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Why be afraid of the infinity of truth?
Joy resides in every inch of progress.

Hu Shih
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SUMMARY

N the Geomatics domain, a point cloud refers to a data set which records the coordi-
I nates and other attributes of a huge number of points. Conceptually, each of these
attributes can be regarded as a dimension, representing a specific type of information.
Apart from routinely concerned spatio-temporal dimensions for coordinates, other di-
mensions such as intensity and classification are also widely used in spatial applications.
In fact, more dimensions can be involved. For instance, a point in the hydraulic mod-
elling grid also records the flow direction, speed, sediment concentration, and other re-
lated attributes. As these point cloud data can be directly collected, computed, stored
and analyzed, this thesis proposes the term — nD-PointCloud, as a general spatial data
representation to cover them.

At present, drastically increasing production of nD-PointCloud data raises essential
demand for smart and highly efficient data management and querying solutions. How-
ever, we lack effective tools. Prevalent software for nD-PointCloud processing, analyzing
and rendering are built on file-based systems, requiring substantial development of data
structures and algorithms. To make things worse, when other data types are involved,
multiple formats, libraries and systems need enormous effort to be integrated. Aimed
at generic support for diverse applications, DataBase Management Systems (DBMSs)
on the other hand avoid these issues to a large extent. However, since they are initially
developed to resolve 2D or 3D issues, they do not provide native support for nD data
indexing and operations. Yet the 2D and 3D operators cannot be easily extended to nD.

This thesis aims at developing a generic yet efficient solution for managing and query-
ing nD-PointCloud data. The work is based on an existing solution called PlainSFC,
which maps nD data into 1D space. PlainSFC is implemented in the DBMS, adopting
space filling curve based clustering and B+-tree indexing strategies. Besides, PlainSFC
applies an advanced querying mechanism which refines hypercubic nD spaces to 1D
ranges recursively to approach the query geometry for primary filtering. This achieves
high querying efficiency. However, the solution still has drawbacks, and this research
focuses on resolving them by developing and using novel methods:

* A continuous Level of Importance (cLol) method for data organization to elimi-
nate visual artifacts of density shocks in points’ rendering, which is introduced by
conventional tree structures such as Quadtree or Octree. The cLol method com-
putes an importance value for every point according to an ideal distribution gen-
eralized from the discrete distributions of those tree structures. This forms an ad-
ditional cLol dimension, and each point actually represents a level. By integrating
the cLol dimension into PlainSFC, smooth and efficient rendering is realized.

¢ An nD-histogram approach to improve querying efficiency on non-uniformly dis-
tributed data. PlainSFC decomposes the nD space into sub-spaces recursively to
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Xiv SUMMARY

approach the query geometry without considering point distribution. This is not
optimal when the distribution of points is severely skewed. To improve this, an
nD-histogram which records the number of points inside each nD sub-space is
established as a representation of data distribution. The developed solution called
HistSFC decomposes and refines the nD space more smartly, which improves the
accuracy and efficiency of primary filtering.

¢ A convex polytope querying function. Besides orthogonal window queries, the
polytope query, which is the extension of the widely adopted polygonal query in
2D, also plays a critical role in many nD spatial applications. To address this type of
query, an easy-to-use polytope formulation for querying is firstly proposed. Then,
based on PlainSFC and HistSFC, efficient intersection algorithms are developed
for convex polytope querying on nD point clouds. These algorithms are tested
through experiments with up to 10D point data. Using this newly developed func-
tion, applications including perspective view selections and flood risk queries are
resolved more efficiently, achieving sub-second performance.

Additionally, other optimization techniques such as parallelization are developed
and experimented with, which also bring performance gain. To verify the whole frame-
work, several benchmark tests devised by considering real applications are conducted,
and comparisons with different state-of-the-art solutions are performed. The result shows
that the newly developed solution outperforms the others, overall. In certain cases, the
solution can be applied without further optimizations. However, this will not be the end.
Rapidly arising high tech such as cloud computing platforms can boost the solution fur-
ther to incorporate more data and users. Potential nD-PointCloud based applications
still need to be explored, prototyped and tested to serve the society in practice.



SAMENVATTING

In het Geomatics domein verwijst een puntenwolk naar een dataset die de coérdinaten
en andere attributen van een groot aantal punten vastlegt. Conceptueel kan elk van deze
attributen worden beschouwd als een dimensie, die een specifiek type informatie verte-
genwoordigt. Naast de routinematig betrokken ruimtelijk-temporele dimensies voor co-
ordinaten, worden ook andere dimensies, zoals intensiteit en classificatie, veel gebruikt
in ruimtelijke toepassingen. In de praktijk kunnen er meer dimensies betrokken zijn.
Een punt in een hydraulisch modelleringsraster registreert bijvoorbeeld ook de stroom-
richting, snelheid, sedimentconcentratie en andere gerelateerde attributen. Aangezien
deze puntenwolk gegevens direct kunnen worden verzameld, berekend, opgeslagen en
geanalyseerd, stelt dit proefschrift de term nD-PointCloud voor als een generieke repre-
sentatie van ruimtelijke gegevens.

Op dit moment verhoogt de drastisch toenemende productie van nD-PointCloud-
gegevens de essentiéle vraag naar slimme en zeer efficiénte oplossingen voor gegevens-
beheer en query’s. Het ontbreekt echter aan effectief digitaal gereedschap. Veelvoor-
komende software voor nD-PointCloud-verwerking, -analyse en -weergave is gebouwd
op bestandsgebaseerde systemen, waarvoor een aanzienlijke ontwikkeling van gege-
vensstructuren en algoritmen nodig is. Om het nog erger te maken, als er andere ge-
gevenstypen bij betrokken zijn, vergen meerdere formaten, bibliotheken en systemen
een enorme inspanning om te worden geintegreerd. Gericht op generieke ondersteu-
ning voor diverse toepassingen, vermijden Database Management Systemen (DBMS’en)
daarentegen deze problemen grotendeels. Omdat ze echter in eerste instantie zijn ont-
wikkeld om 2D- of 3D-problemen op te lossen, bieden ze geen directe ondersteuning
voor nD-gegevensindexering en -bewerkingen. Eveneens kunnen de 2D-operatoren en
3D-operatoren niet eenvoudig worden uitgebreid tot nD.

Dit proefschrift heeft tot doel een generieke maar efficiénte oplossing te ontwikke-
len voor het beheren en opvragen van nD-PointCloud gegevens. Het werk is gebaseerd
op een bestaande oplossing genaamd PlainSFC, die nD gegevens in 1D-ruimte in kaart
brengt. PlainSFC is geimplementeerd in een DBMS, waarbij gebruik wordt gemaakt
van op ruimte vullende curve gebaseerde clustering en B+-tree indexeringsstrategieén.
Bovendien past PlainSFC een geavanceerd query mechanisme toe dat recursief hyper-
cubische nD-ruimten verfijnt tot 1D-bereiken om de query geometrie voor primaire fil-
tering te benaderen. Hierdoor wordt een hoge query-efficiéntie bereikt. De oplossing
heeft echter nog steeds nadelen, en dit onderzoek richt zich op het oplossen ervan door
nieuwe methoden te ontwikkelen en te gebruiken:

e Een continue Level of Importance (cLol)-methode voor gegevensorganisatie om
visuele artefacten van dichtheidsschokken in de weergave van punten te elimine-
ren, die wordt geintroduceerd door conventionele boomstructuren zoals Quadtree
of Octree. De cLol-methode berekent een belangrijkheidswaarde voor elk punt
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volgens een ideale verdeling gegeneraliseerd uit de discrete verdelingen van die
boomstructuren. Dit vormt een extra cLol-dimensie en elk punt vertegenwoor-
digt in feite een niveau. Door de cLol-dimensie te integreren in PlainSFC, wordt
een soepele en efficiénte weergave gerealiseerd.

Een nD-histogrambenadering om de query-efficiéntie op niet-uniform gedistri-
bueerde gegevens te verbeteren. PlainSFC ontleedt de nD-ruimte recursief in sub-
ruimten om de query geometrie te benaderen zonder rekening te houden met
puntdistributie. Dit is niet optimaal wanneer de puntenverdeling ernstig scheef
is. Om dit te verbeteren, wordt een nD-histogram opgesteld dat het aantal punten
binnen elke nD-subruimte registreert als een weergave van de gegevensdistribu-
tie. De ontwikkelde oplossing genaamd HistSFC ontleedt en verfijnt de nD-ruimte
slimmer, wat de nauwkeurigheid en efficiéntie van primaire filtering verbetert.

Een convexe polytoop bevragingsfunctie. Naast orthogonale window query’s, speelt
de polytope-query, die de uitbreiding is van de algemeen aanvaarde polygon query
in 2D, ook een cruciale rol in veel nD-ruimtelijke toepassingen. Om dit type zoek-
opdracht aan te pakken, wordt eerst een gebruiksvriendelijke polytoopformule-
ring voor zoekopdrachten voorgesteld. Vervolgens worden, op basis van PlainSFC
en HistSFC, efficiénte intersectie-algoritmen ontwikkeld voor convexe polytope-
query’s op nD-puntenwolken. Deze algoritmen worden getest door middel van
experimenten met maximaal 10D-puntgegevens. Met behulp van deze nieuw ont-
wikkelde functie worden toepassingen, waaronder selecties van perspectiefweer-
gaven en vragen over overstromingsrisico’s, efficiénter opgelost, waardoor presta-
ties van minder dan een seconde worden bereikt.

Daarnaast worden andere optimalisatietechnieken zoals parallellisatie ontwikkeld
en geéxperimenteerd, die ook prestatiewinst opleveren. Om het hele raamwerk te verifi-
éren, worden verschillende benchmarktests uitgevoerd die zijn opgesteld door rekening
te houden met echte toepassingen, en worden vergelijkingen gemaakt met verschillende
state-of-the-art oplossingen. Het resultaat laat zien dat de nieuw ontwikkelde oplossing
over het algemeen beter presteert dan de andere. In bepaalde gevallen kan de oplos-
sing zonder verdere optimalisaties worden toegepast. Dit zal echter niet het einde zijn.
Snel opkomende high-tech oplossingen, zoals cloud computing-platforms, kunnen de
oplossing een boost geven om meer gegevens op te nemen en meer gebruikers te be-
dienen. Potentiéle op nD-PointCloud gebaseerde applicaties zullen nog verder moeten
worden onderzocht, door prototypes te maken en deze te testen en zo de samenleving
in de praktijk te dienen.



INTRODUCTION

HIS chapter starts by briefly introducing the motivation of this PhD research in Sec-

tion 1.1. This is then followed by two representative applications which provide
readers with a first impression on nD point clouds. They are described in Section 1.2
and Section 1.3. Based on this, Section 1.4 summarizes the issues of state-of-the-art
solutions for nD point data management and querying in general. Then, a potential so-
lution is briefly introduced in Section 1.5. This solution also forms the basis for this PhD
research. After this, Section 1.6 presents research questions and methodology, while Sec-
tion 1.7 shows outline of the thesis.

1.1. MOTIVATION

Point clouds are increasingly used in spatial related domains, to name a few: terrain
modelling, forest estimation, trajectory analysis and Virtual Reality (VR) (Figure 1.1).
Point cloud data features in huge volume. The most commonly used point clouds are
collected by Light Detection And Ranging (LiDAR) sensors, containing up to trillions
(10'2) of points. Besides, point clouds record multidimensional information. Apart from
routinely concerned spatio-temporal dimensions, other dimensions such as intensity
and classification also constitute indispensable part of the data. In specific fields, points
may carry even more information. For instance, in hydraulic modelling, a point may also
record the flow direction and speed, sediment concentration, and other dimensions.

These various dimensions are jointly used to support different applications. Take in-
door navigation in a VR environment as an example, it is sufficient to only show impor-
tant objects along the route to avoid excessive data loading. This can be realized using a
customized dimension which represents importance of objects. Besides, people should
be able to see things through windows and go through doors. The windows and doors
are recognizable in a classified point cloud. Then, a query concerned with XYZ, impor-
tance and classification will form the query for navigation. As information continues to
grow, more dimensions are expected in queries. Generally, I call them nD queries. In
past decades, nD queries have caused significant bottlenecks in practice.
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Figure 1.1: nD point clouds for different applications: (a) 3D visualization (b) fluid modelling (c) GPS trajectory
analysis (d) VR. (Image sources: (a) OXTS (b) Fraunhofer ITWM (c) Topometries (d) Forum 8)

This PhD research aims to develop an efficient solution to address these nD queries.
The core lies in devising efficient data structures and querying algorithms. Existing point
data structures normally use routinely concerned spatio-temporal dimensions — XYZT
— to cluster and index the data. I call these dimensions the organizing dimension. The
other type is the property dimension which is not frequently queried, such as intensity of
reflected laser signals and color expressed by Red, Green, and Blue (RGB) values. They
are affiliated to the organizing dimensions, providing additional information. Depend-
ing on applications, these two types of dimension are interchangeable. The following
Section 1.2 and 1.3 present two representative applications, which provide first impres-
sion of different types of dimensions. Both of them show how imperative it is to develop
areal nD point cloud solution.

1.2. FLOOD RISK QUERYING

Flood risk mapping projects generate huge amount of modelling data to assess the flood
risk. The mapping process mainly includes two parts. The first part concerns running
a 1D and 2D coupled hydrodynamic model to compute water depth, flow velocity and
direction at different time steps, given a specific breach case. The model stores results
in a 2D grid covering the modelling basin (Figure 1.2). The modelling results are then
used for making various maps such as the maximum inundation map and inundation
duration map, in a following step. Also, engineers compute potential loss tables by com-
bining flood maps with social economic data. The water authorities collect these final
products, and use them for decision making. However, they omit a large part of original
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modelling results which are cuambersome to manage, analyze and present. This certainly
has drawbacks: the products are “static" (Figure 1.3) and no more details can be derived;
the maps fail to address new requirements, which significantly confines the use.

éxvv % YAV TAVavy
SESRs et
RORERERE,
DG

YRR 5
KRARERS
VAVAVAVALN,

Figure 1.3: A typical flood map. Image source: ESA

In fact, any specific flood map can be expressed and formed by a type of query (Liu,
Oosterom, et al., 2021). For example, the inundation extent map can be generated by se-
lecting all the grid cells with water depth greater than 0, while the arrival time map can be
generated by selecting cells at different time steps that have been flooded. In addition,
new requirements such as flood situation around certain objects can also be resolved
by using specific queries. Hence, to address issues mentioned above, developing an ef-
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ficient database for ad-hoc queries is imperative. Due to the irregular grid (Figure 1.2),
data storage and querying in the form of rasters would be cumbersome and inefficient. A
possible solution is to extract the centroids of all cells and store the attributes including
flow velocity, direction and inundation depth in these centroids. These attributes can ei-
ther be used as the property dimension or organizing dimension for data management.
Flood risk analysis can then be performed by querying this nD point cloud database us-
ing all these relevant dimensions besides XYZ.

1.3. TOPOGRAPHIC VISUALIZATION

Both industry and academia have already experienced technical bottlenecks in visualiz-
ing large point clouds. For instance, the Fugro company has established an inspiration
center to introduce VR services to users. The VR service builds scenes directly on massive
points. However, due to limited memory capacity, the VR headset can only store small
number of points, which confines the size of the scene. If more points were inserted, the
headset would crash. By adopting prevalent indexing structures such as Quadtree (Fig-
ure 2.8) or Octree, dynamic buffering can be achieved. When zooming in, which means
the eye moves closer to the points, more details can be seen. So, the headset will render
points stored at lower levels of Quadtree (Figure 2.8) or Octree. Meanwhile, blocks out-
side the view will be purged out from the memory. With this data structure, large scenes
can be built. However, this structure has a side effect, the “density shock" (van Oosterom
et al., 2017): sharp boundaries belonging to blocks at different levels can be seen (Fig-
ure 1.5). This is because during the rendering, blocks with different densities are shown
in the same scene due to different distance to the view point. Such discrete densities will
also cause issues for related analysis.

Importance

Figure 1.4: A Quadtree structure (Schiitz et al., 2020): a block at an upper level indexes four blocks at lower
levels, while the number of points inside any block is the same. More important points reside at an upper
level, known as level of importance. Octree applies a similar structure, but is used for 3D data, with each block
covering eight child blocks.

To solve the problem caused by the discrete Level of Importance (dLol) implied in
the Octree, we should develop “continuous” levels for data organization (van Oosterom,
2019). In a continuous Level of Importance (cLol) structure, every point is assigned an
importance value indicating its ranking among the whole data set. Using it to select
points can make the rendering more smooth and natural, e.g., the bird’s-eye view shown
in Figure 1.6. The cLol may thus be treated explicitly as an organizing dimension in the
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Figure 1.5: The density shock introduced by Octree

Figure 1.6: Visioning a scene based on cLol: no density shocks

data storage, to guarantee efficient selections.

The cLol value should be computed reasonably to support functionalities. Schiitz
et al. (2019) used a uniform random sampling approach by only considering visual ef-
fects, while van Oosterom (2019) proposed to use an exponential distribution to model
cLol. Classification may also get involved in cLol computation if more advanced require-
ments are posed such as indoor navigation (Liu et al., 2018a). Different cLol design will
also have an influence on the querying efficiency, which is another essential aspect to
consider. To conclude, introducing appropriate organizing dimensions into the data or-
ganization is needed to efficiently support nD applications.

1.4. PROBLEMS OF STATE-OF-THE-ART SOLUTIONS

State-of-the-art solutions fail to handle nD point data efficiently (Liu et al., 2018b). Preva-
lent software for point processing and visualization are based on files. Some are directly
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constructed on LAS/LAZ! files, HDF? files, while others adopt vendor customized for-
mats (Section 2.4). Specific data structures with additional sorting and indexing support
have to be developed. With available Application Programming Interfaces (API), devel-
opers may program using script languages such as Python to resolve specific tasks in a
short time. However, when a new function is required, redevelopment or additional de-
velopment must be performed. Yet the scalability cannot be guaranteed. Besides, when
other data types such as rasters are involved, multiple formats, libraries and systems
need enormous amount of effort to be integrated.

Aimed at generic purposes, Database Management Systems (DBMS) addressed these
issues to a large extent. Oracle and PostgreSQL offer state-of-the-art flat table and block
based solutions for managing point clouds (Section 2.5). Flat table normally stores each
point as a record, and uses one column for each dimension; the block approach groups
points into blocks and then indexes these blocks in a base table. It is possible to build
a B-tree index on one or several columns of flat tables, but it is only favorable for lim-
ited types of queries. If the user selects non-indexed columns, the execution would most
likely become much inefficient. The block approach first utilizes spatial indexes such
as the R-tree to locate blocks that intersect the query geometry. Then it unpacks the
blocks on the query boundary for filtering to achieve accuracy at the individual point
level. However, if the blocks do not fit well within the query geometry, the process can
be very slow due to the unpacking and filtering processes. To make things worse, there
is only support for a limited number of dimensions to be indexed, e.g., at most 3 di-
mensions for Oracle SDO_PC (Oracle, 2019) and 4 dimensions with PostgreSQL (Strobl,
2008).

1.5. POTENTIAL SOLUTION: FROM ND TO 1D

Some previous studies proposed to organize point data using Space Filling Curves (SFCs)
(Section 2.3.1). A SFC s a curve that passes by all basic units in a multidimensional space
only once. It preserves spatial relationships of objects it covers and has been widely used
to cluster and index spatial data (Lawder, 2000a). Morton curve (also called Z-order or
N-order curve) is a representative that has been commonly studied and practiced due
to the simplicity of mapping functions (Morton, 1966). It is based on interleaving the
bits from the coordinates. For example, given a point with coordinates (3,2), its binary
representation is (11, 10). By interleaving these bits, the Morton key 1101 can be derived,
which is the 14! node on the curve (Figure 1.7b). Points are then sorted according to
the SFC codes to be grouped together, while their spatial relationship still retains.

SEC approaches have been adapted and improved for point data management (Wang
& Shan, 2005; Zhang et al., 2014). Specifically, van Oosterom et al. (2015) presented a
prospective SFC mapping-based clustering and indexing framework, which I will call
PlainSFC, for the sake of convenient referencing. Basically, PlainSFC maps both multi-
dimensional points and query geometries into the one-dimensional SFC space so that a
one-dimensional indexing structure such as the B+-tree can be used. In theory, the time
complexity for querying is low. PlainSFC has been studied since then (Martinez-Rubi

Thttps:/ /www.asprs.org/divisions- committees/lidar- division/laser-1las-file- format- exchange- activities
2https:/ /www.hdfgroup.org/
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Figure 1.7: 2D Morton curves

et al., 2015; Psomadaki, 2016; Guan et al., 2018; Meijers & van Oosterom, 2018). All the
research demonstrates the superiority of PlainSFC for managing and querying spatial
points within 4D, but how it performs in higher dimensional spaces is still unknown. Be-
sides, the evaluation of PlainSFC’s performance was limited. How different factors such
as data distribution, query type and configuration of PlainSFC affect the performance is
not revealed.

1.6. RESEARCH QUESTIONS AND METHODOLOGY

After introducing the problems faced by current solutions including nD point data orga-
nizing, indexing and querying, the thesis proposes the main research question and the
following sub-questions.

What is a highly efficient nD point cloud data structure supporting dif-
ferent types of applications?

1. To what extent can the transformation between the organizing dimensions and the
property dimensions facilitate the management and query of point clouds? How
to determine the type of dimensions when managing the data?

2. What is the role of continuous Level of Importance (cLol) in managing nD point
clouds? How to compute the cLol value for each point?

3. How much does the point distribution influence the performance of query execu-
tion?

4. Besides the common orthogonal window queries on different organizing dimen-
sions, what other query geometries are needed and can be efficiently handled by
the data structure?
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5. What queries and processes should be included in a benchmark to learn the bal-
anced performance of the data structure? How to set up a representative bench-
mark?

The research aims at developing a highly efficient nD point data structure support-
ing diverse spatial-related applications. Figure 1.8 presents the overall methodology of
the PhD research. By literature study and software experiment, the research identifies
and focuses on addressing three issues of PlainSFC and other existing solutions. First,
to eliminate density shocks caused by dLol, the research investigates the mathematical
approach to convert dLol to cLol representation so that smooth and fast rendering of
points can be achieved. Second, the design of PlainSFC does not take account of non-
uniform point distribution, while in practice, this can significantly influence the query-
ing performance. Thus, the research explores the possibility of using nD-histogram tech-
niques to improve PlainSFC. The theoretical foundation is laid out to analyze the effec-
tiveness of the nD-histogram under different circumstances, e.g., different dimension-
ality and distributions. Third, the research resolves point selection with irregular query
geometries. Next to the widely used orthogonal nD windows, other nD query geometries
which are derived from 2D or 3D primitives (e.g., nD-ball or nD-triangle) can also be fre-
quently used for selecting points. To generally represent and approximate these query
geometries, the research develops and uses the nD-polytope model delimited by a set
of half-spaces. nD-polytope querying method based on PlainSFC is then proposed and
implemented.

By integrating these novel techniques into PlainSFC, the new solution is expected to
outperform state-of-the-art solutions significantly, and scale logarithmically with the in-
crease of data size. To verify this, the final phase of the research is to establish a compre-
hensive benchmark to test the solutions. The benchmark should be devised considering
various use cases based on different data sets such as LiDAR data and trajectory data. In
this process, it is likely that my solution does not initially perform as is expected. Then,
bottlenecks will be identified. Optimizations and improvements should be made in the
designing and implementing phase, and verification will be conducted once more. This
process iterates until the three main issues are solved and fine scalability is achieved.

On the other hand, the following aspects have been limited or excluded in this re-
search:

¢ Development of advanced rendering algorithms for enrichment of point clouds
¢ Algorithms of point registration, segmentation, classification and identification
¢ Implementation on distributed platforms, instead of a standalone server, for scal-

ing out the core solution

1.7. OUTLINE

The rest of the thesis is organized as follows: Chapter 2 provides essential background
knowledge for understanding the thesis. Chapter 3 develops a novel cLol method for
point clouds based on recursive refinement of discrete levels. Essential mathematical
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Figure 1.8: Methodology of this PhD research, linking to different chapters

details are provided. The computed cLol dimension can then be integrated to PlainSFC
to realize smooth and fast visualization of points, eliminating density shocks. Chap-
ter 4 devises an nD-histogram technique to address poor performance of PlainSFC on
querying non-uniformly distributed data. Statistical concepts and theorems are estab-
lished to interpret the effectiveness of the nD-histogram with respect to different point
distributions. Besides, experiments based on synthetic data are conducted to verify the
theorems. Then, Chapter 5 verifies the nD-histogram technique with real use cases. The
performance of this improved solution on window queries is evaluated by comparing to
PlainSFC and other state-of-the-art solutions. The chapter also makes further optimiza-
tions concerning the data organization and querying process to improve efficiency, e.g.,
parallelization. To address irregular query geometries, Chapter 6 develops the querying
algorithm for a different class of query geometry — convex nD-polytope. It serves as a
expressive and flexible solution for non-orthogonal query geometries. Benchmark tests
are performed using both synthetic data and real world data to verify this new function-
ality. Chapter 7 further exploits the improved solution for more applications such as in-
door visualization, change detection and trajectory extraction. More functionalities are
developed in this chapter and convincing preliminary results are acquired. Chapter 8
concludes the whole thesis, and describes future work. Table 1.1 lists the publications
resulting from this PhD research, and the relationship to different chapters.
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Table 1.1: PhD publications, referenced by different chapters

No. Publications ordered by date Ch.
1 van Oosterom, P, van Oosterom, S., Liu, H., Thompson, R., Meijers, 3
M., & Verbree, E. (2022). Vario-scale distribution of point clouds over
continuous levels of detail. ISPRS Journal of Photogrammetry and Re-

mote Sensing, major revision.

2 Liu, H.,, Thompson, R., van Oosterom, P, & Meijers, M. (2021). Execut- 6
ing convex polytope queries on nD point clouds. International Jour-
nal of Applied Earth Observation and Geoinformation, 105, 102625.

3 Liu, H., van Oosterom, P, Mao, B., Meijers, M., & Thompson, R. 5,6
(2021). An efficient nD-point data structure for querying flood risk.
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XLIII-B4-2021, 367-374.

4 Liu, H., van Oosterom, P, Meijers, M., & Verbree, E. (2020). An opti- 4
mized SFC approach for nD window querying on point clouds. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, VI-4/W1-2020, 119-128.

5  Liu, H., van Oosterom, P, Meijers, M., Xuefeng, G., Verbree, E., & 4,5
Horhammer, M. (2020). HistSFC: Optimization for nD Massive Spa-
tial Points Querying. International Journal of Database Management
Systems, 12(3), 7-28.

6 Zhang, L., van Oosterom, P, & Liu, H. (2020). Visualization of point 7
cloud models in mobile augmented reality using continuous level
of detail method. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, XLIV-4-W1-2020, 167-170.

7 Liu, H., Xuefeng, G., Meijers, M., & van Oosterom, P. (2019). The de- 4,5
sign and application of histogram trees for querying massive LiDAR
point clouds [in Chinese]. In Proceedings of 5th China LiDAR Confer-
ence, (p. 8).

8 Liu, H., van Oosterom, P, Meijers, M., & Verbree, E. (2018). Manage- 7
ment of large indoor point clouds: an initial exploration. Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XLII-4, 365-372.

9  Liu, H., van Oosterom, P, Meijers, M., & Verbree, E. (2018). Towards 1,2
10'%-level point clouds management - a nD PointCloud structure. In
Geospatial Technologies for All: Short papers, posters and poster ab-
stracts of the 21th AGILE Conference on Geographic Information Sci-
ence, (p. 7).




BACKGROUND KNOWLEDGE

HIS chapter provides general background knowledge to comprehend the thesis. Sec-

tion 2.1 introduces the object of this research — nD-PointCloud. Then, Section 2.2
presents previous studies on Level of Importance (Lol), a critical dimension that can
be leveraged to manage huge number of points. Sections 2.3 to 2.5 review point data
accessing methods, file based solutions and DBMSs developed for point data manage-
ment. Section 2.6 describes the potential solution — PlainSFC, which is a basis for the
following chapters.

2.1. ND-POINTCLOUD

A point cloud generally refers to a set of points in 3D space. We can distinguish each
point by its XYZ coordinates. A point may also contain other attribute information, such
as color, intensity and classification. Conceptually, attribute and dimension are equiv-
alent terms, both representing a specific type of information. This thesis adopts the di-
mension term, and uses nD-PointCloud to cover the point cloud data.

I propose nD-PointCloud as the third spatial data representation, besides the vec-
tor and the raster. Unlike the point or the multi-point which is a vector geometry, nD-
PointCloud can be directly collected, structured, stored, interpreted and analyzed, which
forms a new paradigm. That is, many applications can be addressed with only nD-
PointCloud. A significant advantage of nD-PointCloud lies in the ultra high accuracy
which may be decreased when converting to rasters. Besides, an nD-point is still in-
tuitive to interact with and convenient for computation. In contrast, nD vector repre-
sentation including nD-polygon or nD-polyline can cause very expensive processing for
computations such as intersection.

2.1.1. ND-POINTCLOUD FROM DIFFERENT SOURCES

This section presents 3 major sources of nD-PointCloud, which are also used in the re-
search. They are Light Detection And Ranging (LiDAR) systems, navigation systems and
conversion from other data types.

11
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LIDAR SYSTEMS
A LiDAR scanner emits laser pulses and receives signals reflected by objects. In this way;,
the 3D coordinates of a point on the object can be derived based on the emitting angle,
time duration and location of the scanner. Since the introduction of the LiDAR technol-
ogy in the 1960s, the volume of point cloud data has seen a rapid increase. This growth
mainly results from the developments of all kinds of sensors: mobile, terrestrial, air-
borne and satellite laser systems. Such systems aim to acquire and build an accurate
model of the 3D environment based on points. To keep data updated, repeated scans of
the same area are normally conducted at a period of days, months or years depending
on the applications. For example, the “sand engine" project (Stive et al., 2013) scans a
part of dutch coastline every day to detect changes, to investigate how nature spreads
the sand for beach nourishment along the coast as time goes by. Another instance is
the AHN data set (AHN, 2014), which is a detailed elevation model of the whole Nether-
lands measured by Airborne Laser Scanning (ALS). AHN is updated around every 5 years.
The second mission collected 640 billion points (Wijga-Hoefsloot, 2012), and the third
and fourth missions have also been conducted. In summary, nD-PointCloud acquired
this way features in large volume and relatively low update frequency. The dimensions
involved, apart from the XYZT, are mostly related to the specific LIDAR system. These
include intensity, number of returns and flight angle for example.

Since laser signals can hardly penetrate the water due to absorption, MultiBeam
EchoSounders (MBESs) are employed to acquire the topography of the river or sea bed.
MBES utilizes sonar instead of laser to detect objects beneath water.

NAVIGATION SYSTEMS

Positioning techniques such as Global Navigation Satellite System (GNSS) (Hofmann-
Wellenhof et al., 2007), Automatic Identification System (AIS) (Bhattacharjee, 2017) and
indoor positioning system (Xu et al., 2013) collect users’ positions in real time. The final
result consists of a large number of trajectories composed by the points. These trajec-
tories are then used for analyzing and mining mobility patterns, traffic and social net-
works (Zheng et al., 2010). As a piece of spatio-temporal information, the trajectory is
normally modeled by 3D polylines in XYT space (Wang et al., 2021). However, an nD-
PointCloud representation is also possible by adding an additional trajectoryIlD dimen-
sion to each point of the trajectory. Other motion parameters including speed, accel-
eration and direction can also be incorporated as separate dimensions (Ye & Ai, 2017).
Using nD-PointCloud can accelerate several critical operations including kNN, Reverse
k-Nearest-Neighbour search (RkNN) and spatial-textual search (Wang et al., 2021). In
other cases, a full trajectory may be needed. Then, a mapping table with points indicat-
ing the composition of the trajectory can be additionally defined and used. The trajec-
tory point are updated very frequently, within seconds or minutes.

CONVERSION FROM OTHER DATA TYPES

Other than directly collected from sensors, nD-PointCloud data can be acquired by trans-
forming other data types. Dense Image Matching (DIM) is a computer vision technique
to extract 3D point clouds from optical images (Figure 2.1). Conventional photogramme-
try extracts 3D geometries by matching the same feature from different images, based on
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tie points. However, many pixels such as the surface of a road or a green patch of veg-
etation may not be recognised as specific features, so feature-based algorithms are less
favourable for extracting dense point clouds (Remondino et al., 2013; Kodde, 2016). Con-
sequently, DIM algorithms which obtain a corresponding point for almost every pixel are
developed. Color information can also be captured for each point from the original im-
ages. The volume of DIM nD-PointCloud is also huge.

Figure 2.1: nD-PointCloud from dense image matching (Wenzel, 2015): the left four images covering a same
region are matched to derive the 3D point cloud model

Modelling results can also be converted. As is indicated in Section 1.2, geophysi-
cal models normally run on the irregular mesh or grid. The results including flow or
mechanical parameters are stored in each cell, which naturally form an nD-PointCloud
data set where each point refers to the centroid of a cell. Representation using rasters is
cumbersome: irregular cells have to be averaged and the accuracy can be damaged; the
converted rasters also contain lots of empty cells which will make the storage and query-
ing inefficient. In contrast, nD-PointCloud can support very high accurate modelling,
incorporating all parameters computed. Generally, nD-PointCloud can be used to man-
age all results from Finite Element Method (FEM) which is widely adopted in structural
analysis, heat transfer, fluid flow and mass transport.

2.1.2. DIMENSIONS IN ND-POINTCLOUD

Various point clouds contain a large number of diverse dimensions. To manage them
well, the nature of different dimensions should be identified. This section selects and
interprets several representative dimensions which are concerned in this research, from
the perspective of data management and querying:

e Spatial dimensions XYZ are most often the fundamental dimensions to organize
data, as spatial analysis is still the major task. XYZ values are normally confined in
a limited scope with certain redundancy, e.g., several points may share the same X
value. Besides, the Z dimension may not be used as often as the X and Y dimension
in conventional spatial applications such as cartography and positioning. The Z
values of the terrain also follow severely skewed distribution, which differs signif-
icantly from the X and Y values obeying approximately normal distribution. Last
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but not least, XYZ are not independent dimensions. Objects in the space such as
houses and bridges cause certain correlations among them.

¢ Temporal dimension is another critical dimension as it grasps changes of any ob-
ject. It is a dynamic dimension. That is, its range can be changed and unlimited,
and it is directly related to data updating. As it is also involved in spatio-temporal
queries, the priority could be equal or even above spatial dimensions depending
on the time granularity of the data and applications’ requirements. For example,
trajectory analysis needs frequent temporal computation, while change detection
based on AHN data can only be performed once in a period of several years.

¢ Lol is an additionally introduced dimension which is used to express importance.
Lol influences computation accuracy and efficiency significantly: at higher lev-
els, only the most representative points get involved in the computation, which
can significantly improve the efficiency but with low accuracy; on the other hand,
when a large number of less important points get involved, the computation will
take much more time but the result becomes more accurate. As one data set may
be utilized for multiple applications, there might exist several Lol dimensions.
cLol consists of a series of distinct values. Considering the perception (Jiang, 2013),
points having small Lol values should be much less than points with large values.
The major access pattern of the cLol dimension is to select a continuous portion,
e.g., retrieving points with cLol smaller than some value.

e Classification dimension is essential for semantic analytical purposes. It is added
after post-processing of raw data such as LiDAR or DIM nD-PointCloud. The di-
mension is represented by a limited number of classes, where the number of can-
didates are usually much smaller than that of spatio-temporal dimensions. A sam-
ple encoding can be seen in Table 9 from ISPRS (2019). Some classes may consist
of much more points than other classes, e.g., the ground versus the houses.

e Identity dimension, also represented by ID, is sometimes established to distin-
guish different entities within a class. In a number of applications, ID can be the
only dimension to query, e.g., trajectory extraction and modelling case analysis.

¢ Color, intensity and normals are considered as the property dimension in most
cases. They are less perceptible for selection, and their selectivity is often lower
than the other dimensions. However, they still play important roles in visualiza-
tion, for instance. Whenever an application frequently retrieves points according
to them, they can also be processed as organizing dimensions.

2.2. LEVEL OF IMPORTANCE

Lol is also known as Level of Detail (LoD) in computer graphics. However, as a point is
a 0-dimensional object, the concept of detail is inapplicable. Instead, it is more intu-
itive to say a point is more important than another, and a layer composed by points is
more important than another layer. So, the term, importance, is used. Lol can be used to
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Figure 2.2: Structure of Lol pyramid

generally to solve big data issues. Besides visualization, Lol can also be applied to mod-
elling to balance the accuracy and efficiency. Lol normally forms a pyramid structure
(Figure 5.3).

Luebke et al. (2003) categorized three LoD frameworks for vector and raster data —
discrete LoD, continuous LoD, and view-dependent LoD, in terms of computer graph-
ics. They also presented metrics which can be used to measure and compare the per-
formance of different LoD schemes. Reddy (1997) specifically discussed the perceptual
aspect of LoD structures. This is also critical for visualizing nD-PointCloud, because
point based visualization which leaves surfaces with holes is less perceptible. Besides,
people are accustomed to meshes.

Conventional Lol for point clouds are implicitly embedded in the Quadtree (Finkel
& Bentley, 1974) or the Octree structure (Meagher, 1982). For instance, Xie et al. (2013)
implemented a hierarchical Lol structure using a randomly sampled Octree to manage
massive point clouds. The random sampling is based on two principles: points at the
parent layer should be removed from the child layer for the sake of storage efficiency; the
sampling rate of the child layer depends on the number of parent nodes. Based on this
structure, favorable performance of interaction, neighborhood searching and dynamic
updating are achieved. Apart from these, more recent work can be seen in (Deibe et al.,
2019; Virtanen et al., 2020), adopting similar data structures.

Aiming for an explicit discrete Lol (dLol) framework, Guan et al. (2018) developed a
random sampling algorithm to compute the Lol value for each point (Figure 2.3). In the
algorithm, the original data sets are treated as the bottom layer, and the points at level
i +1 are sampled uniformly to derive the upper level i. The sampling rate is zin with n
the number of dimensions. That is, a point in every 2" + 1 points of level i + 1 will be
randomly selected and inserted into the level i. Totally 32 levels are defined.

Instead of random sampling, Cura (2016) indicated that a suitable Lol should be ho-
mogeneous in space, insensitive to density variations, regular, efficient and determinis-
tic. So, using a virtual Octree, the solution divides points into different layers depending
on their distance to the centers of cells. In fact, the study expressed the idea of cLol
where each point can represent a level, but the implementation was still in dLol. Zheng
etal. (2021) proposed a complex cLol computing method. They first sort all points in the
Z-order. Then, by reversing bits, taking a random mask and removing dummy points, a
new priority ordering index which is actually the cLol value can be derived (Figure 2.4).
This approach can be more efficient at determining representative points than normal
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Figure 2.3: Lol value computation using random sampling (Guan et al., 2018), [ indicates the level

Input: Z-order index 1 2 3 4 5 6 7 x

binary representation 000 001 010 011 100 101 110 111

reverse bits 000 100 010 110 001 101 O11 111

after random mask M =101 101 001 111 011 100 000 110 010
new binary ordering index 6 2 8 4 5 1 7 3
priority ordering index 5 2 7 3 4 1 6 b4

Figure 2.4: An illustration of the priority ordering process (Zheng et al., 2021). The first line describes the input
Z-ordering index. There are 7 points and one dummy point designated as x

random sampling approach according to the testing results. To realize gradual render-
ing of scenes in VR, Schiitz et al. (2019) developed a cLol solution which extracts points
from dLol chunks based on sampling at specified distances. The sampled points are
stored and ordered in a vector array which is then processed inside GPU. Points are then
filtered according to the view frustum and target spacing in the VR environment, to be
visualized.

2.3. DATA ACCESSING METHODS

This section presents some general techniques that are applicable to nD-PointCloud
data management. Two major strategies for data accessing are described: one is the spa-
tial clustering method — Space Filling Curve (SFC), while the other is multidimensional
indexing.

2.3.1. SPACE FILLING CURVES

Asis mentioned, SFC is a curve that passes by all basic units in a multidimensional space
only once. It maps an n-dimensional data space to a one-dimensional data space. SFC
preserves locality of the data: points that are close to each other in the original nD space
are likely to be close to each other in the 1D space, and therefore are also stored physi-
cally together on the disk. The most well-known SFCs include Morton, Hilbert, Gray and
Sierpinski curve (Lawder, 2000a; van Oosterom, 2005). This section focuses on the Mor-
ton curve and the Hilbert curve. Both can be constructed by recursively partitioning the
hypercubic space (Bader, 2012), which is an advantageous feature for querying.
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Figure 2.6: First, second and third order Hilbert curves in 2D space

MORTON CURVE
Morton curve, also called Z-order curve is proposed by Morton (1966). By reversing the
order of dimensions, we get another form, the N-order curve. Figure 2.5 indicates the
subdivision of the 2D space, where different orders of Morton curve can be derived. The
order here means the level of subdivision. Basically, to derive the i‘" order Morton curve,
we copy and place the (i —1)*" order Morton curve to the four quadrants and connecting
their tails and heads.

SFCs are not just defined in 2D, but also in nD. For the Morton curve, the Morton
code can be derived by interleaving the bits of the binary values of all dimensions (Sec-
tion 1.5). An nD point is then mapped to a 1D Morton code.

HILBERT CURVE

Hilbert curve first appears in (Hilbert, 1891). It is also widely employed to manage spatial
data due to the superior clustering effect. Figure 2.6 demonstrates the procedure to de-
rive 2D Hilbert curves with different order. That is, we copy and place the (i — 1) order
Hilbert curve to the four quadrants of the space. Hilbert curves at the top two quadrants
remain the same, while the bottom ones are rotated 90° clockwise and counterclockwise,
respectively. After this, different parts are connected.

Using Hilbert curve, a point will most likely get a different code from the Morton
curve. However, nD encoding and decoding using Hilbert curve are more complex. Butz
(1971) developed a mapping algorithm based on bit operations including shifting and
exclusive OR. This method is improved by Lawder (2000b), who also provided execu-
tive code for encoding and decoding. Besides, based on the Gray code!, Skilling (2004)
developed another approach to derive Hilbert code which is also widely practiced.

Lhttps://en.wikipedia.org/wiki/Gray_code
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Table 2.1: Average farthest distance of the neighbors of all

the points (Faloutsos & Roseman, 1989) Table 2.2: Average number of clusters for all pos-
sible range queries (Faloutsos & Roseman, 1989)

Order Gridlayout Morton Hilbert

2D space Order Morton Hilbert
1 2x2 1.50 1.00 2D space
2 4 x4 2.75 2.00 1 1.22 1.11
3 8x8 4.84 3.28 2 2.16 1.64
4 16 x 16 7.91 4.89 3 441 2.93
3D space 4 9.29 5.60
1 2%x2x2 2.00 1.00 3D space
2 4x4x4 3.31 2.00 1 1.59 1.33
3 8x8x8 5.10 3.23 2 4.49 3.72
4 16 x 16 x 16 7.03 4.20

Faloutsos and Roseman (1989) compared the clustering performance of Morton curve
and Hilbert curve (Table 2.1 and 2.2). Focusing on the number of clusters involved in
queries, Moon et al. (2001) conducted more comprehensive tests and analysis. Results
indicate that Hilbert curve performs better than Morton curve in terms of clustering, but
both can be used to recursively decompose the space.

2.3.2. MULTIDIMENSIONAL INDEXING

Multidimensional indexing mainly consists of hashing and the hierarchical methods
(Gaede & Giinther, 1998). This section focuses on the hierarchical method — tree based
indexing which is the major type dealing with point data. I then categorize these indices
into three groups — the R-tree and variants, the 2"-tree and the B+-tree.

R-TREE AND VARIANTS

R-tree (Guttman, 1984) is the most widely adopted spatial indexing structure. The major
database vendors including Oracle and PostgreSQL implement and use it as the de-facto
approach. The key idea of the data structure is to group nearby objects and represent
them with their Minimum Bounding Rectangle (MBR) in the next higher level of the tree
(Figure 2.7). Since all objects lie within this bounding rectangle, a query that does not
intersect the bounding rectangle also cannot intersect any of the contained objects. In
practice, the R-tree based solutions such as Oracle Spatial normally group points into
blocks, and then build an index on these blocks. The blocks can also be clustered first be-
fore indexing, such as the Hilbert-R tree structure which can significantly improve data
loading performance. Besides, to decrease the overlap ratio between blocks, support fre-
quent updates, and resolve nD queries, variants including the R*-tree (Beckmann et al.,
1990), SR-tree (Katayama & Satoh, 1997) and X-tree (Berchtold et al., 1996) have been de-
veloped. They outperform the normal R-tree in different aspects, but the basic structure
is the same.
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Figure 2.8: Tllustration of Quadtree: (a) subdivi-
sion of the space (b) the tree structure. Image
source: OpenDSA

Figure 2.9: Illustration of Octree: recursive par-
tition of the space and the tree structure. Image
source: Wikipedia

2"-TREE

2"-tree can also be used to index blocks of points. The 2”-tree represents an indexing
category which evenly splits all dimensions in an iteration until the leaf node level. Con-
sidering non-uniform data distribution, the leaf node is defined by a node capacity, and
will not be split further when the number of points contained is below this capacity
(Wang & Shan, 2005). In 2D, 2"-tree refers to Quadtree (Figure 2.8) (Finkel & Bentley,
1974), while it is Octree (Meagher, 1982) in 3D (Figure 2.9). Prevalent software for 3D
point visualization such as Potree and Entwine uses the Octree to organize data. Sim-
ilar to R-tree, high dimensional 2”-tree solution is rarely implemented, due to limited
applications at present.

B+-TREE

B+-tree (Comer, 1979) is a variant of the B-tree which is the most widely used index-
ing structure for one-dimensional data. Analogous to B-tree, B+-tree is composed by
branch nodes and leaf nodes. Each leaf node corresponds to a disk file block containing
the data entries. Each data entry is identified and indexed by a key value, and each leaf
node contains an interval of key values. A branch node stores the pointers to a range
of leaf nodes identified by the key value. Unlike B-tree, the leaf nodes of the B+-tree
are also connected by pointers. That is, besides the top-down traversal, a leaf node can
also be visited from its prior leaf node. The indexing key is a one-dimensional value.
Hence, to manage nD-PointCloud data with the B+-tree, the data has to be mapped into
the one-dimensional space. In addition to the SFC technique, other methods such as
Pyramid-Technique or iMinMax have also been developed and implemented to derive a
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key value for an nD point (Berchtold et al., 1998; Ooi et al., 2000). Due to the general ap-
plicability, B+-tree has been implemented in major DBMSs, e.g., Oracle Index-Organized
Tables (Section 2.5.1).

2.4. FILE BASED SYSTEMS

The majority of nD-PointCloud data management is based on files. Among them, some
formats are vendor specific. For example, the Bentley pointool viewer 2 only supports the
native plt format so that a converter tool which transforms other formats into plt is also
provided. The OPALS data manager (Otepka et al., 2012) utilizes a single file to manage
ALS data, because it is an efficient light-weight tool tuned for high-speed processing and
flexibility compared with DBMSs. The following sections present several formats which
are vendor neutral, including LAS/LAZ, HDF and PDAL.

2.4.1. LAS/LAZ
The schema of LAS format (ISPRS, 2019) includes four parts:

1. Public header block: file source ID, project ID, LAS version, generating software,
project extents and other metadata.

2. Variable length records: GeoKeyDirectory Tag which mainly refers to the coordi-
nate reference system. For discrete full-waveform LIDAR data, the wave form de-
scriptors are also included.

3. Point data records: X, Y, Z, intensity, return number, classification, channel, scan
angle, GPS time, and other possible dimensions. The shift to the first pulse re-
ceived are recorded for full-waveform data, i.e., X(t), Y(t) and Z(t).

4. Extended variable length record: waveform amplitude values for each packet.

Van Oosterom et al. (2015) built a system to manage point clouds with LAS format.
They utilized LASsort® to reorder the points of each LAS file in a 2D Morton curve. Then
LASindex? was adopted to create an index file LAX, based on an adaptive Quadtree over
the XY dimensions of all points. The metadata (e.g., bounding box of each block) was
stored in a PostgreSQL database. LASmerge® and LASclip® were employed for querying.

LAZ is a modified LAS format with LASzip compression (Isenburg, 2013). It employs
the header and variable length records directly from LAS files. However, the real point
cloud part is stored as blocks with scaling and offsetting techniques for compression.
LASzip decomposes different attributes into separate atomic items including POINT10,
GPSTIME10, RGB12 and WAVEPACKET13 (Figure 2.10). These items are compressed in-
dependently based on their specific features which are mainly the data range and inter-
val. Depending on the input, the compression ratio can reach a factor of 10 (e.g., AHN2).
Besides, LAX index which adopts a Quadtree structure can be directly built, which makes
LAZ arather flexible and efficient format as the original LAS format.

2https:/ /www.bentley.com/en/products/brands/pointools

3https:/ /rapidlasso.com/lastools/lassort/

4https:/ /rapidlasso.com/2012/12/03/lasindex- spatial-indexing- of-lidar- data/
Shttps:/ /rapidlasso.com/lastools/lasmerge/

Shttps:/ /rapidlasso.com/lastools/lasclip/


https://www.bentley.com/en/products/brands/pointools
https://rapidlasso.com/lastools/lassort/
https://rapidlasso.com/2012/12/03/lasindex-spatial-indexing-of-lidar-data/
https://rapidlasso.com/lastools/lasmerge/
https://rapidlasso.com/lastools/lasclip/
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name of atomic item size point type and size

01 2 3 435
point attributes format size |20 28 26 34 57 63
POINT10 20 bytes| x X X X X X

X int dbytes [x x X X X X
Y int 4bytes [Xx X X X X X
Z int 4bytes [Xx X X X X X
Intensity u_short 2bytes |x x x X X X
Return Number 3 bits 3 bits X X X X X X
Number of Returns of Pulse 3 bits 3 bits X X X X X X
Scan Direction Flag 1 bit 1 bit X X X X X X
Edge of Flight Line 1 bit 1 bit X X X X X X
Classification u_char | byte X X X X X X
Scan Angle Rank u_char 1 byte X X X X X X
User Data u_char 1 byte X X X X X X
Point Source ID u_short 2 bytes |x X X X X X
GPSTIMELD 8§ bytes X X X X

GPS Time double 8 bytes X X X X
RGBI12 6 bytes X X X

Red u_short 2 bytes XX X
Green u_short 2 bytes X X X
Blue u_short 2 bytes X X X
WAVEPACKET13 29 bytes X X

Wave Packet Descriptor Index u_char 1 byte X X
Bytes Offset to Waveform Data u_intb4 8§ bytes XX
Waveform Packet Size in Bytes u_int 4 bytes X X
Return Point Waveform Location float 4 bytes X X
X(t) float 4 bytes X X
Y(t) float 4 bytes X X
Z(t) float 4 bytes XX

Figure 2.10: Groups of attributes in LAZ (Isenburg, 2013)

2.4.2. HDF

HDF (Koranne, 2011) is a file format designed to store and organize large amounts of
scientific data. In the geoscience domain, it is commonly used for storing multidimen-
sional data sets concerned with regular spatial grids, e.g., global precipitation rasters.
However, some geophysical models nowadays directly use LiDAR data instead of rasters
as the input, for the sake of high accuracy. Due to this, the HDF format has been exper-
imented with for such an adaptation. For example, the National Geospatial-Intelligence
Agency (NGA) of USA published a Sensor Independent Point Cloud (SIPC) standard (NGA,
2015). This standard identifies the data and metadata generated by LiDAR systems, and
provides a framework for handling the point cloud data processed from a single LIDAR
sensor. HDF5 format is implemented, where XYZ values are treated as a data set in the
HDF5 file in parallel with other dimensions such as intensity and time. However, such
an implementation undermines the advantage of efficient data access through regular
spatial grids of HDF5. For each spatial query, XYZ values in the file have to be checked
completely. Yet HDF5 has no support for a spatial indexing structure.
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2.4.3. PDAL

PDAL (PDAL-Contributors, 2018) is a C++ library for translating and manipulating point
cloud data. It also functions in general as an abstraction layer for solutions using LAS
files, Oracle and PostgreSQL. Thus, the same operations including reading, writing and
filtering are always available, independent from the actual platform implemented. If
the schema is not specifically defined, PDAL will utilize its default DBWriter to create
blocks inside a DBMS such as Oracle or PostgreSQL. From this perspective, PDAL is also
a format. Although PDAL supports a large number of dimensions in its schema 7, it
builds blocks only using XY while attach others as the property dimensions. So, PDAL is
not a true nD solution. Inside the block, scaling and offset can also be realized. Besides,
LAZ-perf compression is available for block storage. The compression ratio is similar to
rapidlasso LAZ, around 10x smaller than a LAS file depending on the type of data.

2.5. DATABASE MANAGEMENT SYSTEMS

DBMS is the preferable way for enterprise data management due to properties of Atom-
icity, Consistency, Isolation and Durability (ACID). In the GIS domain, DBMSs’” advan-
tages in scalability, parallelization, efficient caching, interoperability of different data
types and multi-user support are highly valued. However, a debate on whether a DBMS
should be specific or generic has been existing for a long time. On the one hand, specific
optimization on data structure and functionality can improve efficiency for a single type
of application. On the other hand, DBMS should be generic to facilitate the management
of heterogeneous data which could otherwise be fragmented, and support a wide range
of applications. The following sections review the general DBMS solutions — Oracle and
PostgreSQL, as well as the specific ones.

2.5.1. ORACLE

Oracle is an object-relational DBMS. Oracle Spatial provides a spatial extension to man-
age different geometries including the point. Using Oracle Spatial & Graph, we can adopt
flat table and block based approaches to manage nD-PointCloud.

FLAT TABLE APPROACH
Flat table stores each point as a single record. There are several possibilities for data
management:

1. Normal table. XYZ and other property dimensions are stored as individual columns
in the table. B-tree index can be created on one or multiple columns. However,
as each column has its favorable order of records, the index cannot function ef-
ficiently for different types of queries. Nevertheless, the operations are straight-
forward and intuitive. In addition, flat table always reserves full precision of all
values.

2. Spatially indexed table. Every point is still stored as a record, but with spatial di-
mensions XYZ stored as a geometry type. The R-tree index is normally built on the

https://pdal.io/dimensions.html
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Figure 2.11: The structure of an Index-Organized Table (Oracle, 2013). The leaf node contains the data which
is indexed by the key value, while the branch node stores the range of key values and the pointers to the leaf
nodes

geometry column. This approach can be more efficient for spatial queries. How-
ever, as the geometry type maximally supports 3 dimensions, other dimensions
cannot be indexed. Also, the R-tree index can occupy large storage space on the
disk, as its branch nodes store the lower-left and upper-right corners of points.

3. Index-Organized Table (IOT) (Figure 2.11). The selected organizing dimensions
are encoded into a 1D key value (e.g., SFC code) which is the primary key. Prop-
erty dimensions are attached to the key, as a complete record. 10T manages all
the records using a B+-tree structure, which entails the index and the data are in-
tegrated. So, in the execution of a query, the mapping step from a leaf node of the
index structure to the actual data is eliminated. This reduces the I/0 cost. Due to
this, changes to the data also incur less overhead, e.g., updating existing rows only
needs to update the B+-tree. However, when querying, the query window has to
be converted into the 1D key ranges.

BLOCK APPROACH

The block based approach first groups points into blocks which are then stored using
Binary Large OBject (BLOB) types in a table. The approach can build the R-tree on these
blocks for indexing. Blocks are the basic unit to interact with. In a query, blocks are first
retrieved and then unpacked to extract individual points. Besides, compression is also
available inside each block. Oracle spatial provides several possibilities to use blocks:

1. SDO_PC (Figure 2.12) (Oracle, 2019). Two tables will be created in this approach.
One is the BASE table recording the SDO_PC object and an identifier indicating the
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Figure 2.12: Storage Model for SDO_PC type (Ravada et al., 2010). The columns in the SDO_PC_BLK table are
OBJ_ID, BLK_ID, PC_BLK_EXTENT (SDO_GEOMETRY), POINTS (LOB), and OTHER ATTRIBUTES

specific point cloud. Point cloud data is blocked and stored in another BLK_TABLE,
with additional fields such as block ID and total number of points in the block.
SDO_PC also provides the possibility to store dLoD information. Besides, the nor-
mal R-tree or Hilbert-R tree indexing is available. However, blocks are based on a
2D XY organization, which means other dimensions have to be stored as property
dimensions. Besides, maximally 8 dimensions in total are allowed.

2. SDO_Geometry type. In this type, MULTIPOINT or POINTCLUSTER can be used
to group and store a set of points, as a binary object. This data type maximally
incorporates 3 dimensions. The structure of POINTCLUSTER is similar to MUL-
TIPOINT, except auxiliary fields recording the offset of data and the number of
points. POINTCLUSTER decreases the redundancy of these auxiliary information,
compared to MULTIPOINT. Wijga-Hoefsloot (2012) specifically tested POINTCLUS-
TER and compared it with SDO_PC, indicating POINTCLUSTER achieves better
querying efficiency than SDO_PC.

3. PDALblock. This approach creates the same table structures as the SDO_PC method
through the API of PDAL. LAZ-perf compression can be realized (Section 2.4.3).
However, as the block adopts a different schema from SDO_PC, the operators pro-
vided by PDAL are not yet compatible with Oracle’s operators.

2.5.2. POSTGRESQL
Unlike Oracle, PostgreSQL is an open-source DBMS. The solutions provided by it are
analogous to Oracle, except the following:
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{"peid":1, "pts": [

[-126.99,45.01,1,0], [-126.98,45.02,2,0], [-126.97, 45.03, 3, 0],

[-126.96,45.04,4,0], [-126.95,45.05,5,0], [-126.94, 45.06, 6, 0],

[-126.93,45.07,7,0], [-126.92,45.08, 8,0], [-126.91, 45.09, 9, 0]
1}

Figure 2.13: A sample of the PC_PATCH schema with 4 dimensions: X, Y, Z and intensity expressed in plain text

1. IOT does not exist, but it is possible to cluster tables based on an index (Ramsey,
2012). However, this results in two separate structures: one is the table, while the
other is the index.

2. The counterpart of SDO_PC is the PostGIS (Strobl, 2008) extension — pgPoint-
cloud (Ramsey, 2020). It stores each block in a row of a table using the PC_PATCH
binary data type. A PC_PATCH object records an ID and a list of points contain-
ing all dimensions (Figure 2.13). These objects will be stored in a TOAST table,
a feature of PostgreSQL that separates and stores large objects. Besides, vast set
of functions to manipulate the blocks are provided by the extension. However, as
SDO_PC, only XY can be used as the organizing dimension.

3. The MULTIPOINT geometry supports 4D point, which means 4 organizing dimen-
sions can be used to create a MULTIPOINT object. Besides, a 4D R-tree can be built
to index the objects.

4. PDAL utilizes the pgPointcloud for reading and writing blocks. So, PDALSs opera-
tors are compatible with native operators.

2.5.3. CUSTOMIZED DBMS BASED SOLUTIONS

Dobos et al. (2014) illustrated the shortcomings of relational database model for manag-
ing large point clouds. Then based on use cases of astronomy, they proposed a model of
a point cloud database including basic requirements and algorithms that should be im-
plemented. Such a database is expected to work with large amounts of disk-resident data
and scale out to multiple servers. Cura et al. (2017) presented a state-of-the-art solution
based on a PostgreSQL server, to provide services. The solution utilizes patches to group
point clouds, with metadata incorporated. Topological framework was proposed to be
constructed on patches to take advantage of graph analysis. Besides, several in-database
functions such as clustering points using minimum spanning tree, and extracting prim-
itives (planes and cylinders) were prototyped and implemented. Vo (2017) developed
an Oracle solution, the UMG_PC with a customized hybrid indexing structure. The top
layer is a 2D Hilbert-coded rectangular grid, while the bottom layer consists of separate,
in-memory, 3D Octree for each point block. Basic operators were realized in Java classes
which were registered with an Oracle DBMS as a package. Three novel functionalities
including point clipping, nearest neighbour search, and planar segment selection were
further implemented. The later two functions were concerned with inner block compu-
tation which was not available using Oracle SDO_PC.
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Figure 2.14: Implicit Morton hierarchy: black dots are real points to be managed, while colored dots are Morton
branch nodes at different levels

Customized DBMS solutions are also developed to address specific applications. For
3D city modeling, Richter and Déllner (2014) proposed a change detection method to
reduce storage in case of incremental updates in the same area. Basically, points that
are identified as new surfaces will be inserted into the database, while new points locat-
ing on existing surfaces will not be added. In order to analyze surface changes in high
mountain environments, Rieg et al. (2014) proposed a database approach with block-
ing strategies for efficiently managing multi-temporal point clouds. Besides, they also
presented an overview of current point clouds management approaches incorporating
file-based systems, databases and hybrid systems.

2.6. PLAINSEC

Van Oosterom et al. (2015) first described the design of PlainSFC solution, and provided
some benchmark results. PlainSFC is the basis for this research, and is also essential
for understanding the following chapters. This section presents the basic structure of
PlainSFC, by first introducing the nomenclature.

2.6.1. HYPERCUBE, NODE AND RANGE

In general, a cube refers to a 3D box with equal edge length. This geometric concept
extended into nD space becomes the hypercube.

Figure 2.14 illustrates the node and the range in 2D. All points have integer coordi-
nates. By truncating the last 7 bits of the points’ Morton codes recursively, Morton codes
atupper levels are derived. That is to say, the Morton codes of points implicitly contain a
hierarchy which is equivalent to a Quadtree structure. We can easily extend this scheme
to higher dimensional spaces so that a Morton node refers to the corresponding node of
a 2"-tree. A branch node covers the nodes on the level below, and represents the extent
of a hypercubic region (e.g., a block in the Quadtree). Thus, the branch node also indi-
cates a range of Morton codes starting from the lower-left corner to the upper-right. A
leaf node is not further subdivided.
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2.6.2. BASIC SETTINGS

Figure 2.15 presents the workflows of PlainSFC including data loading and querying.
PlainSFC first encodes each nD-point to a full resolution Morton key, interleaving the
bits of all organizing dimensions. In most cases, values of the organizing dimensions
contain decimals. So, these values are first scaled up to integers for encoding. Such a full
resolution key can be directly decoded to the original coordinates, without additional
storage of dimension values. Besides, due to uniqueness of each full resolution key, they
are used as the primary key in tables for indexing. Property dimensions are attached
to the key. Based on this organization, PlainSFC utilizes Oracle IOT (Section 2.5.1) to
manage the data.

Full resolution Morton keys

Point cloud —Encoding»| and property dimensions

: B+-tree
: based 10T

Extent of point
cloud
Intersection: Importing
Query geometry
First filter Second filter

Resultant keys

| Decoding y |Final accurate
. " Filtering result
dimensions

Join¥»  and property

Range table

Figure 2.15: The loading and querying procedure of PlainSFC, separated by the dash line

As to querying, PlainSFC adopts two filters. The first filter uses the Morton hierarchy
to approximate the query geometry and derive the ranges. Take Figure 2.16a to illus-
trate: the first filter starts by examining whether the root node (i.e., the overall extent of
the data) intersects the query window. If they intersect, the root node will be decom-
posed into 4 sub-nodes and the spatial relationship between each node and the query
window will be assessed again. During the range computing process, if a node is in-
side the query window, the range will be exported directly without further decomposi-
tion. Near the query boundary, the decomposition goes on recursively until a maximum
number of ranges (7,4x) is reached. r,,4y is used as a threshold to balance the perfor-
mance. A larger number of ranges incurs intensive computation, slowing down the first
filter. A smaller number of ranges, however, results in rough query result. This is also
unacceptable because the burden is moved to a second filter for an accurate answer. An
optimal 7,4, needs to be benchmarked to be derived. After the searching reaches r,4y,
the first filter exports all ranges into a range table, and then joins it with the IOT for se-
lection, where the index automatically functions. A second filtering will be conducted in
a following step to complete the query. Other query geometries can also be addressed
(Figure 2.16b).

2.6.3. TIME COMPLEXITY
The theoretical querying time of PlainSFC is as follows:

T= Tpre + Tjo + Tpost 2.1)
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where T is the time cost of the first filter, and mainly comprises range computation
and B+-tree traversal; T;, indicates the main I/O cost to retrieve points inside the ranges;
Tpos: refers to the final decoding and filtering.

Tpre is bounded by @(rlogg N), where r is the number of ranges generated and it
reaches the threshould r,,,, by default; B is page capacity in the number of points;
N represents the input size. This is because searching each range in the B+-tree costs
O(logg N) time. T;, maximally covers 6’(% + r) I/0s, where k' equals the number of
points returned by the first filter. This expression is an approximation of O'(¥}_, [%} ),
where k; represents the number of points inside a specific range, and ¥.7_, k; = k’. The
approximation is adopted because }_;_, [%W =X, (% +1)= % + 1. Tpost is bounded by
O(nk'). n refers to the dimensionality of the key, assuming the dimensions in the nD-
PointCloud data are all used as the organizing dimension. Once parallelism is applied,
Tpost becomes @’(”Tk’), given p processors.

An optimal solution should balance the three cost terms. An accurate first filter with
large r may cost more time, but it returns a small k' which alleviates 1/0 and post-

processing in the second filter. For this purpose, I introduce False Positive Rate (FPR)
to indicate I/0 and the performance of second filter (Equation 2.2):

K-k
FPR=

(2.2)

Sometimes, FPR can be verylarge, e.g., in high dimensional spaces. Then, the portion
of data selected by the first filter is also indicative (Equation 2.3):

!

L k
selectivity = N (2.3)

The memory cost is mainly determined by r and k.



A CONTINUOUS LEVEL OF
IMPORTANCE METHOD

IG geo-data requires efficient spatio-temporal data organization, including levels of

detail that allow to zoom in from high-level overviews (complete countries/conti-
nents) to the smallest detail (as the curb stones of a sidewalk) and everything in between.
For point cloud data, we use the term Level of Importance (Lol) instead, as a point can-
not provide different detail. Current solutions only support a limited number of discrete
levels for managing nD-PointCloud data. Figure 3.1a shows the current-state-of-the-art
solution which organizes large point clouds using data pyramids of discrete levels. Such
organization causes density shocks in visualization (Section 1.3). Besides, the abrupt
transition between various levels is also very disturbing. Thus, a continuous Lol (cLol)
scheme should take place.

2D schematic view, data blocks.... stretched over domain  density
low
® L]
° Lol 0 o °
o © ° ° ° °
o | ° Lol 1 o °
] L]
° e e [ e o °|e °
o [ . ]
e o ° ° o © Lol 2 e o ° ° e © high Less points ||

every next higher level, density 2" times less (2D - 4, 3D > 8)
(b) Selecting point cloud data
(a) Symbolic ‘side view’ of 2D point cloud data blocks blocks for perspective query

Figure 3.1: Discrete levels (scale/importance) data organization in blocks

This is the goal of this chapter which develops a generic method to compute cLol for
massive point clouds to realize smooth and realistic rendering. The chapter is organized

This chapter is a joint work, and the other authors are van Oosterom, P, van Oosterom, S., Thompson, R.,
Meijers, M., & Verbree, E.
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as follows: Section 3.1 reviews previous studies on smooth visualization of point clouds.
Section 3.2 answers the question: what is an optimized continuous distribution of point
clouds over continuous levels. Then, based on the answer, Section 3.3 derives the distri-
bution function and the cumulative distribution function of continuous levels for 1D to
nD point clouds. Section 3.4 explains how to use the cLol value in order to approximate
a certain data density in the output, which may be non-uniform, e.g., in the case of a
perspective view. Section 3.5 summarizes the chapter and provides more implications.

3.1. RELATED WORK

The earlier study on continuous point clouds were based on post-processing the discrete
levels of point clouds. For example, van der Maaden (2019) chose an Octree organized
point cloud as the starting point. Based on the viewing position, viewing direction, and
opening angle, the required point data blocks are selected at the various levels as ex-
plained in the Introduction (Figure 3.1). Next, a post-processing step was conducted to
give the impression of continuity by removing some points from the denser data blocks.
These points are close to the edge of the sparser data blocks. This is done because the
transition zone between denser and sparser blocks is very clear to observe, which is dis-
tracting. After this, the change in data distribution between adjacent blocks of different
density is sketched, as shown in Figure 3.2.

Density

b =

-
Number of points

Figure 3.2: Smoothing point cloud data distribution by post-processing (van der Maaden, 2019)

The decision to keep or remove a point is based on an empty sphere condition at-
tached to every point. This starts by assigning a radius to the points based on distance to
camera (Figure 3.3). The radius gradually increases from a small value nearby to a large
value far away. The points from the selected data blocks are visualized in the current
view when their sphere is empty, i.e., intersecting no other spheres in the current view.
However, the resultant views can only be smooth when a large portion of points are re-
moved, typically about 70-90% of all points. Another drawback of the method is that it
is not stable when panning or zooming in a certain direction — points may be switched
on and off repeatedly sometimes. This is unwanted: when zooming or panning, points
should appear or disappear cleanly.

This unstable behaviour was solved by Schiitz et al. (2019) in a Virtual Reality (VR)
environment. However, their solution is not able to address big data organized at the
server side. All data, an indoor point cloud containing 86 million points, was processed
locally in the main memory of the GPU. The solution applies a different post-processing
technique by first adding a uniform random value between 0 and 1 (i.e., cLol value) to
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Figure 3.3: Points with empty sphere are selected for the view (van der Maaden, 2019)

Figure 3.4: Left: discrete Lol, Middle: continuous point cloud view in VR, Right: continuous Lol (image from
Schiitz et al., 2019)

every point. Then, based on viewing position and viewing direction, they select 5 million
points every 5 to 6 frames. The rendering speed is 90 Frames Per Second (FPS) for both
left eye and right eye, which means a total of 180 FPS.

In the selection they use the cLol value to select a sufficient ratio of the points for
the needed data density, which depends on distance and eccentricity (Figure 3.4). Be-
cause for every point the cLol value stays the same during an interactive VR session, the
solution is stable, and has no issues with flickering points (i.e., points switched on and
off repeatedly). As is mentioned, the solution is not intended for addressing big data vi-
sualization. To resolve it, spatio-temporal and Lol dimensions may be used together to
optimize the multi-dimensional data clustering and indexing for fast retrieval.

3.2. CONTINUOUS LEVELS

This section lays the foundation of our cLol scheme for nD-PointCloud data. Subsec-
tion 3.2.1 presents initial ideas to dispense with discrete levels by pre-processing, and
explains why this is preferred over post-processing approaches. Next, Subsection 3.2.2
reviews the well-know discrete levels commonly used to manage large scale vector and
raster data. Then, by refining the original discrete integer levels, Subsection 3.2.3 derives
a finer grained distribution over more levels, while keeping the general good characteris-
tics of the original distribution. By infinitely refining the discrete levels, Subsection 3.2.4
builds the continuous levels. Finally, Subsection 3.2.5 discusses how many levels are
needed for a specific data set.
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3.2.1. RESOLVING DISCRETE LEVELS BY PRE-PROCESSING

Inspired by the promising post-processing results in the above described attempts to
arrive at continuous point clouds, we designed a solution based on pre-processing of
the large point clouds. The solution intends to resolve the unstable rendering process
and avoid sending too much data from the server to the clients. Hence, the clients do
not have to store all points to serve functionalities. Our cLol solution is also inspired
by the research on vario-scale vector maps (van Oosterom & Meijers, 2014; Meijers et
al,, 2020): add one continuous dimension to the geometry to represent scale to realize
smooth zooming in/out visualization. Instead of the 2D vario-scale vector map, we apply
the continuous methodology to the 3D geometries. Assuming it is possible to assign
proper cLol values for points, then, we can apply the following strategy for rendering
massive point clouds:

1. Compute the cLol value;
2. Add cLol as an organizing dimension, to be clustered and indexed,;

3. Define perspective view selection by a view frustum formed by cLol and the spa-
tial extent. The shape of the view frustum is determined by, for example, viewer
distance and displacement from the centre of the view; see Figure 3.5.

cLol

cloI

x

\ far

Figure 3.5: Integrated space-cLol selection via the upper blue tetrahedron (view_frust) from the point cloud.
The darker blue bottom plane is not normal geometry, but a combination of spatial and cLol dimensions.
Please note that the vertical axis represents the cLol dimension (and the z dimension is not shown)

3.2.2. LEARNING FROM DISCRETE LEVELS

How should cLol be computed? Should we just use random values, like Schiitz et al.
(2019), or should the level values have more meaning? From raster maps or tiled vector
maps being served over the web, there is always a fixed ratio in scale (data density) be-
tween two discrete levels: that is, a factor of 2 for every dimension. For example, every
next lower level in the pixel data pyramid contains 2 times more data per dimension,
which is 4 times overall, as pixel is 2D. Similarly, for 3D voxels, the data ratio between
subsequent levels would be 8. Table 3.1 presents the typical 15 Dutch zoom levels in
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the 2D data pyramid and their relationships to appropriate map scales. This Dutch ‘pro-
file’ for tiling can be used by Web Map Tile Services (WMTS), with the Spatial Reference
System (SRS) EPSG:28992 (Amersfoort / RD New), where each tile is defined by 256 x 256
pixels (Geonovum, 2012). Global tile sets use more levels, for both raster and vector tiling
schemes: the well-known scale set Global CRS84Pixel adopts 18 levels (Mas6 et al., 2010),
but sometimes even more are defined.

For point clouds, there are similar approaches using discrete levels based on the
Quadtree or Octree structure. For instance, the 3D web-viewer for the Dutch AHN2 data
set applies 12 levels (van Oosterom et al., 2017). It is important to be aware that the
discrete levels have a relationship to the scales for which they can be used.

Table 3.1: Zoom levels in the Dutch well-known scale set, based on Geonovum (2012)

Zoom level Resolution (m/pixel) Scale denominator

0 3440.64 12,288,000
1 1720.32 6,144,000
2 860.16 3,072,000
3 430.08 1,536,000
4 215.04 768,000
5 107.52 384,000
6 53.76 192,000
7 26.88 96,000
8 13.44 48,000
9 6.72 24,000
10 3.36 12,000
11 1.68 6,000
12 0.84 3,000
13 0.42 1,500
14 0.21 750

3.2.3. REFINED DISCRETE LEVELS

The cLol value should support the level thinking that has been developed in raster and
vector mapping over the past decades, as users have got accustomed to it. So, how can we
obtain a similar distribution for cLol values compared to the existing discrete schemes?
What if we do not try to solve this question directly, but first solve the question: how
can we refine the existing discrete level distributions? This question was raised and an-
swered during the keynote presentation at the ISPRS Geospatial Week 2019 (van Oost-
erom, 2019).

Figure 3.6 first reviews the traditional distribution of data over discrete integer lev-
els. The target number of points in level [ is given by N; = 2, for integer I ranging
from 0 (most important, few points) to maximum level L (least important, most points).
Note that this is for the 1D case the optimized distribution over the levels. The multi-
dimensional case is quite similar: N; = 2"*! with n the number of dimensions. In the
following, we first continue with 1D data, and later on extend the formulas to the nD
case. As no refinements have been made on the discrete integer levels, we use refine-
ment 7 = 0 to indicate. The probability that a point belongs to level [ is defined by di-
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viding the number of blocks at this level by the total number of blocks in all levels: the
mathematical expression is provided in the next section (Equation 3.2).

The next step is to refine the discrete integer levels into discrete half levels, so dou-
bling the number of levels in this first refinement r = 1 (Figure 3.7). The formulas for
computing the number of blocks per (half) level, and the distribution over the levels re-
main the same. In the formulas, only the total number of blocks at refinement r = 1
summed over all levels is different (Equation 3.4). It is important to note that summing
the probabilities of two half levels that originated from the same integral level results in
exactly the same probability as before. Of course, this procedure can be repeated and
after 2 refinements we end up with 16 quarter levels (Figure 3.8). Again, the formulas
remain the same (only now with r = 2), and summing 4 quarter levels that used to form
one level results in exactly the same probability as before.

L __P@ _rosrefinement0 N-2
0 6.7% 20=]
1 —| 13.3% 21=2 L max level (0, 1,.. L)
1 level
- r refinement
2 26.7% 2= N, #points at level /
P.() probability level /
3 53.3% 23=8 at refinement
0% I | I probabilty distribution over the levels JUIZS

Figure 3.6: Distribution over 4 discrete integer levels (I =0, 1,2, 3) in case of 1D data

2.8% ]_ +26.7% 20=]

3.9%
5.5% }+ >13.3% 21=2
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15.6% 22°=5.656

22.1% ]_+ >53.3% 2-8
31.2% 233=11.314

11.0 }+926.7% 224

1 N
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Figure 3.7: Distribution over 8 discrete half levels (/ = 0,0.5,1,1.5,2,2.5,3,3.5) in case of 1D data after one re-
finement r =1

3.2.4. INFINITELY REFINED DISCRETE LEVELS

We can continue to refine the levels. When r — oo, then, the actual result is a continuous

distribution function f(I) over the levels ! from 0 to L (Equation 3.6). In addition, we

define the cumulative version of the distribution function, which is F(I) (Equation 3.7).
The inverse of the Cumulative Distribution Function (CDF) is then used to compute

the cLol value for each input point. Section 3.3 provides more details (see Equation 3.11).

The resultant point cloud data has one more cLol dimension, and the distribution of
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Figure 3.8: Distribution over 16 discrete quarter levels (I = 0,0.25,..,3.75) in case of 1D data after two refine-
ments r =2

this dimension is described by the optimized continuous distribution function f(I). The
cLol dimension can be used to organize the data next to spatial dimensions, facilitating
perspective view selection (Figure 3.5).

3.2.5. HOW MANY LEVELS ARE NEEDED?

Given a certain data set with NV points, how many levels would be appropriate, i.e., what
is the optimal value for L? We first analyse the discrete integer levels, and the outcome is
also valid for refined discrete levels and continuous levels.

In the 2D pyramid, about 80% of the data is at lowest discrete level, i.e., with highest
level number (and in 3D, the ratio is about 90%). So, for the sake of convenience, we
first assume all data are at the lowest level. In case of a data set like AHN2 with about
640,000,000,000 points, if each block contains 10,000 points, then, 64,000,000 blocks are
needed in total. In 2D, with L = 13, we can host 4!3 = 67,108,864 blocks at level 13 (i.e.,
the lowest one out of the 14 levels starting from level 0). This is enough for AHN2, and
also the actual depth of the AHN2 Octree storage implemented in our earlier research
(van Oosterom et al., 2015). Although it is Octree, due to the nature of terrain, the AHN2
data actually captures a 2.5D surface in 3D space.

Then, we derive the expression of L for an nD point cloud with N points organized in
blocks with capacity of C:

L—[llo E-‘ 3.1)
a8 '

Until the time of writing, the USGS 3D Elevation Program (3DEP) has 38,671,823,167,523

points !. The coverage is not yet complete, and the final data set is expected to contain
about 10 points. As the data is also a 2.5D surface in 3D space, n = 2 is adopted. As-
suming the same capacity for the blocks C = 10,000, then, we would need L = 17 to store
the complete USGS LiDAR point cloud. As the continuous levels have the same general
distribution characteristics as the discrete integer levels, the same number of levels L+ 1
is sufficient.

Lhttps://usgs.entwine.io/
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3.3. THE MATHEMATICS

After presenting in the previous section the idea how to arrive at continuous levels with
an optimized distribution, this section presents the related mathematics. Subsection 3.3.1
provides the formulas for refining discrete levels, which is then followed by formulas for
the infinite refinement to continuous levels in Subsection 3.3.2, both for the 1D case.
Next, Subsection 3.3.3 generalizes the formulas from 1D to nD.

3.3.1. REFINED DISCRETE LEVELS

The formulas for the distribution over discrete levels are first introduced for the 1D case.
Suppose we have a point p, and want to decide the probability of p being put in some
level. In 1D with L levels, the probability of a point to be located in level [ is proportional
to2!, with 1€ {0,1,...,L}:

2! 2!

Polp— 1] = ——— = ——
otp Z%:()Zl Totg

(3.2
Now, we are going to refine the number of levels by splitting each one in half. The
refinement times are indicated by r, meaning the times we split the levels. The refined
levels become
ke{0,2772x27" .. (L+1D2"-1)x27"}

where k = 0 is the top level, and k = L+ 1 —27" is the most detailed/important one. So,
after refining the levels r times, the probability is given by:

k
P — k]l = 3.3
rlp ] Tot, 3.3)
We have found a recursive formula for Tot,, based on Toty:
(L+D2"-1 -r -r -r -r -r
Tot, = Y, gkx27" _ Y [2k2 4 ok+1)2 ] =y gk2 [1 422 ]
k=0 k=even ) k=even (3.4)
= (1+2Y2")Tot,_, = Tot [J (1 +2%/%)
i=1
With this and Equation 3.3, we derive a probability density for refinement r:
ro_2
i=1 1721
frin=2"Pip—l =2 — 35)

Figure 3.9 shows the change of distribution by refining discrete levels, where the max
level L =2.

3.3.2. INFINITE REFINEMENT
If we want the continuous distribution, we let r — oo, then

fooll) = K2/
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Figure 3.9: Distribution over the refined levels with dimension n=1, max levels L=2, refinements r=0, 1, 2, 3, 5,

and 10: the blue bars depict the probability of discrete levels, while the red curve depicts the exact, continuous
probability function

where K is a normalization constant:

L+1 2L+l -1
K2'dl=K[2' 2k = K——— =1
0 In2
Thus
h- 2'In2
fi)= ﬁ (3.6)

for I € [0, L+ 1]. The corresponding CDF F(l) is obtained by integration f(x) over x from
x=0tol:

I 1_
With this, a 1D cLol level / can be randomly generated by:

I=F'(U) =log, (U -1 +1) (3.8)
where U is uniformly distributed between 0 and 1.
3.3.3. HIGHER DIMENSIONS
For higher dimensions, we can perform similar computations and get:

2" nln2
= 3.9)

Where n is the number of dimensions. This function has CDF:
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2l -1
Fp() = PYTE (3.10)

An nD cLol level value can be generated by:

1
1= ;logz(U(Z”(L“) —1+1) (3.11)

3.4. USING THE cLOI VALUES

After having added the cLol dimension to point data and having computed its values
for individual points, the next challenge is how to use the cLol value. Subsection 3.4.1
first explores the relation between discrete levels and expected data density. Then, Sub-
section 3.4.2 describes the use of continuous levels for producing visualizations with
uniform data density. Finally, Subsection 3.4.3 shows how to use cLol values to realize
smooth perspective view, with mixed data density.

3.4.1. EXPECTED DATA DENSITY AT DISCRETE LEVELS

Assume that we have in total N points in an nD domain in which every dimension has
the extent E. That is, the whole domain is a hypercube, with equal size of all dimensions.
Then, the total expected data density is given by D = N/E", without any levels being
involved. As the discrete nD probability function at refinement r is

Ixn
P —1]= 3.12
rnlp =1 Tot,., 3.12)
Then, the expected data density at discrete level / at refinement r is given by
N
Drn(h) = 25 Pralll (3.13)

3.4.2. VISUALIZATION USING CONTINUOUS LEVELS, UNIFORM DATA DEN-

SITY

The continuous level also corresponds to data density. If we take a slice of the cLol values
that belong to one discrete integer level, which is a semi-open range [/, /+1), then we get
exactly the same expected density as that of the discrete level . However, the ‘thickness’
of single value of cLol is 0, which gives near 0 probability of having any point with exactly
that value (and thus 0 expected density at that level). Therefore, it is very convenient to
take the range from the top (cLol= 0) to a specific level (cLol= ) to achieve a required
cumulative data density. This corresponds well to the CDF for nD case, i.e., F;(I) (Equa-
tion 3.10). So, the expected Cumulative Density CD,, at continuous level / for nD case
is

N
CD,() = ﬁFn(l) (3.14)

We can then use this for visualizing points. To illustrate with a simple example: sup-
pose a 2D space (n = 2) with extent 5 x 5 m? (E = 5%), 107 points (N = 107), L = 6, with
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continuous levels. The maximum total density = 107/25 = 400,000 points/m?. By sub-
stituting these numbers in Equation 3.14, we get

CD»(1)=3149.6 x 2! - 1) (3.15)

With a target cumulative density TCD,, the cLol value [ can be obtained by rewriting
Equation 3.15:

TCD,=3149.6 x 2/ 1) > (3.16)
I =log, (1 + (TCD,/3149.6)) (3.17)

Assume we have a rendering budget B = 100,000 points. The following three queries
mimic a zoom out action with a square, by selecting to different continuous levels (Fig-
ure 3.10):

e 1x1m?box = TCD, = 100,000 points/m? = [ = 5.03
* 2x2m?box = TCD, = 25,000 points/m? = [ = 3.16
* 4 x4m?box = TCD, = 6,250 points/m? = [ = 1.58

The case of 0.5 x 0.5 m? is not presented because we would arrive at the maximum
density TCD, = 400,000 points/ m? = [ = 7.0. That is, further zooming in will not result
in higher density as we are already at the maximum continuous level.

Figure 3.10: Three queries of different density, in a Figure 3.11: Smooth perspective view query, in the
5x 5 m? domain 5x 5 m? domain

3.4.3. VISUALIZATION USING CONTINUOUS LEVELS, MIXED DATA DENSITY
To avoid density shocks (Figure 1.5), the density should not be constant in a perspective
view, but depend on the distance to the viewer. For example, when at a distance of 1
meter, the density could match the situation of 1 x 1 m? box with cLol equal to 5.03.
When at 4 meter, the density could match the situation of 4 x 4 m? box with cLol equal to
1.58. To make it continuous, we can use Equation 3.17 with required cumulative density
TCD, = % (with d for distance) to obtain the cLol values anywhere in the domain. By
integrating the wanted density over all distances in the query region (i.e., the triangular
shaped view frustum), we can obtain the result (Figure 3.11).
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Figure 3.12 demonstrates what happens when we zoom out or change perspective
(width of viewing angle). When zooming out, the shape of view frustum remains the
same, just getting bigger. Then, with the same budget B, all cLol values should get
smaller to get lower density, bu the cLol values are still distance dependent. The same
reasoning applies when we change perspective (Figure 3.12 Bottom). In Chapter 6, we
realized such a perspective view functionality based on PlainSFC, for visualizing AHN2
data. Convincing results have been achieved.

< || <

= || 4

Figure 3.12: Viewer is left side vertex, looking to the right, Top: zooming out, Bottom: changing perspective

3.5. DISCUSSION

This chapter has described a novel cLol approach to realize smooth visualization of point
clouds, without data density shocks. This has been the bottleneck of state-of-the-art so-
lutions. We achieved an optimized continuous distribution of point clouds by iteratively
refining discrete levels. We developed both the continuous distribution function and the
cumulative distribution function for 1D and nD point clouds. The continuous distribu-
tion function is used together with a uniform random number generator to compute the
cLol dimension. Together with the spatial-temporal dimensions, the cLol dimension
can be used to cluster and index the point cloud data. This results in a stable solution for
visualizing points: points are not flickering during zooming in and out operations. Be-
sides, the presented cLol scheme is optimized in the sense that it uses the same factor 2
per dimension as the well known raster and vector data pyramids. This keeps in line with
user’s habits established from previous spatial applications. Moreover, although only the
visualization application is demonstrated, the cLol developed is also useful to improve
different kinds of computation and analysis, including solar energy potential, viewshed
or line-of-sight , 3D routing (e.g.,for a drone), change detection, volume analysis, flow
computation, vegetation analysis, etc. In the future, we will investigate these applica-
tions, e.g., show some directions of how they can be achieved, and develop prototypes.



PRINCIPLES OF ND-HISTOGRAM
AND EFFECTIVENESS VERIFICATION

B ASED on the Morton hierarchy, PlainSFC decomposes the multidimensional space
recursively to drive 1D ranges that intersect the query geometry. The query can
then be accomplished by selecting points that are indexed by a B+-tree. This highly ef-
ficient mechanism makes PlainSFC a potential solution for nD-PointCloud data query-
ing. However, a bottleneck of querying with PlainSFC lies in the cases where points are
inhomogeneously distributed in the space. This happens frequently when points are
in 3D or higher dimensional spaces. When the skewed dimensions are involved in the
query, PlainSFC generates a large amount of ranges without any points inside. This con-
tributes nothing to the final result, but significantly increases the time cost of the first
filter. Therefore, the overall querying efficiency declines. Consequently, a distribution-
aware method is badly needed for computing ranges.

This chapter addresses the query problem caused by the non-uniform distributions
of data. In the following, Section 4.1 first reviews previous studies about querying non-
uniformly distributed data, where the nD-histogram technique shows the potential to
be used. Then, Section 4.2 focuses on developing a specific nD-histogram technique
based on PlainSFC, including building and querying algorithms. To investigate the ef-
fectiveness of the nD-histogram given different data distributions, Section 4.3 proposes
a statistical metric — Cumulative Hypercubic Coverage (CHC) — for quantifying the uni-
formity of a point cloud. Based on CHC, Section 4.4 then interprets how the effective-
ness of nD-histogram changes with different distributions, theoretically. For verifica-
tion, Section 4.5 conducts experiments with synthetic data sets incorporating artificially
designed uniform distributions as well as distributions simulated based on real data.
Section 4.6 provides further discussion on the techniques and results presented in this
chapter. More benchmarking results using real world data are provided in Chapter 5.

41
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4.1. RELATED WORK

Former studies have addressed the issue of performance degradation caused by the in-
homogeneous data distribution. The techniques mainly include uniforming point dis-
tributions, adaptive blocking, and using histograms. Figure 4.1 presents the overview of
these techniques with representative studies.

R-tree histogram
(Achakeev &

CDF based mapping Seege, 2012)
(Zhang et al., 2014)
rK-Hist (Eavis &
nD histograms Lopez, 2007)

Map points from one space
to another so that distribution
becomes uniform

STHoles (Bruno
etal., 2001)

STHistogram
(Roh et al., 2010)

Use rank space Use additional

(Qietal., 2018) Efficient query of histogram structures
non-uniformly
distributed point data
Hilbert blocks Organize points
(Wang & Shan, with SFC blocks of 1D hist Oracle Spatial & Graph
2015) the same capacity istograms (Bamba et al., 2013)

Figure 4.1: Related studies on querying non-uniformly distributed point clouds

Focusing on spatial objects with non-zero extents, Zhang et al. (2014) developed a
solution to handle them based on their centroids. The solution utilizes piece-wise Cu-
mulative Distribution Functions (CDFs) to transform each skewed dimension into a uni-
form dimension independently. Then, the solution uses a similar approach to PlainSFC
for managing the transformed data. When querying, the query window has also to be
transformed to select data which will be restored in the end. Based on this, although
skewed data distribution is resolved, the data transformation is an expensive operation
and inapplicable to massive points. Besides, this solution may lead to inaccurate selec-
tion due to the decrease of data accuracy after transformation. Qi et al. (2018) took an-
other strategy which maps original points into a rank space such that their coordinates
are mapped to their ranks in each dimension (Figure 4.2). After the mapping, points are
more uniformly distributed. Then, the solution uses Morton curve to organize and block
the points according to their transformed coordinates. Then, R-tree is built to index the
blocks. As to querying, window queries should also be firstly mapped to the rank space
for execution. According to the testing results, the performance of worst-case window
querying is largely improved. However, the drawback of the solution is as before that the
transforming process costs excessive time.

Wang and Shan (2005) developed an adaptive block solution which decomposes the
3D point cloud into blocks according to Hilbert curve. The blocks are stored as BLOB
objects, with the same capacity. Each block corresponds to a Hilbert node in a certain
level. In this way, blocks created are adaptive to the point density. When querying, the
solution utilizes an Octree index to retrieve the blocks that overlap with the 3D query
window, and then unpacks the blocks to filter point-wisely. So, this solution implicitly
handles point distribution when building blocks, and the querying efficiency is directly
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Figure 4.2: Mapping 2D points from original space to the rank space (Qi et al., 2018)

related to the fixed block capacity. This is less flexible than PlainSFC’s adaptive range
approach.

As a common technique to deal with non-uniform data distribution, histograms are
largely used in major DBMSs for querying (i.e., statistics collection module). This is be-
cause histograms incur little run-time overhead and produce low-error estimates with
compact storage, compared to other techniques such as sampling and wavelet trans-
formation (Liu, 2009). In particular, Oracle Spatial & Graph has developed state-of-the-
art solutions to build spatial histograms for query optimization purposes (Bamba et al.,
2013). However, these histograms are based on individual columns, instead of a joint
representation. Hence, the querying performance on nD data cannot be optimal.

As a possible solution, nD-histograms have been investigated, mostly used as a syn-
opsis technique for selectivity estimation to optimize query execution plan (Liu, Shen,
et al., 2021). For instance, Achakeev and Seeger (2012) built a convenient spatial his-
togram based on R-tree, mainly for managing rectangular or point objects. The multi-
dimensional histogram buckets are built by merging Minimum Bounding Boxes (MBBs)
of adjacent R-tree leaf nodes until the required parameters of bucket capacity are met.
This histogram achieves higher accuracy for selectivity estimation of 2D/3D spatial data
queries than alternative solutions, but nD data is not tested. rK-Hist (Eavis & Lopez,
2007) also derives an nD-histogram structure from R-tree. Basically, data are firstly sorted
according to the Hilbert curve, to be blocked. Then, R-tree is built for indexing the
blocks. The histogram buckets are built by aggregating MBBs of R-tree nodes at a certain
level sequentially so that each bucket covers the same number of nodes. R-tree nodes
at upper levels are directly transformed to histogram buckets. That is, the hierarchical
structure of R-tree is reserved to organize the whole nD-histogram structure. Addition-
ally, optimizations on partitioning histogram buckets are also made to 1) avoid extremely
stretched bucket due to Hilbert sorting; 2) guarantee a uniform distribution of points in-
side each bucket. Experimental tests demonstrate consistent and superior performance
of this solution in terms of estimation quality. Besides these R-tree based approaches,
nD-histograms can also be constructed differently, such as STHoles (Bruno et al., 2001)
and STHistogram (Roh et al., 2010). All these studies provide promising results by using
nD-histograms.
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4.2. ND-HISTOGRAM METHOD — HISTSFC

We can resolve the skewed distribution problem of PlainSFC by either modifying the
data or the solution itself. Modifying the data means to uniform the points, e.g., using
the ranking space or CDFs for mapping (Section 4.1). However, concerned with huge
volume, which is common for nD-PointCloud, this strategy costs significant time in pre-
processing. Yet the conversion may cause data loss. The other method is to optimize
the range computation module of PlainSFC to become distribution-aware. Then, to ap-
proach the query geometry, PlainSFC decomposes the multidimensional space into finer
ranges where the point density is high, while generates coarser ranges where points are
sparsely distributed.

This section focuses on developing an adaptive nD-histogram technique that im-
proves the performance of PlainSFC. We assume all dimensions in the nD-PointCloud
data are used as the organizing dimension, to ease expression and description. Sub-
section 4.2.1 first presents the conceptual idea of the nD-histogram design based on
PlainSFC. Then, Subsection 4.2.2 and 4.2.3 describe the building and querying algo-
rithms of the nD-histogram, respectively.

4.2.1. CONCEPTUAL DESIGN

I implemented the nD-histogram by using a tree structure — HistogramTree (Liu, van
Oosterom, Meijers, Guan, et al., 2020). It records the count of points inside an nD node
(Section 2.6.1). If the count exceeds a threshold, i.e., the capacity of a leaf node, then the
node is decomposed into 2" children with corresponding counts. Using HistogramTree,
it is expected that the number of vacant ranges generated by PlainSFC can be greatly
diminished (Figure 4.3). I call the new solution HistSFC, that uses HistogramTree for
range computation.

Figure 4.4 presents the C++ data structure of a node in HistogramTree. A height field
is recorded to distinguish different nodes, because branch nodes at different levels may
possess identical keys. Alternative design exists. For instance, .#%2-HBase (Nishimura
et al,, 2013) employs the longest prefix of the binary SFC key to represent a region. For
example, a node with key value 1100** covers child nodes from 110000 to 110011 in 2D
space. It is convenient to retrieve the parent node from a child node by truncating the
key, e.g., the parent of 1100** is 11****, However, CHAR type should be used to support
such a design, which is inefficient for computation and storage compared to the Oracle
NUMBER type adopted by HistogramTree.

It should be noted that a HistogramTree node contains neither points nor pointers to
points. So, HistogramTree is not an indexing structure. It is an additional structure used
by the first filter when computing ranges for a query geometry. It is also compact and
can be stored in a flat table.

4.2.2. BUILDING ALGORITHMS
This section describes two algorithms to build HistogramTree — HistML and HistSTREAM.

HisTML
To build the HistogramTree, a conventional top-down approach is to first create a root
node to cover the whole point cloud. Then it builds nodes in lower levels by reading all
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Figure 4.3: Range computation using nD-histograms, where 7,4 refers to the number of ranges

points once per level. This can incur G(NlogN) 1/0s. By contrast, The bottom-up ap-
proach starts creating nodes from raw points, and incrementally builds nodes at upper
levels. Although this can decrease the I/0 cost to G (NN), it leads to significant memory
consumption. Consequently, an improved approach is to construct nodes from a middle
level (ML), which is the HistML approach (Figure 4.5).

HistML first determines an appropriate ML where most nodes satisfy the capacity
threshold. HistogramTree nodes are then built in this level. This is followed by a fixing
step in which the approach picks up those overloaded ML nodes, and then reads the
point list once more to build nodes below. After it, the top part of HistogramTree is gen-
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STRUCT HistNodeND
{
HistNodeND* child;
HistNodeND* neighbor;

uint256_t key;
long long pointcount;
short height;

}

Figure 4.4: The data structure of a node in HistogramTree

erated from ML. In such a way, the memory and time cost can be drastically reduced.
However, the challenge of this approach lies in devising a robust algorithm to compute
the height of ML. Considering variety and complexity of different data sets, manual in-
terventions may still be needed to determine the ML, e.g., experimenting with a small
sample taken from original data.

HIisTSTREAM

The streaming approach HistSTREAM, as is shown in Figure 4.6, utilizes the IOT to build
HistogramTree. Basically, HistSTREAM reads sorted Morton keys sequentially and mean-
while computes a node Ny that could be the parent of all traversed keys. This stops until
reading a key that belongs to the sibling or parent of Ny, and the number of keys tra-
versed exceeds the leaf node’s capacity. Then, HistSTREAM returns to the beginning of
this traversal and creates child nodes of Ny. Afterwards, HistSTREAM continues and
starts a new traversal. When the scanning of IOT is completed, nodes are aggregated till
the root node. Unlike HistML, HistSTREAM has to be implemented after data loading, as
the order of the keys is critical. The I/0 cost is ©(N), as IOT has already been built. Be-
sides, no matter how large the input is, the memory usage is a constant which depends
on the leaf node capacity. Moreover, without the ML determination, HistSTREAM can
be a fully streaming process. The actual performance of both algorithms for building
HistogramTree is assessed in Section 5.1.3.

4.2.3. QUERYING

HistSFC employs HistogramTree to compute more effective ranges than PlainSFC. Fig-
ure 4.7 presents the querying procedure. Starting from the root node, by performing in-
tersection between the HistogramTree and the query window, the function retrieves all
relevant nodes to build the range table. Non-overlapping nodes are abandoned. Nodes
which are inside the query window are immediately added to the range table with no
further processing needed. The nodes on the boundary with few points inside are also
exported immediately, e.g., nodes that contain less than 2” points. The remaining nodes
intersecting the boundary of the query window are temporarily held in a refinement
pool. These can be further refined based on fixed recursive decomposition. The process
stops when the refinement pool is empty or the number of ranges reaches the threshold.
The rest of querying remains the same as PlainSFC.
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4.3. CUMULATIVE HYPERCUBIC COVERAGE

In principle, HistogramTree helps improve the performance of querying when data dis-
tribution is skewed. However, to what extent can HistogramTree improve the perfor-
mance? How is this related to specific data distributions? This section proposes a metric
— Cumulative Hypercubic Coverage (CHC) — to quantify the uniformity of points. Then,
CHC is used to investigate the theoretical effectiveness of HistogramTree in querying nD
data, in Section 4.4.

Gunzburger and Burkardt (2004) summarized 8 metrics for measuring the unifor-
mity of points in the nD space. Some metrics are point-to-point measures, such as the
variance of the nearest neighbor distance, where the nearest neighbor distance of each
point is measured first and the variance of all these distance values is then computed. A
small variance indicates a high uniformity. Metrics belonging to this type may describe
the regional uniformity well, but fail to grasp the global pattern, e.g., a point set with
several clusters with points distributed uniformly inside. The other metrics are volumet-
ric measures where a Voronoi tessellation of the point set is firstly generated and then
various quantities associated with the points and the Voronoi regions are determined.
However, as these Voronoi regions can deviate significantly from the hypercubic ranges
used by PlainSFC or HistSFC in the nD space, volumetric metrics are also not appropri-
ate to describe the uniformity for measuring HistogramTree’s effectiveness. Ong et al.
(2012) categorized three types of uniformity measures, namely, discrepancy, point-to-
point measures, and volumetric measures. Then, they proposed a new measure based
on the physical analogy of potential energy, which is advantageous in several aspects
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such as consistency and computation complexity. However, they only focused on 2D
data sets. Considering the particular problem that hypercubic ranges are used to select
nD data, I thus define a new uniformity metric — CHC. The metric is generally applied
to nD space, as will be shown in the following formulations.

Given a point set consisting of N points within an nD domain which is defined by
the range of all dimensions, suppose the hypervolume of the domain is V. I provide two
formulations of CHC, and later prove that they approach to the same expectation when
N becomes arbitrarily large:

Formulation 1 (Grid occupancy): We divide the domain into N nD-cells with the
same size (Figure 4.8a). Suppose the extent of the i’ dimension Di equals Ep;, the

edge length of the cell at that dimension then equals ?;)Nl If at least one point falls

into a cell, then the cell is counted. As the hypervolume of each cell is %, then, CHC =

1 count of occupied cells-V _ count of occupied cells
v N = N :
Formulation 2 (Entity union): For each point p, we use it as the center to build

an nD-cell ¢ (Figure 4.8b) of which the edge length at Di equals I;\‘;/DN’ Then, CHC =
hypervolume(Jc)

In F‘:)rmulation 1, occupancy grid is used. In fact, it has been widely used for clas-
sifying point clouds (Kuhn et al., 2016) and building 3D maps (Saarinen et al., 2013). In
ecology, the area of occupancy is proposed and used (IUCN-Committee, 2019). How-
ever, due to specific purposes, they use different expressions instead of CHC. Compared
with Formulation 2, Formulation 1 is more convenient and efficient to compute. For ex-
ample, given a DBMS flat table PC storing N points with dimensions D1,D2, ... Dn, the
SQL command “SELECT COUNT/(ct)/N from (SELECT COUNT(*) AS ct from PC group by
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Figure 4.8: Two forms defining the 2D cumulative hypercubic coverage (yellow)

TRUNC(D1/elp;), TRUNC(D2/elpy), ... TRUNC(Dn/elp;,) HAVING ct>0)" can be used to
derive CHC: elp; refers to the edge length of a cell in Di, which equals %. In the follow-
ing, I provide theorems that show CHC'’s property of being a constant when N becomes
arbitrarily large.
Theorem 1: According to Formulation 1, given a point set following a specific distri-
bution, when N becomes arbitrarily large, then, the expectation of CHC is a constant.
Proof: Assuming the point set is distributed in a 2D unit domain, for a specific cell ¢

defined by its center (x, y), the probability that it is occupied can be computed:

fc(x,y) )N

—1_(1— N_1__-
Plex, ) =1-(1-Fery)" =1-01 N

4.1)

where F(y,y) is the cumulative probability in ¢, and fe(x,y) refers to the average probabil-
ity density. When N — oo, the size of ¢ becomes arbitrarily small, we have

lim P(c(x,y) = lim (1—(1—M)N) =1-e [ 4.2)
N—oo N—oo N

where e is the Euler’'s number, approximately equal to 2.71828. The specific derivation

is based on limy_oo(1 — %)V = 1. We just need to change it to limy_.oo(1 — %)N, to

derive the limitation which equals e~ feton

Since
N P(c;:
E(CHC)=)_ E\C]l)

~.
—

when N — oo, we derive

E(CHC) = ff P(o)do = /f (1—e‘f (x’y))dxdy 4.3)
Q Q
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where Q refers to the unit domain, [0, 1] x [0, 1] in this case.
It is easily to extend current theorem to the nD unit hypercubic domain, where f;,
represents the joint Probability Density Function (PDF):

E(CHC)=[---[Q(1—e_f") dv (4.4)

In reality, it is very likely that a point cloud can spread over a much larger space than
a unit domain. In such cases, the PDF can firstly be scaled to the unit domain, and the
expectation can then be derived. Such scaling does not change CHC because a cell in
the original space corresponds to a distinctive cell in the unit domain. So, the count of
occupied cells remains the same. O

Theorem 2: In Formulation 2, the expectation of CHC converges to the same con-
stant as in Formulation 1, when N becomes arbitrarily large.

Proof: Based on the 2D unit domain assumption, the difficulty to compute CHC us-
ing entity union lies in computing the overlapping area of different cells. So, instead of
the cell, we focus on a small As region (% >> As) in the domain that will be covered by
the union of cells. We use two bounds to derive the expectation of the area of which As
is covered, denoted by E(s). As Figure 4.9 shows, when a point falls into the red box, As
is considered to be totally covered. Apparently, the lower bound omits the region where
an entity intersects As, while the upper bound regards all partial intersection as full cov-
erage. This yields

AsFy, < E(s) < AsFyy, (4.5)

where o refers to the effective region that a point falls into of the lower bound, while oy,
refers to that of the upper bound. Besides,

E(s) =ff s, Nfx,y)dxdy=AsF; (4.6)
oy

where o represents the average effective area that once a point falls into it, As is covered.
o is a probabilistic concept. Then, according to Equation 4.5 and 4.6, when As — 0, the
size of o approaches to a cell. Suppose P(0) is the actual probability that As is covered
by the entity union of the point cloud. Then, we could derive a same expression of P(o)
as Equation 4.1. Then, we adopt the size of As so that the whole domain can be decom-
posed to m As pieces, where m € Z and m > N. Based on this,

E(CHC)=)_ (P(o;)As) 4.7)
i=1

When As — 0,
E(CHC) = f f —e /™ y) dxdy 4.8)

This is the same as Equation 4.3. Analogously, we can extend the derivation of CHC’s
expectation to the nD domain, and the expression is the same as Equation 4.4. O

I also performed a numerical simulation to illustrate the theorems. In Figure 4.10, the
CHC of a 2D point cloud with a joint Gaussian distribution is computed. X and Y are two



4.4. EFFECTIVENESS OF ND-HISTOGRAM 51

Figure 4.9: Area of As being covered, lower bound on the left, upper bound on the right

independent dimensions, both following .47(0.5,0.1) (shown in Figure 4.8). Figure 4.10 u
clearly shows that CHC computed by the two methods gradually converge to the true
value which is given by Equation 4.4.
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Figure 4.10: Numerical simulation of CHC using both methods

Considering the stable nature of dimensions, the point distribution cannot be changed
significantly by adding more data. In other words, CHC can be seen as an intrinsic prop-
erty of a point cloud. Besides, CHC is computed based on accumulating the hypercubes,
which keeps consistent with the querying strategy of PlainSFC and HistSFC. Therefore,
CHC is used to interpret how the effectiveness of HistogramTree changes with different
distributions.

4.4, EFFECTIVENESS OF ND-HISTOGRAM

As is mentioned, when points are distributed non-uniformly, part of the ranges com-
puted by PlainSFC will contain no points. To evaluate this quantitatively, I define the
Empty Ratio (ER) of ranges (Equation 4.9), where a vacant range has no point inside. ER
can be used to evaluate both PlainSFC and HistSFC.

ER cannot directly indicate the effectiveness of HistogramTree, and another metric is
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needed. First, I define an effective range as a range exported by PlainSFC that contains
at least one point. Assume the capacity threshold of HistogramTree is 1 (i.e., the highest
precision), so that HistSFC only returns effective ranges. Then, I use Equation 4.10 to
measure the effectiveness of HistogramTree with respect to a query.

_ Number of vacant ranges exported
 Total number of ranges exported

4.9)

Total number of ranges exported by PlainSFC
Number of effective ranges exported by PlainSFC

Epist = (4.10)

Based on the formulations above, Ej;s; = (1 — ERprainsrc) . The following subsec-
tions explores how Ej;s; changes with point distribution which is represented by CHC.
Subsection 4.4.1 provides a theorem indicating the overall relationship between CHC
and Ej;g;. Then, Subsection 4.4.2 specifically investigates the influence of dimensional-
ity on Ey;sr, while Subsection 4.4.3 focuses on the effect of correlation.

4.4.1. HOW EFFECTIVENESS CHANGES WITH CUMULATIVE HYPERCUBIC COV-

ERAGE
Intuitively, the more severely skewed the data distribution is, the more effective should
the HistogramTree be. I prove this in the following.

Theorem 3: Given point sets with different distributions in nD space, each point set
contains N points. For a window query, the expected Ej,;5; is a monotonically decreasing
function of CHC.

Proof: We first build the occupancy grid (Formulation 1) for each point set (Fig-
ure 4.11). Assuming [ is the search depth, as N may not equal 2" which is the number of

log, N
subspaces, we set [ to [%

be reached. Based on this, we assume the query window totally matches the boundaries
of SFC cells at /.

In Figure 4.11, the incremental process of CHC reveals how effective range and Ej,;;
change. Starting from CHC — 0, i.e., all points reside in a grid cell, and there is no effec-
tive range. So, Ej;s; — +oo. In practice, this means HistSFC can immediately report an
empty set as the result, instead of PlainSFC'’s strategy that first exports a set of ranges and
then retrieves no points. When a point moves from the central grid cell to another, which
means CHC increases, Ej;s; decreases due to a higher probability to encounter a point
inside (middle sub-figure). When more points move out from the original grid cell, Ej,;4;
is most likely to decrease again or remain the same (right sub-figure). Sometimes, it is
likely that two points belong to different cells of the occupancy gird, but resides in the
same SFC cell, due to the mismatch of these two cell size. In this case, Ej,;;; also remains
the same, and will not increase. Consequently, for a large number of random window
queries, Ej ;s is monotonically decreasing function of CHC. O

Theorem 3 indicates a general pattern: given two nD point clouds A and B where
CHCj > CHCp, for a large number of window queries, Eap;s: < Egpisr- The smallest
Eyis¢ equals 1, which happens when points follow a chessboard distribution (i.e., CHC =
1) which is a correlated uniform distribution. When this happens, HistogramTree is not
needed. In all other cases, Ej;5; > 1.

] . With current setting of HistogramTree, such a depth can
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Figure 4.11: The change of effective ranges with respect to CHC, where solid lines constitutes the occupancy
grid, while dash lines indicate the subdivision of space

4.4.2. INFLUENCE OF DIMENSIONALITY

CHC is not necessarily related to dimensionality. For instance, when all dimensions fol-
low a uniform distribution independently, according to Equation 4.4, CHC always equals
a constant value which is about 0.63212. In other cases, dimensionality may influence
CHC, and therefore Ej;g;. To investigate the influence of dimensionality on Ey;g, I cat-
egorize distributions into the uniform and the non-uniform ones considering common
properties of dimensions (Section 2.1.2). Besides, I use the term m-nD query to express
among n organizing dimensions, the query window only specifies m out of them. This
implies that the other n — m dimensions are fully selected. Based on this, I establish the
following theorem.

Theorem 4: Given a point cloud consisting of N points, the number of ranges used
for a m-nD queryis r. When an independent uniform dimension is added as an organiz-
ing dimension, Ej;s; remains the same for the new m-(n + 1)D query. In contrast, when
the added organizing dimension follows non-uniform distribution, Ej,;s; increases.

Proof: We first focus on a 2-nD query. Starting from a 2D point set in the unit do-
main, suppose the whole coverage of the query window is C and the coverage of effec-
tive ranges is CfD. Then, by adding an organizing dimension with independent uniform
distribution, the coverage of the 3D query window (with full range of the added dimen-
sion) is still C. Hence, the coverage of each 2D range and each 3D range are both equal to
%. As a result, the number of effective ranges generated equals r%ED for the 2-2D query,

E
and rC% for the 2-3D query. As CE, = [f-(1- e /™)) dxdy and the third dimension

f(z) =1, then, CsED = fol fe(- e’f(x’y)'f(Z)) dxdydz= CZED. So, the number of effective

rck . . .
2D ranges and 3D ranges both equal —2. With this, we derive that for the 2-nD query,

Enist3ap = Enist2p = (4.11)

Cop

We could extend this to n organizing dimensions, with the assumption that the query
window totally matches the boundary of all nD Morton nodes and N is large enough.
Based on this proof, we could derive that for a m-nD query, Equation 4.11 also holds.
On the other hand, when the added dimension follows non-uniform distribution such
as the extreme distribution, then, CfD < CfD. This is because instead of spreading over
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the third dimension, points will be absent in some parts. As a result, Ep;s;3p increases.
This can also be extended to nD obviously. O

An implication of Theorem 4 is that for a specific m-nD query, Ej;s; will not change
by converting other uniform property dimensions into organizing dimensions. Referring
to Equation 2.1, such conversion has insignificant influence on the time cost. However,
when the converted dimensions follow skewed distributions, the gap between time cost
of PlainSFC and that of HistSFC should become more significant.

4.4.3. INFLUENCE OF CORRELATION

Dimensions may not always be independent from each other. Take the flood compu-
tation as an example (Section 1.2), water depth correlates with elevation: normally, the
lower the elevation is, the deeper the inundation will be. Also, the GPS trajectory points
are normally distributed along paths. So, X and Y are correlated (non-)linearly, and
f(x,y) # f(x) f(y). This influences CHC as well. Intuitively, correlation decreases CHC,
compared to independent distributions of dimensions. This section investigates how
data correlation affects Ej;;. The following theorem derives a general pattern of Ej;g;
based on the linear correlation.

Theorem 5: Given independent variable X and Y, The corresponding PDFs are f(x)
and f(y). When X and Y become linearly correlated, but with f(x) and f(y) unchanged,
then, 0 < P(CHC.or = CHCj,q) < 1 holds (where P stands for probability; CHC,,, and
CHC;pq refer to CHC in the correlated case and independent case respectively). In other
words, correlation can also increase CHC. Consequently, the change of Ej,;;; cannot be
generally derived.

Proof: A generic explanation may be tough to reach due to the implicit primitive
functions of the PDFs. Thus, I prove the theorem by using rationale examples. I first
performed numerical simulation to test a bivariate normal distribution. Figure 4.12 in-
dicates that CHC¢or < CHCj,4 when correlation happens (i.e., 0y > 0). Furthermore, it
also shows C HC keeps decreasing as COV (X, Y) increases.
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Figure 4.12: Numerical simulation of bivariate normal distribution and CHC, px =y = 0.5
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On the other hand, I provide a counter example, as is shown in Figure 4.13. Given
a distribution where X and Y are independent, we focus on the number of points in 4
cells shown in Figure 4.13 which are noted as Num; to Numy: Numy = m, Numyp =
0, Numg = m+ k and Numy = k, where m = 2 and k = 2. This case is rationale as
Num; — Numy = Nums — Numy = m and Nums — Num; = Numy — Numy = k, i.e.,
Y has no influence on the distribution of X since they are independent variables, and
vice versa. Now we move one point from cell 1 to cell 2, and another point from cell
4 to cell 3. In this way, f(x) and f(y) are unchanged. Then, the original coordinate
pairs change from (x1, y;) and (xg, y2) to (x2, y1) and (x1, y»). Considering COV(X,Y) =
E(X —ux)(Y —py) = E(XY) — uxpuy, we could derive ACOV = (x2 — x1)(y1 —y2) > 0. In
other words, the moving operation has added correlation to the data. However, with re-
spect to the grid occupancy, cell 2 will be filled in, which causes the increase of CHC.
Therefore, CHC.,r > CHC;,, in this case. Besides, the chessboard distribution where
CHC = 1is also a typical case of non-linear correlation. This means any other indepen-
dent distributions will only cause the reduction of CHC. Based on the analysis above, we
cannot draw a general conclusion on how Ej,;s; changes. O

Y2

X1 T2

Figure 4.13: The change of C HC with correlation, by moving points

It should be noted that whatever correlation it is, CHC can always be used to quan-
tify the uniformity of points and evaluate how skewed a point distribution is. Besides,
HistogramTree deals with correlations implicitly, as it focuses on where the points are
located instead of the specific correlation.

4.5. EXPERIMENTAL VERIFICATION

Experiments are conducted to learn how distribution influences the effectiveness of His-
togramTree practically. This also aims to verify the theorems proposed above. The first
ideal test is based on uniform and partial uniform distributions, where the analytical
CHC values can be computed (Equation 4.4). The second test simulates the distribution
of dimensions according to real nD-PointCloud data. So, the result derived should be
more close to reality.
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4.5.1. INDICATORS FOR EXPERIMENTS

Previously, the ideal Ej,;5; (Equation 4.10) is developed for proving theorems, where His-
togramTree is supposed to have a leaf node capacity of 1. In practice, this can hardly be
achieved given a large input. Thus, this experimental section uses two variants of E;; to
measure the effectiveness of HistogramTree (Equation 4.12 and 4.13). They are suitable
for different scenarios.

] Number of ranges exported by PlainSFC

L= 4.12
hist ~ Number of ranges exported by HistSFC (4-12)
FPRpyg;
Zist — PlainSFC (4.13)
FPRpistsrc

where FPRp;,insrc and FPRy;stsrc stand for False Positive Rate (FPR) of PlainSFC and
HistSFC, respectively.

Given a large point set, we build HistogramTree with a proper capacity threshold. To
fully benefit from HistogramTree, HistSFC searches to the level of leaf nodes. For a fair
comparison, PlainSFC should also search to the same depth. In this case, E;”.s , can be
used to evaluate the effectiveness of HistogramTree. The larger E;lis ; Is, the more effec-
tive HistogramTree functions. However, this is not the default way of using PlainSFC and
HistSFC where a maximum number of ranges (r,,4) is set in advance for query execu-
tion, as 7,4 cannot guarantee the search reaches the bottom level of HistogramTree.

On the other hand, E;l’l.s : is more practical. As has been mentioned in Section 2.6.3,
FPR of the first filter is a key metric to evaluate the efficiency in practice. With the default
use of PlainSFC and HistSFC, EZ ;s Can be adopted to indicate the effectiveness of His-
togramTree. This is because given a fixed r, 4, more vacant ranges implies less accuracy
of the effective ranges. This corresponds to a large FPR, and vice versa. Hence, a larger
E Zl.s , also indicates higher effectiveness of HistogramTree.

4.5.2. IDEAL TEST

In this experiment, I tested PlainSFC and HistSFC with 2D to 10D points. The coordinate
value for each dimension uses 12 bits so that the 10D Morton key requires 120 bits which
fits within Oracle NUMBER type (128 bits). I only used two types of distributions: one
is uniform distribution in the whole domain; the other is partial uniform distribution
which spans half the domain but with random boundaries. I established 6 Ideal Data
Groups (IDGs), from IDGI1 to IDG6, with each consisting of (2i) D (i € [1,5]) data sets. Ta-
ble 4.1 shows the distributions of the dimensions in each data set. For instance, with re-
spect to the IDG4 8D data set, the first 6 dimensions follow partial uniform distributions
with different boundaries while the last 2 dimensions follow the uniform distribution.
For all data sets, dimensions are independent from each other.

Each 2D, 4D, 6D, 8D and 10D data set contains 104, 108, 107, 10% and 10'° points,
respectively. This is because as the domain range can maximally be 4095, too many
points in low dimensional spaces can cause redundancy, which undermines the distri-
bution. For instance, the 2D data set can maximally contain 16,777,216 unique points.
To avoid redundant points generated by the uniform distribution, the total points mod-
elled should even be less. On the other hand, insufficient number of points for testing
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Table 4.1: Distributions adopted by different data sets: U stands for the uniform distribution, and PU repre-
sents the partial uniform distribution

2D 4D 6D 8D 10D
IDG1 2U 4U 6U 8U 10U
IDG2 2PU 2PU+2U 2PU+4U 2PU+6U 2PU+8U
IDG3 2PU 4PU 4PU+2U 4PU+4U 4PU+6U

IDG4 2PU 4PU 6 PU 6PU+2U 6PU+4U
IDG5 2PU 4PU 6 PU 8PU 8§PU+2U
IDG6 2PU 4PU 6 PU 8 PU 10 PU

will cause inaccurate computation of CHC (Figure 4.10). Then, Formulation 1 is used to
practically compute CHC. Table 4.2 lists the tested CHC values and theoretical values. u

Table 4.2: CHC (tested/theoretical) of different data sets: different color represents different category divided
by the order of magnitude

2D 4D 6D 8D 10D
IDG1 0.635/0.632 0.641/0.632 0.658/0.632 0.632/0.632 0.632/0.632
IDG2 0.250/0.245 0.267/0.245 0.297/0.245 0.297/0.245 0.297/0.245

IDG3 0.249/0.245 0.107/ 0.110/ 0.108/
IDG4 0.252/0.245

IDG5 0.248/0.245 0.004 0.004
IDG6 0.248/0.245 0.004 0.005/0.001

Table 4.2 clearly shows the gradually decreasing pattern of CHC from IDG1 2D to
IDG6 10D. However, due to insufficient number of points generated, the tested CHC val-
ues deviate from the theoretical values. Nonetheless, the tested CHC values are cate-
gorized by 3 different orders of magnitude, which is significant enough to verify how
HistogramTree’s effectiveness changes with CHC.

Then, I built HistogramTree by decomposing the space to a specific depth, instead of
using the default approach based on node capacity (Section 4.2.2). In this way, all leaf
nodes have the same size in space, which keeps in line with the setting in the theorems.
To determine the depth for space decomposition, for one thing, the size of leaf node
should approach the cell size of the occupancy grid as much as possible; for another, the
HistogramTree should not cost too much memory. Take IDG6 10D data set as an exam-
ple, the partition depth is expected to be 3 so that every dimension can be decomposed
into 8 segments which approach the 10 segments of the occupancy grid. However, in that
case, the HistogramTree would comprise more than 1 billion nodes, which can bloat the
memory. So, I built the HistogramTree with only 3 levels including the root. Table 4.3
shows the settings of HistogramTree. The maximum size of HistogramTree always oc-
curs in IDG], as its points spread over the whole space.

When querying, I randomly generated 500 nD hypercubes with the same size but
different positions. They were used as query windows. To guarantee enough points se-
lected, for 2D, 4D and 6D tests, I used 410 as the edge length of each hypercube, which
accounts for 10% of the length of each dimension. For 8D and 10D tests, I used 1000 as
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Table 4.3: Settings of the HistogramTree for all data groups

2D 4D 6D 8D 10D

Depth of leaf nodes 7 5 4 3 2
Edge length of a leaf node 32 128 256 512 1,024
Maximum number of nodes (x103) 13 714 7,800 16,800 1,050
Maximum storage size (MB) 0.6 30 331 626.5 40

the edge length, accounting for 25% of each dimension. A query window has first to be
examined if it intersects the data region, to assure points can be selected. For a query,
HistSFC searched to the bottom level of the HistogramTree, and PlainSFC searches to
the same level. Based on this setting, I adopted E;m . (Equation 4.12) to measure the
effectiveness of HistogramTree.

Table 4.4 lists E;”.S , derived. In 2D, as all data groups adopt the uniform distribu-
tion, E;”.S ; fluctuates gently. Unlike the chessboard distribution, uniform distribution
can generate holes in the data space. Hence, HistogramTree also works positively. In
4D and 6D, we observe a clear gap among E;”.s , belonging to different category of CHC.
It shows that with the decrease of CHC, E;l ist increases. In 8D and 10D, the influence of
CHC becomes more significant where E . . keeps increasing as CHC declines from IDG1
to IDG6. An odd pattern occurs that the increment of E;”.s , in 10D is smaller than 8D.
This is most likely caused by the different searching depth using HistogramTree. With a
lower depth of leaf nodes, the 10D HistogramTree provides less information about dis-

tribution, and is thus less effective.

Table 4.4: Average E;”.S , of different data sets, colored according to the value category of the tested CHC

2D 4D 6D 8D 10D
IDG1 186 1.64 221 1 1
IDG2 196 1.72 2.00 1.65 1.46

IDG3 1.82 208 3.04 184
IDG4 2.10
IDG5 1.70
IDG6 2.18 5.04

In fact, this ideal test is also devised to verify Theorem 4 which asserts that by adding
uniform dimensions into the organization of data storage will not influence the effec-
tiveness of HistogramTree. However, as the settings of HistogramTree is confined by the
hardware and software (e.g., memory size and number of bits to use), the pattern is not
clearly shown. Nonetheless, from Table 4.4, we do not observe an evident decreasing
trend of E;”.s . in each data group, as dimensionality rises. Instead, IDG5 and IDG6 show
an increasing trend to some extent.

4.5.3. REALISTIC SIMULATION AND TEST
To further test the effectiveness of HistogramTree, I devised another experiment with re-
alistically simulated data. I first collected point clouds from different sources such as
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indoor laser scanning or ALS, and then plotted distributions of the dimensions involved.
In addition to the uniform distribution of X and Y, normal distribution and Gamma dis-
tribution also commonly exist, e.g., classification and intensity. So, I simulated 6 di-
mensions (from D; to Dg) with different distributions. D; and D, follow the uniform
distribution of which the normalized PDF is 2 (0,1). Other dimensions follow skewed
distributions where different parameters are adopted to incorporate different skewness.
Table 4.5 and Figure 4.14 present the distributions of D3 to Dg. The value of each dimen-
sion is based on 20 bits, ranging from 0 to 22, This allows more distinct values in each
dimension, which is more realistic than the previous experiment.

Table 4.5: Distributions of different dimensions simulated based on real data

D3:Gammal Dj4:Normal Ds:Gamma2 Dg:Gamma3
Gentle I'(1,2)x2'7 429,218 12,3 x2P (10,2) x 216
Sharp T(0.051)x2'7 _4(219,21) T1(10,0.1)x2!> T(820,0.02) x 2'°
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Figure 4.14: Normalized probability density functions: (a) D3, (b) Dy, (c) Ds, (d) Dg, where red lines are the
sharp distributions while blue lines are the gentle ones

Then, I built 5 “Realistic” Data Groups (RDG) from 3D to 6D, with different dimen-
sions (Table 4.6). Each data set contains 10,000,000 points. Table 4.7 lists the CHC values
of different data sets. Some CHC values are omitted because their data sets repeat the
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dimensions included by other data sets. In this experiment, I adopted the regular pro-
cedure to build HistogramTree based on capacity threshold: 3D and 4D solutions used
100 as the capacity, while 5D and 6D adopted 1000, instead. When querying, I randomly
generated 500 nD query windows with varying edge lengths at each dimension, but guar-
anteed at least 100 points to be selected. The maximum number of ranges for 3D and 4D
querying was 1000; while that for 5D and 6D querying was 10,000. Based on these set-
tings, Egl.s . (Equation 4.13) is more appropriate to be used as the effectiveness metric.

Table 4.6: The additional dimension added to each data set. In each data group, D, D2 are always used.
Besides, a higher dimensional data set includes all dimensions of the lower dimensional data set, with the
additional dimension added

3D 4D 5D 6D
RDG1 gentle D3 gentle Dy gentle Ds gentle Dg
RDG2 sharp D3 gentleDs gentleDs gentle Dg
RDG3 sharp D3 sharp Dy gentle Ds gentle Dg
RDG4 sharp D3 sharp Dy sharp D5 gentle Dg
RDG5 sharp D3 sharp Dy sharp Ds  sharp Dg

Table 4.7: CHC values of different data sets, colored by different orders of magnitude

3D 4D 5D 6D
RDG1 0.4790 0.3329 0.2210 0.1571
RDG2
RDG3 -
RDG4 - -
RDG5 - - - 0.0005

Table 4.8 presents the average EZis ; tested. The result once again verifies that His-
togramTree works more effectively when querying a point cloud having a larger CHC,
with randomly distributed query windows. Given a certain dimensionality, the gap be-
tween different data sets becomes more significant when CHC values are of different or-
ders of magnitude. When the point cloud’s CHC is extremely low, such as the RDG4 5D,
RDG4 6D and RDGS5 6D data set, HistogramTree must be used. Otherwise, the query-
ing process can be orders of magnitude slower due to large FPR (reflected by EZiS -
Considering that skewed dimensions commonly exist in point clouds (Chapter 5), His-
togramTree is therefore an essential technique to improve the querying performance.

4.6. DISCUSSION

To improve PlainSFC’s performance on querying non-uniformly distributed data, this
chapter developed an nD-histogram method — HistogramTree. It records the informa-
tion of point distribution and can thus be used to guide range computation in the first
filter. The intention is to keep HistogramTree in the memory after the first query, so that
it will not be repeatedly loaded for subsequent queries. Hence, HistogramTree should
also be compactly built, e.g., with sufficient capacity threshold. Besides, HistogramTree
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Table 4.8: Average E;: ;¢ Of different data sets, colored according to categories of CHC values

3D 4D 5D 6D
RDG1 1.01 1.05 1.06 1.35
RDG2
RDG3 -
RDG4 - -
RDG5 - - - 62.17

can always be used whatever the distribution is, as it does not bring additional time cost
for querying uniformly distributed data.

To evaluate how data distribution relates to the effectiveness of HistogramTree (Ey,;s¢),
I first proposed a uniformity metric, CHC, to quantify the coverage/volume of a point
cloud based on adaptive hypercubes. Then, I established theory that indicates Ej,;4; in-
creases monotonically as CHC decreases, i.e., Theorem 3. The influence of the number of
organizing dimensions and correlation between dimensions on Ey;¢; was also discussed
afterwards. The tests with ideal data (Section 4.5.2) and realistically simulated data have
verified Theorem 3 that HistogramTree functions more effectively for point clouds with
smaller CHC. More specifically, the tests indicated that when the CHC value is smaller
than 0.1, HistogramTree becomes essential to use.

In practice, as CHC is convenient to compute based on the occupancy grid, devel-
opers are suggested to first measure the CHC before determining the final solution. If a
point cloud is too large, it can firstly be sampled to derive a subset with sufficient number
of points for computing CHC. This is because CHC is only related to the point distribu-
tion, regardless of the total number of points (Equation 4.4). Moreover, CHC provides
an intuitive indication of how data is skewed in nD space. This is significant because
human beings can hardly imagine and comprehend data distributions in nD. From this
point of view, CHC has the potential to facilitate more studies on point clouds, besides
the investigation into nD-histograms.






BENCHMARKING AND OPTIMIZING
HISTSFC IN PRACTICE

FTER acquiring the convincing results of HistSFC by theoretical verification and sim-
Aulation, it is crucial to evaluate the performance in practice. This chapter elabo-
rates benchmark results on real data including a 4D Airborne Laser Scanning (ALS) point
cloud in Section 5.1 and an 8D flood modelling result set in Section 5.2. The effect of His-
togramTree size and the number of ranges on querying efficiency is investigated. Besides
PlainSFC and HistSFC, state-of-the-art solutions including Pyramid-Technique, PostGIS
MultiPoint solution and Oracle SDO_PC are also benchmarked for comparison. After
this, Section 5.3 explores different techniques to optimize HistSFC further. In the end,
Section 5.4 further discusses the benchmark tests and provides more implications.

All benchmark tests are performed on a HP DL380p Gen8 server with 2 x 8-core In-
tel Xeon processors, E5-2690 at 2.9 GHz, 128 GB of main memory, a RHEL6 operating
system. The disk storage is a 41 TB SATA 7200 rpm in RAID6 configuration.

5.1. AHN2 TEST

AHN?2 is an ALS point cloud recording the terrain elevation of the whole Netherlands
(AHN, 2014). It contains totally 640 billion points, with a density of 6-10 points/mz.
I cropped a sample which locates at the south-western part of the Netherlands (Fig-
ure 5.1), containing 10 billion points. The range of the bounding box is [13427.6, 359007.3,
-8.8; 38000, 415990.9, 119.7] in spatial reference system Amersfoort/RD New, EPSG:28992.

This section conducts benchmark tests using this sample. Subsection 5.1.1 describes
state-of-the-art solutions implemented for comparison. Then, the data organization is
established in Subsection 5.1.2. Subsection 5.1.3 tests the two algorithms for building
HistogramTree (Section 4.2.2). After this, Subsection 5.1.4 executes orthogonal window
queries, and analyzes results.

63
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Figure 5.1: The AHN2 sample used for benchmarking

5.1.1. STATE-OF-THE-ART SOLUTIONS

In addition to PlainSFC and HistSFC, Pyramid-Technique, Extended Pyramid-Technique
and PostGIS are implemented. Figure 5.2 presents the querying process of different solu-
tions. The final result is stored as C++ in-memory objects, before being exported to disks.
Listings 5.1 - 5.4 provide details about the implementation, i.e., the SQL Data Definition
Language (DDL) and Data Manipulation Language (DML).

Query geometry

Morton range
computation

Query geometry

‘ SQL initialization

Query geometry

Pyramid value

[ —T

Range table Range table computation
: Posigresal
- query Result retrieval
Join range table Decodi Join range Result retrieval execution
and 10T ecoding table and 10T
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Secondary filtering

C++ program

(a) PlainSFC and HistSFC

Oracle

lSecondary filtering ]

C++ program

(b) (Extended) Pyramid-Technique

Secondary filtering

C++ program

(c) PostGIS

Figure 5.2: Querying process of different solutions

PYRAMID-TECHNIQUE

In high dimensional spaces, the Pyramid-Technique (Berchtold et al., 1998) avoids ex-
cessive access to data pages by partitioning data into pieces which cater to the shape
of hypercubes (Figure 5.3). In Figure 5.3, Pyramid-Technique splits the 2D domain into
4 pyramids of equal size, and assigns an ID from 0 to 3 to each of the pyramids. The
approach then maps each nD point into a one-dimensional pyramid value according to
the pyramid the point belongs to and its height in the pyramid. All the resultant one-
dimensional keys are then managed by a B+-tree structure to be indexed. This approach
can be generalized to nD where totally 2" pyramids are defined. When querying (Fig-
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Listing 5.1: PlainSFC implementation

—— suppose Morton codes and dimension values are stored in a CSV file,
AHNsample. csv .

—— first create a staging table
CREATE TABLE AHNflat (morton number, x number, y number, z number, cloi
number)

—— then, load data into AHNflat using SQL+Loader:
sqlldr control = control. ctl username/password direct=true

—— control. ctl defines the specifics of data loading, for example:
LOAD DATA

INFILE "/HOME/AHNsample. csv"

truncate

INTO TABLE AHNflat

FIELDS TERMINATED BY ’,’

TRAILING nullcols

(morton, x, y, z, cloi)

—— create the IOT which only stores the full-resolution Morton key
CRFATE TABLE AHNiot (morton, constraint ahn_iot_idx primary key (morton))
ORGANIZATION INDEX AS SELECT morton FROM AHNflat

—— when querying, first transform the query window into 1D Morton ranges and
store them in a range table
CREATE TABLE ranges (lower number, upper number)

—— to perform a query in the first filter. This also works for HistSFC and
Pyramid-Technique. /++ use_nl+/ is a hint for query execution in Oracle,
forcing the use of B+-tree index of IOT while iterating all ranges

SELECT /#+ use_nl (t r)+/ t.morton FROM AHNiot t, ranges r WHERE t.morton
BETWEEN r .lower AND r.upper

Listing 5.2: HistSFC implementation

—— HistSFC uses the same IOT as PlainSFC, i.e, AHNiot. Additionally, HistSFC
builds a flat table storing the HistogramTree.

CREATE TABLE AHNhist (id number, morton number, pointcount number,
childcount number, height number, childptr number, neighborptr number)
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ure 5.4), the vertices of the query window are used to derive which pyramids are affected.
Then, inside each pyramid, the specific range of height values are determined. In this
way, the query window is converted to ranges of pyramid values. The number of ranges
can maximally equal the number of pyramids. I implemented the Pyramid-Technique
based on the code described by Shi and Nickerson (2006).
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Figure 5.3: Data partition of Pyramid-Technique, ) ) . ) )
adapted from (Berchtold et al., 1998) Figure 5.4: 3D window querying using Pyramid-
Technique (Berchtold et al., 1998)

EXTENDED PYRAMID-TECHNIQUE

This solution optimizes the Pyramid-Technique to handle skewed data, where the par-
titioning center of pyramids is moved to the center of data (Figure 5.5). To achieve this,
for each dimension, a histogram is maintained to keep track of the median of a dimen-
sion. The nD median is then approximated by the combination of the one-dimensional
medians, to define the partitioning center, which is the top of all pyramids. After this,
the pyramid value of each point is shifted to the new data space, and the index is rebuilt.
Besides, the query window should also be converted in the new data space. As can be
seen, the extended Pyramid-Technique is cumbersome to use: when adding more data,
the whole data set has to be fully scanned to rebuild the storage.

RN QI
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Skewed data Pyramid-Technique  Extended Pyramid-Technique

Figure 5.5: Partitioning skewed data using Pyramid-Technique and extended Pyramid-Technique (Berchtold
et al., 1998)

PoOSTGIS

pgPointcloud can maximally support 2 organizing dimensions, which will perform inef-
ficiently in 4D queries. Thus, I implemented a 4D solutions based on the 4D MultiPoint
geometry. The original “M" dimension is replaced by cLol. To keep in line with HistSFC,
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Listing 5.3: Implementation of Pyramid-Technique and extended Pyramid-Technique

—— I first compute the pyramid values and the shifted pyramid values. They
are stored in a CSV file, together with all dimension values.

—— create a staging table and load data into it
CREATE TABLE AHNpyramid (pv number, pvshift number, x number, y number, z
number, cloi number)

—— create IOT based on Pyramid-Technique and extended Pyramid-Technique
CREATE TABLE pyramid_iot (pv, x, y, z, cloi, constraint pt_idx primary key (
pt,cloi)) ORGANIZATION INDEX AS SELECT pv, x, y, z, cloi FROM AHNpyramid

’

CRFATE TABLE expyramid_iot (pvshift, x, y, z, cloi, constraint ptex_idx
primary key (pvshift,cloi)) ORGANIZATION INDEX AS SELECT pvshift, x, vy,
z, cloi FROM AHNpyramid;

Listing 5.4: PostGIS implementation

—— scan the original AHN file. For each point, attach the nodeid indicating
the leaf node of the HistogramTree when building the AHNhist table.
Export all dimension values and nodeid into a new CSV file as input, i.e
., pg_data.csv.

—— create a staging table in PostgreSQL, and load pg data.csv
CREATE TABLE AHNpg (x double precision, y double precision, z double
precision, cloi double precision, nodeid bigint);

COPY AHNpg FROM ' /HOME/ pg_data.csv’ DELIMITERS ’,’ CSV

—— then, build the MULTIPOINT geometry table
CREATE TABLE AHNgeom AS SELECT st_collect (st_makepoint(x,y,z, cloi)) as
mpoint FROM AHNpg GROUP BY nodeid

—— create a 4D R-tree index
CRFATE INDEX ahn_mp_gix on AHNgeom USING GIST (mpoint gist_geometry_ops_nd);

—— cluster the storage according to the R-tree index
CLUSTER AHNgeom USING ahn_mp_gix;

—— when querying with a 4D window, e.g., [0, 0, 0, 0; 1, 1, 1, 1]. After
this, the string is parsed and filtered by the second filter in the C++
program

SELECT st_asewkt (mpoint) FROM AHNgeom WHERE mpoint &&& 'LINESTRING(0,0_0_0,,,
1.1.1.1)7;

(I L Ly}
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an MultiPoint object which corresponds to a leaf node of HistogramTree is created to
store point data. In fact, such an object can be regarded as a 4D block. Then, a 4D R-tree
is built on all MultiPoint objects for indexing.

5.1.2. DATA ORGANIZATION

cLol is an effective technique to alleviate intensive computation and can be used to fa-
cilitate visualization. So, I added a cLol organizing dimension using the method pro-
posed in Chapter 3, which ranges from 0 to 12,000 after stretching (Figure 5.6). In order
to learn the scalability of different solutions, I split the data into 5 vertical slices from
west to east. Starting from the first piece, by adding one more slice each time, 5 different
data sets are built. Table 5.1 presents the storage size of different solutions. Raw TEXT
refers to point records with 4 fields stored in TEXT files. Pyramid and PyramidEx refer
to Pyramid-Technique and extended Pyramid-Technique, respectively. From the table,
the size of SFC IOT is the smallest. This is mainly because during Morton encoding, all
points are shifted to the origin and lots of bits are thus saved.

0.0016

0.0008

Freguency

0 6,000 12,000
cLol value

Figure 5.6: Distribution of the cLol dimension

Table 5.1: Storage size of AHN2 data sets on the disk (in GB)

Dataset Number of RawTEXT SFCIOT Pyramid PyramidEx PostGIS

points
1 5 x108 16.49 10 18.24 18.52 7.21
2 10° 32.98 19.95 36.39 36.95 14.17
3 2 x10° 64.42 38.97 71.06 72.01 28.1
4 6 x10° 193.9 118.3 213.6 216.2 82.32
5 1010 323.4 199.7 356.9 360.7 138.0

5.1.3. BUILDING HISTOGRAMTREE

Before benchmarking different solutions, I first tested the two algorithms to build His-
togramTree (Section 4.2.2). To briefly recap, HistML first locates a middle level, and then
builds the HistogramTree in a bottom-up manner. On the other hand, HistSTREAM
reads Morton keys in the IOT sequentially to build HistogramTree nodes and then the
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whole structure. In this test, both approaches utilize 10,000 as the capacity threshold for
the 4D HistogramTree, and export exactly the same HistogramTrees for the 5 data sets.
The size of HistogramTrees ranges from 9.5 MB to 203 MB on the disk. Figure 5.7 presents
the time cost and maximum memory consumption. The time measurement starts from
reading Morton keys until exporting the HistogramTree to a flat table in Oracle.

18| - /ﬁ] | 4.000 |- - 8- HistML

m 16 e 3’ 500 —a— HistSTREAM
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» 12 s *(7;
8 10 - , o N 8 2,500 —
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Figure 5.7: Time and memory cost to build HistogramTree for the AHN2 sample

Figure 5.7 clearly shows the superiority of HistSTREAM in memory cost: HistML in-
creases linearly with input data size where it reaches 20 GB for the largest data set, while
HistSTREAM gradually rises and converges to a constant in the end. The memory con-
sumption of HistSTREAM depends on the longest consecutive data segment it processes.
Given irregular data tiles shown in Figure 5.1, the longest consecutive data segment can
increase when more irregular data tiles are added. This is the reason for the rise of Hist-
STREAM at certain stages. In terms of time cost, both approaches increase linearly as
input goes up, but HistSTREAM grows faster. Currently, both HistSTREAM and HistML
are implemented as independent C++ programs. HistSTREAM reads data from Oracle
where intensive data conversions happen, e.g., from Oracle binary number to C++ ob-
jects. Consequently, the time cost can be larger than HistML which reads data directly
from TEXT files. However, as is mentioned, HistML builds nodes from a middle level
which has to be decided first. In this test, I first generated the HistogramTree using Hist-
STREAM. Based on it, I then determined the middle level to run HistML. So, practically,
HistSTREAM is preferable.

5.1.4. BENCHMARKING WITH WINDOW QUERIES

To obtain a convincing benchmark result, random yet realistic orthogonal query win-
dows should be used. I devised the query window size and location by considering query
logs and testing requirements (e.g., diverse selectiveness of queries defined by Equa-
tion 5.1).

. Number of points within the query range
selectiveness = - (5.1)
Total number of points
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I first used AHN2 query logs from AHN2-viewer! to explore query window locations
in XY domain. As the AHN2-viewer is based on the Octree data structure, the query log
records which Octree blocks are retrieved. I extracted Minimum Bounding Boxes (MBBs)
of blocks in level 8, as a block in this level corresponds to the size of a normal city in the
Netherlands. So, the result should reasonably reflect the distribution of query windows.
Figure 5.8 plots the locations of these query boxes. It clearly shows that users are inter-
ested in both urban and rural areas. Besides, coastal areas are also frequently explored
by different users, apart from inland. Hence, In the benchmark test, the query locations
should be randomly distributed in the XY domain. The locations in Z dimension are not
involved in the query log which focuses on 2D spatial queries. So, I randomly generated
the Z range with devised selectiveness, mostly close to the earth surface. cLol is related
to the Octree levels. However, as the test data is a sample from the whole AHN2 data,
the Octree levels extracted from the log cannot be directly used. Thus, I devised the cLol
range by choosing different selectiveness.

0 25 5km

N

A

0 25 50 km

Figure 5.8: AHN2-viewer query boxes in red

Based on the consideration above, I randomly generated 30 query windows of which
I picked up 5 representatives to interpret. These query windows are within the range of
Data set 1 (Figure 5.9). Table 5.2 presents the selectiveness of these query windows. With
this, I first investigated how HistSFC improves the performance of PlainSFC. I tested dif-
ferent size of HistogramTree, as well as different number of ranges for querying, to learn
how they influence the efficiency. Then, I evaluated the performance of HistSFC by com-
paring it with other solutions.

Thttp://ahn2.pointclouds.nl/
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Query 4D MBR Size (X x Y x Z x cLoD) Number of
window points
SmallA | [13691.53, 368858.59, -0.97, 0.00; 433.17 x 433.17 x 230,739
14124.7, 369291.76, 61.74, 11957.71] 62.71 x 11957.71

SmallB [13582.83, 368380.82, 8.04, 0.00; 1417.17 x 10619.18 275,910
15000.00, 379000.00, 10.24, 10954.84] 2.2 x 10954.84

SmallC [13742.03, 368961.59, -2.86, 0.00; 1257.97 x 1882.04 x 239,818
15000.00, 370843.63, 13.87, 8700.00] 16.73 x 8700

Medium | [13722.4, 373013.86, -0.97, 0.00; 1277.6 % 5086.14 x 3,374,880
15000.00, 379000.00, 14.13, 10422.78] 15.1 x 10422.78

Large [13665.62, 369354.04, -2.86, 0.00; 133438 % 6893.73x | 22,663,207
15000.00, 376247.77, 10.56, 11339.54] 13.42 x 11339.54

Figure 5.9: Locations of representative query windows

Table 5.2: Selectiveness of different dimensions of the query windows, with respect to Data set 1

X Y Z cLol Overall

SmallA 1.73% 437%  99.46% 94.31% 0.05%
SmallB 20.5% 79.11% 1.01% 23.48% 0.05%
SmallC  20.25% 17.58% 98.8% 1.03% 0.05%
Medium 20.29% 35.02% 98.29% 11.23% 0.67%
Large 20.39% 55.3% 98% 40.03%  4.53%

Table 5.3 and 5.4 present the size of HistogramTrees with different capacity thresh-

old. To verify the reduction of vacant ranges after using HistogramTree, the Empty Ratio
Number of vacant ranges exported .
(Section 4.4).

of ranges (ER) is measured, recalling that ER = Total number of ranges exported
Table 5.5 presents ER of different solutions, where HistSFC_1K refers to HistogramTree
with a capacity threshold of 1,000 (i.e., leaf node capacity). The total number of ranges
for querying is 1 million for all solutions. Table 5.5 clearly shows that more than 95%
ranges generated by PlainSFC are empty, while the ratio decreases when using HistSFC,
especially HistSFC_1K. In the Large window query, HistSFC_1K halves the number of va-
cant ranges compared to PlainSFC. However, ER decreases less significantly when using
HistSFC_10K or HistSFC_100K (around 10% decrease on average).

Table 5.3: Total number of nodes in HistogramTree Table 5.4: Storage size of HistogramTree (MB)

Capacity threshold Capacity threshold
Data 1,000 10,000 100,000 Data 1,000 10,000 100,000
set set
1 2,689,357 231,342 23,675 1 109.5 9.5 1.5
2 5,297,346 463,259 47,510 2 215 19 2
3 10,610,241 936,491 95,351 3 430 38 4
4 28,158,323 2,483,944 237,396 4 1159 101.5 10
5 52,292,745 4,836,880 482,827 5 2140 196.5 20
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Table 5.5: Empty ratio of ranges using different HistogramTrees in AHN2 test, with 1 million ranges used

Query window HistSFC_1K HistSFC_10K HistSFC_100K PlainSFC

SmallA 94.66% 95.39% 98.32% 99.35%
SmallB 78.27% 82.35% 89.07% 98.04%
SmallC 85.35% 89.11% 91.32% 95.19%
Medium 65% 85.94% 92.03% 95.83%

Large 42.28% 80.40% 80.05% 95.73%

On the other hand, ER cannot directly indicate the querying performance, while

. . _ Number of points from first filter .
False Postive Rate (FPR) can: FPR = i —po; of points i accurate answer 1 (Section 2.6.3). Ta-
ble 5.6 presents FPR of different solutions. Over all, using HistogramTree significantly
decreases FPR of PlainSFC, and HistSFC_1K performs the best. Besides, HistSFC_10K

and HistSFC_100K also improve the performance evidently.

Table 5.6: False positive rate using different HistogramTrees in AHN2 test, with 1 million ranges used

Query window HistSFC_1K HistSFC_10K HistSFC_100K PlainSFC

SmallA 0.084 0.121 0.248 1.031
SmallB 0.778 1.143 1.257 2.339
SmallC 0.022 0.052 0.059 0.068
Medium 0.079 0.1 0.124 0.285
Large 0.028 0.033 0.063 0.136

Figures 5.10 — 5.14 show the querying time cost of different solutions. The time
cost corresponds to T in Equation 2.1, and is composed by the first filter time (T)¢)
and second filter time (Tjo + Tposr). Appendix A provides exact time measurements.
On the whole, HistSFC_10K and HistSFC_100K perform the best. PlainSFC follows be-
hind, while HistSFC_1K ranks last. In SmallA, SmallC and Medium query, PlainSFC takes
nearly the same time or slightly more, compared to HistSFC_10K and HistSFC_100K.
The main reason lies in the high uniformity of the data. For example, CHC of Data set
1is 0.01. Hence, the effectiveness of HistogramTree is limited, which causes insignifi-
cant improvement in FPR. For SmallB query, the ranges generated by either PlainSFC or
HistSFC spread over the 1D SFC space, which significantly increases database fetching
time of the first filter. With higher FPR, PlainSFC spends more time on database fetch-
ing. The Large query involves large output which needs more time to decode. Hence,
even with small FPR, PlainSFC still takes significantly more time to finish. In contrast to
the favourable performance in empty ratio and FPR (Tables 5.5 and 5.6), HistSFC_1K de-
grades remarkably in time cost as data size increases. This is mainly caused by traversing
the huge HistogramTree which takes enormous amount of time. Besides, HistogramTree
has first to be loaded into memory to use. The loading process of HistSFC_1K of Data
set 5 can take as long as 160 seconds, which is unacceptable. With current hardware and
software settings, the size of HistogramTree should be limited to less than 1 GB.

With respect to HistSFC_10K and HistSFC_100K, the gap between them is small. How-
ever, the size of HistogramTree of HistSFC_100K is much smaller (Table 5.4). If we con-
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Figure 5.10: Time cost of SmallA query using different HistogramTrees with 1 million ranges

16

{s) oo auwL

Data set

W Second filter

MRangecomputing B Database fetching B First filter others

W HistSFC_1K MHistSFC_10K m HistSFC_100K m PlainSFC

Figure 5.11: Time cost of SmallB query using different HistogramTrees
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Figure 5.12: Time cost of SmallC query using different HistogramTrees with 1 million ranges
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Figure 5.13: Time cost of Medium query using different HistogramTrees with 1 million ranges
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Figure 5.14: Time cost of Large query using different HistogramTrees with 1 million ranges
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Figure 5.15: Time cost of SmallA query with different number of ranges, using HistSFC_10K
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Figure 5.16: Time cost of SmallB query using different number of ranges, using HistSFC_10K
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Figure 5.17: Time cost of SmallC query using different number of ranges, using HistSFC_10K
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Figure 5.18: Time cost of Medium query using different number of ranges, using HistSFC_10K
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sider the whole AHN2 data set which is 64x larger than Data set 5, HistogramTree of
HistSFC_100K can occupy several GB in the memory. So, larger capacity threshold may
be used then. As a stress test, I chose HistSFC_10K for further benchmarking.

Figures 5.15 — 5.19 present the querying performance of HistSFC_10K with different
number of ranges, where Range_10K means total number of ranges generated for query-
ing is 10,000. Table 5.7 presents FPRs of different solutions. On the whole, Range_100K
performs the best, balancing the time cost of the first filter and second filter. Although
Range_10K performs better in certain cases, when it comes to larger query windows, the
higher FPR slows down its second filter significantly.

Table 5.7: False positive rate using different number of ranges for querying

Querywindow Range 10K Range 100K Range 1M

SmallA 0.848 0.33 0.121
SmallB 6.359 1.92 1.143
SmallC 0.297 0.156 0.052
Medium 0.318 0.178 0.1

Large 0.158 0.082 0.033

After tuning the settings of HistSFC, I compared it with other state-of-the-art so-
lutions including Pyramid-Technique, extended Pyramid-Technique and PostGIS (Sec-
tion 5.1.1). HistSFC_10K was used. The number of ranges for querying is 100,000. For
PostGIS, the capacity of MultiPoint object is 10,000. Figures 5.20 — 5.24 present time
cost of different solutions. As has been tested, if the output size is very large, the sec-
ond filter can cost huge amount of time to accomplish. So, for all solutions, I imple-
mented parallel post-processing with 32 processors. To illustrate with Figure 5.2, this
means parallel decoding and secondary filtering for HistSFC, parallel secondary filtering
for (extended) Pyramid-technique and PostGIS. The parallelization distributes workload
equally among different processors to achieve the best performance (Section 5.3.3).

From Figures 5.20 — 5.24, HistSFC always takes the least time to execute. PostGIS
ranks behind, while Pyramid and PyramidEx are the slowest solutions. More specifi-
cally, in SmallA and SmallC, PostGIS spends slightly more time than HistSFC. However,
SmallB is different, where HistSFC outperforms PostGIS significantly. This is because
the specific shape of SmallB results in more blocks of the PostGIS solution intersecting
the query window. Thus, PostGIS spends much more time on unpacking blocks. For
the same reason, HistSFC outperforms PostGIS in the Medium and Large query. This,
however, does not happen for SmallA and SmallC, where only a small number of blocks
intersects the query windows. Nonetheless, the R-tree index functions very efficiently to
retrieve blocks for all queries. Both HistSFC and PostGIS scale constantly with respect to
the input data size, over all.

Pyramid and PyramidEx spend much more time on querying, and the performance
fluctuates significantly. This is mainly attributed to the large and changing FPR (Ta-
ble 5.8). Due to the specific pyramid decomposition of the space, when the query win-
dow reaches the bottom of a pyramid, all points residing in the bottom level of the pyra-
mid will be selected (Figure 5.5). This brings large number of false positive points, in-
creasing FPR. On the other hand, the FPR may also decrease when input data size in-
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creases. This is because for each data set, the boundary of data and the medians for
computing the pyramid value are changed. So, for the same query window, either Pyra-
mid or PyramidEx may select different portions of data, which then influences FPR. Be-
sides, the fluctuation of these two solutions’ performance is also caused by the unstable
parallelization. The amount of points to be decoded is so large that it is difficult to guar-
antee a stable performance of all processors. Another odd pattern occurs in SmallB that
Pyramid performs faster than PyramidEx. This happens sometimes, as PyramidEx can
return higher FPR for certain query windows depending on their positions. For the large
selection, PyramidEx runs even faster than PostGIS which spends large amount of time
on unpacking blocks. However, PostGIS performs more stable, and thus possesses a bet-
ter scalability than PyramidEx.

Table 5.8: False positive rate of state-of-the-art solutions

SmallA SmallB  SmallC Medium Large

1.57 7.14 0.66 0.36 0.16

1.57 7.15 0.66 0.36 0.16

PostGIS 1.57 7.15 0.66 0.36 0.16
1.57 7.15 0.66 0.36 0.16

1.57 7.15 0.66 0.36 0.16

1739.32 336.69 32.85 14.77 5.73

3328.40 677.63 84.20 29.58 13.34

Pyramid 5739.03 862.65 708.46 54.45 30.07

1134591  612.88 585.33 33.65 50.16

13568.89  170.72  1405.94 67.47 35.60

255.80 689.05 20.43 23.87 6.40

338.27 1148.89 41.91 44.66 9.36

PyramidEx 408.23 1083.39 84.84 86.67 12.12
465.24 1266.48  263.35 101.90 14.34

757.63 1733.64  432.85 139.94 20.01

0.33 1.92 0.16 0.18 0.08
0.33 1.92 0.16 0.18 0.08
HistSFC 0.33 1.92 0.16 0.18 0.08
0.33 1.92 0.16 0.18 0.08
0.33 1.92 0.16 0.18 0.08

Besides the time cost, it should also be noted that the final output of Pyramid and
PyramidEx may be inaccurate, because the pyramid value is not so precise to avoid errors
at the query boundaries.

To conclude, HistSFC is the most favourable solution for the 4D window query. Post-
GIS performs very efficiently in retrieving blocks (i.e., MultiPoint objects), and thus func-
tions efficiently for queries with small outputs. However, with more blocks selected,
PostGIS spends significantly more time on unpacking them. This CPU-intensive process
is a drawback for all block based approaches. HistSFC organizes each point as a record,
which naturally avoids the unpacking problem. Pyramid and PyramidEx are originally
devised for very high dimensional hypercubic window queries. So, they perform less
efficiently in this experiment, as they return very large FPRs.
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5.2. FLOOD DATA TEST

As is mentioned in Section 1.2, flood modelling results can be converted to point clouds
for further analysis. This section focuses on a research area, Niansi Levee, located at
Jiangxi province, China (Figure 5.25). To its northeast is the Poyang Lake. The total area
is about 183 km?. Niansi Levee is one of the key areas that are modelled in the national
flood mapping project of China.

Figure 5.25: Niansi Levee (green zone), with locations of simulated breach in red. A small piece of mesh used
for modelling is also shown on the right

The hydrodynamic model consists of a 1D channel model, and a coupled 2D flood
routing model in the basin. The channel model provides extreme flow for the flood sim-
ulation in the 2D mesh which totally contains 59,680 triangular cells (Figure 5.25). The
model computes water depth, velocity and flow direction. The project modelled 8 cases:
4 locations of breach, combined with extreme rainfall with a return period of 20 and 50
years. Each case simulates 720 steps (corresponding to a 30-min resolution). So in total,
I get 59,680 x 720 x 8 = 343,756,800 points, in an 8D space composed by case ID, X, Y, Z,
time, depth, velocity and direction.

5.2.1. SOLUTIONS FOR TESTING
HistSFC, PlainSFC and Oralce SDO_PC solutions were tested. In fact, the Pyramid and
PyramidEx were also tested, but their performance was much worse than the others.
So, they were excluded. PostGIS solution can maximally support 4D data organization,
while the flood data involves 8 dimensions. Hence, I chose SDO_PC which is in the same
Oracle environment as PlainSFC and HistSFC.

According to practical experience of flood maps, the flow direction is seldomly used
for ad-hoc analysis, compared with other dimensions. So, I set it as the property dimen-
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sion when building PlainSFC and HistSFC, while encode the other 7 dimensions into the
Morton key. The scripts to build HistSFC and PlainSFC are similar to AHN2 (Listings 5.1
and 5.2).

The SDO_PC solution uses X and Y dimension to organize data and create blocks.
The other dimensions are regarded as the property dimension to be attached. The block
capacity is 5,000. Figure 5.26 shows the query execution process. Listing 5.5 provides
scripts for building and querying of SDO_PC.

C++ program

SQL initialization | [Result retrieval |—»{ C++ variables |
I

A
Query geometry \—¢

[ Oracle query execution ]

Figure 5.26: Querying process of SDO_PC

5.2.2. DATA ORGANIZATION

The project modeled 8 cases, and each case produces a result set. To explore the scal-
ability, I divided the whole result set into 4 benchmark data sets according to the case
ID. Data set 1 consists of the result of case 1. Data set 2 consists of case 1 and 2. Data
set 3 includes the first 4 cases. Data set 4 refers to the whole data set. Table 5.9 lists the
storage size of different solutions. The large size of SDO_PC is mainly due to additional
information stored. For example, each point gets an additional point ID and block ID,
while each block records extra metadata such as number of points, resolution and so on
(Oracle, 2019).

Table 5.9: Storage size of flood data sets on the disk (in GB)

Dataset Number of points Raw TEXT SFCIOT SDO_PC

1 42,969,600 2.69 1.67 3.63
2 85,939,200 5.41 3.34 7.26
3 171,878,400 10.8 6.67 14.1
4 343,756,800 20.7 12.9 33.3

5.2.3. QUERIES FOR RISK ANALYSIS

According to the experience acquired during the project and potential needs, I devised 5
queries for testing (Table 5.10). As these queries all concern case 1, the execution using
different data sets will return the same results. Locations of HOUSErisk and ROADrisk
are depicted in Figure 5.25.

The result of DEPTH3m corresponds to a typical flood depth map. ARRIVAL24h
generates a typical arrival time map, while EXTENTmax results in a maximal inunda-
tion map. They are conventional products of flood risk mapping, while HOUSErisk and
ROADrisk are new, providing more insights. HOUSErisk selects all points around 4 houses
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Listing 5.5: SDO_PC implementation

—— suppose all dimension values are stored in a CSV file, nsdata.csv

—— first create a staging table, where VAL D1 refers to X dimension and
VAL D2 refers to Y dimension

CREATE TABLE ns_sdo_flat (RID varchar2(24), VAL D1 number, VAL D2 number,
VAL _D3 number, VAL_D4 number, VAL D5 number, VAL D6 number, VAL D7
number, VAL D8 number)

—— then, load data into ns_sdo_flat using SQL+Loader:
sqlldr control = control. ctl username/password direct=true

—— control. ctl defines the specifics of data loading, for example:

LOAD DATA INFILE "HOME/nsdata.csv" truncate INTO TABLE ns_sdo_flat FIELDS
TERMINATED BY ’,’ TRAILING nullcols (RID sequence (MAX,1), VAL D1,
VAL D2, VAL D3, VAL D4, VAL D5, VAL D6, VAL D7, VAL D8)

—— create base table of SDO_PC
CREATE TABLE ns_base (ID number, PC sdo_pc)

—— create block table of SDO_PC
CREATE TABLE ns_block AS SELECT * FROM MDSYS.SDO_PC BLK TABLE WHERE 0 = 1

—— populating data from the staging table
declare
pc sdo_pc;
begin
pc := sdo_pc_pkg.init(’'ns_base’, 'PC’, ’'ns_block’, ’'blk_capacity=5000",
sdo_geometry(2003, 4527, null, sdo_elem_info_array(1,1003,3),
sdo_ordinate_array (Xmin, Ymin, Xmax, Ymax)), 0.0001, 8, null, null,
null) ;
sdo_pc_pkg.create_pc(pc, ’'ns_sdo_flat’, null);
insert into ns_base values (1,pc);
commit;
end;

—— register in the metadata table

INSERT INTO USER SDO_GEOM_METADATA VALUES (’ns_block’, 'BLK_EXTENT’,
sdo_dim_array(sdo_dim_element(’'X’, [Xmin], [Xmax], 0.0001),

sdo_dim_element(’Y’, [Ymin], [Ymax], 0.0001)), 4527);

—— create R-tree index on blocks
CREATE INDEX ns_sdo_idx ON ns_block (BLK_EXTENT) INDEXTYPE IS MDSYS.
SPATIAL_INDEX

—— when querying with an 8D window, e.g., [0, 0, 0, 0, 0, 0, 0, O0; I, I, I,
1, 1, 1, 1, 1]

SELECT x, y, z, w, v5, v6, v7, v8 from table (sdo_pc_pkg. clip_pc ((SELECT pc
FROM ns_base WHERE ID = 1), sdo_geometry(2003,4527, NULL,
sdo_elem_info_array(1,1003,3), sdo_ordinate_array(0, 0, 1, 1)),sdo_mbr(
sdo_vpoint_type(0,0,0,0,0,0), sdo_vpoint_type(1,1,1,1,1,1)),null,null))
query_blocks, table(sdo_util. getvertices (sdo_pc_pkg.to_geometry (
query_blocks.points, query_blocks.num_points,8,4527))) query_points
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Table 5.10: Queries used for benchmarking

Description Organizing dimen- Number
sions involved of points
DEPTH3m Select the area that is flooded with caselD, depth 26,484,215
depth greater than 3 m, in case 1
ARRIVAL24h  Select the area that is flooded (depth > caselD, depth, time 925,691
0) in 24 hours, in case 1
EXTENTmax Select the maximum inundation area caselD, depth 32,183,314
(depth > 0), in case 1
HOUSErisk Select the area that is flooded (depth caselD, depth, X, Y 170,417

> 0) around several houses (a rectangle
area), in case 1

ROADrisk Select the dangerous points along a caselD, velocity, X, Y 83
country road (velocity = 0.5), in case 1

that have been flooded (Figure 5.27). The rectangular area is about 1.5 km?. ROADrisk
uses an irregular geometry (i.e., the road) for querying. The result of ROADrisk is 83 8D
points, presented as 6 distinct spatial points at different time steps (Figure 5.28). These
points indicate the vulnerable parts of the road which need enhancement. During flood
evacuation, people should also avoid these locations.

X

0 250 500 m

L EE—
0 500 1000 m
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Figure 5.27: Range of HOUSErisk, covering 4 Figure 5.28: Result of ROADrisk: the red points
houses on theroad. The color becomes stronger when
the maximum velocity is larger
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5.2.4. RESULTS AND ANALYSIS
Similar to the AHN?2 test, I first explored the influence of the size of HistogramTree. Then,
different number of ranges were tested to derive the optimal setting. In the end, SDO_PC
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was tested and compared with HistSFC. For all tests, a single thread was used.

Table 5.11 and Table 5.12 present the size of HistogramTrees with different capacity
threshold. As the data set is smaller than AHN2, smaller node capacities are tested. As
the tables show, HistogramTrees’ sizes are much smaller here than in the AHN2 experi-
ment. They are all below 100 MB.

Table 5.11: Total number of nodes in HistogramTree Table 5.12: Storage size of HistogramTree (MB)
Capacity threshold Capacity threshold
Data set 1,000 5,000 10,000 Dataset 1,000 5,000 10,000
1 276,577 53,900 34,795 1 11.5 2.5 2
2 547,166 107,562 72,400 2 22.5 4.5 3.5
3 1,094,669 215,380 142,536 3 45 9
4 2,100,498 410,444 271,052 4 86 17 11

Table 5.13 presents the empty ratio (Equation 4.9) of different solutions for the query-
ing. The improvement of using HistSFC is much more remarkable than the AHN2 test,
e.g., the empty ratio can decrease from 99.72% to 0 in EXTENTmax. However, in ROAD-
risk, even HistSFC_1K’s empty ratio is exceptionally large. This is most likely due to the
long and narrow shape of ROADrisk of which the area is very small, containing a few
points which have to be allocated to a large number of ranges.

Table 5.13: Empty ratio of ranges using different HistogramTrees on flood Data set 4

Query window HistSFC_1K HistSFC_5K HistSFC_10K PlainSFC

DEPTH3m 0 5.61% 15.46% 99.49%
ARRIVAL24h 8.13% 23.68% 27.09% 98.69%
EXTENTmax 0 0.15% 0.27% 99.72%

HOUSErisk 15.41% 65% 67.51% 97.72%

ROADrisk 98.51% 98.61% 98.09% 99.72%

I still use FPR and time cost to evaluate the performance of different solutions. Ta-
ble 5.14 presents FPRs for queries on Data set 4. Other data sets slightly vary for each
solution, except PlainSFC. This is mainly due to the large size of each range generated
by PlainSFC: on average, the resolution of caselD of each range can span from 1 to 4. So,
with more data of different caselD added, the same set of ranges incorporate increasing
false positive points. This causes the dramatic increase of FPR.

Table 5.14: False positive rate using different HistogramTrees on flood Data set 4

Query window HistSFC_1K HistSFC_5K HistSFC_10K PlainSFC

DEPTH3m 0.048 0.084 0.106 4.739
ARRIVAL24h 4.958 5.571 5.884 25.433
EXTENTmax 0.339 0.357 0.39 4.327

HOUSErisk 1.922 1.876 2.048 13.457

ROADrisk 745.1 4,565.2 8,379.2 373,651.0
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Figures 5.29 - 5.33 show the querying time cost using different HistogramTrees. Ap-
pendix B provides exact time measurements. The number of ranges used for querying is
100,000. As the figures show, in DEPTH3m, ARRIVAL24h and EXTENTmax, HistSFC_1K
takes the least time to accomplish the queries, while HistSFC_5K and HistSFC_10K fol-
low after. This is due to higher FPRs (Table 5.14) of the latter two solutions, which causes
the increase of I/0 and decoding time cost. In HOUSErisk and ROADrisk, HistSFC_5K
outperforms HistSFC_1K. HistSFC_5K’s high efficiency in HOUSErisk is due to the smaller
FPR compared to HistSFC_1K. In ROADrisk, HistSFC_1K spends much time to traverse
the large HistogramTree, which slows down the whole process. For all queries, PlainSFC
significantly lags behind, due to large FPR. Generally speaking, Compared to the AHN2
test, the improvement by using HistogramTree is more evident in this test. This is ma-
jorly caused by the small CHC of the flood data which equals 0.0007. HistogramTree
works more effectively for such non-uniformly distributed data. In the following, capac-
ity threshold of 5,000 is adopted as it balances all type of queries.

The number of ranges for querying also influences the performance. Figures 5.34
- 5.38 present the querying performance with different number of ranges. Table 5.15
presents corresponding FPRs for queries on Data set 4. The capacity threshold of His-
togramTree is 5,000. From DEPTH3m to EXTENTmax, the three solutions are close to
each other, with subtle difference. In HOUSErisk and ROADrisk, Range_500K becomes
significantly slower than the other two. HOUSErisk concerns a small query window, the
I/0 and decoding cost of different solutions do not differ much. However, as Range_500K
spends more time on range computation, it takes longer to finish the query. In ROAD-
risk, the gap between Range_500K and the other two becomes more significant. This is
because Range_500K spends more time on computing intersection between nodes and
the road polygon. It should be noted that with 50,000 ranges, the HistogramTree is not
fully visited in HOUSErisk. The search stops at a certain depth of the HistogramTree.
Hence, considering the performance and potential needs, 100,000 ranges for querying is
an optimal setting.

Table 5.15: False positive rate of HistSFC_5K using different number of ranges for querying

Query window Range 50K Range_100K Range_500K

DEPTH3m 0.085 0.084 0.073
ARRIVAL24h 5.688 5.571 4.793
EXTENTmax 0.358 0.357 0.356
HOUSErisk 1.876 1.876 1.868

ROADrisk 6949.3 4565.2 4231.1

Figures 5.39 - 5.43 show the time cost of HistSF and SDO_PC. HistSFC_5K is used,
with 100,000 ranges for querying. SDO_PC adopts 5,000 as the block capacity. From
DEPTH3m to EXTENTmax, HistSFC responds faster than SDO_PC. Besides, HistSFC also
scales better, while SDO_PC takes more time as input data becomes larger. This is mainly
because SDO_PC organizes and indexes data using XY only. So, queries on other dimen-
sions instead of XY (e.g., the temporal or the depth dimension) need to unpack and scan
all blocks, which is costly. In HOUSErisk and ROADrisk, SDO_PC shows superior per-
formance. This is because both queries use XY range, which caters to the strength of
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SDO_PC, especially ROADrisk: SDO_PC provides efficient intersection computation for
2D polygonal geometries (i.e, the road). Besides, only 4 blocks are retrieved in ROADrisk,
which needs little I/0. HistSFC adopts 7D data organization, which means more nodes
are checked for intersection. This is less efficient. In addition, the ranges returned by
HistSFC include large amount of false positive points with velocity below 0.5 or outside
the road. This significantly increases FPR. To conclude, this test indicates that HistSFC
is advantageous in processing queries on different combinations of dimensions, while
SDO_PC is preferable for conventional 2D spatial queries.

5.3. OPTIMIZATION OF HISTSEFC

Although HistSFC has shown superior performance in above tests, there is still plenty
room for improvement. For certain queries, HistSFC can still generate a large number
of vacant ranges, with large FPR. This section investigates 3 possibilities to further op-
timize HistSFC — refining ranges after HistogramTree, uniforming skewed dimensions
and decoding in parallel. In fact, parallel decoding has been implemented for bench-
marking HistSFC which is compared with state-of-the-art solutions for AHN2 queries.
This section describes this technique in detail.

5.3.1. REFINING RANGES AFTER HISTOGRAMTREE

When the searching process reaches the leaf nodes of HistogramTree, a large number
of false positive points near the boundary may not be filtered out. Besides, the maxi-
mum number of ranges normally has not been reached. In current settings, selected leaf
nodes will be decomposed in a breadth-first way to intersect the query window;, to filter
out more false positives. This strategy assumes all leaf nodes are equally important for
decomposition, which may not be appropriate.

In Figure 5.44, some nodes intersect with the query window by a large proportion,
like N;. Thus, most points inside these nodes are within the query window as well. In
contrast, other boundary nodes (e.g., N> and N3) which intersect the query window by
a small portion mainly contain false positives. These nodes should get priority for the
refinement so that the decomposition becomes more effective. Consequently, I opti-
mize the nodes’ partitioning process, by considering the intersection ratio which equals
the volume of intersection divided by the volume of node. After this, I compute the es-
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timated number of false positive points based on Equation 5.2, to rank the nodes for
partitioning. After one decomposition, I assume points are allocated evenly to different
child nodes. Then, these child nodes are added into the original pool of leaf nodes, and
are ranked again for further decomposition. To verify the applicability of this technique,
AHN?2 and the flood data are tested in the following.

Figure 5.44: A 2D query sample: leaf nodes selected (red) in the HistTree to match the query window

frp=0-R)xc 5.2)

where fpp = estimated number of false positive points in a boundary node
R = intersection ratio
¢ = total number of points in the boundary node

AHN2 TEST

I generated 500 4D query windows based on query logs (Section 5.1.4). I used 10,000 as
the capacity threshold to build HistogramTree, and used 100,000 ranges for querying. By
averaging the results, I found that the optimized range computing approach decreased
the FPR by 28%, compared to the original breadth-first approach. When the output was
more than 10 million points, the optimization can reduce the total time cost by 20%, e.g.,
the Large query (Table 5.2).

FLOOD DATA TEST

Analogous to HOUSErisk (Table 5.10), the testing query window consists of 4 dimen-
sions: X and Y should be within a rectangular region, with depth > 0 and caselD arandom
number. I randomized the 2D spatial region of which the area ranges from 100 m? to 25
km?. In total, 500 queries were tested. The capacity threshold to build HistogramTree
was 5,000. The maximum number for querying was 100,000. The result showed that on
average, the FPR was reduced by 4% by using the optimized range computing approach.
The insignificant improvement is because as dimensionality goes high, the number of
children of a node becomes very large (128 in this case). So, by partitioning a node once,
each child gets much less points. Consequently, nodes at a higher level will most likely
to be partitioned first, and then the level below. This returns to the breadth-first strategy.
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5.3.2. UNIFORMING SKEWED DIMENSIONS

When a dimension is skewed, we may end up with large FPR if the boundary of the query
window crosses the dense point area. For example, a query selecting all objects above
the ground from an ALS point cloud will hardly reach a clean result in the first filter. The
massive points near the ground differ so little in the Z dimension that only nodes refined
sufficiently can remove the false positives. However, refining to a very deep level is inap-
plicable given a huge input. Thus, a straightforward solution is to transform the skewed
dimension to a more uniform one so that worst cases can be avoided. From another per-
spective, uniforming skewed dimensions increases the CHC of the data, which increases
the number of effective ranges (Section 4.4).

To uniform a skewed dimension, a generic way is to determine the CDF and In-
verse CDF (ICDF) of the skewed dimension, and transform the values according to them
(Zhang et al., 2014). Specifically, we divide the dimensions’ domain into m pieces, and
assume that each piece follows a uniform distribution. Then, after building the 1D his-
togram of that dimension, we derive the linear piecewise-defined CDFs (i.e., F;(x) =
a;x+b;,i =0,1,...,m) as an approximation of the actual CDE Using these CDFs, we
transform the original values of that dimension into the corresponding CDF values. Then,
we encode the SFC keys using the transformed values, while decode the keys using the
ICDFs to retrieve original records after a query. The query window should also be trans-
formed using the CDFs before execution. If the ICDF is simple enough, we add little
overhead in post-processing of querying results, but effectively decrease FPR. It should
be noted that this method is based on the assumption that the distribution of a dimen-
sion does not change when adding more data. This assumption is true in most cases,
considering possible nD-PointCloud data.

AHN2 TEST

Using piecewise-defined CDFs, I transformed all Z coordinates. The transformed values
range from 0 to 1, following a uniform distribution. As the cLol values were computed
using a random and uniform generator (Section 3.3), I restored the values back to the
random numbers. Then, two HistSFC solutions were built: one is based on skewed di-
mensions, while the other is based on the transformed dimensions. The setting of His-
togramTree and querying was the same as the above test. In total, I tested 500 randomly
generated queries. It turns out that before uniforming, the average FPR is 2,442, but de-
creases to 401 after uniforming. This is a significant improvement. The large average
FPRs are caused by several extremely large values: 6% of FPR values are above 10 before
uniforming, while this percentage becomes 1.75% after uniforming. Figure 5.45 specifi-
cally shows the histogram of the logarithm of FPR values in base 10.

Figure 5.45b clearly indicates that uniforming skewed dimensions can greatly dimin-
ish worst cases. However, the side effect is the increase of low FPR values (Figure 5.45a).
This is because uniforming the data on the one hand stretches the dense point region,
while on the other hand, compresses the sparse point region. So, when the query win-
dow falls in the sparse data region, uniforming can bring negative effect. Consequently,
in practice, the distribution of query windows has also to be considered when applying
the uniforming strategy.
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FLOOD DATA TEST

The query for testing is the same as the range refinement test, i.e., confined by caselD, X,
Y and depth. CaselD, X and Y follow the uniform distribution approximately. So, I only
uniformed the depth dimension. Figure 5.46 presents the original distribution of depth.
The 0 value occupies 28.4% out of all values.

I executed 500 queries, and compared the original HistSFC and the one built after
uniforming the depth dimension. The result indicates that the average FPR changes
from 1.78 to 0.92 after the uniforming. Unlike the AHN2 test, all queries benefit from
the uniforming. Besides, originally, 6 FPR values are above 10 with the largest value 129;
after uniforming, 4 FPR values are above 10 with the largest value 79. Such significant
improvement is mainly due to the specific query type which only selects points with pos-
itive depth. So, HistSFC nodes have to distinguish 0 and 0.001 on the depth dimension to
return accurate result. This is hard to achieve with the original data organization, as the
gap in the SFC key is too small. However, after uniforming, 0.001 is mapped to 0.284 in



5.3. OPTIMIZATION OF HISTSFC 101

100000000
10000000
1000000
100000
10000
1000

Mumber of records

100

10
o 1 2 3 4 5 6 7 8 9
Depth (m)

Figure 5.46: Distribution of depth values in the flood data, with resolution 1 mm

the unit domain. Then, selecting non-zero values in the first filter becomes much sim-
pler. However, if other depth values are used in the query (e.g., larger than 3 m), then,
uniforming depth may not be necessary. Nonetheless, selecting flooded area (depth > 0)
is a very basic operation and has been used much more frequently.

5.3.3. DECODING IN PARALLEL

The previous optimizing techniques are aimed at decreasing the false positive points re-
turned by the first filter. However, the decoding process can still be time consuming if
large quantities of keys have to be processed anyway. To address this issue, I adopt the
parallel technique for decoding. The approach is to evenly distribute the ranges to differ-
ent processors so that each processor executes a part of the query and decode the result.
However, as each range contains different number of points due to skewed data distribu-
tion, the actual workload can be unbalanced among processors. To resolve this issue, I
first rank the ranges according to their lengths. This is based on the assumption that the
length represents the number of points insides, since the result is from nD-histogram
nodes. Then, an ID between 0 and the number of processors is randomly generated and
attached to each range. In the first filtering, each processor gets its corresponding ranges
and then conducts fetching from IOT.

As decoding can be an independent module without considering specific query win-
dows, I chose large query windows in both AHN2 and the flood data for testing. The test
was conducted with 32 processors.

The query window [14890.98, 363438.40, -2.33, 0.00 ; 54392.47, 402939.89, 23.76,
10722.64] is used for AHN2 test. This results in 350,269,367 points for decoding. Ta-
ble 5.16 presents the time cost of decoding, where speedup = Ts‘}’;“’ and T), refers to the

parallel execution time. It indicates that the decoding efficiency can be improved by an
order of magnitude when using 16 processors or more.

Table 5.16: Time cost of AHN2 decoding in parallel

Number of processors  Serialized 2 4 8 16 32
Time cost (s) 393 216.8 1129 623 369 322
Speedup 1 1.81 348 6.31 10.64 12.2
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After AHN2 test, I used the whole flood data for decoding test. Totally 343,756,800
points are decoded. Table 5.17 shows the time cost. Unlike the AHN2 test, the highest
speedup appears using 16 processors instead of 32. The additional overhead introduced
by the SQL execution and communication during the parallelization is more significant
in the 7D flood data test. Nonetheless, parallel decoding is still very crucial for the flood
queries, as large output may always be needed, e.g., statistical analysis.

Table 5.17: Time cost of flood data decoding in parallel

Number of processors  Serialized 2 4 8 16 32
Time cost (s) 336.3 2183 1188 669 43.7 444
Speedup 1 154 283 503 7.7 757

5.4. DISCUSSION

This chapter has conducted benchmark tests to evaluate HistSFC, using 4D AHN2 and
8D flood data. In AHN2 test, HistSFC presents similar performance as PlainSFC, while
in the flood data test, HistSFC performs much faster than PlainSFC. The major reason,
according to my analysis, lies in the different uniformity of these two nD-PointCloud
data sets, where AHN2 tends to be more uniformly distributed. To process such uni-
formly distributed data, HistogramTree may not able to improve further. However, we
can still improve PlainSFC’s performance practically by changing the range computing
method. Previously, I utilize the 2”-tree embedded in the Morton hierarchy; to iteratively
intersect the query window to derive the intersecting nodes. This is unnecessary as we
actually know exactly where all nodes are located. The 2”-tree is strictly formed by split-
ting each dimension by half in each iteration. So, without the 2”-tree, we can explicitly
derive the nodes at depth [, using lower-left corner of the domain and lower-left corner
of the query window. In this way, we avoid the recursive intersection computation and
achieve higher efficiency. This method remains as a future work.

Different size of HistogramTree and the number of ranges for querying (7,,4x) are
varied to gain knowledge about the optimal settings. The optimal size of HistogramTree
depends on the data and implementing environment. For example, considering preva-
lent settings of hardware and typical applications of AHN2, HistogramTree is suggested
to be kept under 1 GB. Otherwise, loading and using will become very cumbersome. The
influence of r,,y is also significant, and a balance has to be found. A general solution is
to set 14y of different orders of magnitude and compare them by benchmarking, to de-
rive the optimum. This may end up with a suboptimal result as the optimum may not be
covered by the test. However, the suboptimal performance may be satisfactory (Meijers
& van Oosterom, 2018).

The empty ratios (Table 5.5 and 5.13) show that even using HistogramTree, consider-
able amount of empty ranges can still be generated. So, I developed a range optimization
technique considering intersection ratio between nodes and the query window (Sec-
tion 5.3.1). However, the improvement is limited, especially when the dimensionality
of the data is high. An alternative to decrease the empty ratio is performing a gluing op-
eration after ranges have been generated (Figure 5.47). Basically, some of the ranges ex-
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ported may still be neighbors on the SFC curve which are divided in the refining process.
They can be directly concatenated. Some ranges are separated, but are close to each
other with small in-between gaps. Then, by adding an additional short SFC segment,
two separate ranges can be glued to form a single range. As the SFC segments inserted
are short, they most likely contain few points or no points at all. Based on this operation,
we may derive more effective ranges in the end. With current settings, HistSFC can first
generate more ranges than 4y, and rank the range pairs according to the gap between
them. Range pairs with small in-between gaps get priority in gluing. The gluing stops
when 7,4, is reached. I will further verify this technique in the future.
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Figure 5.47: Gluing technique to reduce the number of ranges (Psomadaki, 2016)

To efficiently use PlainSFC and HistSFC, it is crucial to determine the organizing di-
mensions. This is because high dimensional nodes generate a large number of child
nodes by partitioning once, but r,,, is confined by memory size. Hence, the nodes can-
not be refined sufficiently to reduce false positives. As has been mentioned, the determi-
nation depends on applications, where dimensions queried frequently should be used
as organizing dimensions. However, sometimes, it is difficult to predict users’ needs,
e.g., a new application which needs to conduct queries on property dimensions. Then,
rebuilding the whole storage has to be performed. Another practical detail in implemen-
tation is to scale values of organizing dimensions for Morton key encoding. As the bits
taken from different organizing dimensions are interleaved to derive the key, the extent
of these dimensions should first be scaled to an equal size for computing the key. In this
way, when searching to a lower depth, the organizing dimensions can all get involved to
be fairly filtered.

HistSFC is also compared with state-of-the art solutions. The block based solutions
including PostGIS MULTIPOINT and Oracle SDO_PC present superior performance in
conventional spatial queries, thanks to efficient indexing and I/0 operation. However,
their performance degrades significantly if large amount of blocks are selected, e.g.,
in high dimensional queries. Unpacking blocks causes intensive computation in CPU,
which costs even more time than the I/O operation. Hence, to still use block based so-
lutions which are advantageous in I/0 and network transmission, the block unpacking
task can be moved to GPU and parallelized, or sent to the users’ side to process.

The Pyramid-Technique which is proposed to query high dimensional point data
performs poorly. The reason concerns 2 aspects: one is the number of dimensions in the
query, and the other is the query shape (Liu, van Oosterom, Meijers, & Verbree, 2020).
Unlike general nD vectors used in multimedia or data mining (B6hm et al., 2001), every
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dimension of nD-PointCloud has a physical or semantic meaning. Thus, confined by the
cognition, it is unlikely that users initialize queries concerning more than 10 dimensions.
In addition, the majority of current spatial applications still focus on several typical di-
mensions, such as spatio-temporal dimensions, Lol and classification (Section 2.1.2).
With respect to the query shape, it is not always hypercubic which caters to the design
of Pyramid-Technique. The Pyramid-Technique clusters data according to the pyramids
instead of spatio-temporal coherence. So, when the query window is of a long and nar-
row shape which crosses all the levels of the pyramid, all points in the pyramid will be
selected. This can cause huge number of false positive points selected. I list some typ-
ical non-hypercubic querying windows below. In contrast to Pyramid-technique, these
queries can be handled properly by HistSFC which approaches different query geome-
tries by recursively refined SFC nodes:

¢ Buffer of a curve, e.g., ariver or a road in ALS point clouds

¢ Diagonal rectangle for an inclined feature, e.g., escalator inside a mall in indoor
point clouds

 Arbitrary geometry, e.g., footprint of a municipality in ALS point clouds
¢ View frustum for perspective view selection in LiDAR point clouds

¢ Trajectory of an object in GPS point clouds, i.e., a 4D window query on XYT and
identity, where identity is a specific value while XYT can be the entire extent

¢ Spatio-temporal rectangle, e.g., one day out of a year in the whole spatial region
repetitively scanned by laser scanners (Schreijer, 2021).



EXECUTING CONVEX POLYTOPE
QUERIES ON ND-POINTCLOUD

B ESIDES window queries, other query geometries can also be resolved by being con-
verted to 1D Space Filling Curve (SFC) ranges. This can also be done by recursively
decomposing the nD space to approximate the query geometry. The convex polytope
query, which includes the widely adopted convex polygonal query in 2D, also plays a
critical role in many nD spatial applications such as the perspective view selection. How-
ever, there are few nD solutions addressing this type of query. Aiming for an nD solution
to resolve the polytope query, this chapter integrates three approximate geometric algo-
rithms — SWEEP, SPHERE, VERTEX, and a linear programming method CPLEX, develop-
ing a solution based on PlainSFC (Liu, Thompson, et al., 2021). Additionally, the solution
can adopt nD HistogramTree to handle non-uniformly distributed data efficiently.

The chapter first reviews related work on polytope querying algorithms in Section 6.1.
This is then followed by the description of newly designed algorithms in Section 6.2.
Section 6.3 evaluates the performance of different algorithms using synthetic data. Sec-
tion 6.4 evaluates the performance in real use cases, including AHN2 perspective view
selection and flood risk queries. Based on these results, Section 6.5 concludes the chap-
ter with a comprehensive discussion.

6.1. RELATED WORK

Studies on polytope querying originates from geometric algorithms, where researchers
mainly propose and analyze different algorithms theoretically (Chazelle, 1989; Matousek,
1992, 1994) based on in-memory data structures. Agarwal et al. (2000) proposed a solu-
tion based on a partition tree structure managing data on disks. They specifically fo-
cused on analyzing the worst-case querying performance, but no practical experiments
were conducted. These theoretical approaches are difficult to implement and may not
be applicable to address big point data (Khan et al., 2014).

The development of spatial indexing has facilitated the design and implementation

105
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of polytope querying. Based on the R-tree, Goldstein et al. (1997) developed two algo-
rithms: one is the “simple" method which computes a scalar product indicating the
minimum distance between a block and a half-space to examine whether an intersec-
tion happens; while the other method iteratively uses half-spaces to clip the R-tree block
to detect intersection (Figure 6.1). However, they discussed little about the performance
in nD space, beyond testing a uniformly distributed 5D data set from the business do-
main. None of the algorithms proposed distinguishes the type of intersection (inside or
touching), leading to redundant intersection computation for a branch block totally in-
side the polytope. Kollios et al. (1999) developed an approximation algorithm to resolve
trajectory searching problems. They also adapted and implemented algorithms of Gold-
stein et al. (1997) using the hB!'-tree (Evangelidis et al., 1997) as a comparison. The result
is that for 2D and 3D issues, their approximation algorithm works more efficiently.

Constraint 2
¢

B P N\ P
/" Constraint 3 step 1 step2 r

Clip ith
Constraint 3

N Clip with 2 ] Clip with 2B R
N N B’ is Empty

Figure 6.1: The clipping operation where P refers to the polytope and B is an R-tree block, from Goldstein et al.
(1997)

More recently, Wang and Ravishankar (2013) developed an encrypted R-tree struc-
ture for polytope querying on the cloud computing platform. However, the solution de-
termines whether a tree node intersects the polytope only based on the lower-left corner
or the upper-right of the node, which is not rigorous and may omit possible intersec-
tions. Besides, they only tested queries on 2D point data. Khan et al. (2014) developed
a novel Planar index composed by multiple set of hyperplanes to solve scalar product
queries which covers the polytope query. However, given non-parallel half-spaces, the
method needs several Planar indices to function, which is extremely expensive when the
number of half-spaces for querying is large.

Compared with those approaches, my approach provides a true nD operator for ex-
ecuting convex polytope queries on nD points. It can be directly implemented and used
in any DBMSs that support the B+-tree structure. Besides, the solution always returns
the correct result. It is also very efficient thanks to the advanced clustering and index-
ing mechanisms of PlainSFC. Besides, nD-histogram can also be adopted to improve the
performance of querying on inhomogeneously distributed point data.

6.2. POLYTOPE QUERYING

A convex polytope is defined as an nD geometry for which, given any 2 points within the
region, every point along a straight line joining the points is also within the region. To
use the polytope practically, this section first provides the mathematical formulation in
6.2.1. Then, Subsection 6.2.2 develops novel intersection algorithms, which extends the
range computing module of PlainSFC to allow the transformation from an nD-polytope
query to 1D ranges. The symbology used in the following is listed in Table 6.1.
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Table 6.1: Notations

Notation Description
n Number of dimensions, assuming the dimensions in the nD-
PointCloud data are all used as the organizing dimension
m Number of half-spaces in the polytope
N Input size in the number of points
K’ Output size from the first filter
Size of the accurate answer

r Number of ranges generated by the first filter
T'max Maximum number of ranges for querying (threshold)
B Page capacity of storage

6.2.1. MATHEMATICAL FORMULATION

A half-space is a division of space along a hyperplane (Figure 6.2). Here it is defined as
the set of points x such that w-x+ < 0, where w is a unit vector (w-w = 1) and B is
a scalar. Note that the inequality is used here for compatibility with the conventions of
computer representation software (3D) that the normal vector w is oriented so that it
points to the outside of the solid object. A half-space can be denoted by the tuple (w, ).

Exterior of halfspace

Interior of half-space
®.x+B>0

®.x+p3<0

Hyperplane
®.x+3=0

Figure 6.2: The definition of a 2D half-space which can be generalised to nD

In 2D the term half-plane is sometimes used, defined by an infinite straight line — its
only boundary. In 3D space, the half-space is defined and bounded by an infinite plane,
while in higher dimensions the half-space represents all points on a particular side of
an (n—1)D hyperplane. In all cases, the dividing (n — 1)D hyperplane has the definition
w-x+ = 0. A convex polytope is defined as the intersection of a finite set of half-spaces,
where the boundaries may not be complete (Figure 6.3):

C= H:ZIH,'

where H; is a set of m half-spaces.

Based on this formulation, we can test whether a point is within a half-space by eval-
uating w - p + B: if the value is non-positive, the point p is within the half space. Since w
and p are vectors of length 7, the operation per point costs ¢(n) time. Then, computing
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Convex
polytope

(a) 2D convex polytopes defined by half-spaces. A: a com-
pletely bounded convex polytope, B: a convex polytope
bounded on three sides only (b) A 3D convex polytope, from Thompson (2007)

Figure 6.3: Convex polytopes in 2D and 3D spaces

Exit

Entry

1 2 3 4 Y

Figure 6.4: The “sweeping" process: in (1), a half-space starts sweeping with the node outside; (2), (3), (4), the
half-space sweeps over the node, where intersection happens; (5), the sweeping ends with the node inside the
half-space

the relationship between the point and the convex polytope, can cost &(mn) time per
point. However, globally traversing all the points for selection is too costly and scales
badly with the size of input. Consequently, I adopt PlainSFC to speed up the search.

6.2.2. INTERSECTION ALGORITHMS

Given a set of w and S, we can then use PlainSFC to retrieve the result. The core of query-
ing lies in the intersection computation between nodes and the convex polytope to gen-
erate ranges in the first filter. As is mentioned in Section 2.6.1, a node in the Morton
hierarchy represents a specific region in nD space, indicating a range of Morton codes.
Besides, the principle can also be applied to a HistogramTree node, for handling non-
uniformly distributed point data. This section develops 3 geometric algorithms, and
an additional linear programming solution provided by CPLEX. These algorithms return
ranges which are then joined with the IOT, with a final filter performing the aforemen-
tioned point-in-polytope test.

SWEEP

SWEEP first identifies the “entry” and “exit” of a node with respect to a half-space (Fig-
ure 6.4): imagine if the half-space were to be moved from a great distance away, towards
and across the node so that ultimately the node is within the half-space; the entry and
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exit are the first and last vertices to cross the boundary. The categorization as entry /
exit is only true in relation to a single half-space, and must be re-appraised for others.
Then, based on the distance between the half-space’s boundary and the entry or the exit,
SWEEP determines if an intersection happens. Figure 6.5 presents the whole workflow
of SWEEP for one half-space.

A half-space

wix+F; <0

A Morton node
NX

Entry takes the highest Entry takes the lowest value
value of Ny at i dimension of Ny at " dimension

[ |
Exit takes the
opposite of Entry

Compute distance Depry

> side length
of N, ?

Yes

w; - Entry + 3; Compute distance Dgyjt

w; - Exit + 3;

No

Partial overlap l(—

| Fully inside | | No overlap I: Yes

Figure 6.5: The workflow of SWEEP

Figure 6.6 shows how SWEEP works with different nodes after several iterations of
decomposition. Node N, is not within the half-space H,, therefore it is external to poly-
tope C, and can be dropped. N is within all of H; to Hy, and its range can be exported.
In the case of N3, since it fulfils neither of these cases, it must be placed in a refinement
pool before being accepted or rejected. The case of Ny is significant, because it partially
overlaps or falls within each half-space, but in fact it does not intersect C. We refer to this
case as a False Positive Node (FPN) to be discussed later. In the process of searching the
nodes from the refinement pool, sub-nodes at the next lower levels are processed (2" of
them). These are then applied to the same tests against C. Some sub-nodes are found to
be internal, some to be on the boundary, and the rest external.

FPNs exist at crossings of half-spaces (e.g., Ny in Figure 6.6a and Ny, in Figure 6.6b).
It is a practical proposition to ignore the problem, and allow FPNs to be processed as if
they are true positive nodes. In Figure 6.6, Ny, after first refinement, has three of its sub-
nodes eliminated, leaving only Nj» whose sub-nodes are eliminated at the next level.
This appears to be a common event — that as a FPN is decomposed into sub-nodes at
one level below, those sub-nodes are largely eliminated. With the second filter, points in
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Nuz | Ny

Ny | Naz

N

(a) Representative nodes (b) Refining once (c) Refining twice

Figure 6.6: SWEEP selection based on PlainSFC, with white nodes outside, green nodes inside and red nodes
on the boundary

any remaining FPNs will all be eliminated.

SPHERE AND VERTEX
SPHERE and VERTEX are alternatives. They also detect intersection by examining the
relationship between a node and all half-spaces.

The SPHERE algorithm first computes the centre of a node. If the centre is in the
half-space, or the Euclidean distance between the centre and the half-space is within
half of the diagonal length of the node, the node will be selected. "inside" or "partial
overlap" can be decided depending on the distance. SPHERE only needs a central point
for intersection detection, which is favorable. However, as the distance computed is an
upper bound, FPNs will be selected (N, in Figure 6.7).

Half-space

Nz |y N

Figure 6.7: Intersection detection using SPHERE:
N is inside; N> partially overlaps the half-space;
N3 and N are falsely detected as partial overlap

(a)

Figure 6.8: Querying results from different algorithms:
(a) querying geometry, (b) accurate result, (c) Over-
lapping results of CPLEX (orange), SWEEP (green) and
SPHERE (blue), without a second filter
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The VERTEX algorithm is more straightforward, as it examines every vertex of a node
to determine whether the node intersects a half-space. If all vertices are outside, then
no intersection happens. If all the vertices are in the half-space, the node is inside. For
all other cases, a partial overlap is returned. The implementation is simple, but the al-
gorithm degrades in high dimensional spaces because the number of vertices of a node
grows exponentially with dimensionality. False detection will also arise at crossings of
half-spaces (e.g., Figure 6.6a), as with SWEEP,

CPLEX
The rigorous linear programming method detects intersection by finding solutions for
a set of equations defined by the (n — 1)D hyperplanes of the polytope and a node. I
realize this by using CPLEX which is a tool developed by IBM to solve linear optimization
problems (Lima, 2010). It provides optimal solutions to an objective function confined
by a set of constraints. Using CPLEX, I can create a variable array x (x1, X2, X3,... Xp),
and set their range according to the bounds of anode (i.e., Ly <= x1 < Uy, Ly < xp < Uy, ...
L, < x5, < Up). Then, I convert all half-spaces to constraints in the form of w-x+ < 0. I
set the objective function of the linear model to 0, meaning that once a solution found,
the program will stop. In this way, CPLEX detects whether an intersection happens.
Figure 6.8 presents the results of a 2D triangle query on a uniformly distributed point
set, with a proper setting of PlainSFC. SPHERE contains all points selected by SWEEP
which again contains points selected by CPLEX. VERTEX returns the same result as SWEEP.
The result indicates a general pattern of k’, which is SPHERE = SWEEP (VERTEX) =
CPLEX. The false positive points are distributed along the boundaries and around the
acute corners. Several factors influence the occurrence of these points, including the di-
mensionality, relative positions of the half-spaces to nodes, and r,,,, for querying. The
actual performance of these algorithms depends on the specific settings and implemen-
tation, which is evaluated by experimenting in the following sections.

6.2.3. THEORETICAL COMPLEXITY

Since these algorithms are all based on PlainSFC, Equation 2.1 still applies. However, in
SWEEP and SPHERE, Ty, is bounded by & (mnrlogg N). In VERTEX, every vertex of a
node has to be examined. Thus, its T, is bounded by G (2" mnrlogg N). T;, maximally

covers @(% + 1) 1/0s, while Ty, is bounded by ©O(mnk'). Once parallelism is applied,

!
Typos: becomes @(mzk ), given p processors. Besides, all intersection algorithms intro-

duce FPNs except CPLEX. So, k' can be varied. An optimal solution should balance the
three cost terms, as has been mentioned in Section 2.6.3.

6.3. ND-SIMPLEX AND ND-PRISM TESTS

This section presents ideal tests to evaluate the performance of different algorithms de-
scribed above. A regular nD-simplex model and an nD-prism model are built for testing.
The nD-simplex is the simplest nD-polytope, while the nD-prism is devised to investi-
gate how the number of half-spaces influences the querying efficiency. Both tests use a
single thread, recording 3 indicators for evaluating the performance:

1. Selectivity of the first filter (Equation 2.3).
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2. Number of iterating cycles (i.e. for-loops) to generate ranges. A cycle of CPLEX
means resolving the optimal problem once (Section 6.2.2). A cycle of SWEEP, SPHERE
and VERTEX means computing the distance from a half-space to a point (or vertex)
in the node.

3. Time cost of the first filter and the second filter. The first filter time corresponds to
Tpre, while the second filter takes T, + Tpos: to accomplish.

Selectivity shows the accuracy of intersection computation. The number of iterat-
ing cycles is used to explain the scalability and efficiency of range computation of algo-
rithms. Time cost indicates the overall performance.

6.3.1. SYNTHETIC DATA SETS

I apply an independent uniform distribution in all dimensions. The value for each di-
mension uses 12 bits, so the 10D Morton key requires 120 bits which fits within Oracle
NUMBER type (128 bits). Thus, the value of each dimension is between 0 and 4095. This
limits the unique points possible in 2D. So, I generate 10* 2D points, and 10°, 107, 102
and 10190 points for 4D, 6D, 8D and 10D data sets respectively. With these data sets, it is
possible to investigate the querying scalability with respect to dimensionality.

6.3.2. THE REGULAR ND-SIMPLEX QUERY

In the following, I first build the simplex model for querying at different dimensionality.
Then, I perform the test and discuss the results.

QUERY GEOMETRY CONSTRUCTION

An nD-simplex has n + 1 vertices, from vy to v,, where v; = (vjo,Vi1,...,Vim-1)). [ use a
unit vector along each axis to represent a vertex to get the first n vertices of the simplex
(Figure 6.9), i.e., vo = (1,0,0,...), v1 = (0,1,0,...),...,v5—1 = (0,0,...,1). The last vertex v,
must have the same value for every dimension to make a regular nD-simplex. Assuming
v, = (€,¢,...), I calculate it by solving a quadratic equation on the length of (v;, v,), (i <

v+l ”n"“ I take ¢ = LXvitl Vn"“ Then, the mean

n). So, there are two possible solutions, € =

of all vertices is derived: M = (u, y,...), where u = 11%2 Then, I shift the whole simplex by
moving M to the origin O. In this way, the simplex is centralized at O, while the vertex
vi = (Vio,Vi1,..»Vin-1), where vi; = 1—ufori<n; vij=—ufori # jand i <n; vy =
e—pforj=0,1,...,n—-1.

Afterwards, I normalize the vertices to build the normal vectors (i.e., 71),7; and ¢
in Figure 6.9) for a new set of faces. These faces constitute another nD-simplex (with
dashed green boundaries). As the simulated data (Section 6.3.1) are positive numbers,
I shift the new simplex to the positive zone: by shifting the first n faces (Hy to H,_1) to
pass through O (except H, which is opposite to 0), I could build such a “positive" regular
nD-simplex for querying. The size of the simplex depends on the position of H,, which
is adjustable (Figure 6.9). Hence, half-spaces constituting this regular nD-simplex are
derived:
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- —H —H
Hy:—xo+—x1++—x,-1=0
0 A X0 Axl Axnl

— ]__ —
Hliju.x,'o-i- Au-x1+ +7'uxn_1<0

Hy,: Lnx0+ — X+t %xn_l =-p

where A= /nu® -2u+ 1, and — B is the distance from O to H,,. To maximize the simplex
within the data region, — 8 should be taken as large as possible. Suppose the domain is a
unit hypercube with every dimension ranging from 0 to 1. Then, the maximum simplex
formulated above leads to an intersection of H,, and H; (i < n) on the face x; = 1. In other
words, when x; = 1, we will get the same expression based on the equation of either H;
or Hy,. Ijustuse Hy and H,, to derive

p=-t - V1
- - 1
pnoo1+ ==

However, with such a formulation, all vertices of the simplex are on the boundary
faces, and there is no room for SWEEP making false detection at the corners (Figure 6.6a).
So, I raise § to move H, towards O, which creates some gap between the first n vertices
and the boundaries, except the last vertex which coincides with O. Mathematically, this
means the following formulation is adopted:

ﬁ=R\/_—%, (OSr ntl ) 6.1)

S—
Vn 1+vVn+1
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where R is a ratio indicating the residual gap created. I call it the residual ratio. A larger
R corresponds to larger room for false detection. I multiply R by /7 to keep the product
a similar decreasing speed as the original 8, when n grows.

Based on the formulation above, I can compute the volume of the nD-simplex which
indicates the selectivity. Suppose the edge length of the simplex is s, while the height is
h,i.e., —B in this case, we could derive

n+l
-B=h=s
p 2n
s" n+1 2n \"1 [n+1
V=— =(-B — (6.2)
n! 2n n+l| n! 2n

As the test is up to 10D, I substitute n = 10 and R = 0.1 to Equation 6.1, and then
substitute the resultant § to Equation 6.2 to compute V: Vjo = 0.0010091. This results in
a 1%o selectivity. Then, I compute R using Equation 6.3 for other data sets, to achieve the
same selectivity:

1
n n
_Vn+1 nv?2 ( Wig 2 ) 6.3)

= —[n

nv2 | 1+vVn+1 n+1
where n = 2,4, 6, 8. Table 6.2 shows the computed R. Table 6.3 presents the ratio between
the distance from the origin O to H, and the diagonal length, i.e., —\%. This ratio indi-

cates how the simplex stretches over the data region as dimensionality rises. Figure 6.10
provides some illustrations of the simplexes created.

Table 6.2: Residual ratio for different dimensionality

2D 4D 6D 8D 10D
R 0.6044127 0.5106438 0.3701990 0.230515 0.1

Table 6.3: The ratio between the distance from O to Hy, and the diagonal length of the simplex

2D 4D 6D 8D 10D

% 0.029562 0.180339 0.355509 0.519485 0.668337

3

RESULTS AND ANALYSIS
The experiment sets 4y to 108, This guarantees a low FPR in high dimensional spaces,
without bloating the memory. CPLEX (two versions), SWEEP, SPHERE and VERTEX are
tested. CPLEX#1 distinguishes between two types of intersection: inside or partial over-
lap, while CPLEX#2 does not, meaning nodes inside the simplex are refined unnecessar-
ily.

Tables 6.4 — 6.6 show the results. Over all, CPLEX#1 owns the lowest FPR, while
SWEEP responses the fastest below 10D with CPLEX#2 fastest in 10D. The low FPR of
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v:3,e:3 v:5 e:10

Figure 6.10: Orthogonal projections of a 2D-simplex, 4D-simplex and 8D-simplex built, with the number of
vertices (v) and edges (e). Image source: Wikipedia

CPLEX#1 leads to the smallest k' for post-processing. However, as CPLEX#1 spends sig-
nificantly more time for each iteration for computing ranges, such advantage is insignif-
icant until 10D (Table 6.6). CPLEX#2 presents analogous selectivity as CPLEX#1, but is
faster. This is because CPLEX#1 decomposes the simplex to individual half-spaces to
further compute inside or partial overlap, while ignoring this reduces about 50% com-
putation (Table 6.5). Besides, it becomes less necessary to distinguish these two inter-
section types when 7 increases, as all nodes returned by the first filter tend to fall on the
boundary (Table 6.7). This is because the number of nodes at each level of the Morton
hierarchy increases exponentially with 7, the final nodes selected mainly reside in higher
levels with larger sizes. So, these nodes are more likely to partially intersect the simplex.

Table 6.4: Selectivity of the first filter

2D 4D 6D 8D 10D
CPLEX#1 0.1% 0.1345% 0.4805% 2.503% 40.01%
CPLEX#2 0.1% 0.1387% 0.4815% 2.503% 40.01%
SWEEP 0.1% 0.1364% 0.9244% 16.45% 60.50%
SPHERE 0.1% 0.1386% 1.193% 46.71% 92.95%
VERTEX 0.1% 0.1364% 0.9244% 16.45% 60.50%

Table 6.5: Number of iterating cycles for computing ranges

2D 4D 6D 8D 10D
CPLEX#1 3,653 4,412,563 4,262,738 4,650,728 6,299,304
CPLEX#2 23,696 1,302,544 1,566,912 2,489,856 3,550,208

SWEEP 2,259 2,223,188 6,451,764 33,842,261 16,336,597
SPHERE 2,243 1,829,719 5,676,139 23,967,213 11,245,251
VERTEX 8,260 28,574,320 316,524,032 1,711,305,472 3,732,959,232

False positive points selected by CPLEX are caused by boundary nodes. On the other
hand, in addition, SWEEP, SPHERE and VERTEX also select FPNs as they apply approxi-
mate intersection computation (Table 6.8). So, larger k' are returned, which cause signif-
icant performance degradation in higher dimensions. SPHERE processes similar num-
ber of iterations as SWEEDP, and is even faster in generating ranges. However, the ranges
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Table 6.6: Time cost (seconds) (first filter/second filter)

2D 4D 6D 8D 10D
CPLEX#1  0.52/0.001 633.7/0.001 616.8/0.041 660/5.51 845.7/5,502
CPLEX#2 2.078/0.001 120.4/0.001 147.2/0.041 250.2/5.51 360.8/5,502
SWEEP  0.001/0.001 2.129/0.001 3.078/0.082 11.11/31.69  3.388/8,691
SPHERE 0.001/0.001  2.35/0.001 3.331/0.103 9.518/67.32 2.729/11,213
VERTEX 0.001/0.001 2.685/0.001 7.624/0.082 133.8/31.69 434.9/8,691

Table 6.7: Number of nodes selected by the first filter (inside/boundary)

2D 4D 6D 8D 10D
CPLEX#1 323/191 335,290/664,711  78,778/921,227 137/999,941 1/1,000,199
CPLEX#2  0/4,357 0/1,000,003 0/1,000,020 0/1,000,078  0/1,000,200

SWEEP 323/191  333,082/666,930  75,139/924,880  9/1,000,003  1/1,000,074
SPHERE  341/209 367,127/632,884 53,789/946,230  0/1,000,016  0/1,000,210
VERTEX  323/191 333,082/666,930  75,139/924,880  9/1,000,003  1/1,000,074

Table 6.8: Number of true positive nodes (TPNs) and false positive nodes (FPNs) selected (TPN; FPN)

2D 4D 6D 8D 10D

SWEEP 514/0  660,077/6,853 836,021/88,859  370,333/629,670  680,585/319,489
SPHERE 550/0 614,512/18,372  779,259/166,971  230,862/769,154  446,376/553,834

contain more false positive points, which undermines SPHERE’s overall performance.
Especially in 10D, SPHERE selects nearly the whole data set. VERTEX returns the same
ranges as SWEEDP but takes much more iterations due to the multiple vertex-based dis-
tance computation. An odd pattern occurs that the iterations of SWEEP and SPHERE de-
cline from 8D to 10D. This is because the simplex’s boundary is very close to the bound-
aries of the data region in 10D. So, the false detection related to this half-space is con-
strained by the data region.

In general, the FPRs of all approaches increase drastically with increasing dimension-
ality. For one thing, this is because to keep the 0.1% selectivity, the simplex increasingly
covers the data region as n grows, so that it intersects an increasing portion of nodes
at each level. For another, r,,4, is set to a constant for all data sets, while each node
is decomposed into 2" children, thus limiting selected nodes to the larger ranges, and
introducing more false positive points.

6.3.3. ND-PRISM QUERY

In theory, the number of half-spaces constituting the nD-polytope affects the time cost
of range generation linearly (Section 6.2.3). This section uses a simple nD-prism model
to verify this. Inscribed regular polygons of a circle are used as the base (Figure 6.11). To
create the prism with 2 f vertical faces, I apply a rotation formulation: suppose 8 = ”Tj,
where j =—-f+1,..., f. Then, I create each half-space with
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w = (cos0,sinb,0,0,...,0)

[selectivit l
B=- M~scal@— SCZ e(cos@+sin6)
b4

where scale determines the size of the prism — 4096 in this case. I do not create half-
spaces at the ends of the prism, as they are implicitly defined by the data region. Based
on this formulation, I generate 8i-gonal (i € [1,8]) prisms from 2D to 10D. The hyper-
volumes of these 8i-gonal prisms are close to each other, and they approximately equal
the product of selectivity 0.1% and the hyper-volume of the data region.

Figure 6.11: The nD 8-gonal and 16-gonal prisms projected to 2D and 3D spaces

The test uses the same uniform data sets from 2D to 10D. 74y is still 106. The
approaches are the same as before. Table 6.9 presents the selectivity of different algo-
rithms. Figures 6.12 — 6.16 show the number of iterations of different algorithms, while
Figures 6.18 — 6.21 show the time cost.

Table 6.9: Selectivity of the first filters in the nD-prism test

2D 4D 6D 8D 10D
CPLEX#1 1%o 1.857%o0 13.39%0 71.29%0 247.9%0
CPLEX#2 1%o 1.932%o0 13.39%0 71.29%0 247.9%0
SWEEP  1%o 1.857%o0 13.39%0 71.29%0 247.9%o0
SPHERE 1%o 1.938%o0 15.33%0 71.29%0 749.4%0
VERTEX 1%o 1.857%o0 13.39%0 71.29%0 247.9%o0

Table 6.9 indicates that all algorithms share almost the same selectivity, except SPHERE
deviate significantly from others in 10D. SWEEP returns no FPNs in this test, most likely
due to the wide angle between two adjacent faces of the 8i-gonal prisms. The figures in-
dicate that for all solutions, the number of half-spaces influences the time cost of range
computation linearly. CPLEX#2 holds the best scalability. It takes a constant number of
iterations to compute ranges, and the number of half-spaces influences insignificantly
on the time cost in each iteration. SWEEP and SPHERE hold the superiority over others



Number of iterations

118 6. EXECUTING CONVEX POLYTOPE QUERIES ON ND-POINTCLOUD

in time cost of range computation. However, because of more FPNs, SPHERE takes more
iterations than SWEEP. This gap becomes larger with larger dimensionality. This gap be-
comes larger when the dimensionality goes high, as Figure 6.15 shows. In 10D, although
iterations do not vary much, the FPNs from SPHERE is much larger than that of SWEEP
(Table 6.9). This will greatly slow down the second filter.
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Figure 6.14: Number of iterations of range computation in the 6D-prism query
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Figure 6.15: Number of iterations of range computation in the 8D-prism query
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Figure 6.16: Number of iterations of range computation in the 10D-prism query
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Figure 6.19: Time cost of range computation in the 6D-prism query
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6.4. REAL CASE STUDIES

After the ideal tests, I explored the applicability of the algorithms to real data, focusing
on the time cost. One is the perspective view query, which is a basic operation to realize
point clouds’ visualization; the other is a flood risk query, based on modelling results.

6.4.1. PERSPECTIVE VIEW SELECTION

This section investigates perspective views on AHN2, by restating the query region as a
convex polytope. Two kinds of perspective view, the close-up view and distant view, are
used to verify the performance of different algorithms.

MODELLING 4D PERSPECTIVE VIEW

The data used is the 4D AHN2 sample, as has been described in Section 5.1. The com-
puted cLol values follow the exponential distribution: the smaller the cLol value, the
more important the point is. In the 4D perspective view selection, all points should be
within a 3D view frustum in XYZ. Also, to imitate a realistic scene, a hyperplane in the
cLol dimension ensures nearby points are all be rendered, while fewer faraway points
are selected. This corresponds to our cognition. So, I build the 4D view model as follows:

a;ix+b;jy+ciz=d;(i=0,1,...,4) (6.4)
\/(x—u)2+(y—u)z+(z—w)2’<D—M (6.5)
- cLolnax ’

where Equation 6.4 describes the 3D view frustum, while Equation 6.5 defines the cLol
range. a;, b;, ¢; and d; are parameters based on the view point, direction and maximum
view distance D. (u, v, w) represents the coordinates of the view point.

Based on this formulation, perspective views were selected using GEOM, SWEEP and
CPLEX. GEOM detects intersection based on rigorous geometric computation. For ex-
ample, Equation 6.5 defines a 4D cone. To determine whether a 4D node intersects it,
GEOM first computes the boundaries of the two geometries: the boundaries of the 4D
cone are actually 2 3D balls and 6 3D cones, while that of the 4D node are 8 3D cubes.
Then, GEOM detects intersection of these boundaries at the 3D space. Using GEOM, no
FPNs will be detected, but the computation is non-trivial.

SWEEP uses a polytope for selection. So, Equation 6.5 is approximated by linear
equations. The left term in Equation 6.5 represents a sphere, and can be approximated
by 15 half-spaces surrounding the sphere (Figure 6.22). Practically, the horizontal and
vertical span of the vision could exceed 120° but cannot reach 180°. So, I rotate the cen-
tral half-space by an interval of 30° both horizontally and vertically, to build the discrete
approximation of the sphere.

CPLEX supports quadratic constraints and can be used without linearization. How-
ever, in practice, CPLEX collapses due to the high complexity of the quadratic problem
(Equation 6.5). Consequently, CPLEX uses the 4D polytope model established in the
SWEEP approach. Note that the CPLEX approach implemented here distinguishes in-
side nodes as does CPLEX#1 in Section 6.3.
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spaces: all points on the contour surface have the Figure 6.23: Illustration of a distant view and two
same maximum cLol value close-up views

BENCHMARK TESTS

The test sample contains 2 billion points (data set 3 in Table 5.1). GEOM, SWEEP and
CPLEX all set 7,4y to 10° for querying. The tests include two view modes (Figure 6.23):
the close-up view simulates the situation where a user is standing looking around; the
distant view imitates the bird-eye view located 800m to 1km high, looking at the ground.
Each view test randomly generates 100 queries for benchmarking.

Figure 6.24 shows the visuals of a typical close-up query. Figure 6.25 presents the
perspective view from another distant query covering the same region as Figure 6.24.
Figure 6.26 presents the output size and FPR of both types of view selection based on all
queries tested. Table 6.10 shows the average time cost of different approaches.

(b) Orthogonal projec-
tion, colored by maxi-
(a) Perspective view, colored by elevation mum cLol value

Figure 6.24: Results from a close-up query

As indicated in Figure 6.26b, SWEEP returns the most false positive points from the
first filter. Although SWEEP selects FPNs, the second filter times are not greatly affected
- the FPNs’ negative effect is limited for this application, which is consistent with the
nD-simplex experiment (Table 6.4). GEOM holds the lowest FPR thanks to the accurate
intersection between the original geometry (Equation 6.5) and nodes. However, imple-
menting is cumbersome, and can be impossible for other query geometries in high di-
mensional spaces.

Table 6.10 shows the superior performance of SWEEP, where the total time cost is
below 1 s. In the first filter, range computation costs the most, while the others take con-
stant time (< 0.2 s). Although CPLEX possesses a more accurate first filter than SWEEP,
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Figure 6.25: Perspective view resulting from a distant query

its range computation is 200x slower than SWEEP. This also agrees with previous results.

6.4.2. FLOOD RISK QUERY

This section presents another use case based on the flood data (Section 5.2). The data
set totally contains 343,756,800 points, in an 8D space composed by case ID, X, Y, Z, time,
depth, velocity and flow direction. The query is to select dangerous locations evaluated
by human instability (i.e., depth x velocity = 2) (Jonkman & Penning-Rowsell, 2008) in
case 1.

Among the 8 dimensions, the flow direction is seldomly used for ad-hoc analysis.
So, I set it as the property dimension when building PlainSFC, while used the other 7
dimensions for Morton key encoding. To employ SWEEP and CPLEX, I first converted
the query into the polytope representation. It consists of a half-space indicating the case
ID, and the other 7 half-spaces of which the points of tangency spread over the query
boundary in the 2D projection (Figure 6.27). As a comparison, I also built a customized
GEOM approach. GEOM reports an intersection if the upper-right corner of a node is
in the original geometry. An inside is returned if the lower-left corner is inside. 7,4y is
set to 10°, the same as the AHN2 test. I also changed the case ID to 5, which leads to
a different result. The exact answer of case 1 contains 28,351 points, while that of case
5 contains 175,758 points. Table 6.11 presents the accuracy of different first filters, and
Table 6.12 presents the time cost.

The large FPRs in both queries (Table 6.11) result from the data set’s high dimension-
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Figure 6.26: Statistics of executing the 100 close-up and the other 100 distant queries

Table 6.10: Average time cost of the perspective view queries (seconds)

GEOM SWEEP CPLEX
Close-up view query

First filter 1.196 0.564 127.0

Second filter  0.239 0.275 0.259

Total 1.435 0.839 127.3
Distant view query

First filter 0.99 0.571 165.1

Second filter  0.211 0.298 0.294

Total 1.201 0.869 165.4

ality and the skewed distribution of the depth and velocity dimension. Both dimensions
contain large amount of zero values which are selected by these algorithms. In case 5,
SWEEP and CPLEX select less points than GEOM, applying a different path for node de-
composition. So, using the polytope for approximation may not always lead to negative
result. Thanks to similar k’, SWEEP costs nearly the same time as GEOM (Table 6.12),
but CPLEX still takes more time by an order of magnitude. Additionally, as GEOM needs
hard-coded programming, it is still less applicable than the generic SWEEP.

6.5. DISCUSSION

The advantage of nD-simplex model for query tests lies in the pseudo-randomness in
terms of faces’ directions. This results in diverse intersection angles between axis-parallel
nodes and the simplex, which makes the result more generic and convincing. I achieved
constant selectivity for both nD-simplex and nD-prism test, facilitating analysis of query-
ing efficiency dependency on dimensionality and the number of half-spaces.

As shown in Tables 6.4 and 6.6, SWEEP becomes less competitive after 8D. FPNs oc-
cur at the acute corners where boundaries meet, and this occurs increasingly frequently
in higher-dimensional simplexes. The nD-simplex is effectively a worst-case for the gen-
eration of FPNs, as SWEEP does not return any FPNs in the nD-prism test.
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Figure 6.27: Converting the constraint on human instability into a polytope model

Table 6.11: Accuracy of the first filters in the flood Table 6.12: Time cost of the flood risk query (sec-

query onds)
GEOM SWEEP, CPLEX GEOM SWEEP CPLEX
Case 1 Case 1
K 11,734,557 12,031,206 First filter 1.273 1.297 87.86
FPR 412.9 423.4 Second filter 14.99 15.08 15.08
selectivity 3.414% 3.5% Total 16.25 16.37 102.9
Case 5 Case 5
K 10,182,544 10,171,486 First filter 1.336 1.474 98.46
FPR 56.9 56.9 Second filter 15.29 15.01 15.01
selectivity 2.962% 2.959% Total 16.62 16.48 113.5

The clipping method developed by Goldstein et al. (1997) on the other hand, clips
the nodes intersecting each half-space. In this way, the intersection detection becomes a
joint determination from all half-spaces, and FPNs are expected to be reduced. However,
the clipping position should be computed optimally in high dimensional spaces. Other-
wise, using the original method, several iterations of clipping has to be performed to de-
tect accurately whether a node intersects the polytope, which costs significant amount
of time.

The rigorous method CPLEX takes more time in each iteration, but it holds a more
constant performance over dimensionality thanks to accurate intersection computation.
So, CPLEX remains to be a competitive solution when dimensionality is high.

In general, all approaches suffers from “the curse of dimensionality" that the FPR
becomes very large in high dimensional spaces. As different types of geometry (e.g., tri-
angle, cube and sphere) develop differently as dimensionality increases (Figure 6.28),
using hypercubes to approximate the polytope in high dimensional spaces may not be
easy and can cause significant error. In fact, such approximating process is also a dis-
cretizing process, as the de-facto way to discretize in 2D is to use pixels. Consequently,
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developing new methodologies for discretizing geometries in high dimensional spaces
is imperative.
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Figure 6.28: Volumes (V) and surface areas (S) of nD-balls of radius 1. Image source: Wikipedia

Additionally, the querying framework can solve more abstract queries whose con-
straints on combinations of different dimensions are expressible as a polytope model.
The method for polytope modeling adopted in applications above can be generalized:
given an equation of a convex curved face, f(xg,x1,...,X,-1) = 0, a generic method is
to generate a set of tangent planes which together form a superset of the geometry for
approximation. More specifically, we first randomly generate m points on f, from pg to
pm-1- Then, we compute the gradients at these points:

Vipi) = %(Pi), ;—i(m),---, %(Pi)
where p; is one of the random points. These gradients serve as normal vectors of a set
of hyperplanes which are what we need. In practice, for a specific query geometry, the
user can pick a small set of points of tangency, P, which spread over the geometry to
build the polytope. By iteratively performing benchmark tests and densify P, optimal
polytope models can be acquired according to Equation 2.1. Alternatively, users can
apply a customized method if the query geometry can be modelled more efficiently.



EXTENDED APPLICATIONS AND
PRELIMINARY RESULTS

N previous chapters, I mainly discussed the use of PlainSFC and HistSFC for two ap-
I plications — AHNZ2 visualization and flood risk querying. In fact, the general principle
of PlainSFC, nD-histogram and cLol can be applied to address more applications. This
chapter applies my nD-PointCloud framework to more data, platforms and applications,
developing specific solutions. As the main goal is to demonstrate the applicability of
the framework and explore the possibilities, the results presented are mainly from pre-
liminary investigation and experiments. Nonetheless, these initial solutions can still be
developed and optimized further.

In the following, 5 applications are presented. Section 7.1 realizes a bird eye shot
function on AHN2. It differs from perspective view in the sense that the viewer adopts
a straight downward viewing angle, and more efficient 3D geometric computation can
be performed. Besides, visualization can be run on different platforms other than com-
puters. Section 7.2 explores the possibility to render point clouds in an Augmented Re-
ality (AR) environment on mobile devices. Also based on the mobile devices, Section 7.3
describes the idea to use the cLol method to efficiently render point clouds for the pur-
pose of indoor navigation. Section 7.4 explores the k-nearest-neighbor (kNN) search and
change detection. This is another type of query besides the orthogonal window and poly-
tope query. Section 7.5 applies PlainSFC to address queries on trajectory point clouds,
which have very different nature from AHN2 and the flood data.

Despite tests on mobile devices, all experiments in this chapter are performed on a
personal laptop — HP ZBOOK STUDIO G5. The processor is Intel(R) Core(TM) i7-8750H
@ 2.2GHz. The RAM is 16GB, with a 500GB SSD.

7.1. BIRD EYE SHOT OF AHN2

Unlike the perspective view which looks ahead with a specific angle, the eye shot here
refers to the straight downward view from above. That is, given a 2D region for viewing,

127
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the bird eye shot imitates looking at the center of the region from above. This means that
in the result, the point density reaches the highest in the center while gradually reduces
towards the boundaries. I realize this by using the cLol dimension, where all points are
selected near the view point, while at distant, only important points are selected. The
principle is similar to perspective view selection, as has been formulated in Equation 6.5.
However, due to the viewing mode, the Z dimension of point data is not involved in the
computation. This means 3D geometric operators can be directly used in XYcLol space.

From the above analysis, two approaches can be used to acquire the bird eye shot:
one is the APPROX which directly adopts the nD-polytope solution omitting the Z di-
mension; the other approach called EXACT is to conduct the XYcLol query based on
geometric computation. As Figure 7.1 shows, EXACT uses a 3D cone as the query geom-
etry to realize bird eye shot: in the view center of the XY plane, all cLol values should
be selected, while the cLol decreases further from the center, until the boundary of the
XY plane which is defined by the 2D region for viewing. For computation, the first filter
of EXACT examines whether nodes intersect the 3D cone to derive the corresponding
Morton ranges. As each node can be casted to a 3D XYcLol cube consisting of 6 faces
parallel to axis, whether the intersection happens depends on the relationship between
each face and the cone. In total, 5 relationships exist (Figure 7.2):

1. The face intersects the cone and at least one edge of the face intersects the cone
2. The face cuts the cone and crosses the bottom of the cone

3. The face cuts the cone and crosses the axis of the cone

4. The face is inside the cone

5. The face is outside the cone

In practice, not every face has to be checked. For example, if one face of the cube
intersects the cone, the cube must intersect the cone. However, to determine whether a
cube is fully inside or outside the cone, all faces of the cube have to be checked.
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Figure 7.1: The 3D view
cone to realize bird eye shot Figure 7.2: The first 3 relationships between a face and a cone

Compared to EXACT, APPROX needs an additional step to convert the 3D cone into a
polytope model. This can return more false positive points due to the approximation. As
the 3D geometric intersection functions used in EXACT is also convenient to develop, I
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adopt EXACT, while still employ the 4D organization to allow other possible 4D queries.
For each relationship shown above, I developed the mathematical functions ! and inte-
grated them into the first filter.

To demonstrate the functionality practically, I performed a test on an AHN2 sam-
ple containing 26,196,244 points. The spatial reference system is Amersfoort / RD New,
EPSG:28992. By adding the cLol dimension, the minimum bounding box is [19000, 369000,
-0.83, 0; 19999.99, 369999.99, 25.68, 12000]. The 2D region for viewing is [19694.56,
369005.05; 19995.31, 369521.53] (Figure 7.3). Figure 7.4 shows the final result, where
white points are those removed after the filtering. The density of points is determined by
the distance to the view point, which keeps in line with our expectation. With proper set-
tings (e.g., 100,000 ranges), the selection can be finished within 1 second using PlainSFC,
on the laptop.

Figure 7.3: The AHN2 sample and the query region in red for testing

Figure 7.4: The result of the
tested bird eye shot query

7.2. AHN2 IN AR

Previous applications presented in this thesis is realized on the computer platform. In
fact, nD-PointCloud data can also be used to build scenes in the AR environment on
mobile devices. However, because of the conflict between the large amount of data and
the limited resources of mobile devices, most mobile AR applications based on point
clouds lack the ability to handle large data sets and fail to interact with users fluently.
To address this problem, Zhang (2020) conducted a master thesis to explore the use of
cLol to significantly reduce the number of points for rendering while preserve the visual
quality. This was a collaboration with this PhD research.

To achieve the goal, a real-time cLol method is firstly considered. It computes the
distance between each point and the camera as well as space between points. How-
ever, such computation is very expensive, and can cause an extremely low frame rate
and even the crash of the software. Consequently, the static cLol method developed in

https://github.com/rencailhc/SFCLib-New/blob/master/Histgen/Geom.h
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Chapter 3 is used, where the cLol value for each point is computed in prior. Then, we
determine the level of cLol to filter points according to a target data density for render-
ing (Section 3.4.3). For this, the Cumulative Density (CD) at a certain level is computed
(Equation 7.1).

@"-1)N
CD(l,n) = m (7.1)
where [ refers to the continuous level that is needed; N is the total number of points; L
is the maximal integer level that can hold such amount of data; Q refers to the size of
whole domain (if every dimension has an extent E, then Q = E™); n is the dimensionality
where it equals 2 for visualizing surfaces such as terrain, while 3 for true 3D objects.
After testing, we got an ideal density D, between 100,000 to 200,000 points/ m?3. With
this, we derive another expression of CD, Equation 7.2, which is established based on the
distance from a point to the viewer. In the equation, x, y and z represents the center of a
point cluster in the world space, while u, v and w refers to the position of camera in the
world space. By joining Equation 7.1 and Equation 7.2, we can derive the particular level
I (i.e., cLol value) for filtering points. All selected points will be stored in a vertex buffer
for rendering.

CD(l) = D (7.2)
Iny(x-w?+y-v?2+Ez-w?+1

To practically realize this system, the hardware Redmi K20 Pro mobile phone running
Android 10 is used, with configuration Qualcomm Snapdragon 855 processor at 2.84
GHz, 8 GB of Random Access Memory (RAM), 128 GB of main memory. Software used in-
cludes ARCore (version 1.17.0) together with the Unity game engine (version 2018.4.21).
Basic interactions are developed including placement of a point cloud, rotation, scaling,
zooming in and out. Besides, user interfaces with setting options are also added to the
system: if the users are not satisfied with the automatic estimation, they can change the
value of parameters, such as update frequency, desired density, and point size. Figure 7.5
shows the rendering results of different point clouds.

(a) Furniture point clouds (b) Terrain point clouds

Figure 7.5: Rendering results by using the cLol method (Zhang, 2020)
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In addition, we also measured the performance by using the cLol method. Figure 7.6
shows the proportion of reduced points against different input size. Since the scenes are
scaled to a relatively small area, when the input contains more than 1 million points,
this proportion can be very high (i.e., greater than 70% and can rise to 95%). In addi-
tion, Figure 7.7 indicates that the utilized memory increases when the input size grows.
When visualizing large point clouds with more than 5 million points, the memory cost is
more than 400 MB. It reaches 1,200 MB which is close to the boundary of the rendering
system with the largest input. This is still too high for a mobile phone to run smoothly.
Nonetheless, we still observed significant improvement using cLol.
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Figure 7.6: The proportion of points reduced (Zhang,

2020) Figure 7.7: Memory consumption (Zhang, 2020)

7.3. INDOOR VISUALIZATION FOR NAVIGATION PURPOSES

Indoor navigation becomes increasingly used nowadays. For one thing, people spend
most of the time indoors. For another, indoor environments can be very complicated
such as shopping malls and museums. The indoor navigation system is established in
a 3D virtual environment, which can be directly built using the nD-PointCloud repre-
sentation without being converted to mesh. The point cloud data can be conveniently
collected by various mobile platforms (Thomson et al., 2013) and rendered by mobile
devices. However, the cLol method has to be adopted to guarantee a smooth rendering
process, similar to the AR application. This section develops a simple cLol method by
considering semantic information that can facilitate the navigation.

As Brown et al. (2013) and Isikdag et al. (2013) indicate, classification of indoor ob-
jects (e.g, window, wall, door and stair) is essential for route planning in an intelligent
indoor navigation system. Given a classified indoor point cloud where each object is
also identified within each class, I build three categories to represent the importance
level. The first category (i.e., the most important) includes stairs, floor, window and door.
They are essential for navigation. The second class contains objects such as wall, ceil-
ing, clutter which constitute the other part of indoor environment. The last category
refers to sofa, bookcase, board, table and chair. They are movable objects which are less
significant for navigation.

To integrate such information into the cLol computation, I apply a simple weighting
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technique. Basically, after each point is assigned a random cLol value (Section 3.3), the
cLol values of the objects which belongs to the second category will be multiplied by
0.9, while for the third category a factor 0.8 is applied. These two weighting factors can
be modified to achieve the best visual quality. In this way, large objects but less impor-
tant objects such as wall and floor would not be represented by much more points than
windows and doors, by choosing a same range of cLol. Users can focus more on the key
objects along the route. Figure 7.8 demonstrates an office by utilizing the semantic cLol
method. It clearly shows the different densities of objects resulting from the cLol.

(a) 10% of all points (b) 20% of all points

Figure 7.8: Visualizing an office by choosing different cLol range for selection

Besides visualization, nD-PointCloud also facilitate other types of computation in-
volved in navigation. As Liu, Li, et al. (2021) indicate, the range query which returns all
objects within a certain distance of a query point concerns XYZ and ObjectID dimen-
sions. Additionally, if a specific class of objects is needed, the classification dimension
gets involved in the query as well. Using PlainSFC and HistSFC, these queries are ex-
pected to be accomplished efficiently. However, more comprehensive functionalities
still need to be developed and evaluated thoroughly in the future.

7.4. KNN AND CHANGE DETECTION

Besides the orthogonal window and polytope query, my nD-PointCloud solution can ad-
dress more types of queies. kNN, as a crucial algorithm in GIS, has also been widely used
in point cloud applications. Key use cases include noise removal (Sankaranarayanan et
al.,, 2006), registration (Elseberg et al., 2012) and change detection (Girardeau-Montaut
et al,, n.d.), for example. This section presents how to use PlainSFC or HistSFC to solve
kNN, which is then used for change detection.

The formal definition of KNN search is: given a point p and a point cloud S, return
a set of k points from S whose distance to p are the smallest. In fact, the nodes of His-
togramTree can be used directly to facilitate the kNN query. Figure 7.9 shows the work-
flow of kNN query using HistSFC, where NNL is a key-value container using a binary tree
structure. The key of NNL is distance d, while the value is the coordinates of the point.
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Point p, point cloud S, DISTMAX =0

Search the leaf node that contains
p in the HistogramTree

Compute the distance d; from every point p;in the
node to p, and store (dj, p;) in a sorted list NNL
>

Compute the distance
from points in these nodes| No»| Set the last d in NNL
to p and update NNL to DISTMAX

Conduct query to select Y:s
all nodes overlapped h
Set the k"

d value in NNL to DISTMAX

If DISTMAX gets
smaller?

Yes
v

Build a spherical query
region using radius
DISTMAX

I

Export first k pairs of NNL

Figure 7.9: Execution path of kNN using HistSFC

In the implementation, points examined in a new iteration exclude those that have
been examined before, to decrease the cost. In the worst case, k HistogramTree nodes
get involved in the searching. So, the time complexity is @ (klog N + kT) , where N is the
input number of points, and T is the capacity threshold of HistogramTree. Besides, the
HistogramTree leaf nodes can still be refined to improve the performance, e.g., based on
intersection ratio between a node and the searching hypersphere (Section 5.3.1). How-
ever, this is less convenient than PlainSFC which generates nodes of the same size at each
level. For PlainSFC, kNN is realized by decomposing the nodes to a predefined depth. At
that depth, intersection between nodes and the searching hypersphere is computed. In
fact, using HistogramTree may not always be suggested. Figure 7.10, for instance, indi-
cates clearly that the HistogramTree nodes cause drastic increase of the searching radius,
which returns more false positive points. In practice, this also happens. For some 3D
kNN query on the AHN2 sample, the False Positive Rate (FPR) of HistSFC can be several
times larger than PlainSFC.

Figure 7.11 shows a kNN example computed using PlainSFC, where the AHN2 data
sample is the one used in Section 7.1, a rectangle region containing 26,196,244 points.
The query point is above the houses.

An crucial application of kNN is change detection between two point clouds. Vari-
ous scenarios of change detection exist, which can be implemented in different ways to
achieve the optimal performance. This is caused by different data and use cases. I list
three common scenarios below:

1. Large scale point clouds acquired at different times with nearly the same density
are compared to derive changes, e.g., AHN2 and AHN3, which are different ver-
sions of dutch national Airborne Laser Scanning (ALS) data.

2. Two large scale point clouds collected by different sensors are compared. The den-
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Figure 7.10: 10-NN searching of a 2D point set. Solid circle and cells are involved in the first iteration, while
dashed ones are involved in the second iteration.

(a) Nearest 2,000 points (b) Nearest 20,000 points

Figure 7.11: kNN query on a AHN2 sample (top-down view), colored by elevation

sities of the two point clouds are different. For instance, the ALS data is updated
by Radar data to decrease the financial cost.

3. A large scale point cloud is used as the “base map”, while another regional point
cloud is dynamically collected. The densities of these two point clouds can be
different. For example, autonomous driving uses a High Definition (HD) map to
detect local environment dynamically to make decisions.

Scenarios 1 and 2 do not need the support of a database solution, as they are only
executed once. In contrast, Scenario 3 concerns dynamic queries, which caters to this
research background. To realize this scenario, kNN is applied. Instead of a single point,
here I focus on changes at the scale of patches. I perform change detection at the node
level using PlainSFC. Figure 7.12 shows the workflow of 3D XYZ change detection based
on 4D PlainSFC, i.e., XYZcLol. In Figure 7.12, the cLol dimension can be flipped to 0 by
adopting “&" operation between 4D keys and a binary mask, e.g., 111011101110...given
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that the last bit of every 4 bits is used for encoding the cLol value. Then, the processed
keys are truncated to a certain level, depending on the threshold for change detection.
Nodes represented by the truncated keys are compared to derive the changes.

/éase S in 4D PlainSFC, +| Determine the height of the

regional S in XYZ list ”| Morton node for comparison
Encode S, into 4D keys with cLol = 0, Compute the parent nodes of S3
meanwhile retrieve the XY extent of S, and S; by truncating the keys

v

Select points from PlainSFC using
the XY extent, and the result is S

Compare the parent nodes and
retrieve the nodes only exist in

S, and S3
Compute the mask to turn cLol Retrieve the points belonging
to 0in Sz keys to the nodes retrieved

Figure 7.12: Execution path for change detection using XYZcLol organization

As an experiment, [ use AHN2 as the base map, while another piece of AHN3 as the
dynamic point cloud. Figures 7.13 and 7.14 present the results of change detection using
PlainSFC and Fast Library for Approximate Nearest Neighbors (FLANN). The latter is a
widely used framework for change detection integrating different kNN algorithms and
can automatically determine the optimal one to use depending on the input (Muja &
Lowe, 2009).

(a) AHN2 data (b) AHN3 data

Figure 7.13: AHN2 and AHN3 samples used for change detection experiment

For PlainSFC, I set the level for node comparison using a tolerance of 5m for XY di-
mensions, while 0.5m for Z dimension. This can be achieved by scaling Z with factor 10
when encoding the key. In Figure 7.14a, the points in the circle belongs to the ground. So,
they should not change in reality. However, due to slight shift of Z dimension in AHN3
(e.g., growth of grass), this part of points falls into different nodes in AHN2 Morton hi-
erarchy and AHN3 Morton hierarchy (i.e., with different head part of Morton keys). So,
the change detected is a spurious change, which is an error due to the shortcomings of
the algorithm (Xu, 2015). This error does not occur using FLANN with a default setting
(Figure 7.14b). Nonetheless, both solutions take similar amount of time to accomplish,
i.e., around 2 seconds on the laptop.
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Spurious change

(a) PlainSFC (b) FLANN

Figure 7.14: Changes detected using different solutions: blue points only exist in AHN2 while red points only
exist in AHN3

To diminish the error of the spurious change in Figure 7.14a, I add another point-
wise filter in PlainSFC. Such a filter specifically searches the nearest neighbor for single
points in the previous result. The distance between the nearest neighbor and the point
is then compared to the threshold, to determine whether an actual change happens.
Figure 7.15 presents the updated result. It indicates that the spuriously detected points
are largely removed. However, As can be deduced, such additional filtering process can
be very expensive. In this experiment, the time cost of PlainSFC steps from 2 seconds to
15 seconds.

Figure 7.15: Change detection using PlainSFC with an additional nearest neighbor filter

In current algorithms, cLol is omitted, but it can be utilized to decrease the computa-
tion. Basically, given a specific cLol level which also indicates a sampling rate, any large
objects that contain sufficient points will be sampled at that level. Then, the changes
happening to these objects are most likely to be detected by comparing the point clouds
that have been filtered by the cLol. In this way, computation can be greatly reduced, but
changes of smaller objects may be omitted. So, the use of cLol also depends on the re-
quirements on resolution of change detection. This indicates a new research direction
on how the level of cLol influences the accuracy and efficiency of change detection. For
this, novel cLol methods may be devised in the future.

7.5. AIS TRACKING

The Automatic Identification System (AIS) is developed and used worldwide to avoid
the frequent occurrence of maritime accidents. Basically, the vessels are equipped with
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Global Navigation Satellite System (GNSS) receiver and AIS transponder. Depending on
the cruising speed of the vessel, such a transponder broadcasts its identity and posi-
tion to the base station in intervals ranging from 2 seconds to 3 minutes. This results in
another type of nD-PointCloud data which are the trajectories of moving vessels. This
section summarizes the results of a master thesis research of Li (2020) which applies
PlainSFC to address AIS queries. This is another collaboration within the PhD research.
The AIS data contains many fields (Figure 7.16), including static part such as vessel
name and type, and dynamic part such as location, speed and voyage related informa-
tion. Because of the massive and useful information, a large number of applications
have been developed based on AIS data. For example, a critical application for mar-
itime safety is to analyze the trajectories of specific vessels by using the longitude, lati-
tude, time, and the Maritime Mobile Service Identify (MMSI) which identifies a vessel.
Anomalies of motions can thus be detected. In the following experiment, we focus on
two types of query which are frequently used. They are spatio-temporal window query
which reports all vessels’ locations within an area and time period, and the trajectory
query which retrieves the positions of a specific vessel in a period of time. As can be
seen, this experiment only concerns MMS], longitude, latitude and time dimensions.

mmsi ts imo callsign shipname shiptype  bow stern port starboard
244270394  2016-12-1000:00:00.148 UTC 0  PE7278 STERN 69 4 7 1 1
244670835  2016-12-1000:00:00.861 UTC 0 PD3343 MARCHIENA 89 85 0 4 4
305648000  2016-12-1000:00:01.184 UTC ~ 9504047  V2FE2 PHOENIX ) 71 136 15 11 12
235192000  2016-12-1000:00:01.216 UTC ~ 9143506  ZNBI6 HAPPY BEE 80 94 20 12 4
244700938  2016-12-1000:00:01.443 UTC 0 PD7425 PL 99 13 15 3 4
235076272  2016-12-1000:00:01.000 UTC 9398723  2CWA7 PARAMOUNT HANOVER 80 207 43 28 16
229630000  2016-12-09 23:59:59.194 UTC 9365960 9HA3465  X-PRESS MULHACEN 74 133 9 1 9

(a) Static part

month day hour minute draught destination

0 0 24 60 0.7 HEEN EN TERUG
1 8 21 25 1 -

12 10 0 0 7.1 ROTTERDAM

12 7 20 20 4.7  ZEEBRUGEE
0 0 24 60 1.8 SCHIEDAM

12 8 4 0 11.3  TEXAS CITY

12 9 20 30 7.7 CARTAGENA

(b) Dynamic part corresponding to the same vessels

Figure 7.16: A sample of decoded AIS data

Unlike the Oracle version of PlainSFC implemented before, in this experiment, Post-
greSQL and Python are used. This is because PostgreSQLs PL/PYTHON extension can
directly run the Python script inside the database. As a result, additional communication
between the database and PlainSFC’s components are avoided. The code in Listing 7.1
builds PlainSFC solution in PostgreSQL. For querying, we create PL functions in a similar
way so that the first filter and second filter of PlainSFC are all accomplished inside the
database (Li, 2020).
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Listing 7.1: PlainSFC implementation for AIS in PostgreSQL

—-——first create the staging table, and load data into it
CRFATE TABLE ais_flat (mmsi INT, ts TIMESTAMP WITHOUT TIME ZONE, long REAL,
lat REAL)

COPY ais_flat FROM ’'/HOME/ais_data.csv’ DELIMITERS ’,’ CSV

———create the Monton encoding function, mortonencode, by calling the Python
script test_sfc.py

CREATE FUNCTION mortonencode (ARR BIGINT []) AS $$

FROM test_sfc IMPORT mortonencode

RETURN mortonencode (ARR)

$$ [ANGUAGE PLPYTHON3U

—-——create the table to store 4D Morton keys composed by mmsi, time,
longitude, latitude

CRFATE TABLE ais_iot as SELECT mortonencode (mmsi, extract(epoch from ts),
long+1000, lat+1000) as sfc FROM ais_flat;

———create B-tree index on the Morton keys
CREATE INDEX ais_idx ON ais_iot (sfc)

———cluster the ais_iot table to improve querying efficiency
CLUSTER ais_iot USING ais_idx




7.5. AIS TRACKING 139

The experimental data set contains in total 11,389,217 points. Figure 7.17 shows the
point data and the 4 spatio-temporal query windows for testing, namely, TinyRec, Small-
Rec, MediumRec and LargeRec. The time interval is 2 minutes for all windows. The
number of points inside them are 39, 90, 1787 and 2846, respectively. As to the trajec-
tory query, it retrieves the historical positions of a vessel whose MMSI is 244670079 in
1 hour. The final answer contains 45 points. All tests are performed on the laptop. Ta-
bles 7.1 and 7.2, and Figure 7.18 show the querying performance. Instead of setting a
maximum number of ranges for querying, the experiment adopts different search depth
of the Morton hierarchy for querying.

Figure 7.17: AIS point data and spatio-temporal query windows (Li, 2020)

Table 7.1: Selectiveness of the 4 spatio-temporal window queries and the trajectory query, recalling
Number of points within the query range

selectiveness= Total number of points of input

Depth TinyRec SmallRec MediumRec LargeRec Trajectory

4 0.1009 0.0494 0.5747 0.1696 0.2391
5 0.0259 0.0047 0.0256 0.0787 0.0960
6 0.0026 0.0017 0.0122 0.0379 0.0463
7 0.0007 0.0004 0.0057 0.0184 0.0221
8 0.0002 0.0002 0.0028 0.0089 0.0109

Table 7.2: False positive rate of the 4 spatio-temporal window queries and the trajectory query

Depth TinyRec SmallRec MediumRec LargeRec Trajectory

4 29,460.03  6,249.00 3,662.00 677.56 60,515.42
5 7,576.21 589.32 162.45 313.94 24,293.93
6 744.54 214.52 76.80 150.78 11,718.16
7 196.41 43.80 35.55 72.46 5,588.98
8 58.85 20.32 16.88 34.74 2,758.87
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Figure 7.18: Querying time of AIS queries with different search depth

Tables 7.2 shows that with the increase of search depth, the false positive rate de-
creases monotonically. This has been expected, as a large search depth corresponds to
finer refined nodes to approximate the query window. However, as Figure 7.18 shows,
from depth 7 to 8, time cost increases. This is because before level 7, the second filter
dominates the time cost as not too many ranges are generated. However, after this, the
first filter spends so much time to compute ranges that the increased time cost exceeds
the reduced time cost of the second filter. As a result, we see the turning point. Nonethe-
less, in most cases, the total time cost at depth 8 is not significantly greater than that of
depth 7. That is, the optimal search depth may not always be needed, and a range of
optimal depths can be accepted. This keeps in line with the prior result that the number
of ranges should be controlled within a certain range.

This experiment verifies the fact that the nD-PointCloud solution can indeed be ap-
plied to process the trajectory data, although the query types tested are limited. Com-
pared to the common vector representation, the latter stores full trajectories, and pro-
vides more possibilities for spatial computation such as intersection of two trajectories.
nD-PointCloud solutions may hardly achieve this currently, due to temporal resolution
of point data. Nonetheless, we may develop certain interpolation techniques which
add essential fake in-between points to facilitate such intersection computation, for in-
stance. Although it is still possible that the nD-PointCloud solution may be less optimal,
it can still be considered as a significant supplement on the whole.



CONCLUSIONS AND FUTURE WORK

FTER describing the core technology and applications of nD-PointCloud which I de-
Aveloped, this chapter concludes the thesis. Section 8.1 summarizes the main find-
ings and knowledge acquired by answering the research questions. Section 8.2 lists the
main scientific contributions. As this PhD research still has limitations and new thoughts
frequently arise during this process, Section 8.3 describes potential research directions
in the future, to continue paving the way to the new nD-PointCloud field.

8.1. CONCLUSIONS

With the development of remote sensing technology and advanced applications such
as Virtual Reality (VR) and catastrophe modelling, nD-PointCloud has become the third
spatial data representation in addition to vector and raster. nD-PointCloud can be di-
rectly collected, managed and analyzed without converting to other representations.
This thesis focuses on nD-PointCloud data management and querying, by considering
a great variety of applications such as LiDAR data visualization and flood risk querying.
The solution proposed is based on the nD-PointCloud data structure — PlainSFC. The
basic idea of PlainSFC is to treat every type of information of a point cloud as a dimen-
sion. For data storage, PlainSFC only uses the organizing dimensions to sort and index
the data, with property dimensions attached. PlainSFC is convenient to implement, and
can be built in any DataBase Management System (DBMS) that supports the B+-tree
structure. Based on PlainSFC, this thesis develops innovations in conceptual design,
query optimization and nD functionalities for point clouds. The majority of the code
used by the research is provided in https://github.com/rencailhc/HistSFC.

In the following, I summarize and discuss the research results by answering sub re-
search questions and the main research question.

1. To what extent can the transformation between the organizing dimensions and
the property dimensions facilitate the management and query of point clouds? How to
determine the type of dimensions when managing the data?

If a property dimension D is involved in a query, PlainSFC cannot process it effec-
tively in the first filter which only concerns organizing dimensions. Thus, by default, the
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first filter selects the whole range of D and compute the corresponding Morton ranges.
The second filter conducts the actual filtering of D. If the query is not selective on D,
then, the first filter will not make significant errors. To this end, treating D as a property
dimension is acceptable. However, if the query is very selective on D, then, the errors
made by the first filter will be greatly attributed to D. In this case, converting D to an
organizing dimension can facilitate the querying. However, such a conversion will also
influence other queries which do not concern D. This is because with one more dimen-
sion involved in the key, the fanout of the Morton hierarchy will become 2x more. To
achieve the same accuracy on these queries, the number of ranges for querying should
also be raised. This will in turn increase the memory cost and slow down the querying.
Hence, it is also crucial to consider the frequency of D appeared in queries to determine
the optimal data organization, apart from the selectivity.

Also note that the description is qualitative here, i.e., selectivity and querying fre-
quency, while the actual performance depends on the real use cases. A rule of thumb is
to first benchmark solutions using a sample of the data set to derive initial performance
patterns. Then, by iteratively experimenting and benchmarking with more data, the fi-
nal decision can be made. Considering GIS applications, in most cases, XY should be
organizing dimensions. Z, time, continuous Level of Importance (cLol) and classifica-
tion can be essential to certain applications. So, they should be considered seriously to
be used as the organizing dimensions. In general, the number of organizing dimensions
should be controlled as few as possible to guarantee efficient range computation. Also
note that the knowledge described above also applies to block based solutions.

2. What is the role of cLol in managing nD point clouds? How to compute the cLol
value for each point?

Lol is a critical technique that can be used to balance computation accuracy and
efficiency: at higher levels, only the most representative points get involved in the com-
putation, which can significantly improve the efficiency but with low accuracy; on the
other hand, when a large number of less important points get involved, the computa-
tion will take much more time but the result becomes more accurate. This principle
applies to both discrete Lol (dLol) and cLol. However, conventional dLol method such
as Quadtree or Octree causes density shocks in visualization. So, a novel cLol method
was devised in Chapter 3 to eliminate this effect where each point represents a level and
can be rendered in a gradual manner. Additionally, although I mainly demonstrate the
benefit of cLol in visualization, there must exist other cases that suffer from the discrete
levels due to the continuous nature of the world. To use cLol in a same manner as dLol,
cLoI has to be explicitly computed for each point and used as an organizing dimension.
In this way, the representative points can be efficiently retrieved, since the first filter can
function effectively.

Computing cLol in real time is costly when the application is based on large input
data. So, cLol should be computed in advance and used in data organization. Chap-
ter 3 proposed a method to convert the distribution of the number of points at different
levels of the 2"-tree to a continuous form. In this way, the final cLol values follow an ex-
ponential distribution. Then, the method assigns these values randomly to each point.
The total time complexity is @ (N), where N is input number of points. The cLol can be
further customized. In certain applications such as indoor navigation (Section 7.3), the
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classification can be considered when computing the cLol. This is because objects such
as stairs, doors and windows are more crucial than ceilings and chairs for navigation.

3. How much does the point distribution influence the performance of query execu-
tion?

PlainSFC generates Morton ranges for the query geometry without considering point
distribution. When data is non-uniformly distributed, the ranges generated will most
likely contain a large number of empty ranges. These empty ranges take time to com-
pute and query but contributes nothing to the final result. Consequently, to improve
the efficiency, the nD-histogram technique, HistogramTree, is developed to guide the
computation of ranges (Chapter 4). HistogramTree records the number of points inside
each Morton node in the hierarchy, as a representation of data distribution. To quantify
the effectiveness of HistogramTree, a metric, Cumulative Hypercubic Coverage (CHC),
is proposed. CHC measures the uniformity of a point cloud. By definition, the smaller
the CHC is, the more skewed the distribution is. Then, I established theory which indi-
cates that the effectiveness of HistogramTree increases monotonically as CHC decreases,
given randomly distributed queries.

The influence of point distribution on querying is also evaluated in practice (Chap-
ter 5). In AHN?2 test, PlainSFC presents high efficiency, slightly lagging behind HistSFC
which utilizes HistogramTree to compute ranges. This is mainly caused by the relatively
high uniformity of the data. Although Z and cLol follows non-uniform distributions,
the CHC of the 4D data set is still around 0.01. However, in the flood data test where
CHC of the 8D data store equals 0.0007, the performance of HistSFC is much better than
PlainSFC. Hence, depending on the data, point distribution can significantly influence
the querying efficiency. In addition, it should be realized that the data distribution is not
the only factor causing empty ranges. Converting skewed dimensions to more uniform
distributions may not improve efficiency as the query windows are also transformed. In
other words, distribution of the data and queries should be considered as a whole, to
determine the optimal settings of the solution.

4. Besides the common orthogonal window queries on different organizing dimen-
sions, what other query geometries are needed and can be efficiently handled by the data
structure?

In principle, PlainSFC and HistSFC can resolve any query geometry that can be math-
ematically expressed (e.g., in boundary representation or equations). This is because the
first filter can always derive the ranges by intersecting Morton nodes with the query ge-
ometry by using specific intersection functions. The drawback is that for every distinct
type of geometry, the intersection function should be developed. As a general solution
to this issue, Chapter 6 developed a convex polytope querying method. Basically, the
mathematical definition of a polytope consisting of a set of half-spaces is used. Then,
a generic intersection function which examines whether a node intersects these half-
spaces is developed. In this way, the first filter can process a polytope query very effi-
ciently. In fact, all query geometries can be approximated by the polytope model to be
solved, e.g., using random hyperplanes of tangency (Section 6.5). However, this may ag-
gravate the filtering process of the second filter due to the extended selection resulting
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from the approximation. So, the equilibrium between the number of half-spaces to ap-
proximate the query geometry and the efficiency of the second filter has to be decided
by experimenting.

5. What queries and processes should be included in a benchmark to learn the bal-
anced performance of the data structure? How to set up a representative benchmark?

Chapter 5 conducted benchmark tests based on two representative use cases, AHN2
exploration and flood risk querying. The data sets involved have distinct characters: one
is a 4D ALS data set, while the other is a point cloud converted from an 8D modeling re-
sult. The AHN2 queries not only include conventional spatio-temporal window queries
with cLol involved, but also perspective view queries which are commonly used in visu-
alization. In the query design, real query logs are used to derive realistic settings for ran-
domizing query sizes and locations. As to the flood data benchmark, it integrates typical
queries that support flood risk mapping, e.g., maximum inundation depth map. Specific
queries for risk analysis, such as risky point retrieval along a road and human instabil-
ity computation, are also included. To further evaluate the performance of PlainSFC
and HistSFC, other state-of-the-art solutions including PostGIS, Oracle SDO_PC and
Pyramid-technique are implemented and compared with in the benchmark test. More-
over, I optimized HistSFC by improving range refinement, uniforming skewed dimen-
sions and decoding in parallel. The effect of these optimizations were also tested.

Querying time cost is the major indicator of efficiency, and specific time cost on dif-
ferent querying processes is also recorded such as range computing and database fetch-
ing. The memory cost is mainly influenced by the number of ranges used for query-
ing, which can be specified. On the whole, the benchmark test performed confirmed
the higher efficiency of HistSFC than other solutions. By considering extended applica-
tions, Chapter 7 reveals more comprehensive benchmarks including trajectory data and
indoor point cloud data, augmented reality platform, and more functionalities such as
k-Nearest-Neighbor (kNN) search.

To summarize, the crucial aspects for devising a comprehensive benchmark include
data, queries (functionalities), different solutions, settings, optimizations, and platforms.
In fact, I also noticed that the other database processes such as data loading and index
building are also important to study. However, these processes are excluded, as the re-
search focuses on the performance of querying which is directly related to applications.

What is a highly efficient nD point cloud data structure supporting dif-
ferent types of applications?

Different algorithms need specific data structures to achieve an optimal performance.
This is also true for nD-PointCloud applications. However, to avoid excessive devel-
opment and integration, this thesis devises a generic data structure that can be imple-
mented in most DBMSs for different applications. This provides a convenient and effi-
cient tool for users to explore nD-PointCloud data. The basis of the novel data structure
is PlainSFC, which adopts succinct and efficient Space Filling Curve (SFC) clustering and
B+-tree indexing strategies. The main querying mechanism is to iteratively examine in-
tersection between Morton nodes and the query geometry to derive ranges for selection.
Besides, I improved the solution from the following aspects:
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I developed HistogramTree for inhomogeneously distributed data, and used the
corresponding HistSFC solution to generate ranges with higher accuracy;

I optimized HistSFC further by smartly refining ranges below the bottom level of
HistogramTree, uniforming skewed dimensions and decoding in parallel;

I devised and used the cLol dimension to facilitate massive point clouds visualiza-
tion, with density shocks eliminated.

I developed the querying algorithms for convex polytopes, which can also be used
to address other irregular query geometries.

The performance of the data structure is evaluated by comprehensive benchmark
tests with different use cases. By comparing PlainSFC and HistSFC to the state-of-the-
art solutions, I assert that HistSFC is the most efficient solution.

8.2. SCIENTIFIC CONTRIBUTIONS

The scientific contributions of the PhD research are summarized as follows:

1.

10.

Developed a novel cLol method for point clouds, which is integrated with a new
data structure to facilitate related applications.

. Developed and adopted HistogramTree to address queries on inhomogeneously

distributed data.

. Proposed a novel metric CHC to quantify the uniformity of a point cloud and also

to indicate the effectiveness of HistogramTree. The metric is also convenient to
compute in practice.

. Developed different optimization techniques, which function positively and sig-

nificantly improve the querying performance in certain cases. These include re-
fining ranges below the bottom level of HistogramTree, uniforming skewed dimen-
sions and decoding in parallel.

. Converted flood modelling results to nD-PointCloud representation and used novel

HistSFC for querying, which achieved high efficiency in flood risk queries.

. Conducted comprehensive benchmark tests using different queries, and compared

the newly developed solution to state-of-the-art solutions.

. Proposed an easy-to-use convex polytope formulation for querying.

. Developed efficient intersection algorithms for convex polytope querying on nD

point clouds.

. Efficiently solved perspective view selection for smooth rendering and flood risk

queries on 8D modelling results using the polytope method.

Extended and verified the whole framework against different data, platforms and
applications.
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Figure 8.1: Block based storage: each BLOB utilizes a B+-tree to organize data

8.3. FUTURE WORK

Developing nD-PointCloud is not my own task, but should be a joint effort of all related
researchers and communities. This section presents potential research topics in the fu-
ture: Subsections 8.3.1 — 8.3.3 concern the further development of core technology of
the nD-PointCloud solution, covering data structures, applications and models. Subsec-
tion 8.3.4 and 8.3.5 propose to establish related standards and protocols to promote the
use of nD-PointCloud.

8.3.1. BLOCK BASED DATA STRUCTURE
In practice, the input data set can be much larger than the ones that have been tested,
e.g., the whole AHN2 data with 640 billion points. Besides, the point cloud may also
contain more organizing dimensions. These will result in very large SFC keys which ex-
ceed the limit of Oralce’s NUMBER type. Using strings is an option, but this can take
much more space and the computation is less efficient than the number based repre-
sentations. Another alternative is to use two NUMBER fields for each SFC key, one for
the head part of the key while the other for the tail. However, this approach can still
take huge amount of storage space. A major reason is that the first NUMBER field would
be redundantly stored for many points that share a same head part of the key. To avoid
this, I propose a customized block based approach using Binary Large OBject (BLOB), as
illustrated in Figure 8.1.

Basically, a B+-tree is used to organize and store the first NUMBER field, i.e., head
part of the key. In additional to the first NUMBER field, the leaf node also stores a
pointer to a customized BLOB containing all its children whose keys are actually the
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second NUMBER fields. In this way, redundant storage can be avoided. The customized
BLOB is a B+-tree organized object so that an internal indexing mechanism can be real-
ized. Therefore, unlike conventional block based solutions, this approach will not need
to unpack the whole BLOB to filter the data. This significantly decreases the I/O cost. As
a consequence, for one thing, the advantage of blocks such as transmission via network
can be gained; for another, the highly efficient clustering and indexing mechanisms are
reserved.

8.3.2. FUNDAMENTAL TECHNOLOGY FOR APPLICATIONS

Chapter 7 described some fundamental techniques used in various applications, such
as kNN for change detection and semantic cLol for indoor navigation. This section indi-
cates two additional examples — point data caching for VR and mixed representation for
flood risk analysis.

For VR applications based on point clouds, since the memory of the headset is lim-
ited and real-time rendering is required, fast data selecting algorithms should be specif-
ically developed. Besides the crucial cLol technique, advanced caching algorithm which
facilitates the selection and rendering of point data is also indispensable. To this end, an
algorithm which incorporates motion prediction based on current viewpoint, motion
direction and pace and caches surrounding data needs to be devised.

The thesis presented the use case of flood risk querying, while a sound decision sup-
port system still needs to be developed to really serve the citizens. This concerns a fron-
tend module which allows users to interact with the modelling results. Representing
flood modelling results by nD-PointCloud improves the efficiency for querying. How-
ever, the nD-PointCloud representation may not be suitable for interaction: for visual-
izing the water body, meshes may achieve a better result. Then, a mixed representation
may be adopted, and strategies to realize this should be investigated. For example, im-
plement a dual storage or construct meshes based on points in real time.

8.3.3. INTEGRATION WITH CONCEPTUAL MODELS

Conceptual models provide a standard way to support vast range of applications. For in-
stance, WaterML is devised for exchange of in-situ hydrological observations (Almoradie
et al., 2013), while indoorGML is established for indoor localization and navigation pur-
poses (Kang & Li, 2017). In fact, Poux et al. (2017) have proposed a Smart Point Cloud
(SPC) model for managing, processing and using point cloud data. It is a 3-layer model
(Figure 8.2) consisting of a bottom data description layer (Ievel-0), a middle connection
layer (level-1) and an upper domain adaption layer for applications (level-2).

A potential research topic is to integrate PlainSFC/HistSFC with SmartPC model,
where possible changes have to be made. For example, as point clouds may not always
be classified, the semanticPatch class on level-0 may be upgraded to a more generic spa-
tiotemporalPatch class. Further, as the point cloud can also be trajectories, a timeSeries
can be added besides the Space class in the level-1 layer. Correspondingly, the level-2
should also be extended. The final goal is to incorporate more nD applications in the
model, which needs more relationships between data and functions being defined.
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Figure 8.2: Overall Smart Point Cloud model, adapted from (Poux et al., 2017)

8.3.4. NEW PROTOCOLS FOR WEB SERVICES

As point cloud data can be collected and analyzed by different users worldwide, it is
convenient to provide all kinds of services online. This needs efficient protocols to facil-
itate the communication between the server and the user. However, at present, there is
no specific protocols for web services defining encoding/decoding, streaming, structur-
ing (e.g., blocking), and compression which are essential techniques for handling nD-
PointCloud data. Besides, the dimension concept should be redefined. Public com-
munities (Kodde, 2010) have proposed to establish a new OGC standard, the Web Point
Cloud Service (WPCS) for this. It intends to cover all special aspects of nD-PointCloud
data to facilitate related services. Before publishing WPCS, fundamental research has
to be conducted to investigate the generic techniques for standardization. For instance,
the streaming process can be based on cLol to provide users with better rendering and
analytical results.

8.3.5. IMPLEMENTATION ON CLOUD COMPUTING PLATFORMS

Cloud computing platforms have been widely deployed to provide scalable resources
and services to users with relatively low cost. The online nD-PointCloud services can
also be realized on this platform. By referencing previous work (Richter & Déllner, 2014;
Wang et al.,, 2018), and considering possible use cases, I propose to develop a server-
protocol-clients architecture on the cloud computing platform (Figure 8.3).
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DATA LAYER

Data stored are various point clouds that have been collected for different purposes. As
current nD-PointCloud solution is developed on a standalone platform, adaptions have
to be made for migration. In fact, the prevalent key-value data organization adopted by
most distributed DBMSs can be used, where the key is the SFC code, while the value
refers to the property dimensions. To facilitate querying, the B+-tree index can also be
implemented, e.g., the HBase-BDB solution (Saloustros & Magoutis, 2015). Alternatively,
distributed implementation of the Oracle solution can be explored.

FUNCTION LAYER

In the function layer, the data management module is mainly used by administrators
and developers to load, store, maintain and benchmark data stores. The analysis mod-
ule contains the aforementioned core functionalities and techniques supporting differ-
ent applications. Visualization is separated, as it poses higher requirements than other
analytical tasks: limited network bandwidth as well as large data volume confines the
massive data rendering in real time. As is mentioned, cLol and smart caching strate-
gies will be applied to guarantee a smooth and fast rendering process. To realize this,
the viewer on the user’s side should also be developed to support cLol. Besides, to fa-
cilitate data and knowledge sharing on this cloud computing platform, data uploading
functions for the public will be incorporated.

PROTOCOLS

Protocols are used for communication among different layers. In the beginning, proto-
cols supporting vectors or rasters can be adopted temporarily. These will include Web
Processing Service (WPS), Web Coverage Service (WCS), Web Feature Service (WES), and
Web 3D Service (W3DS). However, they may present limitations on handling the nD-
PointCloud data. For example, visualization supported by W3DS is based on synthe-
sized images, which will cause the loss of information when rendering point data. Con-
sequently, the aforementioned WPCS is still imperative to be realized.
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TIME cOST OF AHN2 QUERYING

This appendix provides exact time measurements of the AHN2 benchmark test. The time
cost of first filter includes range computing, database fetching, DBMS communicating
and table creating. Specific explanation of the performance is provided in Section 5.1.
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Table A.1: Time cost of different processes in the SmallA querying (second)

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time per
computing fetching cost  second
1 7.37 3.14 0.89 462 0.26 4.88 47,254
2 13.07 3.15 0.89 450 0.25 475 48,587
HistSFC_1K 3 26.02 3.46 0.81 473 0.25 498 46,315
4 72.91 5.30 0.96 6.82  0.25 7.07 32,650
5 173.50 6.23 1.50 8.30 0.25 8.55 26,993
1 0.82 2.84 0.95 410 0.27 436 52,885
2 1.34 3.09 0.84 453 0.27 4.80 48,081
HistSFC_10K 3 2.46 2.90 0.65 4.09 0.26 435 53,068
4 6.21 3.06 0.64 419 0.26 4.45 51,886
5 11.82 3.23 0.79 430 0.26 4.56 50,645
1 0.20 2.96 0.84 420 0.30 450 51,253
2 0.29 2.94 0.91 4.21 0.30 4.51 51,184
HistSFC_100K 3 0.38 2.83 0.73 416 0.30 4.47 51,677
4 0.75 2.96 0.76 422  0.30 452 51,003
5 1.38 2.85 0.68 414 0.29 442 52,168
1 - 2.66 0.98 3.94 047 4.41 52,381
2 - 2.65 0.80 3.86  0.47 4.33 53,338
PlainSFC 3 - 2.76 0.76 381 048 428 53,886
4 - 2.72 0.87 3.86 047 433 53,264
5 - 2.92 1.02 414 049 4.63 49,879
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Table A.3: Time cost of different processes in the SmallC querying (second)

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time per
computing fetching cost  second
1 7.00 2.38 0.31 294  0.25 3.19 75,107
2 13.70 2.67 0.28 316 0.25 3.41 70,328
HistSFC_1K 3 29.26 3.45 0.30 412  0.26 438 54,715
4 84.55 5.37 0.27 6.04 0.26 6.30 38,072
5 145.89 8.28 0.37 8.92 0.26 9.18 26,127
1 0.68 2.01 0.16 246  0.27 272 88,039
2 1.31 2.07 0.28 249 0.26 275 87,334
HistSFC_10K 3 243 2.11 0.18 255 0.26 2.81 85,436
4 6.28 2.26 0.27 262 0.26 2.88 83,299
5 12.37 2.67 0.23 3.10 0.27 338 71,057
1 0.21 2.28 0.14 275 0.27 3.02 79,384
2 0.26 2.30 0.17 278 0.26 3.04 78,784
HistSFC_100K 3 0.40 2.23 0.14 263 0.27 2.89 82,867
4 0.74 2.23 0.17 263 0.27 290 82,724
5 1.41 2.19 0.16 265 0.26 291 82,327
1 - 2.86 0.27 3.50 0.26 3.77 63,697
2 - 2.80 0.29 3.48  0.28 3.76 63,849
PlainSFC 3 - 2.82 0.20 358 0.28 3.86 62,129
4 - 291 0.27 3.60 0.27 3.88 61,889
5 - 3.59 0.34 425 0.27 4.52 53,057
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Table A.5: Time cost of different processes in the Large querying (second)

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time  per
computing fetching cost  second
1 7.41 2.42 0.43 3.00 27.69 30.69 738,480
2 17.76 2.90 0.49 358  26.49 30.07 753,632
HistSFC_1K 3 33.45 3.93 0.42 455  27.08 31.63 716,578
4 88.18 7.65 0.44 8.30 27.09 35.40 640,276
5 173.46 10.05 0.46 10.68 27.44 38.12 594,492
1 0.87 2.53 0.75 361 2743 31.04 730,082
2 1.62 2.45 0.62 346 2743 30.89 733,603
HistSFC_10K 3 2.95 2.53 0.60 3.53 27.41 30.94 732,560
4 7.58 2.88 0.56 4.13 27.05 31.17 727,061
5 14.02 3.17 0.68 4.17 28.47 32.64 694,381
1 0.20 2.21 0.36 3.08 27.08 30.17 751,258
2 0.29 2.28 0.44 3.00 27.05 30.05 754,183
HistSFC_100K 3 0.46 2.31 0.34 3.05 27.36 30.41 745,353
4 0.96 2.40 0.46 312 27.19 30.31 747,640
5 1.57 2.31 0.44 3.02 26.89 2991 757,637
1 - 2.92 0.43 4.03 31.05 35.08 646,025
2 - 2.81 0.47 3.91 30.85 34.76 651,935
PlainSFC 3 - 2.86 0.45 393  30.85 34.78 651,672
4 - 3.28 0.45 437  29.71 34.08 665,059
5 - 3.73 0.93 4.85 31.35 36.19 626,177
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Table A.7: Time cost of different processes in the SmallB querying (second)

A. TIME cOST OF AHN2 QUERYING

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time per
computing fetching cost  second
1 0.96 0.06 3.65 3.73  2.96 6.69 41,230
2 1.20 0.07 3.27 337 340 6.76 40,815
Range_10K 3 2.27 0.10 3.92 4.04 3.52 7.56 36,501
4 5.89 0.21 3.97 421  3.39 7.60 36,323
5 11.72 0.44 4.11 458  3.23 7.80 35,369
1 0.66 0.38 3.62 4.14 0.83 496 55,627
2 1.22 0.40 4.18 4.71 0.83 5.54 49,794
Range_100K 3 2.36 0.42 4.16 472 0.83 5.55 49,696
4 6.00 0.54 4.15 483 0.84 5.67 48,627
5 12.03 0.77 3.93 4.84 0.86 5.70 48,414
1 0.67 2.28 4.46 6.89  0.65 7.53 36,637
2 1.29 2.30 4.41 6.75  0.60 7.36 37,503
Range_1M 3 2.28 2.32 4.40 6.85 0.64 7.48 36,867
4 6.54 2.60 4.26 6.93 0.64 7.57 36,453
5 11.94 2.84 4.38 732 0.64 7.96 34,684
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Table A.9: Time cost of different processes in the Medium querying (second)

A. TIME cOST OF AHN2 QUERYING

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time per
computing fetching cost  second
1 1.24 0.05 0.72 0.78  5.05 5.83 579,379
2 1.30 0.09 0.51 0.63 5.16 5.79 583,183
Range_10K 3 2.62 0.17 0.94 1.13 5.37 6.49 519,772
4 6.11 0.25 0.75 1.02 532 6.34 532,316
5 12.11 0.48 0.83 1.33 5.16 6.49 520,413
1 0.66 0.28 0.47 0.83 5.02 5.84 577,495
2 1.39 0.34 0.52 095 4.61 5.56 606,993
Range_100K 3 2.52 0.40 0.69 1.17 435 552 611,502
4 6.13 0.49 0.51 1.08  4.49 5.57 606,447
5 12.53 0.73 0.75 1.55 4.92 6.48 521,137
1 0.72 2.70 0.69 382 5.10 891 378,647
2 1.87 2.60 0.80 3.78 461 839 402,394
Range 1M 3 2.80 2.58 0.71 3.74 4.73 8.47 398,686
4 8.15 2.81 0.87 399 434 8.33 405,002
5 13.09 3.00 0.69 4.14 4.66 8.80 383,335
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Table A.11: Time cost of state-of-the-art solutions (second)

SmallA SmallB SmallC Medium Large
First Second First Second First Second First Second First Second
filter filter filter filter filter filter filter filter filter filter
1.56  0.24 14.76  0.97 1.35 0.13 13.00 1.52 7221 9.54
1.63 0.23 19.61 0.62 1.07 0.10 15.18 1.19 76.52 6.97
PostGIS 1.61 0.22 13.93 0.77 1.06 0.13 15.47 1.77 75.56 7.98
1.55 0.26 12.33 1.19 1.13 0.13 15.38 1.82 73.52 6.72
1.79 0.26 1294 0.78 1.07 0.16 15.31 1.77 74.20 6.95
13.41 24.61 9.86 5.78 8.07 1.36 10.40 2.94 9.33 10.52
17.11 50.06 17.08 7.20 9.45 1.52 11.90 4.57 27.67 9.24
Pyramid 14.42 107.89 13.29 17.18 10.19 11.39 9.17 12.95 39.28 61.04
15.80 248.82 19.85 8.35 10.36 11.56 9.75 9.53 21.59 275.63
14.55 22250 10.26 3.22 10.68 21.64 9.65 15.87 21.27 131.43
8.80 3.32 11.39 14.20 6.81 0.37 9.57 5.23 11.61 11.19
9.26 4.53 18.35 23.80 8.01 0.85 9.96 11.77 16.78 16.92
PyramidEx 15.03 2.67 23.76  23.33 9.18 1.59 19.26  25.95 18.70 35.99
17.80 3.21 31.85 19.75 10.96 3.51 21.12  30.39 19.95 47.34
11.93 10.09 19.79 28.84 12.05 3.94 18.89 32.02 28.67 59.84
0.81 0.32 4.14 0.83 0.46 0.28 0.83 5.02 0.73 28.53
0.94 032 4.71 0.83 0.45 0.28 0.95 4.61 1.05 28.13
HistSFC 1.20 0.31 4.72 0.83 0.67 0.30 1.17  4.35 0.90 2841
1.02 0.31 4.83 0.84 0.69 0.28 1.08 4.49 1.11 29.03
1.49 0.32 4.84 0.86 0.93 0.28 1.55 4.92 1.32 29.20
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Table A.12: Overall throughput of state-of-the-art solutions (Points per second)

SmallA SmallB SmallC Medium Large
128,545 17,541 162,478 232,510 277,205
124,053 13,635 204,623 206,137 271,442
PostGIS 126,363 18,768 202,378 195,770 271,318
127,480 20,406 189,131 196,237 282,443
112,997 20,110 195,770 197,569 279,282
6,069 17,651 25,431 252,914 1,141,608
3,435 11,364 21,869 204,873 614,112
Pyramid 1,886 9,056 11,112 152,565 225,891
872 9,784 10,944 175,118 76,251
973 20,467 7,420 132,213 148,419
19,036 10,779 33,405 228,171 994,088
16,737 6,546 27,055 155,295 672,559
PyramidEx 13,030 5,860 22,255 74,651 414,402
10,983 5,348 16,564 65,523 336,784
10,479 5,674 15,001 66,294 256,044
280,363 65,771 490,425 3,334,862 8,400,003
240,103 57,831 523,620 2,782,259 7,240,641
HistSFC 190,065 57,746 352,156 2,516,689 7,869,169
222,292 56,435 343,087 2,674,231 7,572,070
153,826 56,423 256,216 1,938,472 6,844,822







TIME COST OF FLOOD DATA
QUERYING

This appendix provides exact time measurements of benchmark test on the flood data.
The time cost of first filter includes range computing, database fetching, DBMS com-
municating and table creating. Specific explanation of the performance is provided in

Section 5.2.
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Table B.1: Time cost of different processes in the DEPTH3m (second)

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time per

computing fetching cost second
1 0.78 0.30 0.74 1.46  33.32 34.78 761,500
. 2 1.50 0.31 1.06 1.77  34.63 36.40 727,548
HistSFC_1K 3 2.93 0.40 1.09 1.91 37.97 39.88 664,098
4 7.24 0.52 0.96 1.89  40.82 42.71 620,051
1 0.65 0.20 0.57 0.89 36.29 37.18 712,343
. 2 0.36 0.21 0.74 1.07  37.47 38.54 687,152
HistSFC_5K 3 0.71 0.24 0.99 1.35 43.49 44.84 590,651
4 1.14 0.25 1.39 1.77  43.41 45.18 586,245
1 0.57 0.23 0.74 1.13  36.20 37.33 709,481
. 2 0.31 0.24 0.84 1.17  40.71 41.87 632,489
HistSFC_10K 3 0.68 0.25 0.89 1.23  50.42 51.65 512,753
4 1.17 0.25 1.00 1.33  53.15 54.48 486,109
1 - 0.49 0.46 1.03  52.04 53.07 499,034
PlainSEC 2 - 0.52 0.47 1.07 102.85 103.92 254,854
3 - 0.51 0.40 0.99 197.95 198.95 133,123
4 - 0.53 0.61 1.22  202.28 203.50 130,142
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Table B.3: Time cost of different processes in the EXTENTmax (second)

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time per

computing fetching cost second
1 1.02 0.43 0.52 1.56  49.83 51.40 626,195
. 2 1.61 0.48 0.49 1.59  50.76 52.35 614,760
HistSFC_1K 3 3.17 0.52 0.58 1.69  53.67 55.36 581,315
4 5.80 0.73 0.55 1.89  54.96 56.84 566,209
1 0.26 0.19 0.44 0.77  52.50 53.27 604,155
. 2 0.40 0.20 0.51 0.85  56.67 57.51 559,574
HistSFC_5K 3 0.68 0.21 0.55 092  56.39 57.30 561,624
4 1.14 0.23 0.76 1.14  56.14 57.28 561,840
1 0.19 0.24 0.42 0.76  53.38 54.14 594,457
. 2 0.32 0.26 0.52 090 57.21 58.11 553,873
HistSFC_10K 3 0.50 0.27 0.68 1.04 57.39 58.43 550,792
4 0.84 0.28 0.72 1.10  58.26 59.35 542,227
1 - 0.47 0.50 1.02  54.40 55.42 580,685
PlainSEC 2 - 0.46 0.71 1.22 108.93 110.15 292,185
3 - 0.48 0.74 1.27  216.17  217.44 148,012
4 - 0.48 1.52 2.05 220.23 222.28 144,785




179

88.9C 889 69°€ 6I'C 1¥'c GL0 - 14
wmogwm no.m ww.m N@.N ww.H mm.o - € DASUTeld
968'6c  1L°G e 6CC (A €L°0 - 4
cIv'or . 2Ty 9¢'c 981 60'T 7.0 - I
0€E‘1S  ¢€¢€ 060 ¢v'¢ €0°¢ LEO 060 14
6Gecs  9ce 160 S€¢ 86’1 Se0 0S°0 € -

1ST
62909 18¢ 960 981 IS°1 ¢€0 6¢°0 4 0T DdSISH
88€69 9¥C 960 091 4N vE0 €20 1
0.8%% 08¢ 6.0 10°€ 59T 1€0 €Tl 4
70595  20°€ 8L0 ¥CC 16°1 1€0 99°0 € -

1ST
69799  9G°¢ 6L0 LLT 9’1 8¢°0 LE0 4 A8 OdSISH
¥29'2L  61C ¢80 8€'1 80'T LC0 {4\ 1
Ge0'vy  L8°¢ L0 0T€ 89T 0S0 €6'G 14
¥80°1S  ¥¢€€ 8L0 997C STC 8€0 €0'¢ € -

1ST
8G2€9  697C 8.0 161 9¢'1 €€0 6G°1 4 AL OdSISH
L0LGL  ST¢ 8.0 87’1l LT'T 8C°0 06°0 !
puod3s  1s0d Suryoloy  Sunndwod

ad  oum 191y [elol aseqeied aduey Surpeoy 198

sjutod [e10], Pu0IAS 19 1811 sarweIiSolsiy eleq

(pu02as) YSHUASNOH Y} UT $3ss2301d JUSISJJIP JO 100 dWIL], :H°q J[qeL



B. TIME COST OF FLOOD DATA QUERYING

180

Table B.5: Time cost of different processes in the ROADrisk (second)

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time per

computing fetching cost second
1 1.15 17.59 1.32 19.39  0.44 19.84 4
. 2 1.62 17.61 2.01 20.06 0.44 2049 4
HistSFC_IK 4 2.93 17.27 2.18 2007 0.44 2050 4
4 7.01 17.79 2.54 2077 0.44 2120 4
1 0.44 14.28 2.18 16.66 2.64 1929 4
. 2 0.41 14.36 1.43 15.98 2.58 1856 4
HistSFC5K 4 0.67 14.40 1.94 1653 259 19.12 4
4 1.20 14.36 1.83 1637 259 1896 4
1 0.55 13.43 1.44 1299 4.92 1992 4
. 2 0.31 13.52 2.20 15.84 4.69 2053 4
HistSFC_10K 0.46 13.76 2.62 1652 4.77 2128 4
4 0.97 13.78 3.27 17.17  4.69 21.86 4
1 - 34.23 0.38 3464 5406 8871 1
. 2 ; 34.20 0.46 3469 109.86 14455 1
PlainSFC 3 ; 34.23 0.39 34.66 20450 239.16 0.3
4 ; 34.22 0.44 3469 20496 239.64 0.3
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Table B.7: Time cost of different processes in ARRIVAL24h (second)

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time  per
computing fetching cost  second
1 0.24 0.12 0.83 099 8.34 9.33 99,249
Range_50K 2 0.38 0.13 1.23 1.40 10.05 11.45 80,882
- 3 0.63 0.14 1.49 1.66  10.84 12.50 74,032
4 1.14 0.16 2.05 2.25 10.89 13.14 70,454
1 0.24 0.26 1.19 1.51 8.27 9.77 94,719
Range_100K 2 0.35 0.26 1.53 1.85 10.42 12.27 75,462
- 3 0.63 0.29 1.58 1.92 10.97 12.89 71,815
4 1.13 0.30 1.92 2.27 10.91 13.18 70,251
1 0.24 1.99 0.87 297 731 10.27 90,109
2 0.43 1.90 1.49 3.51 8.06 11.56 80,049
Range 500K 4 0.67 1.88 1.94 393 854 1247 74,222
4 1.12 1.89 1.98 3.98 8.88 12.86 71,965
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Table B.9: Time cost of different processes in HOUSErisk (second)

Data HistogramTree First filter Second Total Points
set loading Range Database Total filter time per
computing fetching cost  second
1 0.29 0.16 1.23 1.41 0.80 220 77,357
Range_50K 2 0.38 0.16 1.43 1.61  0.80 241 70,712
- 3 0.66 0.18 2.43 262 0.78 3.40 50,064
4 1.16 0.21 2.55 277 0.80 3.57 47,682
1 0.24 0.27 1.08 1.38  0.82 219 77,674
Range_100K 2 0.37 0.28 1.46 1.77  0.79 2.56 66,465
- 3 0.66 0.31 1.91 224  0.78 3.02 56,504
4 1.13 0.31 2.65 3.01 0.79 3.80 44,870
1 0.27 1.65 1.49 3.19 0.80 3.99 42,690
2 0.38 1.64 1.57 3.25 0.80 4.05 42,099
Range 500K 5 0.72 1.73 2.25 403 073 476 35809
4 1.22 1.76 2.25 4.05 0.79 4.84 35,217
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nD-PointCloud Data Management

Continuous Levels, Adaptive Histograms, and Diverse Query Geometries

Haicheng Liu

In the Geomatics domain, a point cloud refers to a data set that records the coordinates and
other attributes of a huge number of points. Conceptually, each of the attributes can be regarded
as a dimension to represent a specific type of information, such as time and Level of Importance
(LoI). Drastically increasing collection of high dimensional point clouds raises essential demand
for smart and highly efficient data management solutions. However, effective tools are missing.
File-based solutions require substantial development of data structures and algorithms. Also,
with such solutions, enormous effort has to be made to integrate different data types, formats
and libraries. By contrast, state-of-the-art DataBase Management Systems (DBMSs) avoid these
issues, because they are initially devised for generic use of data. However, DBMSs still present
limitations on efficiently indexing non-uniformly distributed points, supporting continuous Lo,
and operating high dimensional data. These problems motivate the PhD research which focuses
on developing a new DBMS solution. It is aimed at efficiently managing and querying massive nD
point clouds to support different types of applications.
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