y = R – (R2 - x2)1/2      [9.2]

The span of the vault is equal to the length of the horizontal chord: l = 2 a. The rise of the vault is equal 
to f. For a vault with a span l = 2 × a  and a radius R the rise f follows from [9.2]:  

f = R – (R2 - a2) 0.5  

In the same way for a vault with a span l = 2 a  and a rise f the radius R follows from [9.1] :
R = a2 + f2                    [9.3]
          2 f

For circular vaults polar coordinates will considerably simplify the analysis. For a circular segment with 
the centre of the coordinates at the top, the coordinates of a point P at the curve follow from:

 P(x,y) = ( R sin f; R [1 - cos f] )               éééé  [9.4]
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The coordinates of the supports are found for an angle f = 2 b.  This angle 2 b follows from: 
 sin(2 b)= a/R                     [9.5]

For a given circle segment with radius R the rise f and the span l = 2 a follows from:
f = R {1- cos (2 b)}  →    f = 2 R sin2 b              [9.6]

a = R sin (2 b) = 2 R sin b cos b                  [9.7]

The length of half of the arch between the top and a supports with f = 2 b [radians] follows from:  
s =  2 b R                     [9.8]

R
β β φ 
    

a
β 

f

FIGURE 9.1 Segment of a circle described with Polar 
Coordinate system. 

§  9.2 Three hinged vault following circular segment

A vault is supported by two simple supports and hinged at the top. The structure is statically 
determined, the reactions, forces and bending moments can be defined using the expressions that 
show the equilibrium of forces and moments. To simplify the calculations the structure is described 
with polar coordinates. The angle between the vertical axis and the vector pointing to the support is 
equal to 2 b. 

Three hinged vault subjected to an equally distributed load q:

For the three hinged vault subjected to a surface load q the vertical reaction forces acting at the 
supports ,VA and VB,  are equal to:

VA = VB = q R sin (2 b)                       [9.9]

The moment M0 at the centre due to the distributed load is equal to zero:
Mf=0 = V R sin (2 b)  -  H f  -  ½ q R  sin2(2 b)  = 0      

The thrust H is defined by substituting the reaction force V, the rise f and the span a into this 
expression:

H = ½ q R2 (2 sin b cos b)2         →      H = q R cos(2 b)        [9.10]
                2 R sin2 b      
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The bending moment Mf  for an angle f follows from:        Mf = H R [1- cos f] – ½ q R2 sin2 f  

Substituting the thrust H [9.10] into this expression gives:
Mf = q R2 [cos2 b  (1 - cos f) – ½ sin2 f]                [9.11]

For f = b:  Mf = b = -½ q R2 (1 + 2 cos3 b  - 3 cos2 b)             
[9.11’]

               R
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f

FIGURE 9.2 Vaults subjected to an equally 
distributed load q. 

The maximum moment acting at the vault is found for dMf/df = 0, differentiating the expression for 
the bending moment [9.11] with respect to f gives: 

dMf/df =  q R2 cos2b sin f  - q R2 sin f cos f  = 0  →  cos f = cos2b 

The maximum moment is found by substituting cos f  = cos2 b  and sin2 f = (1- cos4 b)  into the 
expression [9.11]:

Mf max = q R2 [cos2 b (1 - cos2 b) –  ½ (1 - cos4 b)]   → Mf max = - ½ q R2 sin4 b       [9.12]

Three-hinged vault subjected to an equally distributed surface load q

Due to the dead load the arch will be subjected to an equally distributed surface load q. The three-
hinged arch is statically determinate. For this loading it is easier to describe the expressions with polar 
coordinates. The angle between the vertical axis and the radius pointing to the  support is equal to 2 b.

               R
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FIGURE 9.3 Segment of a vault subjected to an equally 
distributed surface load. 

For the three hinged arch subjected to a surface load q the vertical reaction force acting at the supports 
VA and VB is equal to:

VA = VB  = ∫ f = 0
f =2b q R df  = 2 b q R                  [9.13]
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The bending moment M0 acting at the centre is equal to zero:
Mf=0  = V R sin (2 b)  - H f  -  q R2 ∫f = 0

f =2b  sin f df  = 0  

To define the thrust H the reaction force V = 2 b q R is substituted and the expression  is integrated 
between the constraints f = 0  and f = 2 b: 

Mf=0  = 2 b q R2  sin (2 b)  - H f – q R2 [1 - cos(2b)] = 0  

Now the thrust H follows from: H = q R [2 b sin (2b) + cos (2b) - 1]     
        (1- cos(2b))    
Substituting cos (2 b) = 1- 2 sin2 b   and  sin (2b) = 2 cos b sin b:

 H =  q R [2 b cos b  - sin  b ]                    [9.14]
                        sin b  

The bending moment for a certain angle f1 follows from:
Mf1 = H R [1-cos f1] – q R2 ∫f=0

f1 (sin f1  - sin f) df    

Integrating of this expression between  the constraints f = 0 and f = f1 gives:  
Mf1 = H R [1 - cos f1]  - q R2 [f1 sin f1  - cos f1 + 1]   

For f1 = f the bending moment is: 
 Mf  =  (2 b cos b  - sin b)  × (1- cos f)  - f sin f  + 1 - cos f    → 
q R2                   sin b
 Mf =  2 b cos b × [1- cos f]  -  f sin f                   [9.15]   
q R2         sin b
For f = b: Mf = b = - q R2  b [1 + cos2 b  - 2 cos b]         [9.15’]
          sin b

The maximum  moment acting at the vault is found for dM/df = 0. Differentiating expression [9.15] 
with respect to f gives for f = fu: 

 dMf/df =  q R2 [ 2 b sin fu  -  sin fu  - fu cos fu  ] = 0  →                                                          
                                      tan b
   2 b    - 1    =     fu                            [9.16]   
 tan b                tan fu                 

Three hinged vault subjected to an asymmetric load 

Due to an equally distributed asymmetric load the vault is subjected to bending. The assumption is 
made that the live load qe is equally distributed and acting on the right side of the vault. The vertical 
reaction forces acting on the supports are respectively:

VA =  ¼ q a = ¼ q R sin (2 b)  and   VB = ¾ q a = ¾ q R sin (2 b) 

The thrust is calculated for the not loaded half of the vault with the equilibrium of the bending 
moment around the top.

 Mf=0 = H f - ¼ q a2 = 0    →       H = ¼ q a2/f    

In the same way the thrust is calculated for the loaded part:
Mf=0  = ¾ q a2  -  H f  – ½ q a2  = 0   →    H = ¼ q a2/f   

Substituting the rise f and the span into the expression for the thrust: 
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H =    ¼ q R2 sin2 (2 b)    
        R  [1 - cos (2 b)]

Substituting cos (2 b) = 1 – 2 sin2b  and  sin (2 b) = 2 cos b sin b: H = ½ q R cos2 b      [9.17]
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FIGURE 9.4  Vault subjected to an 
asymmetrical equally distributed load.

 For the unloaded side the bending moment Mf is calculated for an angle f from the top with:
Mf = H R (1 - cos f)  – ¼ q R sin (2 b) × R sin f     

Substituting H = ½ q R cos2 b   and  sin (2 b) = 2 cos b sin b:
Mf = ½ q R2 [cos2b (1 - cos f)   – sin b cos b sin f ]              
[9.18]

The bending moment is maximum for dMf/df = 0. Derivate the expression for Mf gives for f = fu:
dMf/df = ½ q R2 [cos2b sin fu   - sin b cos b cos fu ] = 0  →  tan f = tan b   →  fu  = b 

The maximum bending moment is calculated by substituting fu  =  b in the expression [9.18]:
Mmax =  Mf=b = ½ q R2 [cos2b (1 - cos b)   – sin2b cos b]  →  

Mmax =  Mf=b =  - ½ q R2 cos b (1 - cos b)                [9.19]

For the loaded part of the vault the bending moment Mf is calculated for a certain angle f1 from the 
top with:

Mf1 = H R (1 - cos f1)  + ¼ q R sin (2 b) R sin f1  - ½ q (R sin f1)2     

Substituting H = ½ q R cos2 b   and  sin (2 b) = 2 cos b sin b:
Mf1 = ½ q R2 [cos2 b (1 - cos f1)  +   sin b cos b sin f1  – sin2 f1]    

For f = f1 this expression becomes:
Mf = ½ q R2 [cos2 b (1 - cos f) + sin b cos b sin f  – sin2 f]            
[9.20]

The bending moment is maximum for dMf/df = 0. To define the angle fu expression [9.20] is derived 
for Mf = 0: 

dMf/df =  ½ q R2 [cos2b sin fu + sin b cos b cos fu  - 2 sin fu cos fu ] = 0  →

2 sin fu cos fu  - cos2b sin fu  =  sin b cos b cos fu         

Dividing this expression by cos fu gives:    cos2 b tan fu  = 2 sin fu  - sin b cos b      
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This expression can be solved numerically. If  b is small, then the angle fu  will approach the angle 
b. Substitution of fu  = b into expression [9.20] gives for the bending moment Mf the following 
expression:

Mf = b = ½ q R2 cos (2 b) × (1 - cos b)                  [9.21]

This moment is positive and slightly less than the bending moment acting at the not loaded part of the 
vault, see expression [9.19].

Three hinged vault subjected to an anti-metrical load

Due to an anti-metrical load the three hinged vault will be subjected to bending. Again the 
assumption is made that the arch is simple supported and hinged at the top. The structure is statically 
determinate. The vertical reaction acting at the support at the right VB  follows from the equilibrium of 
bending moments for the support at the left:

  VB = q a (3/2 a - 1/2 a) =  ½ q a   ↑                         
                            2 a

The vertical force at the support at the left is equal to:  VA = – ½ q a ↓

The thrust H acting at the supports follows from the equilibrium of the moments around the hinge at 
the top. 

H = ½ q a2 – ½ q a2 =  0                      [9.22]
                      f

               R
β β φ 
    

a
β 

f

FIGURE 9.5 Vault subjected to an antimetrical load

The bending moment Mx at a distance x from the top follows from:   Mx = ½ q a x – ½ q x2  

Substituting  x = R sin f  and a = 2 R sin b cos b into the expression for Mx to define Mf:  
Mf =  ½ q R2 (2 sin b cos b sin f  - sin2 f)                 [9.23]

For f = b:   Mf=b =  ½ q R2 sin2 b (2 cos b  - 1)                
[9.23’]

The maximum bending moment is found for dMf/df = 0, deriving the expression for the bending 
moment gives: 

dMf/df = ½ q R2 (2 sin b cos b cos f  - 2 sin f cos f )  
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The maximum bending moment is found when dMf/df = 0:     
  2 sin b cos b cos fu   - 2 sin fu cos fu  = 0   →      sin fu =  sin b cos b 

Substituting fu  into the expression [9.23] gives for the maximum moment:
Mmax =  ½ q R2 sin2 b cos2 b                    [9.24] 

Three hinged vault subjected to a concentrated load acting at the centre

The three hinged vault will be subjected to bending if the arch is loaded by a concentrated load acting 
at the centre. The assumption is made that the arch is simple supported and hinged at the top. The 
structure is statically determinate. The vertical reaction acting at the support at the left VA, and right 
side VB, is equal to: VA = VB  = ½ F.
The thrust H acting at the supports follows from the equilibrium of the moments around the hinge at 
the top. 

H f – V a = 0   →          H = ½ F a /f    

Substituting  a = R sin (2 b) and f = R (1 - cos 2 b):    H =  ½ F sin (2 b)  
                                    1 - cos (2 b) 
Substituting sin (2 b) = 2 sin b cos b  and cos (2 b) = 1 –2 sin2 b  into the expression:

  H = F sin b cos b       →        H  =   ½ F             [9.25]
               2 sin2b                                                   tan b 
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FIGURE 9.6  Vault subjected to a concentrated load. 

The bending moment Mx at a distance x follows from:   Mx = H y – ½ F x  

Substituting H , x  = R sin f and  y = R (1 - cos f)  into the expression for Mx to define Mf:  
Mf =  ½ F R (1 - cos f)   -  ½ F R sin f                [9.26]
                         tan b 

The bending moment is maximum when dMf/df = 0, deriving the expression for the bending moment 
for f = fu: 

dMf/df = ½ F R sin fu  -  ½ F R cos fu = 0    →    tan fu = tan b     thus:  fu = b
                           tan b

For this load the bending moment is maximum when fu = b. The maximum moment follows by  
substituting fu = b into expression [9.22]:
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Mf=b =  ½ F R (1 - cos b)   -  ½ F R sin b   →   Mf=b  =  - ½ F R (1 - cos b)        [9.27]
                     tan b                        sin b

             
The bending moment is negative, due to this moment the arch is tensioned at the outer side.

Three hinged vault subjected to a concentrated horizontal force acting at the top

The three hinged vault will be subjected to bending if the arch is loaded by a horizontal force  H acting 
at the top. The assumption is made that the arch is simple supported and hinged at the top. The 
structure is statically determinate. The horizontal reaction acting at the support at the left HA, and 
right side HB, is equal to: HA = HB  = ½ H. The vertical reaction force VB acting at the support at the right 
follows from the equilibrium of the moments around the hinge at the top. 

½ H f - VB a = 0   →          VB =  ½ H f/a  ↑  

Substituting  a = R sin (2b)  and f  = 2 R sin2b  :     VB =  ½ H tan b  ↑

               R
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f

FIGURE 9.7  Vault subjected to a concentrated load. 

The bending moment Mx at a distance x follows from:   Mx = ½ H y – VA x  

Substituting VA x = R sin b and  y = R (1 - cos f)  into the expression for Mx to define Mf:  
Mf = ½ H R (1 - cos f -  tan b sin f)                 [9.28]

The bending moment is maximum when dMf/df = 0, deriving the expression for the bending 
moment: 

dMf/df = ½ H R (sin fu  - tan b cos fu ) =  0   →  tan fu = tan b →    thus:  fu = b

For this load the maximum bending moment is found when fu = b. Substituting fu = b into expression 
[9.28] gives:

Mmax = - ½ H R (cos b + tan b sin b - 1)                
[9.29]
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Load Bending moment,   f  = b                                              Maximum bending moment

Equally distributed load: Mf = b = - ½ q R2  [1 + 2 cos3 b - 3 cos2 b ]          Mmax  = - ½ q R2 sin4 b 

Equally distributed surface load Mff = b = - q R2 b (1 + cos2 b  - 2 cos b )
                                    sin b

Asymmetrical load Mf = b =  ½ q R2 cos (2 b)  × (1 -cos b)                         

Anti-metrical load: Mf = b =  ½ q R2 sin2 b × [ 2 cos b -  1]               Mmax =  ½ q R2 sin2 b  cos2b  

Concentrated vertical load:  Mf = b =  - ½ F R (1 - cos b)                                    Mmax   - ½ F R (1- cos b)                               
                                 sin b                                                                        sin b

Concentrated horizontal load: Mf = b = -½ H R (cos b  + tan b  sin b  -1)          Mmax = -½ H R (cos b  + tan b  sin b  -1)

TABLE 9.1 Bending moments for a three hinged vault following a circle segment

Table 9.1 shows for varying loads the bending moments for a three hinged vault following a circle 
segment. 

§  9.3 T wo hinged vaults 

Two hinged vaults are statically indeterminate. To define the thrust the structure is transferred into 
a statically determinate vault by changing one of the supports into a roller and loading this support 
with a horizontal force H. The displacement of this support due to the force H and the vertical load 
is defined for the load and a horizontal force H. For a statically indeterminate vault the horizontal 
displacement of the roller support must be zero. Consequently the displacement of the load has to be 
equal to the displacement of the horizontal force. This equation gives the horizontal force H for the 
statically indeterminate vault. Generally the force H is smaller than the thrust defined for the statically 
determinate vault. The displacement of the roller support follows from: 

D = ∫  M (f - y) ds                       [9.30]
                 EI

Due to the force H acting at the roller the bending moment, for the curved element with centre at the 
top, follows from: 

Mx = H (f - y)      

Substituting this bending moment into expression [9.30] defines the displacement:
D  = H  ∫f =0 f (f - y)2 ds   

                    EI
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FIGURE 9.8 Statically indeterminate curved element 
subjected to a horizontal force H acting at the roller 
support. 
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For circle segments it is more convenient to use polar coordinates. For a segment with the centre 
at the top the coordinates are x = R sin f and y = R (1 - cos f).  Further the span and rise are equal to 
respectively  a = R sin (2 b) and f = R [1 - cos (2 b)]. The length of an infinitive small part of the vault 
is equal to: ds = R df . Substituting the polar coordinates into the expression for the displacement D 
gives:

DH =  H R3  ∫0 f=2b [ cos f – cos (2 b) ]2 df 
            EI

Integrating this expression between f = 0 and the angle f = 2 b gives:
DH =  H R3  [b + 2 b cos2 (2 b) – 3/2 sin (2 b) cos (2 b)]            [9.31]
             EI

The displacement of the supports is equal to the lengthening of the tie between the supports.
Generally this deformation is much smaller than the deformation of the vault. The lengthening of the 
tie is equal to:

DT =  H R sin (2 b)                     [9.32]
                  EAT

Next the deformation D is defined for the load. The thrust H follows from the equation:
 D -  DH = DT.                     [9.33]

Successively the thrust H is defined for an equally distributed load q and a concentrated load F acting 
at the top.

Two hinged vault subjected to an equally distributed load q:

The assumption is made that the vault is supported by a hinge and a roller. For a curved element 
subjected to an eqully distributed load q the bending moment follows from:  

Mx = ½ q (a2-x2)

Substituting polar coordinates gives:       Mx = ½ q R2 [sin2 (2 b)  - sin2 f]
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FIGURE 9.9 Figure 9.9: Vaults subjected to an equally distributed load q.

The displacement of the roller support follows from [9.30]:
Dq =    ∫0 f=2b Mx (f-y) ds 
                              2 EI
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Substituting Mx, f, y and s gives: 
Dq =  q R4  ∫0 f=2b [ sin2 (2 b)  - sin2 f] × [cos f – cos (2 b) ] df 
          2 EI

Integrating this expression for the deformation between f = 0 and f = 2 b gives:
Dq =  q R4  {7/6 sin3(2 b) + b cos (2 b) × [1- 2 sin2(2b)] - ½ sin (2 b)}       [9.34]
            2 EI

Next the thrust is defined with  [9.31], [9.32] , [9.33] and [9.34]:
H = ½ q R  { 7/6 sin3(2 b) + b cos (2 b)×[1- 2 sin2(2 b)]  - ½ sin (2 b) }        [9.35]
        sin (2 b) EI/(R2 EAT) + b + 2 b cos2(2 b) – 3/2 sin (2 b)cos (2 b)     

Generally the deformation of the tie is much smaller than the deformation of the vault. Neglecting the 
deformation of the tie gives:

H = ½ q R { 7/6 sin3(2 b) + b cos (2 b)×[1- 2 sin2(2 b)]  - ½ sin (2 b) }       [9.35’]
                  b + 2 b cos2(2 b) – 3/2 sin (2b) cos (2 b)     

The vertical reaction forces acting at the supports VA and VB are equal to:        VA = VB = q R sin (2 b)  
            
The bending moment Mf = 0  at the centre due to the distributed load q follows from:

Mf = 0 = ½ q R2 sin2 (2 b)  -  H R [1- cos (2 b)]                  
[9.36]

Two hinged vault subjected to a concentrated vertical force F acting at the top:

The assumption is made that the vault is supported by a hinge and a roller. For a curved element 
subjected to a concentrated load acting at the top the bending moment follows from: Mx = ½ F (a - x)

Substituting polar coordinates gives:        Mx = ½ F R [sin (2 b)  -  sin f]
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FIGURE 9.10  Vault subjected to a concentrated force F. 

The deformation of the roller support follows from:
DF =  F R3  ∫0 f=2b {sin (2 b)  - sin f] × [cos f - cos (2 b)} df 
         2 EI

Integrating this expression for the deformation between f = 0 and f = f1 gives:
DF  = F R3  { ½ sin2(2 b) + cos (2 b)×[1- 2 b sin(2 b)] – cos2(2 b) }         [9.37]
          2 EI
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Next the thrust is defined with [9.31], [9.32], [9.33] and [9.37]:
H =   ½ F × { ½ sin2(2 b) + cos (2 b)×[1- 2 b sin(2 b)] – cos2(2 b) }             [9.38]
        sin (2 b) EI/(R2 EAT) + b + 2 b cos2(2 b) – 3/2 sin (2 b) cos (2 b)     

Generally the deformation of the tie is much smaller than the deformation of the vault. Neglecting the 
deformation of the tie gives:

H = ½ F×  { ½ sin2(2 b) + cos (2 b)×[1- 2 b sin(2 b)] – cos2(2 b) }          [9.38’]
                    b + 2 b cos2(2 b) – 3/2 sin (2 b) cos (2 b)     

The vertical reaction forces acting at the supports VA and VB are equal to:    VA = VB = ½ F   
      
The bending moment Mf =0 at the centre follows from:  

Mf = 0 = ½ F R sin (2 b)  -  H R [1- cos (2 b)]                [9.39]

§  9.4 Example prefabricated three hinged vault composed of circular segments

A prefabricated vault is composed of segments, following a part of a circle. The span is equal to  l = 
14.4 m, the rise is of the swallow vault is equal to f = l/8 = 1.8 m. The variable load acting on the vault 
is equal to 5.0 kN/m2. The elements of the vault are described with polar coordinates. For a vault with 
a span l = 2 a  and a rise of the radius R follows from [9.3]:

R = a2 + f2  = 7.22+ 1.82 = 15.3 m   
          2 f            2 × 1.8

The coordinates of the supports are found for an angle f = 2 b.  The angle b follows from [9.5]: 
sin 2 b = a/R = 7.2/15.3  2 b = 28.0720  or  2 b = 28.07250 × p/180 = 0.49 rad

The vault is constructed with a rectangular section with a height of 110 mm. To reduce the weight 
and environmental load, cardboard tubes Ø60 mm are positioned with a centre to centre distance of 
90 mm perpendicular to the span.For the section with a width of 1.0 m the volume, area and second 
moment of the area are:

Volume: Vc = 110×1000 – 11.1 ×p × 302 = 78.6 × 103        mm2

Area: Ac = (110 – 60) × 1000 = 50 × 103            mm2

Second moment of the Area; Ic  = 1000×1103/12 - 1000×603 /12 = 92.917 × 106  mm4

Loads   vault:   0.0786 ×  24 =  1.9  kN/m2      

   finishing:    0.3  kN/m2      
   soil, vegetation:  1.0  kN/m2      
   dead load:  3.2  kN/m2       
   live load:   5.0  kN/m2 
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Permanent load

Due to the dead load the vault with a width of 1.0 m is subjected to a surface load equal to  qg = 3.2 
kN/m.The vertical reaction acting at the supports VA and VB follows from (9.12):

VA = VB  = 2 b q R = 0.49 × 3.2 × 15.3 = 24 kN 

    The thrust H follows from [9.14]:
H = qg R [2 b cos b  - sin b]   =   3.2 × 15.3 × [0.49 × cos (14.036)-sin(14.036) ] = 47 kN
                sin b              sin (14.036)

The  vault is subjected to the maximum moment for an angle f , this angle follows from [9.16]:
   2 b    - 1 =    f              →                   0.49          - 1 =   f         →   f = 200  
 tan b           tan f                   tan(14.036)           tan f   

                                                                
The bending moment for f = 20o and b = 14.036o follows from [9.15]:

 Mf =    2 b   [1 - cos f]  - f sin f     →     Mf = - 0.001195 ×3.2×15.32 = -0.9 kNm  
q R2    tan b

Live load

For the three hinged arch subjected to a live load qe = 5.0 kN/m  the vertical reaction acting at the 
supports VA and VB follows from [9.9]:

VA = VB = qe R sin (2 b) = 5.0 × 15.3 × sin (28.072) = 36.0 kN

The thrust follows from [9.10]  
H =  qe R cos2 b = 5.0 × 15.3 × cos2(14.036) = 72.0 kN     

The maximum bending moment is found for cos f  = cos2 b, substituting  f = 19.750  into [9.12] gives:
Mf max = - ½ qe R2 sin4 b   = 2.024 kNm

Asymmetric live load       

The vertical and horizontal reaction force acting on the supports are respectively:
VA =  ¼ qe a = ¼ qe R sin (2 b) =    9.0 kN     
VB =  ¾ qe a = ¾ qe R sin (2 b) = 27.0 kN    

The thrust follows from [9.17]:
H = ½ qe R cos2 b  = ½ × 5.0 × 15.3× cos2 (14.036) = 36.0 kN   

For the unloaded side the maximum bending moment Mf is found for f = b and follows from [9.19] :       
           Mf=b = - ½ q R2 cos b (1 - cos b)  = 16.95 kNm

For the loaded part of the vault the bending moment Mf is maximum for
cos2 b tan fu = 2 sin fu -  sin b cos b   →   f = 13o

The bending moment is calculated with [9.20], substituting  f = 130  into [9.20] gives:
Mf = ½ q R2 [ cos2 b (1 - cos f)  + sin b cos b sin f   – sin2 f] =15.5 kNm
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Load H F  V N s = N/A M  s = M/W 

Perm. load 47.0 kN 200 17.1 kN 50.0 kN -0.95 MPa    0.90 kNm    0.53 MPa

Asym.live load 36.0 kN 14.04   9.0  kN 37.1 kN -0.74 MPA 16.95 KNm 10.04 MPa

Asym.live load 36.0 kN 14.04   9.0  kN 37.1 kN -0.74 MPa 15.50 KNm    9.18 MPa

TABLE 9.2 The stresses, due to the permanent and asymmetric load acting at the three hinged vault:

Analysis with computerprogram

To validate the elementary analysis the three hinged vault, subjected to the permanent load q g= 
3.2 kN/m and the asymmetrical live load qe = 5.0 kN/m, is analysed with a FEM computer program 
(Matrixframe).

FIGURE 9.11 Bending moments due to the variable load 

node x-coord. y-coord. member dead load 
N

dead load 
M

asym live 
load  N

asym live 
load  M

asym live 
load  V

n1 -7.20 0.0 M1:n1-n2 -54.8 0.61 -36.3   0.74   7.9

n2 -6.360 -0.415 M2: n2-n3 -51.5 1.85 -36.6 13.44   6.4

n3 -5.497 -0.779 M3; n3-n4 -50.3 1.85 -37.0 15.88   2.6

n4 -4.612 -1.088 M4: n4-n5 -49.3 0.67 -37.1 16.95   1.1

n5 -3.711 -1.343 M5: n5-n6 -48.5 0.67 -37.1 16.95   1.2

n6 -2.795 -1.542 M6: n6-n7 -47.8 0.41 -37.0 15.87   3.4

n7 -1.869 -1.685 M7: n7-n8 -47.4 0.24 -36.7 12.68   5.7

n8 -0.937 -1.771 M8:n8-n9 -47.1 0.33 -36.3   7.39   7.9

n9  0 -1.80 M9:n9-n10 -47.1 0.33 -35.9   7.28 10.1

n10 0.937 -1.771 M10: n10-n11 -47.4 0.24 -35.9 12.23   7.6

n11 1.869 -1.685 M11: n11-n12 -47.8 0.41 -36.3 14.91   5.2

n12 2.795 -1.542 M12: n12-n13 -48.5 0.67 -37.2 15.42   2.8

n13 3.711 -1.343 M13: n13-n14 -49.3 0.67 -38.5 15.42   3.7

n14 4.612 -1.088 M14: n14-n15 -50.3 1.52 -40.0 13.96   6.1

n15 5.479 -0.799 M15: n15-n16 -51.5 1.52 -42.1 10.30   6.5

n16 6.360 -0.415 M16: n16-n17 -52.8 0.61 -44.2   5.98   8.3

n17 7.20 0 M17:n17-n18 +47.0 +36.0

n18  0 0 M18:n1-n18 +47.0 +36.0 +1.3

TABLE 9.3 Coordinates, forces and bending moments for the vault  subjected to a surface load pg = 3.2 kN/m and an 
asymmetrical load qe = 5.0 kN/m
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Load  V = N = s = N/A M = s = M×½ t/I

Permanent load 51.5 kN 1.03 MPa -1.85 kNm   1.10 MPa

asym. live load 9.0 kN 37.1 kN 0.74 MPa 16.95 kNm 10.03 MPa

TABLE 9.4 : The stresses, due to the permanent and asymmetric load acting at the vault

Due to the deformations and the chosen length of the elements the bending moments calculated 
with the finite element analyses for the dead load are a bit larger than the moments defined with the 
analysis. For the asymmetrical load the results of the finite element program calculation match well 
with the analysis. Due to the asymmetrical load the vault is subjected to huge bending moments and 
shear forces.

§  9.5 Vault strengthened with two diagonals running from the crown to the supports.

For a roof accessible to the public the live load is much larger than the variable load acting on a roof 
subjected to rain and snow only. The life load can act symmetrical as well as asymmetrically. To 
decrease the bending moments due to the asymmetrical loads the vault is strengthened with the ties 
running diagonally from the crown to the supports. The prefab structure is composed of two parts 
connected with a hinge at the top. The curve is described using polar coordinates. The angle between 
the vertical and the radius pointing to the supports is equal to 2 b. The diagonals are running from the 
top to the supports. The inclination of these diagonals is equal to b. The span and rise of the arch is 
equal to respectively 2 a and f.  The strengthened vault is statically indeterminate; the distribution of 
the loads is effected by the stiffness of the vault and the truss. To analyse the transfer of the loads the 
deformations of the truss and vault are defined for a concentrated load, an equally distributed load 
and an anti-metrical load.

The deformation of the truss composed of two diagonals 

The displacement of the truss, subjected to a vertical load F acting at the top, follows from:
DTF =     F R                           [9.40]

                       AE sin b

 F
                           ∆ 

              S              f

 a

FIGURE 9.12 Deformation of the trussed frame composed of two diagonals due to a vertical force F acting at the top
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The deformation of the truss, subjected to a horizontal load H acting at the top, follows from:

DTH =  H R tan b                     [9.41]
                         AE cos b

             ∆ 
Η 

S               f

                                     

                       a

FIGURE 9.13 Deformation of the trussed frame composed of two diagonals due to a horizontal force H acting at the top 

The deformation of the vault at the crown 

The deformation of the vault at the crown is defined according to the Theory of Maxwell-Mohr with:
D =  ∫ M’ M ds  +  ∫ N’ N ds                     [9.42]
                EI                         EA

With:
M’ is the bending moment due to a force F = 1 acting at the top parallel to the deformation; 
M = the bending moment due to the load;
N’ = the normal force due to a force F = 1 acting at the top parallel to the deformation; 
N = the normal force due to the load.

For the symmetrical vault with f ≤ 2 b  the deformation of the vault at the top follows from:
DH = 2 × ∫0 2b M M’ R df   +  2 × ∫0 2b N N’ R df              [9.43]
                               EI                                        EA             

Often the maximum bending moments are found for f u =b then to simplify the integration the 
bending moments can be approached with:        Mf = Mmax sin ( ½ p f/b )
 Substituting Mf into [9.43] gives:

Dq =  4 M’max Mmax R  × ∫0 b sin2 (½p f/b ) d(½p f/b ) ×  2 b +  ∫0 2b N’ N Rdf    →
                      EI                                                     p                      EA             

Dq  =  2 M’max Mmax R b  +  ∫0 2b  N’ N R df               [9.43’] 
                        EI                                      EA
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The deformation of the vault subjected by a vertical concentrated force acting at the top

For a concentrated vertical force F acting at the top the bending moment follows from (9.26):
Mf =  ½ F R (1 - cos f)   -  ½ F R sin f 
                      tan b

For a vault the normal force is equal to:
Nf =  Hf cos f  + Vf sin f    →           Nf =  Hf/cos f × (1 + Vf tan f/cos f)

For a low rise vault the shear force is much smaller than the thrust, then the normal force is 
approximately equal to  Nf =  Hf/cos f. Substituting the thrust H into this expression gives:

Nf =       ½ F         
         tan b cos f 

For a concentrated vertical force F = 1 acting at the top the bending moment follows from [9.26]:
M’f =  ½ R (1 - cos f)   -  ½ R sin f 
                      tan b

The normal force acting at the vault is equal to: N’f =          ½            
                             tan b cos f 

Substituting  M’f    Mf    N’f  and Nf into [9.43] gives:
DF = 2 F R2  × ∫0 2b (  1 - cos f  - sin f )2 R df   +        2 F           × ∫0 2b  R df  
           4 EI                        tan b                                  4 AE tan2b            cos2f

The bending moments are at maximum for fu = b.  Using the symmetry this expression can be 
simplified:
  DF  = F R3 × ∫0 

b [  1+cos2 f-2 cos f + sin2f -  2 (1-cos2 f) sin f df  +    ½ F R      ×∫0 2.b   df      
       EI                       tan2 b                tan b                 AE tan2 b           cos2 f

Integrating this expression gives:
DF   =   F R3 [    3 b    + b  -     3      ]+      F R                          [9.44]
            2 EI      tan2b              tan b      AE tan  b     

Assuming the truss is subjected to a vertical force a F and the vault is subjected to a force (1 - a)  F. 
At the top the displacement  of the vault is equal to the displacement of the truss, the factor a follows 
from:

D F (1 - a) =  a DTF →  a = D F/(D F  + DTF)                [9.45]

Example

For the vault described previously with a span  l = 2.a = 14.4 m,  a rise  f = 1.8 m, tan b = 0.25,  I = 
92.917 × 106 mm4, A = 50 × 103 mm2. Assuming Young’s modulus  is equal to E = 6750 MPa. The 
trust is composed of two tubes Ø100-4, running diagonally from the supports to the crown. The 
area and Young’s modulus of the diagonals are respectively A = 1206 mm2 and 2×105 MPa. The 
deformation is defined for the strengthened vault, subjected to a vertical force F = 1 kN.
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The deformation of the truss due to a force F = 1 kN is according to [9.40] equal to: 
DTF =        103 × 15300         = 0.26 mm    
           1206×2×105 ×sin b

The deformation of the vault due to the concentrated force  F = 1.0 kN is according to [9.44] equal to: 
DF =      103 × 153003       × [  3 b2   + b -    3      ]  +         F × 15300              = 11.29 + 0.19 mm
         2.917×1010×6750        0.252           0.25        50×103×6750×0.25     

Substituting the deformation of the truss DTF and vault DF into [9.45]:
 a =        11.29 + 0.19         = 0.98  
        11.29+ 0.19 + 0.26

The force acting at the truss is equal to F = 0.98 kN. The diagonals are subjected to a force S = 2.02 kN. 
So the better part of the concentrated load F acting at the top of the vault is transferred by the truss. 

The displacement of the vault subjected by a horizontal concentrated force acting at the top

For a horizontal force H acting at the top the bending moment is equal to:
Mf =  ½ H R (1 - cos f  - tan b sin f)                                             [9.28]

The reaction force acting at the supports are equal to ½ H and V = ½ H tan b.The bending moment is 
maximum for  fu  = b. For this load the bending moment is at maximum equal to:

Mmax = ½ H R (cos b  - 1)/cos b                                              [9.29]

For a low rise vault the normal force is approximately equal to  Nf = ½ H/cos f

For a horizontal force H = 1 the bending moment and normal force is respectively equal to:
M’max = ½ R ( cos b  - 1)/cos b                                  

For a horizontal force H = 1 the normal force acting at the vault is equal to:  N’f = ½ /cos f

The deformation of the vault at the top is defined according to the Theory of Maxwell-Mohr with 
expression [9.43]. Substituting Mf into  [9.43] gives:

DH = 2 H R2 × ∫0 2b (1- cos f - tan b sin f)2 R df  +  2 H  × ∫0 2b R df 
           4 EI                                                                                 4 EA             cos2f    

The maximum bending moments are found for fu = b.  To simplify the integration the bending 
moments are approached with:Mf = Mmax sin (½ p f/b)     The deformation of the vault is approached 
with [9.43’]:         

DH =  2 M’max Mmax R b  +  ∫0 2b N’ N R df                [9.43’]
                   EI                                        EA

Substituting Mmax and Nf into expression [9.43’] gives:  
DH = H R3 b × (cos b - 1)2 +    H     × ∫0 

2b  R df 
          2 EI            cos2b            2 EA          cos2f    

Integrating this expression gives:  DH  =  H R3 b (cos b - 1)2  + 2 H R  sin b  cos b     [9.46]
                      2 EI cos2b                2 EA (1 – 2 sin2b)
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Assuming the truss is subjected to a vertical force a F acting downward and the vault is subjected to a 
force (1-a) F acting upward. At the top the displacement of the vault is equal to the displacement of 
the truss, the factor a follows from [9.47]:

D H (1 - a) = a DTH  →   a = D H /(D H  + DTH)            [9.47]

Example

For the vault described previously the deformation is defined for the vault, subjected to a horizontal 
force H = 1.0 kN.
The deformation of the truss due to a force H = 1.0 kN is according to [9.42] equal to: 

DTH = 103 × 15300  × tan b  = 0.02 mm    
            1206×2×105 × cos b

The deformation of the vault due to the concentrated force H = 1.0 kN is equal to: 
DH  = 103× 15.3003 × 109  × b × (cos b -1)2  +    103× 153003  sin b cos b      = 0.66 + 0.01 mm
            2× 92.917×106×6750       cos2b              6750×50×103×(1–2 sin2 b)

Substiuting the deformation of the truss and vault into [9.47] gives:
a =      0.66 + 0.01         = 0.97  
        0.66+0.01+ 0.02

Thus the force acting at the truss is equal to a H = 0.97 kN. The force acting at the diagonals is equal to 
S = 0.5 kN. The better part of the concentrated horizontal force is transfered by the truss. 

Equally distributed load

For a vault subjected to an equally distributed load the bending moment follows from [9.11];
Mf = q R2 cos2b [1 - cos f] – ½ q R2 sin2 f               [9.11]

The maximum moment acting at the vault is found for cos f = cos2b. Substituting cos f  = cos2b and 
sin2f  = (1- cos4b)  into expression [9.11] gives:

Mmax = - ½ q R2 sin4 b                        [9.12]

For a low rise vault the normal force is approximately equal to Nf = H/cos f,  Substituting H = ½ q a2/f , 
a = 2 R sin b cos b and f = 2 R sin2 b gives:

Nf = ½ q (2 R sin b cos b)2   →        Nf = ½ q R cos2b  
                2 R sin2b cos f                                  cos f

For a concentrated vertical force F = 1 acting at the top the bending moment follows from [9.26]:
M’f =  ½ R (1 - cos f)   -  ½ R sin f 
                      tan b

The normal force acting at the vault is equal to: N’f =            ½                                
                      tan b cos f

The deformation of the vault at the top is defined with the Theory of Maxwell/Mohr with (9.43’). To 
simplify the integration the bending moments are approximated with: 

Mf = Mmax  sin (½ p f/b )
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 Substituting Mf into [9.43] gives:          
Dq =  2 M’max Mmax R b  + ∫0 2b 2 N’ N R df                 [9.43’]
                    EI                                      EA

M’max and Mmax are defined with respectively expression [9.27] and [9.12]:
M’max =  - ½ R (1 - cos b)    and   Mmax = - ½ q R2 sin4 b        
                            sin b

Substituting M’max Mmax, N’f and Nf  into [9.43’] gives:
Dq  =  q R4 (1 - cos b) sin3 b × b  +  q R cos2 b  ∫0 2b    R df     
                     2 EI                                        EA tan b            cos2 f

Integrating this expression gives:
Dq  =   q R4 (1 - cos b) sin3b × b  +   2 q R2 cos2b                  [9.48]

                                      2 EI                                 EA (1- tan2b)
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FIGURE 9.14 : Vault strengthened with two 
diagonals, subjected to an equally distributed load

Assuming the truss is subjected to a vertical force a F acting downward and the vault is subjected to 
a force a F acting in the opposite direction. At the top the displacement of the vault is equal to the 
displacement of the truss. The factor a follows from:

Dq  -  a D F  = a DTF   →  a = Dq /(DF  + DTF )             [9.49]

Example

For the vault, described previously the deformation is defined for q = 1 kN/m. Due to a vertical force F 
= 1.0 kN the deformation of the truss is equal to: 

DTF =              103 × 15300                     = 0.26 mm    
          1206 × 2 × 105 × sin2b cos b

Due to the equally distributed load q = 1.0 kN/m the deformation of the vault is according to [9.48] 
equal to:

Dq =  1.0 × 153004  × (1 - cos b) sin3b × b  +  1.0 × 153002 × 2 cos2b     =  4.56 + 1.39 mm 
             2 × 6750 × 92.917 ×106                         6750×50×103(1 - tan2b)

Assuming the truss is subjected to a vertical force a F acting downward and the vault is subjected to a 
force a F acting upward. The factor a follows from [9.49]:  a = Dq/(DF + DTF).   
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Substituting Dq = 4.56 + 1.39 mm, DF = 11.29 + 0.18 mm and DTF = 0.26 mm:
a =         4.56 + 1.39             = 0.51  
        11.29 + 0.18 +  0.26

Thus the force acting at the truss is equal to a.F = 0.51 kN. The force acting at the diagonals is equal to 
S = 1.05 kN. The better part of the equally distributed load is transfered by the vault.

For the not strengthened vault the bending moment  for f  =  b follows from [9.11’]:
 Mf=b = -½ q R2 (2 cos3b + 1 – 3 cos2b)  

Substituting b, R and q = 1.0 kN/m into [9.11’]gives:  Mf=b = -0.31 kNm

Due to the upward force  the vault is subjected to a maximum bending moment following from [9.27]:
MF max = ½ a F R (1-cos b)/sin b    

Substituting b, R and a F = 0.51 kN/m into [9.12] gives:  MF max= 0.48 kNm

Due to the strengthening the bending moment acting at the vault is for f = b equal to:
Mf=b = 0.48 - 0.31 = 0.17 kNm. 

Equally distributed surface load

For a vault subjected to an equally distributed surface load the bending moment follows from [9.15]:
  Mf  = 2 b [1 - cos f]  – f sin f                  [9.15]
q R2             tan b

For low rise vaults the maximum bending moment is approximately found for f = b, then the bending 
moment is equal to: 

Mf=b = -  b (1 – 2 cos b + cos2b)                  [9.50] 
q R2                  sin b

For a low rise vault the normal force follows approximately from Nf = H/cos f. The  thrust follows from 
[9.14]:   H = q R (2 b/tan b –1).
Substituting H gives:  Nf = q R (2 b/tan b - 1)                                                            
        cos f 
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FIGURE 9.15 Vault strengthened with two diagonals, 
subjected to an equally distributed surface load

For a concentrated vertical force F = 1 acting at the top the bending moment follows from [9.26]:
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M’f =  ½ R (1 - cos f)   -  ½ R sin f 
                      tan b

The normal force acting at the vault is equal to:  N’f =          ½            
                                  tan b cos f

The deformation of the vault at the top is defined with the Theory of Maxwell/Mohr with [9.43]. To 
simplify the integration the bending moments are approached with:  Mf = Mmax sin (½ p f/b)
 Substituting M’max and Mmax, N’f  and Nf  into [9.43’] gives:

Dq =  q R4 (1- cos b) b2 [2 cos b – cos2b – 1]  +  q R (2b/tan b -1) ×∫0 2b  R df    
                                     EI sin2 b                                             EA tan b                         cos2f    

Integrating this expression gives:
Dq = q R4 b2 [ 2 cos b–cos2b –1 ]   + q R2 (2 b/tan b -1) 2 cos2 b          [9.51]
                      EI (1+ cos b)                                  EA (1 –2 sin2b)   

The deformation of the truss has to be equal to the deformation of the vault. Assuming the truss is 
subjected to a vertical force a F and the vault is subjected to a force a F. the factor a follows from:

Dq  -  a D F  = a DTF  →   a = Dq /(DF  + DTF)             [9.49]

Example

For the vault, described previously the deformation is defined for q = 1.0 kN/m. Due to a vertical force 
F = 1.0 kN the deformation of the truss is equal to: 

DTF =          103 × 15300                   = 0.26 mm    
           1206×2×105×sin2 b cos b

Due to the equally distributed surface load q = 1.0 kN/m the deformation of the vault is according to 
[9.51] equal to:

Dq = 1.0  ×153004 × b2 ×[2 cos b –cos2b – 1]  +  1.0×153002×(2 b/tan b -1) × 2 cos2b   
               6750 × 92.917 ×106 × (1+ cos b)              6750 × 50 × 103 × (1 –2.sin2b)   

 Dq =   2.37 + 1.42 mm

Assuming the truss is subjected to a vertical force a F and the vault is subjected to a force a F. The 
factor a follows from [9.49]:          

a = Dq /(DF  + DTF)                     [9.49]

Substituting Dq = 2.37 + 1.42 mm, DF = 11.29 + 0.18 mm and DTF = 0.26 mm:
  a  =           2.37 + 1.42           = 0.32
            11.29 + 0.19 + 0.26 

Due to the equally distributed surface load acting at the vault the truss is subjected to a force a F = 
0.32 kN. The force acting at the diagonal is equal to 0.66 kN. For f = b the bending moment for the 
not-strengthened vault follows from [9.23’]:

Mmax = - q R2  b (1 – 2 cos b + cos2b) 
                               sin b

Substituting b, R and q = 1.0 kN/m into (9.24) gives:  Mf=b = -0.21 kNm
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Due to the upward force a F the vault is subjected to a maximum bending moment following from 
[9.27]:

MF max = ½ a F R (1-cos b)/sin b    

Substituting b, R and a F = 0.32 kN/m into [9.12] gives:  MF max= 0.3 kNm

Due to the strengthening for f = b the bending moment acting at the vault is equal to: 
Mf=b = 0.3 - 0.21  = 0.09 kNm. 

Thus for f = b the bending moment is very small.

Deformation of the vault due to an anti-metrical load

Due to an anti-metrical load the vault will deform horizontally. The deformation of the truss subjected 
to a horizontal load H acting at the top follows from:

DH = H R tan b                     [9.41]
          AE cos b

For a vault subjected to an anti-metrical load the bending moment follows from [9.23]:
Mf = ½ q R2 [2 sin b cos b sin f – sin2 f]                
[9.23]

For f = b the bending moment is equal to:
Mf=b =  ½ q R2 sin2 b (2 cos b -1)                  
[9.52] 

The shear force Vf  is equal to:       Vf = q R (sin b cos b - sin f)     

The normal force follows from:   Nf = Vf sin f. 
Substituting Vf  gives:               Nf = q R (sin b cos b sin f - sin2f)

 For the vault subjected to a horizontal force H = 1  the bending moment follows from [9.28]
M’f = ½ R (1- cos f - tan f sin b)                 [9.28]   

The bending moment is at maximum for fu = b. Substituting fu = b into expression  [9.28] gives the 
maximum bending moment for H = 1:

M’max = ½ R (cos b - 1)/cos b                  [9.29]

The normal force acting at the vault is equal to: N’f  = ½ (cos f + tan b sin f)
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FIGURE 9.16 Vault subjected to an antimetrical load
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The deformation of the vault at the top is defined with the Theory of Maxwell/Mohr with [9.43’]:
        D = 2 M’max Mmax R b   + 2 N’ N ∫0 2b Rdf    
                           EI                            EA

Substituting M’max , Mmax , N’f and Nf  into this expression gives:
Dq = b q R4 sin2b (2 cos2b-1) × (cos b-1) +  q R2∫0 

2.b(sin b cos b-sin f)×(sin f cos f+tan b sin2f) df        
          2 EI                                  cos b             EA                       

Integrating this expression gives [9.53]:
Dq = b q R4sin2b (2 cos2b+1-3 cosb) + q R2  [b sin2b +  sin3b cos b cos 2b + 2 tan b (1-cos2b)  ] [9.53]
                  2 EI cos b                                         EA                                       3                                   3

The deformation of the vault subjected to a horizontal force H = 1.0 kN acting at the top follows from 
[9.46]:

DH =  H R3 b (cos b -1)2  +    H R 2 sin b cos b                  [9.46]
            2 EI cos2 b                   2 EA (1 – 2 sin2 b )

The deformation of the truss has to be equal to the deformation of the vault. Assuming the truss and 
vault are subjected to a horizontal force a H. The factor a follows from:

Dq  -  a D F  = a DTF   →  a = Dq /(DF  + DTF )             [9.54]

Example

For the vault, described previously, the deformation is defined for an antimetrical load q = 1.0 kN/m. 
The deformation of the vault, due to the anti-metrical  load q = 1.0 kN/m, follows from [9.53]: 

Dq =  b q R4sin2b (2cos b+1-3 cos b)  +        153002          × [  b sin2b + sin3b cosb cos 2b  +  2 tan b (1-cos 2b)   ]   

          2 ×6750×92.917×106 × cos b       6750×50×103                                         3                                           3

Dq = 18.22 + 0.03 m  

The deformation of the truss due to a horizontal load H = 1.0 kN acting at the top follows from [9.42]:
DTH =  103 × 15300 × sin b  =  0.02 mm
           1206 ×2×105×cos2 b

The deformation of the vault due to the concentrated load H follows from [9.46]: 
DH =  103× 15.3003× 109 × b (cos b -1)2  +   103 × 15.300 × 2 sin b cos b     =  0.66 + 0.01 mm
          2 × 92.917 × 106×´ 6750 cos2b          6750 × 50 × 103 × (1–2 sin2b)

Assuming the truss and vault are subjected to a horizontal force a H.  The factor a follows from [9.54]. 
Substituting Dq = 18.22 + 0.15 mm, DH = 0.66 + 0.01 mm and DTH = 0.02 mm into [9.54]: 

a =       18.22 + 0.03         = 26.5 
        0.66 + 0.01 + 0.02

Due to the antimetrical load q = 1.0  kN/m the truss is subjected to a force a H = 26.5 kN. The 
diagonals are subjected to a force S = ½ H/cos b = 13.7 kN. For f = b the bending moment due to the 
force S follows from: Mf=b = S R (1 - cos b) .  Substituting b, S and R gives:  M = 6.3 kNm
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For f = b  the bending moment acting at the not strengthened vault follows from [9.23]:
Mf = ½ q R2 [2 sin b cos b sin f – sin2 f]     

Substituting b, R and q = 1.0 kN/m into [9.24] gives:  Mf=b = - 6.5 Nm

Due to the strengthening the bending moment is reduced substantially. Mf=b = 6.3 - 6.5 = -0.2 kNm

Permanent load
q = 1.0 kN/m

Live load
q = 1.0 kN/m

Anti-metrical live load
q = 1.0 kN/m

Reaction, loaded side: VB =     7.5     kN    7.2      kN        5.4 kN

Thrust: H =  14.7     kN 14.4      kN         7.2 kN

Diagonals: S = - 0.66   kN - 1.05    kN  ± 13.7 kN

Bending moment: Mf =    0.09   kNm   0.17    kNm        0.2 kNm

TABLE 9.5 Forces and bending moments  for a permanent load, a live load and an anti-metrical load equal to q = 1.0 kN/m.

Conclusions

The better part of the load is transfered by the truss if the vault is subjected to a concentrated 
horizontal or vertical force acting at the top, but for an equally distributed load the better part is 
transferred by the vault. The strengthening reduces the bending moments much. Especially for the 
vault subjected to an ant metrical load th effect the bending moments are reduced substantially. 

§  9.6 Example: vault strengthened with 2 diagonals 

The vault, described previously, is strengthened with diagonals running from the top to the supports 
to reduce the buckling length and the bending moments. Firstly the forces and bending moments are 
calculated with the described analysis; next the analysis is validated with a computer program. Again 
the  prefabricated vault is composed of circular segments. The span is equal to  l = 14.4 m. The rise 
is of the swallow vault is equal to f = l/8 = 1.8 m. The radius R is equal to R = 15.3 m.  The angle b is 
equal to: b = 14.0360 .The vault is constructed with a rectangular section with a height of 110 mm. 
The cardboard tubes ∅60 are positioned with a centre-to-centre distance of 90 mm perpendicular to 
the span. The vault is subjected to a dead load pg =3.2 kN/m2  and  a live load pe =5.0 kN/m2 . For the 
section with a width of 1.0 m the area and second moment of the area are:

Volume: Vc = 110 × 1000 – 11.1 × p × 302  =  78.6 × 103        mm2

Area: Ac = (110 – 60) × 1000 =  50  × 103           mm2

Second moment of the Area: Ic  = 1000 × 1103/12 – 1000 × 603 /12 =  92.917 × 106  mm4

The forces and bending moment due to the permanent load and live load are calculated by multiplying 
the values found for a load q = 1.0 kN/m. The following table shows the results.
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Permanent load
qg = 3.2 kN/m

Live load 
qe = 5.0 kN/m

Anti metrical live load 
q = 2.5 kN/me

Reaction, loaded side: VB = 24.0 kN 36.0 kN      13.5 kN

Thrust: H = 47.0 kN 72.0 kN      18.0 kN

diagonals: S = -2.1 kN -5.3 kN  ± 34.3 kN

max. bending moment: Mf=  0.29 kNm 0.85 kNm        0.5 kNm

TABLE 9.6 Forces and bending moments acting at the vault for qg = 3.2 kN/m and qe = 5.0 kN/m .

Vault subjected to an asymmetric equally distributed  load

Due to an asymmetric load the vault is subjected to bending. The assumption is made that the live 
load q is equally distributed, acting on the right side of the vault. To define the forces and bending 
moments thehe asymmetrical load q cis considered as the combination of an equally distributed load 
equal to q’ = ½ q and an ant metrical load equal to q’ =½ q, with q = 5.0 kN/m.

The vertical and horizontal reaction force acting on the supports are respectively:
VA = ¼ q R sin (2b)   = 18 kN  and  VB = ¾ q R sin (2.b) = 54 kN

The thrust f ollows from [9.17]:   H = ½ q R cos2 b= 0.47 q R = 36 kN 

Equally distributed load

For an equally distributed load q = 1.0 kN/m the force S was defined before: S = 1.05 kN.  Thus for q’ = 
2.5 kN/m the force S acting at the diagonal is equal to:  S = 1.05 × 2.5/1.0 = 2.6 kN. 

For the non-strengthened vault the bending moment  for f  = b follows from [9.11’]:
 Mq f = b = -½ q R2  [2 cos3b + 1 – 3 cos2 b] 

Substituting b, R and q’ = 2.5 kN/m into [9.11] gives:  Mq f = b = -0.69 kNm. 
Due to the upward force a F the vault is subjected to a maximum bending moment following from 
[9.27]:

MF max = ½ a F R (1-cos b) /sin b    

Substituting b, R and a F = 0.51 × 2.5 kN/m into [9.27] gives:   MF max= 1.2 kNm

Due to the strengthening the bending moment is reduced with: 
Mf = b = Mq f = b +  MF max= -0.69 + 1.2 kNm = 0.51 kNmAnti-metrical load

Due to the anti-metrical load q = 1.0 kN/m the truss is subjected to a force a H = 26.5 kN. The 
diagonals are subjected to a force S = ± ½ a H/cos b = ± 13.7 kN. For an anti-metrical load equal to q’ 
= 2.5 kN/m the forces acting at the diagonals are equal to: S = ± 34.3 kN. 

Due to the force S acting at the diagonals the bending moment is equal to: Mf = b = S R (1 - cos b) 
Substituting S, R and b gives for the anti-metrical load:  

Mf=b = 34.3 × 15.3 × (1 - cos b) = 15.7 kNm. 
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For the non strengthened vault the maximum bending moment due to the antimetrical load follows 
from [9.24]. For q’ = ½ × 5.0 = 2.5 kN/m  the maximum bending moment is equal to:

Mmax  = ½ q R2  sin2b cos2b =½ × 2.5 × 15.32 × sin2b cos2b =  - 16.2 kNm
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FIGURE 9.17 ault strengthened with two diagonals 
subjected to an asymmetrical load.Caption

Anti-metrical and equally distributed load

The resulting bending moment due to antimetrical and equally distributed load is equal to:
Mf = b = + 0.51 ± (-16.2 + 15.7) = 0.51 ± 0.5 kNm

The resulting force S due to the asymmetrical load is equal to:  S = -2.6 ± 34.3 kN

Comparing the results for the not strengthened vault and the strengthened vault shows that 
the strengthening decreases the bending moments substantially. At the unloaded side of the 
asymmetrical loaded vault the diagonal is compressed, so this element must be dimensioned to resist 
a normal compressive buckling force.

Analysis of the vault strengthened with a simple truss with computer program

With a computer program, Matrixframe, the forces and bending moments are defined for the vault 
strengthened with two diagonals running from the crown to the supports. 

FIGURE 9.18  Bending moments due to the permanent load
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FIGURE 9.19 Bending moments due to the asymmetrical live load 

Node x-coord. y-coord. Member Dead 
load 
N

Dead 
load M

Dead 
load
V

Asym live 
load N

Asym live 
load M

Asym live 
load V

N1 -7.20 0.0 M1:n1-n2 -49.8 0.31 1.34 -0   0   0

 N2 -6.360 -0.415 M2: n2-n3 -48.4 0.73 2.16 -0   0   0

N3 -5.497 -0.799 M3; n3-n4 -47.2 0.73 2.71 -0   0   0

N4 -4.612 -1.088 M4: n4-n5 -46.2 0.95 1.72 -0   0   0

N5 -3.711 -1.343 M5: n5-n6 -45.4 1.17 1.65 -0   0   0

N6 -2.795 -1.542 M6: n6-n7 -44.8 1.23 1.43 -0   0   0

N7 -1.869 -1.685 M7: n7-n8 -44.3 1.08 1.80 -0   0   0

N8 -0.937 -1.771 M8: n8-n9 -44.1 0.69 2.11 0   0   0

N9  0 -1.80 M9: n9-n10 -45.5 0.53 1.85 -67.5 1.04   3.23

N10 0.937 -1.771 M10: n10-n11 -45.5 0.73 1.61 -67.9 1.55   2.67

N11 1.869 -1.685 M11: n11-n12 -46.0 0.76 1.55 -68.6 1.65   2.39

N12 2.795 -1.542 M12: n12-n13 -46.6 0.63 1.68 -69.6 1.40   2.70

N13 3.711 -1.343 M13: n13-n14 -47.5 0.41 1.68 -70.8 0.91   2.73

N14 4.612 -1.088 M14: n14-n15 -48.4 0.86 2.27 -72.3 1.29   3.58

N15 5.479 -0.799 M15: n15-n16 -49.6 0.86 2.05 -74.1 1.29   2.87

N16 6.360 -0.415 M16: n16-n21 -51.1 0.25 1.61 -75.9 0.46   2.38

N17 7.20 0 M17  n17-n18 +47.0 +36.0

N18  0 0 M18: n1-n18 +47.0 +36.0

M19: n1-n9 -  3.1 - 37.1

M20: n9-n17 -  1.9 +32.4

TABLE 9.7 Output for a surface load pg = 3.2 kN/m and the asymmetrical load qe = 5.0 kN/m

Due to the permanent load q = 3.2 kN/m and variable load q = 5.0 kN/m  the bending moment is at 
maximum for member 11.

Nrep = -46.0 – 68.6 = - 114.6 kN    s = N/A =    -2.29 MPa
Mrep = 0.76 + 1.65 =     2.41 kNm    s = M z/I =   1.43 MPa

The bending tensile stress is smaller than the normal compressive stress, so the stiffness of the vault is 
not reduced by cracks. 

Ultimate state

Due to the permanent load q = 3.2 kN/m and a variable load q = 5.0 kN/m acting at one half of the 
vault the bending moment is at maximum for node 5.

Nd = - 1.2 × 46.0 – 1.5 × 68.6 = - 158.1 kN,   sd = Nd/A =   -3.16 MPa
Md =   1.2 × 0.76 + 1.5 × 1.65 =   3.39 kNm,   sd = Md z/I =  2.01 MPa
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Buckling

For prefabricated structures the quality of the concrete is at least C35/40, with E0 =  3.4 × 104 MPa. 
The bending stresses are much smaller than the compressive normal stresses, so the structure is not 
cracked. For the ultimate state the deformations increase by creep. Nevertheless the stiffness of an 
uncracked section is at least equal to EI = E0,t I with E0,t = fcd/(1.75 ×10-3)  and fcd = fck/1.5.

For C35/40:  E0,t = (35/1.5)/(1.75 ×10-3)=  13.3 × 103 MPa.

The critical buckling force according to Euler is equal to:    Ncr =  p2 EI   
                              (½ s)2

For this structure the length of the vault between the top and support is equal to: s = 2 b R = 7.5 m 

Ncr = p2 × 92.917 ×106 × 13.3 × 103  =  867× 103 N     ncr = Ncr/N = 867/158.1  = 5.5
                     (0.5 × 7.5)2 × 106                

The maximum stress follows from:   s = N  ± M z   ×     ncr         
                                A         I          (ncr-1)     

sd = -158.1 × 103  ± 3.39 × 106 × 55 ×     5.5       =  -3.16 ± 2.45 MPa
               50 × 103            92.917 ×106         (5.5-1)                                  

The bending stress is smaller than the normal stress, the section is not cracked.

Shear stresses

The vault has a thickness h = 110 mm. The radius of the infill tubes is r = 30 mm. The centre to centre 
distance c of the tubes  is 90 mm. The thickness of the flange above or under the tubes is 25 mm. Due 
to the load the structure is subjected to a shear force: Vd = dMd/dx,

For member 14:  Vd = 1.2 × 2.27 + 1.5 × 3.58 = 8.1 kN. 

z

V          c

FIGURE 9.20 The transfer of the shear force 

The shear stresses acting at the sections above and below the infills follows from:  

tdmean  = Vd/(b t) :        tdmean=       8.1 ×103        = 0.16  
                                                    1000 × 2 × 25 
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Due to the shear force the upper and lower flange is subjected to bending moments. The bending 
moment M acting at the lower and upper flange is:   Md = Vd c/4
The bending moment M acting at the strut between two tubes is two times the bending moment 
acting on the upper and lower flange:         Md = 2 × Vd c/4  = ½Vd c
Between two tubes the shear force is:       Hd = Md /( ½ z)  
         with:  ½ z = (110-25)/2 = 42.5

The shear force acting at strut between the tubes follows from: 
Hd =  SMd  = 2 Vd × c/4  =   Vd  c /z
              z             ½ z                   

Substituting z = 110 - 25 = 85 mm and c = 90 mm gives: Hd = 8.1 × 90/85 = 8.58 kN

The shear stress is: tdmean = Hd/(b t)        →             tdmean = 8580/(1000×30) = 0.29 MPa

For concrete the ultimate shear force follows from:    Vu ≤ 0.035 k1.5√fc.k × bw d   
With: 

 k =  1+√(200/d)  ≤ 2,    
 d = 30 mm, k = 3.6  > 2  →  k = 2
 bw = 1000 mm

For concrete C35/45 the ultimate compressive  stress is: fck = 35 N/mm2, thus the ultimate shear 
stress is:  tu ≤ 0.035 × 21.5 × √35 = 0.59 MPa              

Diagonals

Due to the asymmetrical load the diagonal at the unloaded side is subjected to a compressive normal 
force: Nd = -1.5 × 37.1 = 55.7 kN. 
The assumption is made that the diagonal is Æ100´ 4, S235, length  7.42 m, A = 1206 mm2 , I = 1.39 
× 106 mm4 . The diagonal is supported halfway the top, the buckling length is equal to 3.71 m.

Buckling force:  Ncr =  p2 EI  =  p2  × 2.0 × 105  × 1.39 × 106  = 199 × 103 N
                                                l2                         37102

ncr  = Ncr / Nd = 199/55.7 = 3.6

Dead load:  q = 0.1 kN/m,   M = 1.2 × 1/8 × 0.1 × 3.72 = 2.05 kNm
Stress:  sd =  55700   +  2.05 × 106 × 100/2   ×     3.6      = 46  + 102  < 235 MPa
                           1206                1.39 ×106                                    (3.6-1)

Conclusions

Due to strengthening the sections of the vault are loaded by relative small bending moments and 
shear forces. The compressive stresses are larger than the tensile stresses caused by bending, so the 
structure is not cracked. Due to the strengthening the shear forces and shear stresses are small. The 
infills do not decrease the structural resistance much. The slender vault can resist the given heavy 
loads very well.
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§  9.7 Approach to def ine the forces acting at the diagonals for the strengthened vault 

Due to the strengthening the bending moments acting at the vault are very small. For the design 
of the strengthened vault the forces S acting at the diagonals can be defined with the following  
simplification by adding virtual hinges for  f = ± b.

Strengthened vault subjected to an equally distributed load q:

The assumption is made that the vault is subjected to an equally distributed load q. The vertical 
reaction acting at the supports VA or VB is equal to: VA = VB  = q a. To define the force S acting at these 
bars virtual hinges are added.  The force S acting in the tie has a horizontal component S cos b and a 
vertical component S sin b. The assumption is made that the bending moment is zero for f = b:

Mx = H y  – ½ q x2  + (S cos b) y – (S sin b) x = 0

Substituting:    x = R sin f ; y = R (1-cos f) ;  f = 2 R sin2b;    a = R sin (2 b) = 2 R sin b cos b 
 H =  ½ q a2/f   →        H =  q R cos2b     

Mf  =  q R2 cos2b (1-cos f) – ½ q R2 sin2f + S R [cos b (1 - cos f) – sin b sin f ] 

The force S is defined in case a virtual hinge is added at f = b. Thus for f = b the bending moment is 
zero: Mf = 0    

 q R2 cos2b (1- cos b) – ½ q R2 sin2b = S R [sin2 b  - cos b (1-cos b) ] →

  S   = cos2b (1- cos b) – ½ (1- cos b) (1+ cos b)  → S =  q R [cos2 b - ½ cos b - ½]    [9.55]
q R     (1+cos b) (1-cos b) - cos b (1- cos b)                

The normal force S is negative, so the diagonal is compressed. 
 Mf  = cos2b (1-cos f) – ½ sin2f + [cos2b - ½ cos b - ½] × [cos b (1-cos f)  – sin b sin f] 
q R2

Differentiating the expression for the bending moment results in:
      dMf    =  cos2b sin f  – sin f cos f + [cos2b-½ cos b- ½] ×[cos b sin f – sin b cos f ] 
    q R2 df

The bending moment is maximum for dMf/df = 0, thus:   

(+cos3b + ½ cos2b  - ½ cos b) sin f – sin f cos f - [cos2b-½ cos b- ½] sin b cos f  = 0

(cos2b + ½ cos b - ½) cos b tan f  – sin f = [cos2b- ½ cos b- ½]  sin b 

This equation can be solved numerically. Next the bending moment is calculated for this angle f 

Vault subjected to an equally distributed surface load q:

Due to the dead load the vault will be subjected to an equally distributed surface load q. Again the 
three hinged arch is statically determinate. For the three hinged vaulth subjected to a surface load q 
the vertical reaction acting at the supports VA and VB is equal to:

TOC



 240 Composite hollow core vaults

VA = VB  =∫f = 0 f = 2.b q R df  = 2 q R b    

The moment M0 at the centre due to the distributed surface load is equal to zero:
M0 = V R sin (2 b)  - H f  -   ∫f = 0 f=2.b q R df R sin f  = 0

Substituting V = 2 q R b  and integrating between the constraints f = 0 and f = 2 b gives: 
M0 = 2 q R2 b sin (2 b)  - H f  – q R2 [1 - cos (2 b)]  = 0 

Next the bending moment is divided by the lever arm to define the thrust H: 
H = q R2 [2 b  sin (2 b) + cos (2 b) - 1]       
                    R [1- cos (2 a)]      

Substituting cos (2 b) = 1- 2 sin2b  and  sin 2b = 2 sin b cos b gives: 
H = q R [ 2 b cos b  - sin b ]                                                                    
                     sin b  

The bending moment for an angle f1 follows from:
 Mf1 = H R [1-cos f1] – q R2∫ f=0

f1 (sin f1 - sin f) df + S R[ cos b(1-cos f1) – sin b sin f1]  

Integrating this expression between the constraints f = 0 and f = f1 gives:  
Mf1 =   H   (1-cos f1)   - f1  sin f1  - cos f d| f=0

f1  +   S   [ cos b (1-cos f1 ) – sin b sin f1 ]  
q R2     q R                              q R

For f1 = f this equation for the bending moment becomes: 
  Mf =   H  (1-cos f)  - f  sin f  - cos f  + 1 +  S   [ cos b (1- cos f)  – sin b sin f ]  
 q R2    q R                    q R

Substituting H into the expression gives:
Mf =  [2 b cos b  - sin b] ×  [1 - cos f]  -f sin f + [1-cos f] +   S  [ cos b (1-cos f) –sin b sin f ]        → 
q R2               sin b                                               q R

  Mf =  2 b cos b [1- cos f]  -  f sin f  +   S   [cos b (1-cos f)  – sin b sin f ]       
 qR2          sin b                       q R

The assumption is made that a hinge is made at f = b. Consequently for f = b the bending moment is 
equal to zero: 

    S      = 2 b cos b (1-cos b)/sin b  - b sin b   
  q R             sin2b - cos b (1-cos b)   

Multiply the numerator and denominator of this expression with sin b:
  S    =   2 b cos b [1- cos b]  - b (1+ cos b)×(1- cos b)      
q R       sin b [(1+ cos b)×(1- cos b) - cos b (1- cos b)]

   S    =  2 b cos b  - b (1+ cos b)  →    S   = - b [1 -cos b]            [9.56]
 q R      sin b [1+ cos b - cos b]                    q R            sin b    

The sign  is negative, the force S is compressed.
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Vault subjected to an asymmetric distributed  load

Due to an asymmetric load the vault is subjected to bending. The assumption is made that the live 
load q is equally distributed, acting on the right side of the arch. The vertical and horizontal reaction 
force acting on the supports are respectively:

VA = ¼ q R sin (2 b)     and     VB =  ¾ q R sin (2 b) 

The thrust is calculated for the left part of the vault with the equilibrium of the bending moment 
around the top.

Mf=0 = H f - ¼ q a2 = 0  →   H = ¼ q a2/f    →  H = ½ q R cos2b   

The thrust can be calculated for the right part of the vault in the same way with the same result:
Mf=0  = ¾ q a2  -  H f  – ½ q a2  = 0       →     H = ¼ q a2/f     →  H= ½ q R cos2b

For the right side the bending moment Mf is calculated for a certain angle f1 from the top with:
Mf1 =   H   (1 - cos f)+ ¼ sin (2b) sin f - ½ sin2f +   S   [cos b (1- cos f) – sin b sin f] 
q R2     q R                                                                                  q R                                                                           

Substituting H  and sin (2 b) = 2 cos b sin b :
Mf1 = ½ cos2b (1 - cos f) + ½ sin b cos b sin f  – ½ sin2f  +   S   [cos b (1-cos f) – sin b sin f]
q R2                                                                                                  q R

To define the force S a hinge is introduced for f = b. So for f = b the bending moment is zero: 
  S    = ½ ×  [cos2b (1 - cos b)  +  sin2b cos b   –  sin2b]      →
q R                sin2 b  - cos b (1-cos b)     

  S   = ½ × [cos2 b (1- cos b)  -  sin2b (1 - cos b)]  
q R       (1+cos b) (1-cos b)  - cos b (1-cos b)     

Divide by  [1-cos b]:  
S = ½ q R [cos2b -  sin2b]       →      S = ½ q R cos (2b)      [9.57]

 Substituting S into Mf:
 2 Mf = cos2b (1-cos f)+sin b cos b sin f – sin2f + cos (2 b) × [cos b (1-cos f)–sin b sin f]  
  q R2  

The bending moment is maximum for dMf/df = 0
cos2b sin f + ½ sin (2 b) cos f – 2 sin f cos f +  cos(2 b)× [cos b sin f - sin b cos f] = 0      →

[cos2b + cos(2 b) cos b] sin f - 2 sin f cos f  - cos (2 b) sin b cos f = 0

Dividing this expression by cos f gives:   
[cos2b + cos(2 b) cos b] tan f = 2 sin f +  cos (2 b) sin b

To find the maximum moment this equation has to be solved numerically.
 

TOC



 242 Composite hollow core vaults

Example vault strengthened with 2 diagonals

The vault, described previously, is strengthened with diagonals running from the top to the supports 
to reduce the buckling length and the bending moments. The forces and bending moments are 
calculated with the described approach. Again the  prefabricated vault is composed of circular 
segments. The span is equal to  l = 14.4 m. The rise is of the swallow vault is equal to f = l/8 = 1.8 m.  
The radius R is equal to R = 15.3 m.  The angle b is equal to: b = 14.0360 .The vault is constructed with 
a rectangular section with a height of 110 mm. The cardboard tubes Ø60 are positioned with a centre 
to centre distance of 100 mm perpendicular to the span. The structure is subjected to a dead load pg= 
3.2 kN/m2 and a ive load pe = 5.0   kN/m2.. For the section with a width of 1.0 m the  area and second 
moment of the area are:

A = (110 – 60) × 1000 = 50 × 103 mm2

I = 1000 × 1103/12 - 1000 × 603 /12   = 92.917 × 106  mm4

Permanent load:

Due to the permanent load the arch will be subjected to an equally distributed surface load q = 3.2 
kN/m. Due to the surface load q the vertical reaction acting at the supports VA and VB is equal to:

VA = VB  =∫ f=0 f=2b q R df  = 2 b q R = 0.49 × 3.2 × 15.3 = 24 kN 

The thrust follows from [9.14]:
H = q R [2 b cos b  - sin b]  = 3.2 × 15.3 × [0.49 × cos 14.0360  – sin 14.0360]  = 47 kN 
                               sin b                                                  sin 14.0360

The force S acting on the diagonal follows from [9.56]:
  S    =  b [cos b -1 ]  =  0.49/2 × [ cos 14.036 –1]   = -0.03   →    S = -1.48 kN
q R              sin b          sin 14.036

The bending moment for a certain angle f follows from:
  Mf =  2 b cos b [1- cos f]  -  f sin f +   S    [cos b (1-cos f)  – sin b sin f]      
 q R2             sin b                             q R

Substituting the force S and the angle b = 14.036 into this expression gives:
 Mf =  0.49 ×cos 14.036 ×[1-cos f] - f sin f -0.03 ×[cos 14.036 × (1-cos f) –sin14.036 × sin f]     
q R2                 sin 14.036                                

 Mf =  1.93 ×[1- cos f]  -  f × sin f  + 0.0073 × sin f      
q R2       

The bending moment is maximum for dM = 0, differentiating gives:
dMf =  1.93 × sin f  - sin f -  f cos f   + 0.0073 × cos f  = 0     →   0.93 × tan f = f  - 0.0073; 
 df      

This expression has a solution  for f  = 6.50 . Substituting this angle into the expression for the 
bending moment gives: M =   0.00039 q R2 =  0.29 kNm  
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Vault subjected to the equally distributed live load q:

The vertical reaction acting at the supports VA and VB is equal to:  
VA = VB  = q a = 5 × 7.2 = 36 kN.

The thrust follows from:  H =  ½ q a2/f  =  q R cos2 b   →  H = 72.0 kN

The force acting at the diagonals follows from [9.55]: 
S =  q R [cos2 b - ½ cos b - ½]    →        S = -3.36 kN  

The bending moment follows from:
 Mf = H R (1- cos f)  – ½ q R2 sin2f + S R [cos b (1- cos f) – sin b sin f]

Substituting H, S and b gives:
M f = 72.0 ×15.3×(1- cos f)– 2.5×15.32×sin2f - 3.36×15.3× [0.97×(1- cos f) –0.2425×sin f]

M f  = (1102 - 51.4) × (1- cos f) – 585 × sin2f + 51.4 × 0.2425 × sin f

The bending moment is at maximum for dM/df = 0 
1050.6 × sin f –1170 × sin f cos f + 12.5 × cos f = 0       

This equation can solved numerically. The bending moments are very small: 
For f = b    M = -0.02 kNm               
For f = 1/2 b    M =  0.67 kNm
For f = 3/2 b    M =  0.85 kNm

Vault subjected to an asymmetric equally distributed  load

Due to an asymmetric load the vault is subjected to bending. The assumption is made that the live 
load q is equally distributed, acting on the right side of the vault. The vertical and horizontal reaction 
force acting on the supports are respectively:

VA = ¼ q R sin (2 b)   = 18 kN and   VB = ¾ q R sin (2 b) = 54 kN

The thrust follows from:   H = ½ q R cos2b = 0.47 q R = 36 kN 

For the right side the force acting on the diagonal follows from [9.57]: 
S = ½ q R cos (2 b) = 0.441 × q R = 33.75 kN

For the right side the bending moment Mf is calculated for a certain angle f from the top with:
 Mf =   H   (1 - cos f) + ¼ sin (2 b) sin f - ½ sin2f  +  S   [cos b (1- cos f) – sin b sin f] 

            q R2     q R                                                                                     q R                                                                          

Substituting H,  S  and b into the expression for the bending moment:
 Mf   = 0.47×(1- cos f) + 0.118 × sin f  – ½ sin2f + 0.441 × [0.97×(1-cos f) – 0.2425×sin f]
q R2                                                                                         
 Mf   = 0.9 – 0.9 × cos f + 0.011× sin f  – ½ sin2 f  
q R2                                                                                         

The bending moment is at maximum for dM/df = 0:
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0.9 × sin f + 0.011 × cos f  – sin f cos f = 0

The angle f is defined by dividing this expression by cos f:
0.9 × tan f + 0.011  – sin f = 0     →    f ≈ 220 

For this angle the bending moment is:  Mf   = -0.00051    and  Mf = -0.6 kNm  
     q R2                                                                                         

 Permanent load 
q =1.0 kN/m

Live load
 q =1.0 kN/m

Anti -etrical load 
q =1.0 kN/m

Reaction, loaded 
side:

VB = 24.0 kN 36.0 kN 54.0 kN

Thrust: H = 47.0 kN 72.0 kN 36.0 kN

Diagonals: S = - 1.5 kN - 3.4 kN -1.7 ± 33.75 kN

Max. bending 
moment:

Mf = -0.29 kNm   0.85 kNm ± 0.6 kNm

TABLE 9.8 Forces and bending moments acting at the vault.

Comparing the results with the previous analysis shows that the results of the approach do not 
differ much from the results calculated before. The approach can be used to estimate forces and 
bending moments quickly in an early stage of the process of design. In practice the forces acting in 
the diagonals are effected by the stiffness of the joints. With the described expresions it is possible to 
study the effect of varying forces S acting at the diagonals. 

§  9.8 Vault strengthened with diagonal cables running from the supports

At the beginning of the 19th century the Russian engineer V.G Shukhof strengthened the half circular 
aches of the GUM department store in Moscow with tensioned cables [Bel62]. in the same way we can 
reduce the bending moments for a low rise vault. Two cables are added running form the supports to 
the vault at a point halfway the crown and supports. The forces and bending moments are calculated 
with a computer program (Matrixframe).

               R
β β φ 
    

a
β 

f

FIGURE 9.21 Vault strengthened with cables 
running from the supports to the vault 
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FIGURE 9.22 Bending moments due to the asymmetrical live load 

Node x-coord. y-coord. Member Dead load 
N

Dead load 
M

Asym live 
load N

Asym live 
load M

Asym live 
load V

n1 -7.20 0.0 M1:n1-n2 - 52.8 0.45 - 16.6 0.72   0.75

n2 -6.360 -0.415 M2: n2-n3 - 51.5 1.51 - 16.6 0.80   0.09

n3 -5.497 -0.779 M3; n3-n4 - 50.3 1.51 - 16.6 0.80   1.62

n4 -4.612 -1.088 M4: n4-n5 - 49.3 0.34 - 16.5 2.83   2.27

n5 -3.711 -1.343 M5: n5-n6 - 49.8 0.33 - 37.8 2.83   4.22

n6 -2.795 -1.542 M6: n6-n7 - 49.2 0.32 - 38.0 2.93   1.92

n7 -1.869 -1.685 M7: n7-n8 - 48.7 0.34 - 38.0 2.93   0.40

n8 -0.937 -1.771 M8: n8-n9 - 48.5 0.35 - 37.9 2.55   2.72

n9  0 -1.80 M9: n9-n10 - 48.5 0.35 - 37.8 2.55   5.06

n10 0.937 -1.771 M10: n10-n11 - 48.7 0.32 - 38.2 3.28   2.69

n11 1.869 -1.685 M11: n11-n12 - 49.2 0.28 - 38.9 2.91   4.19

n12 2.795 -1.542 M12: n12-n13 - 49.8 0.27 - 40.1 2.69   6.30

n13 3.711 -1.343 M13: n13-n14 - 49.4 0.40 - 59.2 2.69   3.57

n14 4.612 -1.088 M14: n14-n15 - 50.3 1.23 - 60.5 1.46   2.16

n15 5.479 -0.799 M15: n15-n16 - 51.6 0.47 - 62.2 1.46   3.25

n16 6.360 -0.415 M16: n16-n21 - 52.9 0.47 - 64.0 0.31   2.18

n17 7.20 0 M17: n17-n18   + 1.5 +22.8

n18  0 -0.886 M18: n1-n18   + 1.4 - 19.0

M20: n5-n18   + 1.5 +22.8

M21: n13-n18   + 1.4 - 19.0

M22: n1-n19 +45.6 + 34.1

M23: n19-n17 +45.6 + 34.1

TABLE 9.9 : Bending moments and forces for a surface load pg = 3.2 kN/m and an asymmetrical load qe = 5.0 kN/m

Due to the permanent load q = 3.2 kN/m and variable load q = 5.0 kN/m  the bending moment is at 
maximum for member 10.

Nrep = -48.7 – 38.2 = - 86.9 kN,    s = N/A =    -1.74 MPa
Mrep = 0.32 + 3.28 =    3.60 kNm,   s = M.z/I =   2.13 MPa

Post-tensioning

Due to the asymmetrical load the diagonal ties are compressed, F = -19.0 kN. To tension these ties 
have to be post-tensioned. Due to the post-tensioning of the diagonals the vault is subjected to 
normal forces and bending moments. A finite element calculation is made for an arificial load Fp hor = 
8.12 kN, Fp vert = 1.0 kN. For this loads the post-tensioning force is equal to Fp = 8.2 kN. 

TOC



 246 Composite hollow core vaults

FIGURE 9.23 Bending moments due to a post-tensioning Force equal to Fp = 8.2 kN 

The vault is at node n5 and n13 subjected to a maximum bending moment and normal force of 
respectively: M = 3.65 kNm and a normal force N = 7.8 kN. To compensate the tensile force acting in 
the tie the post-tensioning must be larger than F = 19.0 – 1.4 = 17.6 kN. Then the bending moment is 
equal to: M = 3.65 × 17.6/8.2 = 7.8 kNm. This moment is quite large, but smaller than the maximum 
bending moment for the not-strengthened vault M = 16.95 kNm. 

Ultimate state

To compensate the compressive force for the ultimate state the minimal post-tensioning force  follows 
from:  Fp = 1.5 × 19 – 0.9 × 1.4 = 27.2 kN. For this load the normal force and bending moment due to 
the post-tensioning are in node n13 respectively: 

Np = 7.8 × 27.2/8.2 = 25.9 kN,   Mp = 3.65 × 27.2/8.2 = 12.1 kNm.

Due to the permanent load, the post-tensioning and the variable load the normal force and bending 
moment at member 12 are respectively:

Nd = - 1.2 × 49.8 – 1.0 × 25.9 – 1.5 × 40.1 = - 145.8 kN  
Md =  1.2 × 0.27 + 1.0 × 12.1 + 1.5 × 2.69 =  16.5 kNm 

The critical buckling force according to Euler is equal to:   Ncr = p2 EI
                                      s1

2

For the strengthened vault the length of the vault between the nodes is equal to:  s1 = ½ b R = 3.75 m 

For prefabricated structures the quality of the concrete is at least C35/45, with E0 =  3.4 ×  104 MPa. 
For the ultimate state the deformations increase by creep. Probably the sections are  not cracked, for 
the design of the structure the stiffness of the vault can be approached with:  

EI = E0,t  I  with:  E0,t = fcd/(1.75×10-3)  and fcd = fck/1.5

For C35/45:  E0,t = (35/1.5)/(1.75×10-3) =  13.3 × 103 MPa.

 Ncr = p2 × 92.917×106 × 13.3 × 103  = 867× 103 N    ncr = Ncr/N = 867/145.8  = 6
                             3.752 × 106                

The maximum stress follows from: sd = Nd  ±  Md × z   ×    ncr  .        
                                        A               I            ncr - 1

sd= -145.8 × 103  ± 16.5 × 106  × 55 ×     6     = -2.9 ± 11.7 MPa
             50 × 103              92.917 × 106       6 - 1          
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Due to the strengthening the bending moments are decreased, but due to the post-tensioning the 
bending moments increase substantially. Post-tensioning the ties is needed if the slender ties are 
subjected to compressive normal forces. To increase the efficiency of the load transfer it is better to 
position the ties in such a way that the ties are tensioned continuously and post-tensioning the ties is 
not necessary. The following paragraph shows the design of a trussed vault.

§  9.9 Trussed vault, following a circle segment

A circular vault can be strengthened with ties and two small radial struts as described before in chapter 
6 for a parabolic vault. Structurally the trussed vault resembles the Polonceau truss. 
For the design and to show the  distribution of the loads an analyse is made for several loads. The 
parameters of the trussed arch are the span l = 2 a, the rise f and the angle g for the web bars. The 
nodes are numbered clockwise. To simplify the analysis of the forces acting on the ties and struts the 
structure is assumed to be facetted and to be loaded only by concentrated forces acting on the joints.

1
8 2

         γ        6               5             4  
7     γ              3

                                      2γ
2γ                       

FIGURE 9.24 Trussed vault, geometry 

 Assume the angle between the ties and the horizontal line between the supports is equal to g, the 
angle between the tie S1-5   and S6-5   is equal to 3g, the angle between the chord S7-8   and the tie S6-7   is 
equal to 2g.

The length of the span is equal to:    l = 2 a = 8 R sin g cos g (2 cos2 g  - 1) 
The leverarm of the truss is equal to:    f’ = S1-5  = 2 R sin g sin (3 g)  = 2 R sin2 g (4 cos2 g - 1)  
The length of the chords is equal to:    S1-2 = S2-3 = S1-8  = S7-8  = 2 R sin  g 
The length of the struts is equal to:   S2-4 = S6-8 = 4 R sin2 g   

The structure is statically determinate. For every node the forces acting at the bars are defined with the 
vertical and horizontal equilibrium of the forces SV = 0 and SH = 0.

The procedure to define the forces acting at the bars is as following, define:

 – the reaction forces with the vertical equilibrium of te truss, SV = 0. 

 – the thrust H with the bending moment around the top, SM = 0.

 – successively the forces acting in the chords and ties with the equilibrium of the vertical and   
horizontal forces acting at the nodes, SV = 0 and SH = 0.
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Concentrated load acting at the top

The truss is subjected to a concentrated load acting at the top: F1.= F. Due to this load both vertical 
reaction forces are equal to V = ½ F. The thrust H fllows from the equilibrium of the bending moments 
around the top, SM = 0.

S456 = H f’ = V a  →    S456 = H =  ½ F × 4 × R sin g cos g (2 cos2 g  –1)  
                    2 R sin2 g (4 cos2g - 1)        
S456 = H =  F cos g (2 cos2 g  –1)  
                       sin g (4 cos2 g - 1)  

Successively for the nodes 1, 3 and 2 the normal forces acting at the bars are defined with the vertical 
and horizontal equilibrium of the forces SV = 0 and SH = 0. 
Node 1: SV1 = 0:  S12 sin g -  S14 sin (3 g)  = ½ F   →   S14 = S12 sin g - ½ F
                                  sin (3 g)   
Node 1: SH1 = 0:  S12 cos g -  S14 cos (3 g)  = H

Substituting S14 and H: S12 [cos g -  sin g cos 3g) ]  =    -½ F      +  F cos g (2 cos2 g  – 1)   
                 sin (3 g)           sin (3 g)      sin g (4 cos2 g - 1)  

Substituting  sin (3 g)  = sin g (4 cos2 g –1) and cos (3 g)  = cos g (1- 4 sin2 g): 
              S12 =  ¼ F / sin g       
Next S12 is substituted into the expression for S14:       S14 = -             ¼ F                 .  
                              sin g (4 cos2 g - 1)  
Notice the sign is negative, so this element is compressed.

Node 3: SH3 = 0:  S23 cos (3 g) =  S34 cos g     →    S34 = S23  cos g 
                                             cos (3 g)
Node 3: SV3= 0:  S23.sin (3 g) = ½ F + S34 sin g    
Substituting S34: S23 =      ½F      +    S23 cos g sin g              
       sin (3 g)     cos (3 g) sin (3 g)

Substituting sin (3 g) = sin g (4 cos2g –1) and cos (3 g)  = cos g (1- 4 sin2g):
             S23 =        F        
                            4 sin g

Next S23 is substituted into the expression for S34:       S34 =  F (1- 4 sin2 g)
                                                    4 sin g
Node 2: SV2= 0: S12 sin g  + S24 cos (2 g) = S23 sin (3 g)      S24  = +S23 sin (3 g) - S12 sin g 

                                        cos (2 g)
Next S23 and S12 are substituted into the expression for S24:          S24 = +½ F  (tensioned)

Two concentrated loads acting at node 8 and 2

The truss is subjected to two concentrated loads acting at node 8 and 2, respectively F8 and F2. Due 
to these loads both vertical reaction forces are equal to V = F. The thrust H with the bending moment 
around the top, SM = 0.
S456 = H f’ = F (a –2 R sin g cos g)    →         S456 = H =  F cos g (1 – 4 sin2 g) 
                                                                     sin2g (4 cos2g - 1)  
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Successively the normal forces acting at the bars are defined for the nodes 1, 3 and 2 with the vertical 
and horizontal equilibrium of the forces SV = 0 and SH = 0. 
Node 1: SV1 = 0:  S12  sin g -  S14 sin (3 g) = 0  →   S14 = S12 sin g 
                              sin (3 g)   
Node 1: SH1 = 0:  S12  cos g -  S14 cos (3 g)  = H
Substituting S14 and H: S12 (cos g -  sin g cos (3 g)   = F cos g (1 – 4 sin2 g)
            sin (3 g)              sin g (4 cos2 g - 1)  
Substituting  sin (3 g) = sin g (4 cos2 g –1) and cos (3 g)  = cos g (1- 4 sin2 g):

             S12 = F (1 – 4 sin2 g)
              2 sin g       

Next S12 is substituted into the expression for S14:      S14 =      F (1 – 4 sin2 g)      
                                     2 sin g (4 cos2 g - 1)  
Node 3: SH3 = 0:  S23 cos 3g =  S34 cos g   →    S34 = S23 cos g 
                                              cos(3 g)
Node 3: SV3= 0:  S23 sin (3 g) - S34 sin g = F
Substituting S34: S23 =     F        +   S23 cos g sin g
              sin (3 g)    cos 3g sin (3 g)
Substituting sin (3 g)  = sin g (4 cos2g –1) and cos (3 g)  = cos g (1- 4 sin2 g):

            S23 =       F          
                                  2 sin g     
Next S23 is substituted into the expression for S34:      S34 = F (1- 4 sin2 g)
                                        2 sin g
Node 2: SH2= 0:  S12 cos g + S24 sin (2 g) = S23 cos (3 g) 

 S24  = S23 cos (3 g) -S12 cos g
                                     sin (2 g)
Next S23 and S12 are substituted into the expression for S24:  S24 = 0

Trussed vault, anti-metrical loaded.

The truss is subjected to an anti-metric loading. Due to this load the truss is subjected to respectively a  
load F  acting upward at node 8 and a load F¯ acting downward at node 2. 
The reaction force acting at node 3 follows from the bending moment round node 7, SM = 0.

V3 × 2 a = F (a + 2 R sin g cos g)  - F × 2 R sin g cos (3 g)    → 

V3 =  F × {4 sin g cos g (2 cos2 g - 1) + 2 sin g cos g - 2 sin g cos g (1 – 4 sin2g)} 
   8 sin g cos g (2 cos2g - 1)  
V3 =      ½ F             
         (2 cos2g - 1)  

The thrust follows from the equilibrium of bending moments around the top, SM = 0:
S456 × f’=  F × 4 R sin g cos g (2 cos2g - 1)  -  F × 2 R sin g cos g    →  S456 = 0
                           2 (2 cos2g - 1)  
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Successively the normal forces acting at the bars are defined for the nodes 1, 3 and 2 with the vertical 
and horizontal equilibrium of the forces SV = 0 and SH = 0. 
Node 3: SH3 = 0:  S23 cos (3 g) =  S34 cos g    →    S34 = S23 cos (3g)  
                                                          cos g
Node 3: SV3= 0:  S23 sin (3 g) - S34 sin g =       F                 
                   (2 cos2g - 1)  
Substituting S34: S23 =                         F                    +   S23  cos (3g) sin g   
                 (2cos2g - 1) sin (3 g)         cos g sin (3 g)

Substituting  sin (3 g) = sin g (4 cos2 g –1) and cos (3 g)  = cos g (1- 4 sin2 g):
 S23 =              F                                           
            4 sin g (2 cos2g - 1)  

Next S23 is substituted into the expression for S34:       S34 =      F (1- 4 sin2 g)        
                                                   4 sin g (2 cos2g - 1)  
Node 1: SH1 = 0:  S12 cos g -  S14 cos (3g) = H = 0    →  S14 =  S12  cos g 
                                                                                                                        cos (3g)   
At the top of the truss a shear force is transferred, this force is equal to the load minus the reaction 
force ( F – V):

(F -V) =  F (4 cos2 g- 3)   
                 2 (2  cos2g - 1)  

Node 1: SV1 = 0:  S12 sin g -  S14 sin (3 g)  =  -  F (4 cos2 g- 3)  
                                                                                            2 (2 cos2g - 1)            
Substituting S14: S12 [sin g -   cos g sin(3 g) ]   =-  F cos g (4 cos2 g - 3)

                                                                               cos 3g                     2 (2 cos2 g - 1)  

Substituting sin (3 g) = sin g (4 cos2 g –1) and cos (3 g)  = cos g (1- 4 sin2 g):
  S12 = F (4 cos2 g- 3) (1 – 4 sin2 g)
                           4 sin g (2 cos2 g - 1)        

Next S12 is substituted into the expression for S14:       S14 =        F (4 cos2 g-3)        
                                      4 sin g (2 cos2 g - 1)   

Node 4: SH2= 0: S14 cos (3 g) + S24 sin (2 g) = S34 cos g    →     S24  = S34 cos g -S14 cos (3g)
                    sin (2g)
Next S23 and S12 are substituted into the expression for S24:    S24  =   F  (4 cos2 g - 3)  

                           2 × (2 cos2 g - 1)   

The following table summarizes the resulting forces for the trussed vault described with the parameter 
g. For low rise vaults cos g is approximately equal to 1,  then a reduction of the ratio f/a will increase 
the forces acting on the elements nearly linearly. 
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member  F1 F8 and F2  Anti-metrisch F8  and F2¯

H = + F cos g  (2 cos2 g - 1)
     sin g  (4 cos2 g - 1)             

+ F cos g (4 cos2 g - 1)
     sin g  (4 cos2 g - 1)            

0           

S12 = - ¼ F
   sin g                  

-  F (1 - 4 sin2 g )
       2 sin g                   

- F(4 cos2 g -3)× (1 - 4 sin2 g ) 
           4 sin g  (2 cos2 g  - 1)      

S23 = - ¼ F
    sin g                 

- ½ F
   sin g                 

-                   F                           .
     4 sin g (2 cos2 g  - 1)                

S14 = -            ¼  F                   .
sin g  (4 cos2 g  - 1)      

+       ½ F (1- 4 sin2 g )      
        sin g (4 cos2 g  -1)  

+        F  4 cos2 g -3)            .      
   4 sin g (2 cos2 g  - 1)      

S34 = + F (1 - 4 sin2 g )
    4 sin g                 

+ F (1 - 4 sin2 g )
     2 sin g                  

+       F  (1 - 4 sin2 g )     
        4 sin g (2 cos2 g  - 1)           

S456 = +  F cos g (2 cos2 g  - 1)
      sin g (4 cos2 g -1)            

+  F cos g  (4 cos2 g  - 1)
       sin g (4 cos2 g  - 1)              

0      

S24 = + ½ F                 0                -    F (4 cos2 g -3) 
     2  (2 cos2 g  - 1)                 

S18 = - ¼  F   
    sin g  

-  F (1 - 4 sin2 g )
       2 sin  g

+  F (4 cos2 g -3) (1 - 4 sin2 g ) 
     4 sin g  (2 cos2 g  - 1)      

S78 = - ¼ F   
   sin g                 

- ½ F   
  sin g                

-                        F                  .                                   
         4 sin g (2 cos2 g - 1) 

S16 =          -             ¼  F                                  .
sin g (4 cos2 g  - 1)

+        ½ F (1-4 sin2 g )      
     sin g (4 cos2 g  -1)  

-             F (4 cos2 g -3)  .
      4 sin g  (2 cos2 g  - 1)

S67 = + F.(1 - 4 sin2 g )
     4 sin g                  

+ F (1 - 4.sin2 g )
       2 sin g                  

-      F (1 - 4 sin2  g )        .
    4 sin g (2 cos2 g - 1)           

S68 =   + ½ F                   0 +   F (4 cos2 g -3)
     2 (2 cos2 g  - 1)                 

TABLE 9.10 Forces acting in the trussed vault subjected to concentrated loads Fi acting at the nodes.

The following table summarizes the resulting forces for the trussed vault with tan 2g = 0.25 and g = 
7.018o. . For this angle g  the cos g is nearly equal to 1:  cos  g = 0.9925 ≈ 1. For this low rise trussed 
vault a reduction of the ratio f/a will increase the forces acting on the elements nearly linearly. 

Due to the concentrated load acting at the top the ties S14 and S18 are subjected to compression:  
S14 = S16 = -0.696 and  due to the permanent load these ties are tensioned: S14 = S16 = +0.613.  
The tie is subjected to a tensile normal force if the live load is smaller than 88% of the permanent 
load.  
Due to the asymmetrical load acting at node 1 and 2 the tie S16 is subjected to compression  
S16 = -0.685 and due to the permanent load this tie is tensioned S16 = +0.613.  The tie is tensioned if 
the live load is smaller than 90% of the live load. 
The trussed vault  can be strengthened with ties if for the ultimate state the permanent load is 
substantial larger than the live load. Assuming the load factor for the permanent load is 0.9 and the 
load factor for the live load is 1.5 then the representative permanent load has to be at least a factor 
1.5/(0.9×0.88) = 1.89 larger than the representative live load.

TOC



 252 Composite hollow core vaults

Member  F1 F8 and F2  F8 , F1 and F2   Anti-metrisch 
F8  and F2

Asymmetrisch F2  Asymmetrisch    
½ F1 + F2  

H = +2.721 +2.598 +5.319 0 +1.299   +2.659   

S12 = -2.046 -3.848 -5.894 -1.865 -2.856 -3.879

S23 = -2.046 -4.092 -6.138 -2.109 3.101 -4.123

S14 = -0.696 +1.309 +0.613 +1.983 +1.646 +1.298

S34 = +1.924 +3.848 +5.772 +1.983 2.916 +3.877

S456 = +2.721 +2.598 +5.319      0 +1.299 +2.659

S24 = +0.500      0 +0.500 -0.485 -0.242 +0.007

S18 = -2.046 -3.848 -5.894 +1.865 -0.992   -2.015   

S78 = -2.046 -4.092 -6.138 +2.109 -0.992 -2.015

S16 = -0.696 +1.309 +0.613 -1.983 -0.337 -0.685

S67 = +1.924 +3.848 +5.772 -1.983 +0.932 +1.894

S68 = +0.500       0 +0.500 +0.485 +0.242 +0.492

TABLE 9.11  Trussed vault with tan 2g = 0,25 and g = 7.018, subjected to concentrated loads  acting at the nodes .

§  9.10 Radial ties

To design a Form-Active-Structure optimal the form of the structure has to follow the line of the 
thrust. For a structure subjected to several varying loads the lines of the thrust will vary. To reduce the 
bending moments the form of the structure has to approach the varying lines as much as possible. 
For a circular vault the line of the system is identical to the line of the thrust if this vault is subjected 
to an equally distributed radial load, for any other loading the structure will be subjected to bending. 
Consequently the load transfer is not optimal for a circular vault, subjected to varying loads. 

aa
a

f

q

FIGURE 9.25  Line of thrust and bending moments for a circular vault subjected to equally distributed load 

Any load can be solved into a radial and tangential component. An equally distributed surface load can 
be solved into an equally distributed radial load and a tangential load. At the top the vertical surface 
load is acting radial. At another point of the surface between the top and the supports the vertical load 
is not acting radially and can be solved into a radial component and a component acting tangentially. 
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φ

   φmax

                          dF cosφmax tan φ
       
        dF cos φmax
                       
dF [1- cosφmax cos φ]

dF cos φmax
          dF sin φmax
              
                            dF

FIGURE 9.26 Solving a vertical surface load into a radial, vertical and horizontal load

To define these loads a small part of the surface R df is considered. This part is subjected to a vertical 
force dF = qR df.  This vertical force is solved into a radial component dF cos f  and a tangential 
component dF sin f. The radial component decreases from the crown to the support. Thus for 
any part of the surface the vertical load dF can be solved into a constant equally distributed radial 
component and a tangential component. The constant equally distributed radial load is equal to the 
minimal radial load, following from the radial load defined for f = fmax. Firstly the constant radial 
load is defined. At the support, for f = fmax , the vault is subjected to a vertical force dF = q R df. This 
vertical force is solved into  a radial component dF cos fmax and a tangential component dF sin fmax. 
Next this tangential component is solved in a horizontal component dF sin fmax cos fmax and a vertical 
component dF sin2 fmax.
For a small piece of the surface R df,  with  f < fmax , a part of the vertical load dF  (equal to    
dF cos fmax/cos f )  is solved into a constant radial load equal to dFcos fmax and a tangential load equal to 
dF cos fmax tan f. 
Next this tangential load is solved into a horizontal and a vertical component respectively 

dF cos fmax sin f  and  dF cos fmax sin2f/cos f. 

The remaining vertical component is equal to:
dFv = dF [1-  cos fmax/cos f]                        
[9.58]

Dividing the forces by R df gives the vertical, horizontal and radial loads acting at the surface:
qr = q cos fmax                      [9.59]
qh = q cos fmax sin f                      [9.60]
qv = q [1- cos fmax/cos f + cos fmax sin2f/cos f] = q [1-  cos fmax cos f]         
[9.61]

Due to the radial load the vault is subjected to a normal force N = qr  and due to the vertical and 
horizontal components the vault is subjected to  a normal force and bending.

Strengthening circular vaults with ties running from a centre point

Strengthening a circular vault with ties is efficient if the load is solved into a radial component and 
components parallel to the ties. The following design shows a vault strengthened with slender ties 
running from a centre point, above the supports at a distance D, to tension the ties permanently. The 
position of the centre above the supports reduces the lever arm, between the top and the centre and 
increases the thrust. To design this structure optimal the distance D has to be chosen carefully, to 
tension the ties continuously for all load combinations.
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FIGURE 9.27 Vault strengthened with radial ties.

Next the effect of the position of the centre is analysed. To define the transfer of the loads analytically 
the structure is simplified and schemed as a facetted truss with hinged members.  As before the span 
is equal to 2 a with a = 2 R sin b cos b. The rise of the vault is equal to f, with f = 2 R sin2 b. The length of 
the chords is equal to 2 R sin g  with g = ½ b. The length of the vertical tie halfway the span is equal to 
f ‘ = f – D, with D = a tan e. The structure is subjected to concentrated forces F acting at the nodes. The 
normal forces acting in the ties and chords are defined with the equilibrium of the bending moments 
and forces acting horizontal and vertical conform the global positioning system of the coordinates. The 
centre of the coordinates is positioned at the top. Compressed elements are negative and tensioned 
elements are positive.

Vault subjected to a concentrated vertical force acting at the top.

The vault is loaded at the top by a vertical force F. The reaction forces are: V1 = V5 =  ½ F 
node 4, the thrust acting at node 4 follows from:    H = + ½ F × a/f ‘ 

Node 3, SH = 0:  S12  cos g = - H     →      S12  = -H/cos g,  compression

Node 3, SV = 0:          S36 = - F – 2 S12 sin g   
Substituting  S12  = -H/cos g  →      S36 = - F + 2 H  tan g    

Node 6, SV = 0:  S46  sin a + ½ S36 - S56 sin e = 0    →   S46 = S56 sin e  – ½ S36 
                                                                                                                                        sin a
Node 6, SH = 0:  + S56 cos e   + S46.cos a = H

Substituting S46:  S56 cos e  = H -  S56 sin e  – ½ S36     S56 =    H  + ½ S14/tan a   
                                                                                      tan a                                    sin e/tan a + cos e                  

         S46  = H  - S56 cos e   
                           cos a

Node 5, SH = 0:  S45 cos (3 g) = -S56 cos e       →    S45 = -S34 cos e/cos (3 g)  compression

Vault subjected to two Loads acting at node 2 and 4.

The vault is subjected to concentrated loads acting at node 2 and node 6.
The reaction forces are: V1 = V5 =  F 
node 4: the thrust acting at node 4 follows from:    H = + (F a – F R sin b)/f ‘ 

node 3, SH = 0:  S34 cos g = -H     →      S34 = -H/cos g  (compression)
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node 3, SV = 0:   S36  - 2 S34  sin g = 0  →     ½ S36 = + H tan g   (tension)

Node 6, SV = 0:  S46  sin a + ½ S36 - S56 sin e = 0    →  S46 = S56 sin e  – ½ S36 
                                                                                                                     sin a
Node 6, SH = 0:  + S56 cos e   + S46 cos a = H
Substituting S46:  S56 cos e  = H -  S56 sin e  – ½ S36   →   S56 =    H  + ½ S14/tan a   
                                                                         tan a                                                sin e/tan a + cos e                  
                                  S46  =  H  - S56 cos e   
                 cos a
Node 5, SH = 0,  S45 cos (3 g) = -S56 cos e       →     S45 = -S56 cos e/cos (3 g)  

Asymmetrical load.

To define the forces acting on the elements due to an asymmetrical load, the analysis is simplified by 
splitting up this load case into an symmetrical and an anti-metrical load. Firstly the vault is loaded 
anti-metrically, at node 2 by a concentrated vertical force F acting downward and at node 6 by a 
vertical force F acting upward.  The results of an asymmetrical load are found by dividing the sum of 
the results of the anti-metrical and the symmetrical loads by 2.

Vault subjected to two Loads acting at node 2 and 4 anti-metrically.

The reaction force V5  follows from:  
V5  =  F (a + R sin b) – F (a – R sin b) = ½ F/cos b,    V1  = - ½ F/cos b.
                     2 R × 2 sin b cos b

The thrust acting at node 6 follows from:   H  =  F R sin b – 2 F R sin b cos b/(2 cos b)  =  0
                                                f’ 

Node 3, SH = 0:  S34 cos g = H,  Substituting H = 0 →   S34 = 0

Node 3, SV = 0:  S34 sin g + ½ S36 = 0,       →   S36 = -2 S34  sin g = 0

Node 4, SH = 0:  S46 cos a + S45 cos (3 g) = 0      →   S46 = -| S45 |cos (3 g)/cos a (compressive)

Node 4, SV = 0:  + -S46  sin a +  S45 sin (3 g)  = F

Substituting |S46|:  S45 =                    - F                           < 0   (compressive)  
                                                        sin (3 g) + cos (3 g) tan a

Node 5, SH = 0:  S45 cos (3 g) + S56 cos e  = 0     →    S56 = +|S45| cos (3 g)  > 0 (tension)
                   cos e  

node 3, SH = 0:  S23 cos g = H,  Substituting H = 0 gives   S23 = 0

In the same way the forces acting at node 5 are defined:    S26 = + |S46|; S12 = +|S45|;   S16 = -|S56|                                                                                                                

To define the forces for an asymmetrical load the results of the anti-metrical loads and symmetrical 
load are added and divided by 2. The following table shows the results of the analyse.
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Symmetrical forces Symmetrical force Anti–metrical

F2, F4 F1 F2, - F6

V1 - F - ½ F +  ½ F/cos b 

V5 - F  -½ F -  ½ F/cos b  

H + F (a – R sin b)/f ‘ +½ F a/f ‘ 0

S34  - H/cos g  - ½ H/cos g 0

S36 + 2 H tan g -F + 2 H tan g  0

S23  - H/ cos g  - ½ H/cos g 0 

S56  +   H  tan a  + ½ S36

sin e  + cos e tan a                   
 +    H  tan a  + ½ S36

sin e + cos e tan a                   
+ |S45 |cos (3g)

       cos e                   

S45 -  S56 cos e  
   cos (3 g)  

-   S56 cos e 
    cos (3 g)  

-                      F                             .
sin (3e) + cos (3 g) tan a  

S46   +H - S56 cos e
   cos a                   

+  H - S56 cos e
   cos a                   

 - |S45 | cos e
       cos a                   

S16   H tan a  + ½ S56

sin e + cos e tan a                   
     H tan a  + ½ S56

 sin e + cos e tan a                   
-  |S45| cos (3g)

       cos e                    

S26 +  H - S56 cos e
   cos a                   

 H - S56 cos e
   cos a                   

 + |S56 | cos e
       cos a                   

S12 -  S56  cos e
  cos (3 g)  

-   S56 cos e
   cos (3 g)  

 +                          F                              
                        sin (3e) + cos (3 g) tan a    

TABLE 9.12 Forces acting at the members of the radial reinforced trussed vault 

Example vault strengthened with radial ties

The forces are defined for a vault with f = a/4, radius R = 2.125 × a,  tan b = f/a, so b = 14.0360  and  
g = 7.0180. The structure is subjected to concentrated forces acting at the nodes: F = 1.0 kN. For this 
vault the distance of the centre point above the horizontal line between the supports is equal to  D = ¼ 
f, thus the lever arm f ‘ is equal to  0.75 × f,  so f ‘ = 3/16 a. The following table shows the forces due to 
the symmetrical and asymmetrical loads acting at the nodes, for F = 1.0 kN
.

Member Sym. Sym. Permanent. Anti-metrical Asymmetrical.

F2, F4 F3 F2, F3, F4 ½ ×(-F2, F4) ½×(F2,F4)+ ½×(-F2, F4)

S34 - 2.604 - 2.687 - 5.291     0 - 1.302

S36 +0.636 - 0.343 +0.293     0 +0.318

S46 - 0.531 +1.148 +0.617 -0.822 - 1.088

S56 +3.107 +1.554 +4.661 +0.801 +2.354

S45 -3.323 - 1.662 +4.985 -0.856 - 2.518

S26 -0.531 +1.148 +0.617 +0.822 - 0.556

S23 - 2.604 - 2.687 - 5.291      0 - 1.302

S16 +3.107 +1.554 +4.661 -0.801 +0.753

S12 - 3.323 -1.662 +4.985 +0.856 - 0.805

TABLE 9.13  Forces acting in the members of the radial reinforced vault 

A concentrated load acting at the crown causes a compressive force in the vertical web bar:  S36  = 
-0.343, but the permanent load will cause a tensile force +F = 0.293. Thus the web bar will be 
tensioned if the concentrated load is not larger than 85% of the permanent load. 
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Due to the asymmetrical concentrated load acting at node 4 member S46 is compressed, , F = -1.088. 
The forces in this tie due to this asymmetrical load is compensated by the permanent load if the 
asymmetrical load is smaller than the permanent load.

For a vault with a span 2 a = 2 × 7.2 m and f = 1.8 m the loads acting at the nodes are:
Permanent load:  Fi = qg R b = 3.2 × 15.3 × (14.036) × p/180 = 12 kN

Live load:  F3 = ½ qe R sin b = ½ × 5.0 × 15.3 × 0.47059 = 9.28 kN

F4 = ½ qe R sin b + ( a - qe R sin b)/2 = 5.0 × ½  × 7.2 = 18.0 kN

The normal forces acting at member S46 are:
permanent load: S46 = 0.617  × 12.0 = +7.4 kN

asym. live load:  S46 = - 1.088 × 18.0 + 1.148 × 9.28 = -8.93 kN,  S46 is compressed.

To avoid compressive normal force acting in this tie the dead load has to be increased. The analysis 
shows the effect of decreasing the lever arm to avoid compressive loads acting in the web bars. To 
prevent the web bars to be subjected by compressive normal forces the designer can decrease the lever 
arm or increase the dead load. 

Computer calculation for the truss

To check the analysis the forces, acting at the members of the truss, are calculated with a Finite-
Element program. Again concentrated forces acting at the nodes load the truss. Comparing the results 
shows that the results of the finite element calculation match with the analyse
. 

Node x = y = Member Top:  F3 F2, F4 F4 F2, F3, F4

n1 -7.20 1.800 (S12) : n1-n2 -1.66 -3.32 - 0.81 -4.98

n2 -3.71 0.457 (S23) : n2-n3 -2.69 -2.60 - 1.30 -5.29

n3 0 0 (S34) : n3-n4 -2.69 -2.60 - 1.30 -5.29

n4 3.71 0.457 (S45) : n4-n5 -1.66 -3.32 -2.52 -4.98

n5 7.20 1.800 (S56) : n5-n6 +1.55 +3.11 +2.36 +4.66

n6 0 1.35 (S16) : n6-n1 +1.55 +3.11 +0.75 +4.66

(S26) : n2-n6 +1.15 -0.53 +0.56 +0.62

(S36) ; n3-n6 -0.34 +0.64 +0.32 +0.30

(S46) : n4-n6 +1.15 -0.53 - 1.09 +0.62

TABLE 9.14 Coordinates and forces acting at the members of the truss

Simplification:  e = g  

The diagonals are straight if the angle e, between the lower ties and the horizontal line through the 
supports, is equal to e = g = ½ b. For this angle the distance D follows from D = a tan g.  Choosing 
the angle equal to g = ½ b simplifies the analysis of the forces. To define the transfer of the loads 
the structure is simplified and schemed as a facetted truss with hinged members. The structure is 
subjected to concentrated forces F acting at the nodes. The normal forces acting in the ties and chords 
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are defined with the equilibrium of the bending moments and forces acting horizontal and vertical 
conform the global positioning system of the coordinates. The centre of the coordinates is positioned 
at the top. Compressed elements are negative and tensioned elements are positive.
.As before the span is equal to 2 a with a = 2 R sin b cos b. The rise of the vault is equal to f, with f = 2 R  
sin2 b . the length of the chords is equal to 2 R sin g  with g = ½ b. The length of the vertical tie halfway 
the span S36 is equal to the length of the lever arm f ‘, with:  f’ = 2 × (2 R sin b) × tan g = 4 R sin2 g

Vault subjected to concentrated load acting at the top.

The vault is loaded at the top by a vertical force F. The reaction forces are: V1 = V5 =  ½ F 
The thrust acting at node 4 follows from:   H = + ½ F × a/f ‘ 

H = ½ F × (2 R sin b cos b )       →    H = +  ½ Fcos b cos g 
                    4 R sin2 g                                                                         sin g  

Node 3, SH = 0:   S12 cos g = - H    →    S12  = - ½ F cos b     (compressive)
                                     sin g  
Node 3, SV = 0:   S36 = - F – 2 S12  sin g    →    S36 = - F – F cos b     →   S36 =  - F sin2g    
                 (compressive)

Node 6, SH = 0:  + S56 cos g  + S46 cos g = H      S46 =  ½ F cos b cos g   - S56. 
                                                                                                                       sin g
Node 6, SV = 0:     S46  sin g + ½ S36 - S56 sin g = 0   
Substituting S46 and S36:         S56 =  F (1- 4 sin2 g)    → S46  = F/(4 sin g)  
                                                                                                           4 sin g       
Node 4, SV = 0:  S45 sin (3 g) = S34 sin g + S46 sin g   → 
         S45 = -  F  (3 - 4 sin2 g)     (compression)

                                 sin (3 g)

Vault subjected to two Loads acting at node 2 and 4.

The vault is subjected to concentrated loads acting at node 2 and node 6.
The reaction forces are: V1 = V5 =  F

The thrust acting at node 6 follows from:           H = + (F × a – F R sin b) /f ‘ 

H = ½ F × (2 R sin b cos b- R sin b)     →      H = + ½ F cos g (4 cos2 g-3) 
                      4 R sin2 g                                                                                       sin g  

Node 3, SH = 0:  S34 cos g = -H      →     S34 = -½ F (4 cos2 g - 3)  (compression)
                                                                                                     sin g  
Node 3, SV = 0:   S36  - 2 S34 sin g = 0   →     S36 = F (4 cos2 g - 3)   (tension)

Node 6, SH = 0:  + S56 cos e   + S46 cos a = H  →    S46 = F (4 cos2 g –  3) - S56 

                                                                                                                        2 sin g
Node 6, SV = 0:  S46 sin a + ½ S36 - S56 sin e = 0    →  S56 = ½ F (4 cos2 g –  3)   
                                                                                                                               sin g
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Substituting S56 into the expression for S46 gives:    S46 = 0

Node 4, SV = 0,  S45 sin (3 g) = S34 sin g  + F + S46 sin g    → S45 = - ½ F (4 cos2g-1)
                                sin (3 g)  

Asymmetrical load.

To define the forces acting on the elements due to an asymmetrical load, the analysis is simplified by 
splitting up this load case into an symmetrical and an anti-metrical load. Firstly the vault is loaded 
anti-metrically; at node 2 by a concentrated vertical force F acting upward and at node 4 by a vertical 
force F acting downward.  The results of an asymmetrical load are found by adding the results of the 
anti-metrical loads and symmetrical loads and divided by 2.

Two Loads acting at node 2 and 4 anti-metrically.

The reaction force V3  follows from:  V5  =        2 F R sin b      =  ½ F/cos b,     V1  = - ½ F/cos b.
                          2 R 2 sin bcos b

The thrust acting at node 6 follows from:  H  =  F R sin b – F 2 R sin b cos b/(2 cos b)  =  0
                                              f’’ 

Node 3, SH = 0:  S34 cos g = H,  Substituting H = 0 →  S34 = 0

Node 3, SV = 0:  S34 sin g + ½ S36 = 0,      →    S36 = 0

Node 6: SH = 0:  S46 cos g + S56 cos g = 0 

Node 4, SV = 0:   S45 sin (3 g) = F - S46 sin g  →   S45 sin (3 g) = F - S46 sin g   

Node 5, SV = 0:  S45 sin (3 g) = ½ F/cos b + S56 sin g      →     S45 sin (3 g)  = ½ F/cos b + S56 sin g    

Thus:                      F - S46  sin g   = ½ F/cos b + S56 sin g    

Substituting;      S56 = - S46       2 S46 sin g  = -F  + ½ F/cos b     
          S46 = -   F (4 cos2 g – 3)                 
                               4 sin g (2 cos2 g – 1)     

         S56 = +     F (4 cos2 g – 3)               
                            4 sin g (2 cos2 g –1)     

In the same way the forces acting at node 5 are defined:   S26 = + |S46|; S12 = +|S45|;   S16 = -|S56|                    

To define the forces for an asymmetrical load the results of the anti-metrical loads and symmetrical 
load are added and divided by 2.                                                                         

TOC



 260 Composite hollow core vaults

Results

The following table shows for the trussed vault the results of the analysis. 

Symmetrical forces Symmetrical force Anti–metrical load Asymmetrical load

F2, F4 F1 -F2,  F4  F4

V1 - F - ½ F +  ½ F/cos (2g) -1/4 F + 1/4 F/cos(2g)

V5 - F  -½ F - ½ F/cos (2g)  -1/4 F - 1/4 F/cos (2g) 

H + F cos g  (4 cos2 g  - 3)  
       2 sin g   

 F cos g (2 cos2 g -1)  
  2 sin g   

0  F cos g  (4 cos2 g -3) 
      4 sin g   

S34 -  F (4 cos2 g  - 3)  
      2 sin g   

-   F (2 cos2 g -1) 
        2 sin g  

0 -  F (4 cos2 g  - 3) 
          4 sin g   

S36 - F (4 cos2 g  - 3) - 2 F sin2 g    0 - ½ F (4 cos2 g  - 3)  

S23  -  F  (4 cos2 g  - 3)  
      2 sin g   

 -  F (2 cos2 g -1) 
        2 sin g   

0  + F (4 cos2 g  - 3)  
           4 sin g   

S56 +  F (4 cos2 g  - 3) 
      2 sin g   

+   F (1 – 4 sin2 g ) 
         4 sin g   

+      F (4 cos2 g  - 3)     
       4 (2 cos2 g  -1) sin g   

+ F (4 cos2 g -3) × (4 cos2 g -1) 
     8 (2 cos2 g  -1) sin g 

S45 -  F  (4 cos2 g  - 1)
      2 sin ( g)  

-   F (3- 4 sin2 g ) 
    4 sin (3 g)   

-           F  (4 cos2 g  - 1)                
          4 (2 cos2 g  -1) sin (3g)  

- F (4 cos2 g -1) × (4 cos2 g -1) 
    8 (2 cos2 g  -1) sin (3g)   

S46 0                           F      
      4 sin g   

-    F  (4 cos2 g -3)          
      4 (2 cos2 g  -1) sin g

-          F (4 cos2 g  - 3)        
          8 (2 cos2 g  -1) sin  g

S16 +  F (4 cos2 g -3)  
       2 sin g   

+  F (1-4 sin2 g )  
     4 sin g  

    F  (4 cos2 g -3)        
      4 (2 cos2 g -1) sin g

-   F (4 cos2 g -3) × (4 cos2 g -3) 
    8 (2 cos2 g  -1) sin g    

S26 0
   

       F       
     4 sin g   

+         F (4 cos2 g -3)     
        4 (2 cos2 g  -1) sin g   

+    F (4.cos2 g  - 3)     
     8 (2 cos2 g  -1) sin g   

S12 -  F (4 cos2 g -1) 
      2 sin (3g )  

-    F (3- 4 sin2 g )    
      4 sin (3g )    

+           F  (4 cos2 g  - 1)          
         4 (2 cos2 g  -1) sin (3 g)  

-  F (4 cos2 g -1) × (4 cos2 g  - 3)  
     8 (2 cos2 g  -1) sin (3g)   

TABLE 9.15 Forces acting at the members of the radial reinforced trussed vault 

Example

The forces are defined for a vault with f = a/4, radius R = 2.125 × a, tan b = f/a, so b = 14.0360 and  g = 
7.0180. The structure is subjected to concentrated forces acting at the nodes: F = 1.0 kN. The following 
table shows the forces due to the symmetrical and asymmetrical loads acting at the nodes, for Fi= 1.0 
kN.

Member Sym load:
F2, F4

Load at the top: 
F3

Perm. load: 
F2, F3, F4

Anti-metrical load:
½ (-F2, F4)

Asym load:
½(F2,F4)+ ½.(-F2, F4)

S34 - 3.848 -  3.970 -  7.818 0 -  1.924

S36 +0.940 -  0.030 + 0.910 0 + 0.470

S46    0 + 2.046 + 2.046 - 0.992 -  0.992

S56 +3.970 + 1.924 + 5.894 +0.992 + 2.977

S45 -4.092 -  2.046 - 6.138 - 1.055 -  3.101

S26    0 + 1.148 + 1.148 +1.055 + 1.055

S23 - 3.848 -  3.970 -  7.818 0 + 1.924

S16 +3.970 + 1.924 + 5.894 - 0.992 + 0.993

S12 - 4.092 -  2.046 -  6.138 +1.055 - 0.990

TABLE 9.16 Forces acting in the members of the radial reinforced vault 
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A concentrated load acting at the crown causes a compressive force in the vertical web bar S36 = -0.03 

kN, but the permanent load causes a tensile force, S36 = +0.910 kN, so this web bar is tensioned. Due to 
the asymmetrical concentrated load acting at node 4 member S46 is compressed, S46 = +0.992 but due 
to the permanent load this tie is tensioned, S46 = +2.046. So this tie is tensioned if the asymmetrical 
load is smaller than the permanent load.

For a vault with a = 7.2 m and f = 1.8 m the loads acting at the nodes are:

Permanent load: Fi = qg R b = 3.2 × 15.3 × 14.036 × p/180 = 12 kN

Live load: F3 = ½ qe R sin b = ½ × 5.0 × 15.3 × 0.47059 = 9.28 kN
 F4 = ½ qe R sin b + ( a - qe R sin b)/2 = 5.0 × ½  × 7.2 = 18.0 kN

The normal forces acting at member S46 are:
permanent load: S46 = 2.046 ×12.0 = +24.55 kN
asym. live load:  S46 = - 0.992 × 18.0 = -17.96 kN,  

The force due to the permanent load is larger than the force dueto  the asymmetrical live load , thus 
the tie S46 is tensioned.

The analysis shows the effect of decreasing the lever arm to avoid compressive loads acting in the web 
bars. To prevent the web bars to be subjected by compressive normal forces the designer can decrease 
the lever arm or increase the dead load. 

§  9.11 Example vault strengthened with ties running from a centre point

Actually the strengthened vault is statically indeterminate. For the vault analysed earlier the bending 
moments and forces are calculated using a Finite-Element program for a permanent load q = 3.2 
kN/m and variable load q = 5.0 kN/m.  The cables can be dimensioned very slender. A disadvantage 
of this structural system is the increase of the bending moments. The distance D has to be chosen 
carefully so the ties are tensioned and the bending moments are at minimum. The following table  
show the results for D/f = 0.6/1.8 = 1/3.

FIGURE 9.28  Bending moments due to the a-symmetrical live load
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Node x-coord. y-coord. Member Dead 
load 
N

Dead 
Load 
M

Dead 
load 
V

Asym live 
load
 N

Asym live 
load 
M

Asym live 
load 
V

N1 -7.20 0.0 M1:       n1-n2 - 64.1 0.87 2.28 - 27.8 1.22   1.31

N2 -6.360 -0.415 M2:        n2-n3 - 62.8 1.94 2.51 - 27.8 1.40   0.19

N3 -5.497 -0.799 M3;         n3-n4 - 61.5 1.94 3.83 - 27.7 1.40   2.67

N4 -4.612 -1.088 M4:         n4-n5 - 60.5 2.15 3.41 - 27.5 4.61   3.77

N5 -3.711 -1.343 M5:         n5-n6 - 71.9 2.15 4.09 - 53.9 4.61   6.18

N6 -2.795 -1.542 M6:         n6-n7 - 71.4 1.48 2.73 - 54.2 3.90   2.90

N7 -1.869 -1.685 M7:         n7-n8 - 70.9 1.36 1.62 - 54.3 3.90   0.42

N8 -0.937 -1.771 M8:         n8-n9 - 70.6 1.36 2.95 - 54.1 3.50   3.73

N9  0 -1.80 M9:        n9-n10 - 70.6 1.38 2.97 - 54.1 1.57   3.96

N10 0.937 -1.771 M10:  n10-n11 - 71.0 1.52 1.54 - 54.4 2.18   2.57

N11 1.869 -1.685 M11:  n11-n12 - 71.4 1.52 2.70 - 56.2 1.91   3.31

N12 2.795 -1.542 M12:  n12-n13 - 71.9 2.07 4.07 - 56.2 1.27   4.43

N13 3.711 -1.343 M13:  n13-n14 - 60.6 2.07 3.40 - 64.7 1.27   2.68

N14 4.612 -1.088 M14:  n14-n15 - 61.6 1.59 3.39 - 66.1 1.46   2.79

N15 5.479 -0.799 M15:  n15-n16 - 62.9 1.59 2.12 - 67.8 1.46   3.11

N16 6.360 -0.415 M16:  n16-n21 - 64.2 0.90 2.31 - 69.7 0.41   2.32

N17 7.20 0 M17:  n17-n18 +57.6 +62.0

N18  0 -0.60 M18:     n1-n18 +57.5 +25.6

M22:     n9-n18 +  4.3 +  3.1

M20:     n5-n18 +13.5 +29.1

M21:  n13-n18 +13.4 -   8.0

TABLE 9.17  Output for a surface load pg = 3.2 kN/m and an asymmetrical load qe = 5.0 kN/m

Due to the asymmetrical load the tie M21 is compressed, N = -9.0 kN, but due to the permanent loasd 
the tie is subjected to a tensile force N = + 13.4 kN, so the tie is tensioned permanently.i
Due to the permanent load q = 3.2 kN/m and variable load q = 5.0 kN/m  the bending moment is at 
maximum for node 5.

Nrep = -71.9 – 53.9 = - 125.8 kN,   s = N/A =    -2.52 MPa
Mrep =  2.15 + 4.61 =  6.76 kNm,   s = M z/I =   4.0   MPa

Thus the bending tensile stress is larger than the normal compressive stress.

Ultimate state

Due to the permanent load q = 3.2 kN/m and a variable load q = 5.0 kN/m acting at one half of the 
vault the bending moment is at maximum for node 5.

Nd = - 1.2 × 71.9 – 1.5 × 53.9 = - 167.1 kN,   s = N/A =   -3.34 MPa
Md =   1.2 × 2.15 + 1.5 × 4.61 =    9.5 kNm,   s = M.z/I =  5.68 MPa

For prefabricated structures the quality of the concrete is at least C35/45, with E0 =  3.4 × 104 MPa. 
For the ultimate state the deformations increase by creep. For the design of the structure the stiffness 
of the vault is approached with: EI = E0,t I , with: E0,t = fcd/(1.75 ×10-3)  and fcd = fck/1.5

For C35/45:  E0,t = (35/1.5)/(1.75 ×10-3)=  13.3 × 103 MPa.

The critical buckling force according to Euler is equal to:    Ncr = p2 EI

TOC



 263 Prefabricated vaults composed of circle segments  

                                s1
2

For this structure the length of the vault between the nodes is equal to:  s1 = ½ b R = 3.75 m 

Ncr = p2 × 92.917× 106 × 13.3 × 103  = 867 ×103 N;     ncr = Ncr/Nd = 867/167.1  = 5.2
                        (3.75)2 × 106                

The maximum stress follows from: sd = Nd  ± Md z   ×       ncr           
                                      A           I           (ncr - 1)

sd = - 167.1 × 103  ± 9.5 × 106   × 55 ×    5.2     = -3.34 ± 6.96 MPa
               50 × 103            92.917 ×106      (5.2-1)          

Shear stresses

The vault has a thickness h = 110 mm. The radius of the infill tubes is r = 30 mm. The centre to centre 
distance c of the tubes  is 100 mm. the thickness of the flange above or under the tubes is 25 mm. 
For node 5:   Vd =  1.2 ×  4.09 + 1.5 × 6.18 = 14.2 kN

The shear stress follows from:  tdmean = Vd/(b t)    tdmean =    14.2 ×     103      =  0.284 MPa   
          1 000 × 2 × 25
 
Between two tubes the shear force is:      Hd = Md /(½ z)

        with: ½ z = (110-25)/2 = 42.5 mm

Due to the shear force the upper and lower flange is subjected to bending moments. The bending 
moment M acting at the lower and upper flange is: M = V c/4. The bending moment M acting at the 
strut between two tubes is two times the bending moment acting on the upper and lower flange:     

Md = 2 × (1/4 Vd c)  →    Md = 1/2 × Vd × 90=  45 × Vd

The shear force acting at the strut between the tubes follows from: 
Hd = Md/(½ z)    →       Hd = 45 × 14.2/42.5 = 15.0 kN

The shear stress is: tdmean = Hd/(b t) = 15000/(1000 × 30) = 0.5 MPa

This stress is smaller than the maximum shear stress. 

Tuning D

The distance D has to be chosen carefully, so the ties are tensioned and the bending moments are at 
minimum. The thrust tensions the ties connecting the supports with the centre. Due to the inclination 
of these ties the permanent load stretches all the ties. Due to the asymmetrical load a tie can be 
subjected to a compressive normal force. The distance D has to be large enough, so the tensile forces 
acting at the ties, due to the permanent load, are larger than the compressive forces due to the live 
load. However increasing the distance D will increase the tensile forces acting at the ties, due to the 
permanent load, but increase the bending moments as well. The maximum distance D follows from 
e < g with tan e = D/a.  A strategy to tune the structure and chose D optimal is to start with D = a tan g 
and decrease the distance D till a tie is compressed due to the asymmetrical load. 
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FIGURE 9.29 Prefabricated circular vault strengthened with ties running from a centre Caption

§  9.12 Conclusions 

A vault following a circle segment is structurally optimal for a radial load, for any other load the 
structure is subjected to bending moments. Strengthening these vaults is very efficient. Due to the 
strengthening the bending moments and shear forces decrease. In this chapter several options are 
described. Strengthening the vault with diagonals running from the crown to the supports reduces the 
bending moments significantly. However due to the asymmetric loads these diagonals are subjected 
to compressive as well as tensile normal forces, thus the vault has to be strengthened with tubes with 
a certain stiffness. For the given example the steel diagonals had to be dimensioned with a diameter 
of Ø100 mm to resist the compressive forces.  The structure is very transparent in case the vault is 
strengthened radially with slender ties running from a centre to the vault. This centre is positioned 
above the supports at a distance D with D = a × tan (e). The ties will be tensioned due to the inclination 
of the lower ties between the supports and centre. The distance D has to be chosen carefully, so the 
ties are tensioned continuously and the bending moments are at minimum. Of course strengthening 
vaults with radial ties is not exclusive for concrete shells. Arches of steel, timber or masonry can be 
strengthened in this way to decrease the need for material and the embodied energy in the structure.
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10 Tests 

Introduction

The previous chapters discussed the development of prefabricated vaults with tubular infill elements 
positioned perpendicular to the span of the vault. Due to the infill the stresses will increase just 
because the tubes reduce the area and the second moment of the area of the sections perpendicular 
to the span of the vault. The area is reduced proportionally with the ratio of the diameter of the tubes 
and height of the section. The tubes are positioned in the centre of the sections so the second moment 
of the area is reduced only slightly. Consequently the normal stresses will increase more than the 
bending stresses. Thus for vaults, subjected to compressive normal forces, the infill will increase the 
stiffness. However due to the infill the shear stresses will also increase. The shear stresses above and 
below the infill will increase proportionally with the ratio of the diameter of the infill elements and 
the height of the sections. The centre-to-centre distance of the infills will affect the shear stresses 
between the infills. The structure will collapse if the shear stresses surpass the ultimate shear 
stresses. Fortunately for vaults the bending moments and shear stresses are pretty small. This chapter 
discusses for a vault strengthened with diagonals and composed of prefabricated elements, two 
experiments to determine to define the structural resistance of these vaults with embedded cardboard 
tubes constructed perpendicular to the span. 

§  10.1 Description of the vault

The prefabricated vault is strengthened with two diagonals and composed of two segments. To 
facilitate the production the line of the system follows a segment of a circle. The rise of the vault is 
equal to f = 1.8 m and the span is equal to l = 2 a = 14.4 m. The self-weight and need of cement is 
reduced with an infill of cardboard tubes Ø60-1.4 mm. To analyse the effect of the centre-to-centre 
distance of the infill elements for the load bearing capacity two models are constructed with a varying  
distance. For test 1 and test 2 the centre-to-centre distance  of the infill is respectively 100 mm and 
90 mm. 

X
       Y

f
β 

                  a
     R

        2β

FIGURE 10.1 Prefabricated vault, the centre of the coordinates is positioned at the top

For the prefabricated vault the centre of the coordinates is positioned at the top. The coordinates 
follow from: x = R sin f and y = R (1- cos f). The radius follows from expression [9.3]:

R = ½ (a2 + f2)/f         
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Substituting a = 7.2 m and f = 1.8 m gives R = 15.3 m. The angle b between the diagonal and 
horizontal line through the supports follows from tan b = a/f. Substituting a = 7.2 m and f = 1.8 m 
givers tan b = 0.25 and  b = 14.0360 .

Prefabricated segments

The vault is composed of prefabricated segments. For these segments the centre of the coordinates is 
positioned at the top of the segment. The coordinates of the prefab segments follows from: x = R sin f 
and y = R ( 1- cos f), with R = 15.3 m. The span and rise are respectively equal to  lseg = 2 × 3.711 m and 
fseg =  0.4568 m. 

                             X
f         aseg   Y             fseg

β 
                  a

     R

β

FIGURE 10.2 The centre of the coordinates of the 
prefabricated segment is positioned at the top of the segment.

Tested Elements 

Two prefabricated elements are tested at scale 1:2. The radius R of the tested elements is equal to 
7.65 m and the height, width and length  of the sections of the elements are respectively h = 110 
mm, b = 200 mm and  l seg =  2 × aseg =2 × 1.856 m. For the tests the centre of centre distance of the 
cardboard tubes  Ø60-1.4 varies. For test 1 and test 2 the centre-to-centre distance is respectively 
equal to c = 100 mm and c = 90 mm. Table 10.1 shows the coordinates. The angle b between the 
diagonal and horizontal line through the supports of the vault follows from tan b = a/f = 0.25, so b = 
14.0360. The following table shows the coordinates.

angle f X = y =

0 0 0

¼ b 0.464 0.014

½ b 0.928 0.057

¾ b 1.392 0.128

b 1.856 0.228

TABLE 10.1 Coordinates of the tested prefab elements. .

The area, second moment of the area, volume and self-weight are respectively:

A = 200 × (110 – 60) = 104 mm2

I = 200 × (1103/12 - 603/12) = 18.583 × 106 mm4

V = 1000 × 200 × 110 – 10 × 200 × p × 302 = 16.35 × 106 mm3/m
 q = 0.01635 × 24 = 0.39 kN/m  
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The tested elements are subjected to the self-weight q = 0.39 kN/m and two concentrated loads ½ F 
acting at a distance c from the top.

Self weight

Due to the self-weight q = 0.39 kN/m the structure is subjected to a vertical reaction force equal to V = 
q R b.  Substituting q, R and b gives: V = 0.73 kN.  
The thrust H follows from expression [9.35’] .  

H  = ½ q R ×  {7/6 sin3(2 b) +   b cos (2 b) [1 - 2 sin2 (2 b)] – ½ sin(2 b)}                    

                                                             b + 2 b cos2(2 b) -  3/2 sin (2 b) cos(2 b)  

In this expression the angle 2 b describes the angle from the top to the support. For the segment the 
angle between the top and support is equal to b. Thus for this segment we have to substitute 2bseg = b  
into expression [9.35’]:

H  =  ½ q R ×  {7/6 sin3 b +  ½ b cos b [1 - 2 sin2 b] – ½ sin b}                                       

                                                             1/2 b + b cos2b -  3/2 sin b cos b  

Substituting q, R and b gives:          H = 1.966 × q R/2 = 2.93 kN

At the top the bending moment Mf = 0 follows from:  Mf = 0  = V aseg  – H fseg – ½ q aseg
2  

Substituting  q, H, aseg and fseg gives:  
Mf = 0 = 0.73 × 1.856 - 2.93 × 0.228 – 0.39 × 1.8562/2 = 0.015 kNm

For x = ½ a:     Mf = b/2  = Mf = 0  + H y – q aseg
2/8  

  Mf = b/2 = 0.015 + 2.93 × 0.057 – 0.39 × 1.8562/8 = 0.014 kNm

The maximum bending stress follows from:     s = M × ½ h          [10.1]
                            I
Substituting M, h and I gives:          s =  0.015 × 106 × 110/2  = 0.044 MPa
                        18.583  × 106

As showed later the stresses due to the self-weight are much smaller than the stresses due to the 
concentrated loads acting at the crown of the prefabricated element.

½ F ½ F   
                X
     Y

fseg

           ½ β 
                  aseg

     R

β

FIGURE 10.3 Segment subjected to the concentrated load acting at the crown
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Concentrated load

The elements are subjected to two concentrated loads equal to ½ F acting at 0.09 m from the top. 
During the tests the forces are increased till the elements collapse. The reaction forces, thrust and 
bending moments are calculated for a force equal to F = 2 × 5.0 = 10 kN.  
The reaction force is equal to V = 5.0 kN. The thrust H follows from expression [9.38’]:

H  = ½ F × [ ½  sin2b + cos b  (1- b sin b) – cos2b ]            [9.38’’]
1/2 b + b cos2b -  3/2 sin b cos b  

Substituting  q, R and b gives:               H = ½ F× 6.326 = 31.63 kN

At the top the bending moment Mf = 0 follows from:  
    Mf = 0  = V aseg – H fseg   

Substituting V, H, aseg  and fseg gives:   Mf = 0 = 5.0 × 1.856 – 31.63 × 0.228 = 2.07 kNm

For x = ½ a seg the bending moment Mf  = b/2  follows from:  
    M f = b/2  = Mf = 0  + H y  - ½ F x  

Substituting V, H, aseg  and fseg gives:         M  f = b/2 = 2.07 + 31.63 × 0.057 – 5.0 × 1.856/2 = 0.77 kNm

The bending stress is calculated with expression [10.1]. Substituting the maximum bending moment 
M = 2.07 kNm, h = 110 mm and I into [10.1] gives:  

s = 2.07 × 106 × 110/2  = 6.1 MPa
            18.583 × 106

The  bending stress due to the concentrated load is much larger than the stress due to the self weight.

§  10.2 Calculation with a finite element computer program

For the tested elements the bending moments and forces can be calculated more precisely, including 
the stiffness of the element and tie, with a computer program. The element is subjected to two 
concentrated loads ½ F = 5.0 kN acting at 0.09 m from the top. To minimize the deformation of the 
tie a very stiff tie was used Ø48 mm, S235. The outward section of the concrete C28/35 is equal to 
200×110 mm, thickness 25 mm.  Table 10.2 shows the results.

At the top the bending moment and normal force are respectively M = 1.98 kNm and N = -28.73 kN. 
The shear force is equal to V = 3.93 kN. Due to the lengthening of the tie and the position of the two 
concentrated forces at a distance of 0.090 m from the top, the thrust and bending moment are slightly 
smaller than the thrust and bending moment defined previously for the statically indeterminate 
element, subjected to a concentrated force at the top. The normal forces increase from the top to the 
supports. At the support the normal force is at maximum: N = -30.0 kN. The bending moments and 
shear forces decrease from the top to the supports. 
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node Coordinate x Coordinate y Member Normal force Moment Shear force

1   0.090 0 M1: n1-n2 - 28.73   1.98 3.93

2   0.464 0.014 M2: n2-n3 - 28.90   0.58 2.11

3   0.928 0.057 M3: n3-n4 - 28.99 -0.87 2.34

4   1.392 0.128 M4: n4-n5 - 28.98 -0.34 1.13

5   1.856 0.228 M5: n1-n6 - 28.57   1.98 0

6 -0.090 0 M6: n6-n7 - 28.73   1.98 3.93

7 -0.464 0.014 M7: n7-n8 - 28.90   0.58 2.11

8 -0.928 0.057 M8: n8-n9 - 28.99 -0.87 2.34

9 -1.392 0.128 M9: n9-n10 - 28.98 -0.34 1.13

10 -1.856 0.228 M10: n5-n10 +28.57

TABLE 10.2 Results from the analysis made with Matrix-frame

 FIGURE 10.4 Bending moments due to concentrated loads 

The stress due to the normal force and the bending moment follows from [10.2]. Substituting N = 
28.73 kN, M = 1.98 kNm, h = 0.11 m, A = 104 mm2 and I = 18.583 × 106  mm4 into [10.2] gives:

s = - N  ±  M × 1/2 h   →  s = - 28730   ±  1.98 × 106 ×  110/2   =  -2.87 ± 5.86 MPa
           A               I                                   104                     18.583 × 106 

The compressive normal stress does not compensate the tensile bending stress, so possibly the 
element will be cracked due to this loading.

§  10.3 Bearing resistance of the elements.

The bearing resistance of the elements is defined with a spreadsheet Excel, see the following graph, 
figure 10.5, for varying normal forces, concrete C30/37, rebars 2Ø6. FeB500, coverage c =15 mm, As 
= 4 × p/4  × 62  = 113 mm2. The tested elements are subjected to two concentrated loads ½ F acting 
during a short time, thus the deformations are not increased by creep or shrinkage. For the tests the 
bearing capacity is defined for the representative values fs = 500 MPa and fc = 30 MPa, ec = 0.0035. 

Figure 10.5, shows the bearing capacity of the tested element. Table 10.3 gives the ultimate bending 
moments for varying values of the representative normal force.This table  is constructed with the 
following expressions for the equilibrium of the forces and bending moments.  
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The normal force follows from the equilibrium of forces:   
N = Nc + N’s - Ns                       [10.3]

The bending moment follows from:   
M = Nc (½ h – 0.5 xu ) + (N’s + Ns ) × (½ h - d)               [10.4]

Due to the infill the concrete compressive zone xu is limited to the flange, so  xu  ≤ cF
 . 

The concrete normal force is equal to: 
Nc =  b xu fc                     [10.5]

According to the Euro code the stress-strain diagram of the concrete is linear with sc = fc for ec ≥ 0.2 × 
0.0035. The height of the compressed zone is reduced with a factor b. 
For x < 1.25 cF the reduced height of the compressive zone xu is equal to 0.8 x. 
For x ≥ 1.25 cF the height of the compressive zone xu is equal to cF. 

The height of the flange follows from: cF = (h - D)/2. Substituting h = 110 mm and the diameter of the 
tubes , D  = 60 mm, gives: cF = (110 - 60)/2 = 25 mm.. The normal force acting in the rebars at the 
compressive zone follows from:

N’s =  ½ As scs                     [10.6] 
with:   ss = ec Es (x - d)/x ≤ fs    

The normal force acting in the rebars at the tensioned zone follows from:     
Ns = ½ As scs                    [10.7] 
with:   ss = ec Es  (h - d - x )/x ≤  fs                                   

N/(b h fcd) M/(b h2 fcd)

-0.0456 0.0192

-0.0010 0.0384

0.0717 0.0654

0.1281 0.0853

0.1779 0.1014

0.2117 0.1114

0.2164 0.1130

0.2199 0.1141

0.2226 0.1151

0.2273 0.1149

0.2382 0.1125

0.2465 0.1102

0.2529 0.1080

0.2584 0.1061

0.2632 0.1045

0,2674 0.1031

0.2711 0.1019

0.2743 0.1008

0.2773 0.0998

0.2799 0.0989

TABLE 10.3 Bearing capacity of the sections of the tested element
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vault, FeB500, C30/37, ω=0.514, d/h=0.164 
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FIGURE 10.5 Graph showing the maximum bending moment with respext to the normal force for the tested elements

 Due to the two  concentrated loads acting at the top,  equal to ½ F = 5.0 kN,  the bending moment and 
normal force are respectively M = 1.98 kNm and N = 28.73 kN.  For the normal force N = 28.73 kN the 
bending moment follows from table 10.3 with:

    N    =  0.044   →        M       = 0.055  
 b h fc                              b h2 fc

Substituting A = 104 mm2 , fc = 30 MPa and h = 110 mm gives M = 4.0 kNm

The graph shows that for N/(b h fc) < 0.2 the maximum bending moment increases nearly linearly with 
an increasing normal force. For test 1 and test 2 the ultimate load at the element, following from the 
ultimate bending moment, is approximately equal to: 

Fu = (2 × 5.0) × Mu/M  →   Fu = 10.0 × 4.0/1.98 = 20.0 kN

Shear forces and stresses

For the two concentrated  loads acting at the top, equal to ½ F = 5.0 kN, the maximal shear force 
acting at  the vault just beside the top is equal to: V = 3.93 kN.The shear force acting at a section 
is equal to V = dM/dx. The shear force is distributed over the upper and lower flange with Vup and 
Vlow.  For a structure subjected to normal forces the shear forces in the upper and lower flange can be 
varying: Vup  ≠ Vlow  ≠ ½ Vlmean.  
The mean shear stress acting at the flanges follow from:

tmean  =    V         =         3930          = 0.393 MPa 
               2 b xu         2 ×200 × 25

According to the Eurocode the ultimate shear stress follows from:
tRDc = VRDc =  0.12 × k (100 r fck)

1/3 + 0.15 × scp ≥  0.035 × k1.5 × √ fck  MPa        [10.8]
           b h
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With:  k = 1 + √ (200/d) ≤ 2.0 , for d = xu = 25 mm  the factor k is equal to k = 2.0
The compressive strength is for C30/37 equal to fck = 30 MPa 

r = As/(b h) < 0.02   →      r = 113/(200×50) = 0.0113  

scp = N/(b h) = 28730/(200×50) = 2.87 MPa 

Substituting the parameters into [10.8] gives the ultimate shear stress: 
tRDc =  0.12 × 2.0 × (1.13×30)1/3 + 0.15 × 2.87  ≥  0.035 × 2.01.5 × √ 30  MPa                            

tRDc  =  + 0.78 +  0.43 = 1.21 ≥  0.54  MPa 

For the flanges of  test 1 and test 2 the shear resistance of the flanges follows from: 

Vu = V × tu/t →    Vu = 3.93 × 1.21/0.393 = 12.1 kN 

The shear resistance of the flanges is substantially, probably the shear forces acting at the flanges 
above and under the tubes are not decisive for the ultimate load.

For the struts between the tubes the horizontal shear force Vstrut follows from the equilibrium of the 
bending moments:

 Vstrut ( zup + zlow ) = V c  →     Vstrut = V c /( zup + zlow ) 

Substituting z =  zup + zlow  gives for the shear horizontal force acting at the strut:
Vstrut = V c/z                     [10.9]

The mean stress acting at the section half way the height follows from: 
  tmean  =          V c                               [10.10]
                  z b (c - D)

Test 1: for a  centre-to-centre distance c = 100 mm, diameter of the tube: D = 60 mm, z = 110 - 25 = 
85 mm and  V = 3930 N  the shear stress is equal to:

tmean =        V c        =         3930 × 100              =  0.578 MPa 
                z b (c-D)      85×200 × (100 - 60)

Test 2: for a  centre-to-centre distance c = 90 mm, D = 60 mm, z = 110 - 25 = 85 mm and V = 3930 N 
the shear stress follows from:   

tmean =      V c       =         3930 × 90                   =  0.694 MPa 
               z b (c-D)     85 × 200 × (90 - 60)

 According to the Euro-code the ultimate shear stress follows from [10.8]:
tu ≥ 0.035 × k1.5 × √ fck  MPa

With:  k = 1 + √ (200/d) ≤ 2.0, for d = xu = 25 mm the factor k is equal to k = 2.0
The compressive strength is for C30/37 equal to  fck = 30 MPa 
The ultimate shear stress is at least equal to:     tu = 0.035 × 2.01.5 × √ 30 = 0.54  MPa 

For test 1 and test 2 the ultimate load follows from:     Vu = V × tu/t  
Test 1:  Vu = 3.93 × 0.54/0.578 = 3.67 kN
Test 2:  Vu = 3.93 × 0.54/0.694 = 3.06 kN
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The ultimate bending moment, the structure can resist, is much larger than the bending moments 
due to the load. For the flanges the ultimate shear force is much larger than the shear forces due to 
the load, but for the struts the ultimate shear forces are smaller than the shear forces due to the load. 
Consequently it is very likely that the models will not fail due to the bending moments or the shear 
forces acting on the flanges, but that for both elements the shear forces acting in the struts between 
the tubes will be critical. Decreasing the centre-to-centre distance of the infills will increase the shear 
stresses. Consequently the resitance of test 2 will be smaller than the resistance of test 1. Probably the 
ultimate shear stresses calculated with Eurocode are on the safe side, so possibly the tested elements 
can resist a larger load than following from the calculations.  

§  10.4 Validation with FEM program.

The distribution of the compressive, bending and shear stresses is analysed with three finite element 
models: a straight element loaded by a normal force, a straight element loaded by bending and a 
curved element loaded by bending. 

Straight element subjected to normal load

To describe the distribution of the normal stresses a finite element model of a straight element 
was made. This model was subjected to two normal forces equal to N =  5.0 kN acting at both ends 
parallel to the span. The diameter of the infill is D = 60 mm, the height and width of the section are 
respectively h = 110 mm and b = 200 mm. The normal stresses acting on the flanges, above and below 
the infills, were approximately linear increasing from the upper and lower side to the infill. The mean 
stress acting in the flange is equal to:

  smean =   ½ N                          [10.11]
                 b xflange

Substituting, h = 110 mm, D = 60 mm,  xflange = ½ (h - D) = 25 mm, N = 5.0 kN and b = 200 mm gives:
smean = ½ × 5000  = 0.5 MPa          

                            200 × 25

FIGURE 10.6 : Normal stresses due to a normal force N acting parallel to the span.

The minimal and maximal stress acting at the outer side and at the infill are equal to respectively:   
s1 = 0.28 MPa and s2 =  0.73 MPa: 

The normal stresses follow from: 
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at the outer sides:  s1 = b smean  -  a smean   
at the infill: s2 = b smean +  a smean   

Substituting s1 = 0.28 MPa,  s2 =  0.73 MPa and smean =  0.5 MPa in these expressions gives:
at the outer sides:  s1 = b  -  a   = 0.28/0.5
at the infill: s2 = b  + a   = 0.73/0.5

Solving these expressions gives b = 1.01 and a = 0.45. 
The normal stresses follow from:   

at the outer sides:  s1 = 1.01 × smean  -  0.45 × smean   = 0.56 × smean   
at the infill: s2 = 1.01 × smean +  0.45 × smean   = 1.46 × smean   

So approximately  for this structure with D/h = 60/110 the normal stresses acting on the flanges are 
at minimum and at maximum equal to: 

s = smean ± ½ smean                       [10.12]

Above and below the infill the normal stresses are at maximum at the infill: s = 3/2 smean    

Shear stresses acting in the struts 

The normal stresses between the holes were decreasing from the outer sides to the centre of section.  
The minimal and maximal stress acting at the outer side and at the centre are equal to respectively;
 s1 = 0.46 MPa and  s2 =  0.11 MPa. 

The mean stress is equal to:  smean =  N/(b h),  substituting  N = 5.0 kN, h = 110 and b = 200 mm gives: 
smean =       5000        =  0.23 MPa 
               200 × 110

The normal stresses follow from: 
at the outer sides:  s1 = b smean  + a smean   
at the centre: s2 = b smean  -  a smean   

Substituting  smean = 0.23 MPa, s1 = 0.46 MPa and  s2 =  0.11 MPa gives:     
at the outer sides:  b  + a = 0.46/0.23
at the infill:  b  -  a = 0.11/0.23

Solving these expressions gives: b = 1.24 and a = 0.76.  The normal stresses follow from:   
at the outer sides:  s1 = 1.24 × smean  + 0.76 × smean  =  2.0    × smean   
at the infill: s2 = 1.24 × smean  -  0.76 × smean  =  0.48 × smean   

So approximately  for this structure with D/h = 60/110 the normal stresses are at minimum and at 
maximum equal to: 

s = 5/4 smean ± ¾ smean                       [10.13]

Between the infill the normal stresses are at maximum at the outher sides: s = 2 smean     
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Straight element subjected to bending

To analyse the distribution of the bending stresses a second model was made. A straight element was 
subjected to two concentrated loads acting halfway the span with a centre to centre distance of c = 
180 mm. Thus this straight element was subjected to bending and shear. The following figures show 
the results of the FEM calculation. 

FIGURE 10.7 Distribution of the shear stresses in the struts  
between the infill

FIGURE 10.8 Distribution of the shear stresses in the struts  
above and below thw infill

0.15           0.35

         0.6

0.15           0.35

FIGURE 10.9 Shear stresses for a straight element with embedded infill subjected to bending due to the concentrated loads acting 
halfway the span. 

Shear stresses acting at the flanges 

According to this calculation the maximal shear stress acting at the flanges is equal to tfl max =  0.35 
MPa. The sum of the shear stresses times the area must be equal to the shear force. For the zone 
above and below the infills the shear force follows from:

V = b tfl max b (h –D)  

Substituting V = ½ F = 2.5 kN, b = 200 mm, D = 60 mm and h  =  110 mm gives:
2500 =  b × 0.35  × 200 × (110 - 60)    →    b = 0.71
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The mean stress is equal to: tfl mean = 0.71 × 0.35 = 0.25 MPa .The maximal shear stress is a factor 
1/0.71 = 1.4  times the mean shear stress.  For  rectangular sections subjected to  bending moments 
the shear stresses are distributed parabolically, then the maximum shear stress is 1.5 times the 
mean shear stress. The shear stresses above and between the infills are identical and approximately 
parabolic distributed over the flanges.

Shear stresses between the tubes

The shear stresses between the tubes were distributed as a curve with a maximum halfway the 
flanges and halfway the height. According to the FEM calculation the maximal shear stress acting 
in the flanges is equal to tfl =  0.15 MPa and the maximal shear stress acting halfway the height is 
equal to  th/2 = 0.6 MPa. The sum of the shear stresses times the area must be equal to shear force. 
At the flanges of the section, at the upper and lower side, the shear stresses must compensate partly 
the shear force acting halfway the height. The following equation describes the equilibrium of shear 
forces: 

a th/2 b D – b tfl b (h –D)  = V →  a th/2  + b tfl  – b tfl  (h/D) = V/(b D)     [10.14]

For the flanges above and below  the tubes the factor b is equal to 0.71. Substituting  V =½ F = 2.5 kN, 
D = 60 mm, b = 200 mm, th/2 = 0.6 MPa ,  tfl = 0.15 MPa   and b = 0.71  into expression [10.14] gives 
the factor a:   

a  × 0.6  + 0.71 × 0.15 – 0.71 × 0.15 ×110/60 = 2500/(200× 60)  →  a = 0.495 

Substituting  a = 0.495, b = 0.71  andtfl = ¼ th/2 into [10.14] gives:
0.495 × th/2  + 0.71  × ¼ × th/2  - 0.71  × ¼ × th/2 × (h/D)  = V/(b D) 

th/2  =                    V/(b D)                                            [10.14’]
              0.495  + 0.1775  ×(1 - h/D)

Substituting D = 60 mm, b = 200 mm, h = 110 mm  into expression [10.14’] gives: th/2  =0.6 MPa 

The shear stresses are affected by the bending moments acting at the struts between the tubes.  Due 
to the infill the section is at minimum halfway the height between the infill, so the shear stress is at 
maximum.   The mean stress acting at the section halfway the height follows from [10.10]: 

tmean   =        V c                                 [10.10]
                z  b  (c - D)

The element was subjected to two forces equal to  ½ F = 2.5 kN. Substitute c = 90 mm,  b = 200 mm, D 
= 60 mm and z = h – xflange =  110 – 25 = 85 mm into the expression [10.10]  to define the mean shear 
stress halfway the height of the section.:

tmean =     2500 × 90      = 0.44 MPa
               200 × 85 × 30   

Comparing the maximum shear stress with the mean shear stress calculated with [10.10] shows 
that the maximum shear stress is about 0.6/0.44 =1.36 times the mean shear stress as calculated 
with [10.10]. For a rectangular section  subjected to a bending moment the shear stress distribution 
follows a parabola, then the maximum stress is 1.5 times the mean stress. The ratio of the maximum 
and mean shear stress is smaller than 1.5. The schematization is on the safe side. The results, 
calculated with the FEM analysis, confirm the results calculated with the vault schematised as 
Vierendeel truss.
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Curved element

To analyse the distribution of the stresses acting in the sections of a curved element a model was 
made with a curved element, subjected to two concentrated forces acting at 90 mm from the top. This 
curved element is subjected to the thrust and the concentrated load acting laterally, so the stresses 
are a combination of the stresses defined for the straight elements subjected to a normal force and 
the bending due to the concentrated loads acting laterally. Due to the thrust and the curvature of the 
element the shear stresses decrease from the centre to the supports.Figure 10.10 and 10.11 show the 
results of the FEM calculation. 

0.01    0.5

0.5

0.01 0.25

FIGURE 10.10 Shear stresses above and below the tubes and 
between the tubes 

FIGURE 10.11 Distribution of the shear stresses for a 
vault with embedded infill subjected to bending due to two 
concentrated loads acting halfway the span.

Due to the normal forces acting at the sections the shear stresses acting in the upper and lower flange 
are varying: Vup  ≠ Vlow  ≠ ½ Vlmean.   According to the FEM calculation the maximal shear stress acting 
in the upper flange is equa l to tfup =  0.5 MPa,  the maximal shear stress acting in the lower flange is 
equal to tflow =  0.25 MPa. Due to the distribution of the shear stresses the maximum stress is equal 
to the mean stress times a factor 1/b. thus tmean = b t max.  The sum of the shear stresses times the area 
must be equal to the shear force. For the flange above and below the tubes the shear force follows 
from:

V =  btup b (h –D)/2  +   b tlow  b (h –D)/2

Substituting V = ½ F = 2.5 kN, b = 200 mm, D = 60 mm and h  =  110 gives:
2500 = b × (0.5 + 0.25)  × 200 × (110 - 60)/2    →    b = 0.666 

The maximal shear stress is equal to a factor 1/0.666 = 1.5 times the mean shear stress. The 
distribution of the shear stesses is parabolic. The  mean shear stress is in the upper and lower flange 
respectively equal to: tmean up = 0.666 × 0.5 = 0.333 MPa and tmean low =0.666 × 0.25 = 0.167 MPa.

The normal force acting at the upper flange is greater than the normal force acting at the lower flange, 
consequently the shear resistance in the upper flange is greater than the shear resistance of the lower 
flange. To be on the safe side it is recommended for vaults to distribute the shear stress over the 
flanges proportional with the normal compressive force acting at the upper and lower flange. 

For the vault the normal forces acting at the flanges follow from: 
Nfl = -½ N ± M/z                     [10.15]
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The analysis with Matrixframe showed that due to the concentrated load F = 10 kN the thrust is equal 
to 28.73 kN, the bending moment at the top is equal to M = 1.98 kNm and the shear force is equal to 
V = 3.93 kN.  Substituting the bending moment, M = 1.98 kNm, the normal force  N = 28.73 kN and  z 
= 0.085 m gives:

Nfl up  = -28.73 -  1.98/0.085 =  - 52.0 kN, 
Nfl low = -28.73 + 1.98/0.085 =  -    5.4 kN, 

The shear force acting at the upper flange is equal to: Vfl up  =   3.93 × 52  = 3.56 kN
                         52.0 + 5.4

The mean stress is equal to:   tmean   =              V              =     3560       = 0.71 MPa
                           b × (h - D)/2       200 × 25

According to Euro-code the ultimate shear stress follows from:
tRDc = VRDc =  0.12 × k (100 × r fck)

1/3 + 0.15 × scp ≥  0.035 × k1.5 × √ fck  MPa        [10.8]
            b h

Substituting: k = 2.0;  fck = 30 MPa;  r = As/(b h) = 0.0113  and  

scp = N/(b h) = 52.0 × 103/(200×25) = 10.4 MPa 

tRDc =  0.12 × 2.0 ×(1.13×30)1/3 + 0.15 × 10.4  ≥  0.035 × 2.01.5 ×√ 30  MPa                            

tRDc  =  + 0.78 +  1.56 = 2.34 MPa  ≥  0.54 MPa 

For the upper flange the shear resistance increases due to the increase of the compressive normal 
force acting at the upper flange. 

For the lower flange the compressive normal force is very small, the shear resistance is at least 
minimal: tRDc  ≥  0.54 MPa 

The shear resistance for the upper flange follows from:   Vu = 2.34 × 200 × 25 = 11.7 × 103 N
The shear resistance for the lower flange follows from:   Vu = 0.54 × 200 × 25 =   3.2 × 103 N 
The shear resistance of both flanges is equal to:     Vu =                    14.9 × 103 N  
Thus the shear resistance is larger than the force V = 3.93 kN. 

Shear resistance between the tubes

The shear stresses between the infills were distributed as a curve halfway the height and linear at the 
flanges.  The mean stress acting at the section half way the height follows from [10.10]: 

  tmean   =       V c                                [10.10]
                 z b (c - D)
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The element was subjected to two forces equal to  ½ F = 2.5 kN. Substitute c = 90 mm,  b = 200 mm,  
D = 60 mm and z = h – xu =  110 – 25 = 85 mm into expression [10.10] to define the mean shear 
stress:

tmean =    2500 × 90       = 0.44 MPa
               85 × 200 × 30   

According to the FEM calculation the maximal shear stress acting in the flanges is equal to   tflange =  
0.01 MPa and the maximal shear stress acting halfway the height is equal to  tmax =0.5 MPa. So the 
maximal stress acting halfway the height between the infills is equal  to 0.5/0.44 = 1.14 times the 
mean stress calculated with [10.10]. For the curved structure the shear stress 0.5 MPa is smaller than 
the shear stress defined for the straight element,.tmax =0.6 MPa. Due to the curvature of the element 
the shear force is reduced due to the components of the vertical force and horizontal thrust acting 
perpendicular to the line of the system. For a rectangular section subjected to a bending moment the 
shear stress distribution follows a parabola, then the maximum stress is 1.5 times the mean stress. 
Probably the schematization as Vierendeel truss is on the safe side. 

§  10.5 Construction of the tested elements

For both tests a mould of multiplex was fabricated. Two rebars Ø6  FeB500 were positioned in the 
mould with a cover of 15 mm. The infills Ø60 were fixed to the sides of the mould to prevent these 
elements to be pushed upward due to the liquid concrete. Above the infills two rebars Ø6 FeB500 were 
laid and fixed to the infills with thin steel wire. The tubes were covered with a thin plastic foil so the  
unhardened concrete did not weaken these elements. To fill the spacing between the infills and mould 
the gravel was 8 mm at maximum.   The consistence of the concrete, CEM 111/B43.5 N was rather 
stiff, class 3, to prevent the concrete from flowing downward to the ends. 

The strength of the cubes was tested at 26-3-2015 and at 11-5-2015 with cubes 150×150×150 
mm3. Table 10.4 shows the results of the compressive tests. 

17-4-2015 11-5-2015

Number Strength
[KN]

Compressive stress
[MPA]

Strength
[KN]

Compressive stress
[MPA]

1 955 42.4 1051 46.7

2 895 39.7 1073 47.7

3 928 41.2 1017 45.2

4 947 42.1 1002 44.5

5 894 39.8 1069 47.5

6 916 40.7 1006 44.7

7 1050 46.7

8 1049 46.6

9 1081 48.1

Mean value: 923 41.0 1044 46.4

TABLE 10.4 Results of the compressive tests on cubes 150×150×150 mm3.  
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The deviation s of a number of n tests follows from:
s =  [ (xi – x mean)2/ n]1/2

The ultimate compressive strength and the class of the concrete follows from:  
fck cube = xmean – 1.53 × s

For n = 8 the deviation is equal to s = 1.245 MPa, Substituting s and x mean gives the maximum 
compressive stress for the cubes:

 fck cube = 46.4  – 1.53 × 1.245 = 44.5 MPa

According to this compressive strength the class is at least equal to C30/37.

§  10.6 Results of test 1 and test 2

The elements test 1 and test 2 collapsed at a concentrated load of respectively F = 17.7 kN and 16.4 
kN. Firstly the elements cracked at the lower side near the top due to the bending. Due to these small 
cracks the elements did not fail but then the elements were cracking between the infills. Finally the 
elements collapsed when the cracks were extended to the compressive zone. The sections of the 
elements were cracked totally with cracks running diagonally from the lower to the upper side. 

To analyse the ultimate bearing capacity of the vault the results of the test are compared with the 
analysis. The analysis showed that due to the concentrated load F = 10 kN the thrust is equal to 28.73 
kN, the bending moment at the top is equal to M = 2.0 kNm and the shear force is equal to V = 3.93 
kN.The table and the graph, describing the ultimate resistance of the structure, show that for sections 
subjected to relative small normal forces the bending moment increases proportional with the normal 
force. For the ultimate loads found for test 1 and test 2 the ultimate bending moments and shear 
forces are calculated.

 

 

FIGURE 10.12 Tested element
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Test 1

The element failed for a load F = 17.7 kN. For this load the thrust, the bending moment and shear 
force are respectively H = 50.9 kN, M = 3.5 kNm and V = 6.96 kN. The ultimate bending moment 
follows from table 10.3.  The maximum bending moment increases with an increasing normal force. 
For N = 50.9 kN the maximum bending moment follows from table 10.3, with:

  N    =  0.077     →        M     = 0.067 
b h fc                                   b h2 fc

Substituting  fc = 30 MPa, b = 200 mm and h = 110 mm gives Mu= 4.9 kNm > M = 3.5 kNm

The ultimate bending moment is much larger than the calculated bending moment due to the 
maximum load, so the tested element did not fail due to the bending maximum moment but failed 
due to the shear forces. For the flanges the analysis showed an ultimate resistance equal to: Vu= 12.1 
kN, this ultimate shear force is much larger than the shear forces acting at the flanges due to the load, 
so probably the shear force acting at the flanges is not critical. 
For test 1 the calculated load the structure can resist, following from the ultimate shear force, is equal 
to: Vu = 3.67 kN. The vault can resist a shear force equal to Vu =6.96 kN, so the calculation is on the 
safe side.

FIGURE 10.13 Test 1, the structure fails just beside the top FIGURE 10.14 Test 2, the structure fails just beside the top

Test 2:

The element failed for a load Fu= 16.4 kN, for this load the thrust, the bending moment and shear 
force are respectively Hu = 47.1 kN, M u= 3.35 kNm and Vu =6.4 kN. The maximum bending moment 
follows from graph and table showing the ultimate bearing capacity.  The ultimate bending moment 
increases with an increasing normal force. F or Nd = 47.1 kN the bending moment follows from table 
10.3 with:

  Nu   = 0.07   →        Mu        = 0.065  
b h fc                 b h2 fc

Substituting fc = 30 MPa, b = 200 mm and h = 110 mm gives Mu = 4.7 kNm > 3.35 kNm

The ultimate bending moment is much larger than the calculated bending moment due to the 
maximum load, so the tested element did not fail due to the bending maximum moment but failed 
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due to the shear forces. For the flanges the analysis showed an ultimate resistance equal to: Vu= 12.1 
kN, this ultimate shear force is much larger than the shear forces acting at the flanges due to the load, 
so probably the shear force acting at the flanges is not critical. 
For test 2 the calculated load the structure can resist, following from the ultimate shear force, is equal 
to: Vu = 3.06 kN. The vault can resist a shear force equal to Vu =6.4 kN, so the calculation is on the safe 
side.

Conclusions

For both tests the maximum shear force due to the load than the calculated shear force. Probably 
the ultimate shear stresses calculated with the Eurocode are on the safe side. The ultimate shear 
stresses are calculated for concrete class C30/37. The mean compressive stress of the cubes was 
46.4 MPa. Furthermore the rebars at the compressed side will increase the shear resistance, this will 
be discussed further in the following paragraph. The tests show that decreasing the centre-to-centre 
distance of the infills will decrease the resistance of the structure, this  confirms the results calculated 
with the vault schematised as Vierendeel truss. 

§  10.7 Cracked vaults 

The FEM analysis and the analysis for the vault schematised as Vierendeel-truss are based on the 
Theory of Elasticity. As shown by the experiments the vaults, subjected to normal forces, shear forces 
and bending moments, the cracking started at the tensioned side due to the bending moments. In a 
crack the tensile stresses are zero. Consequently, due to the cracking, the distribution of the forces and 
stresses changes. In a cracked section the shear stresses are transferred by the compressive zone, the 
reinforcement and the so-called interlock effect, caused by the friction acting in the cracks.  
Generally for concrete beams the shear resistance is increased with stirrups. To define the shear 
resistance for these structures the beams are schematised as trusses composed of tensioned struts 
and compressive diagonals. In practice thin plates and vaults are reinforced with rebars only, mostly 
stirrups are not used. In the section cracked by bending the shear the compressive zone of the plate 
transfers  the shear forces for the better part. For structures of concrete the shear resistance of the 
rebars is often neglected. Nevertheless the rebars , especially in the compressed zone, can contribute 
to the shear resistance of the structure. 
A statically indeterminate structure fails in case more than one plastic hinge is formed. For statically 
indeterminate vaults the shear resistance of the rebars can help to redistribute the loads. Possibly the 
shear resistance of the rebars can prevent the structure to fall down suddenly.

 For the rebars the ultimate shear stress ts follows from:
(ss

2 + 3 ts
2)0.5 < fs                     [10.16]

For the rebars in the compressive zone the stress follows from the equilibrium of forces for the cracked 
section (10.3).

N = N’c + N’s - Ns                      [10.3]

For the tested vaults the shear resistance of the  in the compressed zone is calculated.  The 
compressive zone is equal to x. Due to the infills the concrete normal force is calculated in the flange 
with a height,  cF =½ × (110 -60)  = 25 mm.The concrete normal force follows from: 

TOC



 283 Tests 

N’c =  b b xu fc                     [10.5]
for x ≤ cF /0.8  xu = x   and b = 0.8
for x > cF /0.8  xu = cF  and b = 1.0

The normal force acting in the rebars at  the compressive zone follows from:
N’s =  ½ As scs                     [10.6]
with:  ss= ec Es (x - d)   ≤ fs                                                      
                            x 

The normal force acting in the rebars at  the tensioned zone follows from:    
Ns = ½ As scs                    [10.7]
with:    ss =  ec Es (h - d - x)   ≤  fs                                   
                                x 

The normal load is small, so for this vault the stress in the tensioned rebar is at maximum. ss = fs .
Substituting expression (10.5), (10.6) and (10.7)  into (10.3) gives for x ≤ cF /0.8:

0.8 b xu fc  +   ½ As ec Es (x - d)/x      -  ½ As fs  = N              [10.17]                

For test 1 the normal force is equal to N = 51.4 kN, substituting b = 200 mm, fc = 30 MPa, fs = 500 
MPa , ½ As = 56 mm2,  ec = 0.0035, h = 110 mm and d = 18 mm  in [10.17] gives:

0.8 × 200 × 30  x  + 56 × 0.0035 × 2.0 ×105 × (x- 18)/x      -   56 × 500  = 51400 

 x = 20 mm ≤ [cF /0.8 = 25/0.8 = 31.25 mm]

The stress acting in the rebars in the compressive zone follows from expression [10.6]:   
ss =  ec Es (x - d)     ≤ fs    
                 x 
ss =  0.0035 × 2.0 × 105  × (20- 18)/20 =  70 MPa   ≤  500 MPa    

For the rebars the ultimate shear stress ts follows from [10.16]:
(ss

2 + 3 ts
2)0.5 < fs                     [10.16]

Substituting ss into [10.16] gives a maximum shear stress equal to: ts = 286 MPa

The rebars can resist a shear force equal to: Vus = As ts  = 2 × 28 ×286 =16 ×103  N. 

For test 2 the normal force is equal to N = 46.3 kN, substituting b = 200 mm, fc = 30 MPa, fs = 500 
MPa , ½ As = 56 mm2,  ec = 0.0035, h = 110 mm and d = 18 mm  in [10.17] gives:

0.8 × 200 × 30  x  + 56 × 0.0035 × 2.0 ×105 × (x - 18)/x      -   56 × 500  = 46300 

 x = 16 mm ≤ [cF /0.8 = 25/0.8 = 31.25 mm]

The stress acting in the rebars in the compressive zone follows from expression [10.6]:   
ss =  ec Es (x - d)     ≤ fs    
                 x 
ss =  0.0035 × 2.0 × 105  × (16- 18)/16 =| -88| MPa   ≤  500 MPa    

For the rebars the ultimate shear stress ts follows from [10.16]:
(ss

2 + 3 ts
2)0.5 < fs                     [10.16]

Substituting ss into [10.16] gives a maximum shear stress equal to: ts = 284 MPa
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The rebars can resist a shear force equal to: Vus = As ts  = 2 × 28 ×284 =15.9 ×103  N. 

For the tested vaults the rebars in the compressive zone can contribute substantially to the shear 
resistance of the structure. Further these bars will prevent the vault from failing suddenly if the 
structure is overloaded. Thanks to the contribution of the rebars in the compressive zone the tested 
elements can reist a larger load than predicted with the calculations according to the Eurocode.  

§  10.8 Conclusions

Probably the structure fails due to the shear stress acting between the infills. For vaults with 
embedded tubular infills the shear stresses acting in the struts between the infills can be approached 
with a scheme as Vierendeel-truss. The calculations with the FEM analysis show that the scheme as 
Vierendeel-truss predicts the stresses quite well. The tests show that the load bearing resistance of 
the structure is very good. Probably the schematization is on the safe side. Further research is needed 
to define the affect of the diameter and centre-to–centre distance of the infill elements for the shear 
resistance of the struts between the tubes.  
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11 Conclusions and recommendations

This research project focuses on the design of structures made in the past with an almost forgotten 
system and the possibilities of this system to design buildings nowadays and in the coming 
decades. To design buildings we need a lot of know-how. Buildings made in the past are a reservoir 
of knowledge and know-how, it would be a mistake if we neglect the lessons learned in the past. 
Studying this almost forgotten system can be helpfully to develop new systems capable to meet the 
demands of the present. The advantages and disadvantages of the Fusee Céramique system are 
analysed. Possible structural deficiencies are mentioned and possible solutions are described to 
overcome these deficiencies. The structural system is redesigned to meet the emerging problems 
building industry have to face nowadays. The warming up of the global temperature due to the 
greenhouse effect is a most important threat. To solve this problem many things have to be changed. 
Architects can contribute much to reduce the global warming up by designing buildings that use less 
energy for cooling, heating and construction. Especially roofs can contribute much to the realisation 
of environmental friendly buildings. For example green roofs can retain temporary rainwater and 
can contribute much to reduce the temperature variations and the energy needed to cool or heat 
buildings. Generally minimising the need of material for building construction will reduce the 
embodied energy too. For vaults the need of material is minimal. Due to the form the cylindrical 
vaults can transfer substantial loads without increasing the dimensions much. An infill can reduce the 
need of cement in floors, roofs and walls. In the past Jaques Couëlle developed the Fusee Céramique 
system to reduce the weight and need of cement for floors, walls and roofs  of concrete. In those days 
the production and construction of this system was competitive. Unfortunately the construction 
of the vaults was very labour intensive. Fifty years ago the cost of labour was lower than the cost of 
materials. Nowadays the cost of labour is much higher than the cost of material. To be competitive the 
cost of labour must be reduced. To be cost effective the technique of construction has to be labouring 
extensive. Further an infill has to be sustainable. The CO2 emission and the embodied energy of the 
production and construction must be minimal.
To show the competences of the Fusee Céramique system chapter 5 describes an example of a barrel 
vault. The cilindrical vault roofing a workshop, known as building Q, was very thin for a span of 19.8 
m. With a thickness of 130 mm the ratio of the thickness versus the span was only  130/19800 = 1/152. It 
is amazing to see how half a century ago engineers could design such slender vaults without help of 
computers. Can intuition and a real understanding of the load transfer compensate all the knowledge 
obtained in the last five decades? Actually knowledge can never compensate intuition, but of course 
intuition is fed by knowledge and experience. However analysing the vault of building Q in Woerden 
shows that this vault did not meet the demands of the present. Especially the effect of the time 
dependent deformations was underestimated.  
Structurally structures composed of varying materials are complicated. Chapter 4 describes the 
decrease of the stiffness due to the time dependant effects. Embedding infill elements in a structure 
of concrete can change the load transfer if the shrinkage and creep of the infill elements and cement 
vary. For the Fusée Céramique tubes the shrinkage and creep is smaller than the shrinkage and creep 
of the cement, consequently the load transfer changes. The internal force acting at the fusées increase 
and the internal force acting at the concrete decrease. Generally a vault is subjected to a normal 
compressive load, but due to the time dependant affects the force acting at the fusées increases and 
the force acting at the concrete decreases so much that the concrete is subjected to a tensile force. 
Possible the structure cracks. Due to the cracks the stiffness will decrease substantially. For the Fusée 
Céramique vaults this effect is hazardously. Due to the decrease of the stiffness the buckling resistance 
will decrease too and possibly the structure falls down. The fact that fusée vaults could stand for 
fifty years or more proves only that the safety factor is larger than 1.0 , but does not prove that these 
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structures meet the safety demanded by the codes. Slender vaults constructed with one layer of fusées 
and a span of 14 m or more can be unsafe and have to be strengthened. 
As shown in chapter 6 the existing vaults can be strengthened and stiffened easily with a simple truss 
composed of two diagonals. Due to the strengthening the bending moments decrease, the stiffness 
increases, the buckling length will decrease, consequently the buckling resistance will increase too.  
To design these structures with a minimal need of material we have to understand very well the time 
dependent effects for structures composed of varying materials. If we compose structures of two or 
more materials with varying features then we have to be aware of the effect of these features on the 
load transfer. 
Nowadays a designer has to choose an infill with respect to the structural features and the 
environmental impact. Chapter 8 describes the features of varying infill elements. A natural 
material as timber or bamboo or a composite of natural fibres as cardboard can be a good substitute 
for céramique elements. In the sixties of the past century the Fusee Céramique system was not 
competitive anymore. The construction of the roofs on the side, positioning the fusées one by one and 
pouring the liquid concrete in two layers was labour intensive. The low cost of construction could not 
compensate the reduction of the cost of cement and steel. Nowadays designers have to find a new cost 
effective method. For structures of concrete the cost of the moulds are substantial, reusing the moulds 
as much as possible reduces the cost significantly. Partitioning the roofs in small identical units and 
prefabricating these units in reusable moulds will reduce the cost much. The cost of the moulds can 
be reduced even more if the curvature is constant, consequently the line of system will be following 
a circle segment. Actually for cylindrical vaults a circle segment is structurally less efficient than a 
parabola. However due to the strengthening as described in chapter 9 the bending moments will be 
small and will not influence the stresses much.
Curving an infill according to the curvature of the vault is possible if the infill is not very stiff. Possible 
a supple infill can be composed of a bundle of small tubes of bamboo or straw.  A stiff element has to 
be facetted to follow the curve of the vault. Otherwise a cylinder is curved in one direction. Changing 
the direction of the tubes offers the possibility to use straight elements. Chapter 10 described the 
construction of prefabricated elements with cardboard tubes perpendicular to the span.
For a structure subjected to a normal compressive force the normal stresses will increase reversibly 
with the ratio of the diameter of the tubes and height of the structure. For a structure of concrete the 
increase of the compressive normal stress is profitable. The increasing normal stress can compensate 
the tensile bending stress and prevent cracking of the structure. For low-rise vaults subjected to 
a substantial thrust it is favourable to position the infill tubes perpendicular to span provided the 
bending moments and shear stresses are small. Strengthening a vault with diagonals as described 
in chapter 6 and 9 reduces the bending moments and shear stresses and increases the buckling 
resistance substantially. A prefabricated strengthened vault with a thickness of 110 mm and a span of 
14.4 m can transfer easily the heavy loads for a green roof usable for all kind public activities. A hollow 
core element with a span of 14.4 m can also transfer this load, but then the thickness is 400 mm at 
minimum. The thickness of the vault and the hollow core elements shows a ratio of 110/400 = 0.28 , 
so the need of material is much smaller. 
For structures, subjected to bending, placing the tubular infill perpendicular to the span can increase 
the shear stresses.  To define the shear stresses due to the infill the structure can be schematised 
as a Vierendeel-truss. The schematisation is tested with Finite Element calculations. Furthermore 
two prefabricated elements were constructed and put to the test. The experiments showed that 
the structures could transfer a larger loading than predicted with the calculations. The vaults with 
cardboard tubes placed perpendicular to the span can transfer the loads safely.
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Conclusions 

Due to the minimised need for materials form-active structures perform well and can be a good 
alternative to create environmental friendly buildings. However a form-active structure is structurally 
optimal if  the line of thrust coincides the line of the system.  For any other load the structure will 
be subjected to bending. In practice structures are subjected to varying loads, consequently these 
structures are subjected to bending moments. For the low rise vaults the differences between the 
curvature  of a parabola, catenary or circle segment are quite small, generally smaller than the 
thickness of the vault, so the bending moments due to the loads are small too. Strengthening these 
structures with diagonals will be effective to reduce these bending moments.
Environmentally friendly infill elements will reduce the self-weight, embodied energy and emissions of 
buildings for roofs as well as floors. 
Tubular infill elements can be positioned parallel or perpendicular to the span. For a structure of 
concrete, subjected to normal compressive force, positioning the infills perpendicular instead of 
parallel to the span will increase the normal stresses. Normal compressive stresses can compensate, 
at least partly, the tensile bending stresses and prevent the structure of cracking. Probably a vault with 
embedded tubular infills positioned perpendicular to the span is stiffer than a vault with tubular infills 
parallel to the span.
For a structure of concrete subjected to bending the positioning the infill elements perpendicular 
instead of parallel to the span will increase the bending stresses slightly but will increase the shear 
stresses above and below the infill elements proportionally with the reduction of the area. Further an 
increase of the width between the infill elements will decrease the shear stresses between the infill 
elements.  
To define the shear and bending stresses the structure is schematised as a Vierendeel truss. This 
schematisation can be used for floors as well as vaults. For vaults the bending moments are much 
smaller than the bending moments acting on floors.Strengthening the vaults with diagonals will 
reduce these stresses further. Consequently for vaults the bending stresses and shear stresses are 
much lower than for floors. Probably the increase of the shear stresses due to the infill will not be 
decisive for the resistance of the strengthened structure. 

Further research

To overcome the problems of in particular cities, owners must be stimulated to convert roofs to green 
and useful areas, to produce food or energy or for any other environmental friendly activities. Due to 
these activities the permanent and live loads will rise substantially. Classification of roofs for the these 
loads further, concerning a more or less limited accessibility for the public, will be helpful to design 
these roofs well or to strengthen existing roofs without increasing the cost of construction excessively. 
Due to the efficient load transfer form-active structures can transfer heavy loads for substantial spans 
without significantly increasing the need of material. 
The possibilities to acquire technical knowledge from the past seem to be underestimated. Of course 
nowadays technical knowledge is much more than half a century ago, nevertheless we can learn 
much from the past and in particular from the buildings and structures, designed without the help 
of computers, advanced theories and extensive calculations . Mostly these buildings could transfer 
the loads safely for long periods.  In some way these structures can be considered as long-term 
experiments; in this way the past can be a source of knowledge. Generally it is not allowed for public 
to be present when a building is pulled down. Nevertheless it is for researchers and designers most 
interesting to observe the demolishing of a building. Especially if it is possible to load the structure 
step by step till it falls down to define the ultimate bearing capacity. 
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To learn from the past the information must be accessible. Often drawings and calculations can’t be 
found any more. Consultancies are ended or sold, for example if the owner is retired. Possibly archives 
are lost when the firm is sold or closed. By preference documents describing the design and all the 
calculations are collected, stored and archived by the government, digitally as well as in hard copy. Due 
to the fast progress in computer technology it can be difficult to read digital information stored in the 
past with hardware and software not available anymore. 
This research explores the possibilities to use infill elements embedded in concrete vaults to reduce 
the embodied energy and CO2 emissions. Possibly infill elements can be helpfully to reduce the 
environmental load of floors and walls too. Probably the described techniques to strengthen vaults and 
arches are useful too for arches and vaults of timber, steel, masonry, glass, bamboo, cardboard or any 
other material.   
The resistance of the tested elements shows that the curved vault could transfer a larger load than 
predicted by the calculations. In this thesis the vaults with embedded infill are schemed  as Vierendeel 
trusses with webbars and flanges. Probably this method to scheme these vaults is on the safe side. The 
tests gave an indication of the ultimate resistance of these structures with tubes perpendicular to the 
span. Probably an increase of the centre-to-centre of the infill elements near the supports will increase 
the resistance of the vault favourably. To define the shear stresses and ultimate shear resistance 
between the infill elements further, it is recommended to test more elements with a varying centre-to-
centre distance and a varying diameter. 
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