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Notation

x, y, z Cartesian coordinates [length]
x Position vector

ξ, η, ζ Cartesian coordinates of reciprocal diagram corresponding to x, y ,
and z, respectively [length]

ξ Position vector of reciprocal diagram corresponding to x

dx , dxx Operator for derivatives, especially for in text expressions, such that
dx f (x) = d

d x f (x) and dxx f (x) = d 2

d x2 f (x)
F (x, y) Airy stress function

F∗(ξ, η) Reciprocal diagram corresponding to F (x, y)
H Hessian matrix or Hessian operator

J Jacobian matrix
Nxx , Ny y Normal stress resultants per unit horizontal length [force / length]

Nx y Shear stress resultants per unit horizontal length [force / length]
Ñxx , Ñy y Normal stress resultants per unit curved length [force / length]

Ñx y Shear stress resultants per unit curved length [force / length]
px , py , pz Loads per unit horizontal area [force / length2]

Px , Py Integrals such that Px = ∫
px d x and Py =

∫
py d y

R The set of real numbers
S(x, y) Self-accompanying surface

AT Transpose of an arbitrary matrix A
Z (x, y) Shape function (middle surface) of a membrane shell

λi Magnitude coefficient of the radial basis function φi

∇ Gradient operator
∂x , ∂x y Operator for partial derivatives, especially for in-text expressions,

such that ∂x f (x, y) = ∂
∂x f (x, y) and ∂x y f (x, y) = ∂2

∂x ∂y f (x, y)

φi (
∥∥x−µi

∥∥ ;ρi ) Radial basis function of x with center µi and shape coefficient ρi

: Operator for double-inner product of two same size matrices, such
that A:B =∑

i
∑

j Ai j Bi j
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Summary

S hell structures carry loads with their thin yet curved shapes. Being thin means shells
require little material, which is desirable for minimizing embodied carbon footprints.

However, the feature of being curved implies shells require immense effort to design and
fabricate. This is due to curved surfaces are geometrically more complex to be defined and
built than planar or linear structural members. To address the challenges, this dissertation
consists of three parts: developing a design algorithm based on radial basis functions (RBFs),
inventing a fabrication technique based on reconfigurable mechanisms, and producing pro-
totypes based on the new algorithm and mechanism.

The first part of this dissertation introduces a new algorithm based on RBFs for designing
smooth membrane shells. The algorithm has a breakthrough in that it unifies three features
that were incompatible with one another in the existing methods. First, the algorithm can
take a stress distribution as input and then generate the shape of the membrane that is be-
yond the capability of conventional finite element analysis. Second, the algorithm can take
a shape as an input and output the stress distribution. This is not attainable for mainstream
form-finding algorithms, such as the Force Density Method. Third, the algorithm can take
not only a vertical load into account but also horizontal loads. These are critical for shells
in seismic-prone areas, although often they are omitted in existing form-finding methods,
such as Thrust Network Analysis.

The second part of the dissertation presents a new system of flat-to-curved mechanisms.
Thus, a shell can be fabricated in flat configurations and deployed into double-curved states.
Such a mechanism consists of panels connected by nearly vertical but slightly tilted hinges.
The tilted hinges and panels are distributed in a pattern that allows the mechanism to con-
tract non-homogeneously and thus induce the change of the mechanism’s Gaussian curva-
ture. Prototypes made from 3D printing and water-jet cutting can be transformed from flat
configurations into double-curved states, validating this mechanical system.

The last part of this dissertation demonstrates the integral application of the RBFs form-
finding algorithm and the flat-to-curved mechanisms. The prototypes designed and pro-
duced deliver form-found shapes that have spans ranging from 0.2 to 4 meters.

This dissertation contributes to the development and distribution of shell structures by
developing computer algorithms and digital fabrication techniques to minimize the hurdles
of designing and fabricating shell structures.
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Samenvatting

S chaal constructies zijn in staat om door hun gekromde vorm belastingen te dragen,
ondanks hun geringe dikte. Doordat schalen dun kunnen zijn door hun gekromde vorm

hebben ze relatief weinig materiaal nodig, wat noodzakelijk is om de CO2-voetafdruk te
kunnen verminderen. Het feit dat een schaal gekromd is, en vaak zelfs dubbel, heeft tot
gevolg dat hun maakbaarheid complex is. De reden hiervoor is dat gekromde vlakken ge-
ometrisch die niet ontwikkelbaar zijn niet opgebouwd kunnen worden door enkel vlakke
onderdelen. Deze dissertatie wil deze problematiek adresseren, en bestaat derhalve uit drie
onderdelen: de ontwikkeling van een computer algoritme gebaseerd op “radial basis func-
tions (RBFs)”, de ontwikkeling van een fabricage methode gebaseerd op herconfiguurbare
mechanismen, en het produceren van prototypes gebaseerd op de nieuwe algoritme en fa-
bricage methode.

Het eerste gedeelte van deze dissertatie introduceert een nieuw computer algoritme ge-
baseerd op RBFs voor het ontwerpen van membraan schalen met een vloeiende vorm, welke
hun belasting kunnen afdragen zonder de noodzaak om gebruik te maken van momenten en
dwarskrachten. Het algoritme is een doorbraak omdat het de volgende drie eigenschappen
verenigd die in andere bestaand methoden in deze combinatie niet voorkomen. Ten eer-
ste kan het algoritme een spanningsverdeling als uitgangspunt nemen om de vorm van een
membraan schaal te genereren die verder gaat dan de mogelijkheden van een conventionele
eindige elementen methode. Als tweede, kan het algoritme ook werken als een wederkerige
methode en een vorm nemen als uitgangspunt en een daarbij behorende spanningsverde-
ling produceren. Dit is niet mogelijk met gevestigde methoden zoals “force density”. Als
derde, kan het algoritme naast verticale ook horizontale belastingen verwerken in relatie
tot vormen van membraan schalen. Horizontale krachten zijn van belang in gebieden met
seismische activiteit en worden vaak veronachtzaamt in bestaande vorm ontwikkelingsme-
thode, zoals “thrust network analysis”.

In het tweede gedeelte van de dissertatie wordt een nieuwe soort mechanisme gepre-
senteerd om van een plat vlak een gekromd vlak te maken. Op deze manier kan een schaal
gefabriceerd worden uit ongelijke vlakke panelen die hergeconfigureerd kunnen worden
om een dubbel gekromd vlak te vormen. De panelen zijn onderling verbonden door bijna
verticale scharnieren die licht gekanteld zijn. De panelen zijn in het platte vlak dusdanig ge-
rangschikt in een patroon die toelaat dat door een verandering van de kromming van Gauss
in de scharnieren een gekromd vlak volgt. De vlakke panelen zijn gemaakt met behulp van
3D printen en water straal snijden.

In het derde en laatste gedeelte van de dissertatie wordt het RBFs algoritme gebruik
voor het vinden van verschillende vormen voor membraan schalen die vervolgens worden
uitgevoerd met vlakke panelen die via het ontwikkelde mechanisme principe een gekromd
vlak vormen. Deze prototypes hebben overspanningen van 0,2 tot 4 meter.

Deze dissertatie draagt bij tot de ontwikkeling en disseminatie van schaal constructies,
door middel van de ontwikkelde computer algoritme en de digitale fabricage techniek die
helpen om de complexiteiten van het construeren van schaal constructies te overkomen.
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1
Introduction

The [membrane] shell is the most honest of structures…,

which lends itself less than any other structure

to attempts to hide inadequate design

under camouflage or cladding.

Jörg Schlaich1

1as cited in Holgate, 1997, p.13

1



2 1. Introduction

M embrane shells carry loads with their curved shapes and in-plane tension and com-
pression, collectively called membrane stresses. Well-designed membrane shells are

typically much thinner than their bending-dominated equivalents, such as slabs. Thus, shells
are considered efficient structures in terms of material usage. These thin shells also arguably
deliver a side benefit: elegance (von Meiss, 2000; Schlaich, 2004). Aesthetics, however, is not
the main focus of this dissertation. Instead, this dissertation investigates how to obtain ideal
shapes for shells and how to fabricate them physically.

Most structural systems, such as floors or girder bridges mobilize internal bending mo-
ments and shear forces to carry loads to the supports. These structures must have cer-
tain thicknesses to exert bending moments. Shell-like structures (e.g., masonry vaults and
arches) on the contrary carry the self-weight and external loads with little bending mo-
ments. However, shaping these shell-like structures so that bending moments are mini-
mized, is not a trivial exercise. Medieval stonemasons relied on empirical knowledge to
design and explore new forms that have minimized bending moments (Addis, 2007). Since
the 17th century, scientists and engineers have developed more rigorous methods to find and
explore forms free of bending moments (Heyman, 1977, 1995). These explorative processes
are now called form-finding. In recent decades, researchers have developed computational
algorithms for widening the range of these structural solutions.

The established algorithms require input (e.g., anticipated force flow) to find the corre-
sponding form but provide no recommendation on how to modify inputs in order to ap-
proximate a certain desired shape. The first significant contribution of this dissertation is
the development of an algorithm based on a numerical method—radial basis functions. The
algorithm takes either an initial stress flow or shape as input. The algorithm then generates
the corresponding shape or stress flow as output.

Although the form-found shapes are material-efficient structures, they might not always
be the most economical solution, given that substantial labor is needed to fabricate the
double-curved shapes of shells. The scarcity of concrete and steel made concrete shells
popular in the 1950s. Soon afterwards, in the 1970s, the heydays finished (Meyer & Sheer,
2005), when the labor cost for the curved form-work increased, outweighing the savings in
materials. From a sustainable development point of view, whilst materials are inexpensive to
buy, they are costly in terms of embodied greenhouse gas emissions and the corresponding
impact on the climate. The pressing need to reduce embodied emissions and the availability
of new computational design and emerging fabrication methods may lead to a resurgence of
shells. To be more specific, the curved shell surface can now be discretized into a series of flat
elements using theories developed in discrete differential geometry (Pottmann, Liu, Wallner,
Bobenko, & Wang, 2007). Meanwhile, computer-controlled machines can cut industrially
mass-produced flat materials into the desired shapes with minimal labor hours (Mitchell,
2001; Zipkin, 2001). Thus the components of shells can be fabricated economically.

Even if the components can be fabricated economically, some considerable work is still
required to assemble them. The second notable contribution of this dissertation is reducing
the work needed for assembly, by extending the theory of discrete differential geometry to
discretize double-curved surfaces into a flat mechanism that consists of interconnected flat
panels. The mechanism can be later reconfigured into a pre-defined double-curved shape. In
combination with the above-mentioned form-finding algorithm, the mechanism can deliver
some form-found shell structures.
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Outline of the introduction chapter
Section 1.1 reviews the historical development of form-finding methods for designing shell
structures. Section 1.2 identifies the research objectives for developing a form-finding al-
gorithm. Section 1.3 discusses existing strategies for constructing double-curved shells.
Section 1.4 proposes the research objectives for fabrication and construction. Section 1.5
provides the outline of the rest of the dissertation.

(a) (b)

(c) (d)

Figure 1.1: Examples of built shell structures. (a) The widest vaulted nave in the world (22.98m), Girona Cathedral,
Spain. (b) Raststätte Deitingen [Deitingen Service Station], Deitingen, Switzerland. (c) Courtyard of the Dutch
Maritime Museum, Amsterdam, the Netherlands. [Source: (a) llondru@flickr; (b) Peter Eigenraam; (c) BRS Build-
ing Systems. (d) Ney & Partners - www.photo-daylight.com ]

1.1. Review of membrane shells and form-finding
A shell is a thin and curved structure (Williams, 2014). The small thickness implies that the
bending rigidity is much lower than its stretch rigidity. When a shell carries loads with in-
plane tension and compression (membrane actions), and does not rely on bending moments,
the shell is referred to as a membrane shell (Calladine, 1989; Csonka, 1987).

Built membrane shells. Several types of structures belong to the general collection of
membrane shells. Examples include: medieval masonry vaults, concrete shells, membrane
structures that were erected in the late 20th century, and contemporary glazed roofs.

Masonry has almost no tension capacity in the mortar joint, and thus has limited bend-
ing moment capacity (Heyman, 1995). This property does not cause stonemasons many
problems when building walls or columns, which are largely in compression, but it is more
challenging when a structure has to span over an opening. To span between columns, an-
cient Greeks used monolithic stone lintels to avoid a joint, but the bending moment still
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Form
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Figure 1.2: The differences between conventional structural design and form-finding. (a) In conventional structural
design, the form is predefined. Then structural engineers calculate the stress distribution under a certain load case.
(b) In form-finding, stress, load, and boundary conditions are given beforehand. Then the designers seek forms
that meet the prescribed conditions.

requires the lintels to be expensive and bulky even for a moderate span. The Romans, on
the other hand, developed arches to avoid tensile forces. In arches, only compressive forces
occur. Thus arches can span much greater lengths even with a more economical, although
sometimes weaker, material: bricks. This efficient structural system evolved into domes and
vaults. A notable example is the Girona Cathedral, built in the 15th century, which has a
vaulted nave with a width of around 23 meters (figure 1.1a).

In the 20th century, steel-reinforced concrete was a novel material in buildings. Archi-
tects and engineers explored its expressiveness and mouldability (before hardening). Con-
crete can be cast in any shape, and the steel bars reinforce the concrete into a composite
material capable of withstanding tensile forces. Reinforced concrete can span or even can-
tilever a moderate distance, allowing architects to explore new design shapes. For exam-
ple, reinforced concrete enabled modernist architect Le Corbusier (1887-1965) to explore
his revolutionary “ribbon window”. However, the shapes of the vaults are still relevant for
reinforced concrete. While Le Corbusier’s Villa Savoye in Poissy suffers from rainwater
leaks, the compression-only concrete shells designed by Heinz Isler (1926-2009) show only
tiny cracks. These concrete shells are leakage-proof and almost maintenance-free (Chilton,
2000). Furthermore, if designed correctly, they can be very thin. Heinz Isler covered the 30-
by-30m SicliSA factory floor with a 90mm-thick shell (figure 1.1b). The structures scholar
David Billington (1927-2018) termed the concrete shells as new vaults (1983). The term ade-
quately suggests the similarity between masonry vaults and concrete shells.

Architects, engineers, and builders keep exploiting these efficient structural forms fur-
ther. Examples include the Great Court of British Museum in London (designed by Foster
+ Partners, engineered by Buro Happold, built by Waagner-Biro), Dutch Maritime Museum
in Amsterdam (designed and engineered by Ney & Partners, built by BRS Building Systems,
see figure 1.1c-d), and the Terminal of Daxing Airport in Beijing (designed by Zaha Hadid
Architects, engineered by Buro Happold, built by Beijing Urban Construction Group).
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Catenary curve
(ca. 1690s)

Graphic statics
(Maxwell, 1864)

Pucher’s equation
(Pucher, 1934)

Force density method
(Schek, 1974)

Thrust network analysis
(Block and Ochsendorf, 2007)

Hanging chain
(Hooke, 1675)

Hanging cloth
(Isler, 1959)

NumericalNon-numerical

Smooth

Discrete

Curves Surfaces and curves

Dynamic relaxation
(Day, 1965; Barnes, 1988)

…

…

…

Soap film
(ca. 1960s)

Hanging net
(ca. 1960s)

…

This PhD research

Physics-based

Mathematics-based

Figure 1.3: Development and classification of form-finding methods

Concepts of form-finding. Form-finding allows engineers to find the material-efficient
forms of structures. In the mainstream construction industry, structural sectional design
is about analyzing stresses or displacements of a structure for certain load case(s). If the
stresses or displacements exceed the limits, the designer merely adjusts the dimension or
thickness of the structural members. Almost inevitably, arbitrarily designed structures (e.g.,
linear beams) act in bending, which requires deep sections or substantial reinforcement to
resist the stresses or limit the displacements. Form-finding works the other way around.
Conditions of stresses, load, and boundary supports are provided beforehand, then seeks
any proper form that meets those prescribed conditions (e.g., a rope carries axial force only,
under vertical load, and is anchored at the ends). By doing this, the structure designer can
actively seek a geometrical shape that permits a much more slender and efficient profile for
the structure (figure 1.2).

The Romans showed that the curved arches outperform Greek flat lintels in terms of
structural efficiency. The Romans as well as medieval stonemasons achieved these designs
with heuristic knowledge rather than rigorous scientific theory (Addis, 2007). It was only in
the 17th century that developments in science, especially statics, when systematic inquiries
into the shapes and stresses of shells began to arise. The development of finding simple 2D
curves was in the late 17th to the 19th century. Research progressed to 3D surfaces in the
20th century. In recent decades, computational algorithms have been developed to carry out
the task of form-finding. Methods for finding 2D curves and 3D surfaces can now be classi-
fied as either physics-based and mathematics-based. The first group only returns shapes in
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stable equilibrium states, while the second group provides both stable and unstable shapes.
Figure 1.3 provides a brief overview and the chronological sequence of the development in
these two groups. More details are discussed in the upcoming paragraphs.

1.1.1. Form-finding methods for 2D funicular curves.
Curves that carry loads with tension forces are often described as funicular. The adjective
funicular comes from Latin and means “of a rope or cord”. Since a rope or cord practically
takes up no bending moment, it can only take up tensile force. In a structural context,
funicular means tension-only. The most famous funicular or tension-only curve is the cate-

nary curve. The curve is defined by the shape of a chain under a gravitational load that
is uniformly distributed along its length. When the curve is inverted and constructed as a
compression-only structure, some scholars call the structure “anti-funicular” (Pinto & Fon-
seca, 2020). However, other scholars also refer to compression-only structures as a subset of
the generalized funicular structures (Ochsendorf & Block, 2014; “Funicular structure”, 2021).

Figure 1.4: Physical form-finding
can be used to design a masonry
dome supporting a heavy lantern.
A reversed hanging chain has been
superimposed on the section of
Saint Paul’s Cathedral, London.
[Source: Addis, 2007]
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Physical. There are multiple ways to derive the shape of funicular curves. Making use
of physical experiments is probably the most intuitive method. In the 17th century, the
scientist Robert Hooke (1635-1703) gave insight into determining the shape of an arch. He
suggested “as hangs the flexible line, so but inverted will stand the rigid arch” (as translated
from the original Latin expression in Heyman, 1995). This depiction can be credited as the
first physical form-finding method. Indeed, a bending-pliable chain can rest only when it
reaches the shape with which it carries the gravitational load in pure tension. When the
shape is inverted, the shape can work in pure compression, forming an ideal arch.

One of Hooke’s friends, Christopher Wren (1632-1723), applied the notion of the inverted
catenary to the design of the Saint Paul’s Cathedral, London. One can trace the shape of
the structural dome of Saint Paul’s Cathedral with a chain. In figure 1.4, the heavier center
segment represents the heavier lantern crowning the dome.

Mathematical. The equilibrium of a hanging chain can also be described mathematically
(see equations (3.5a-b)). Different load distributions and anchoring positions will result in
different shapes of chains. For a vertical load uniformly distributed along the horizontal

distance, the shape is as simple as a parabolic curve (z = x2). For a vertical load uniformly
distributed along the tilting length, the shape can be a hyperbolic cosine (z = cosh x) or
the catenary curve. The analytical expressions are contributions of notable mathematicians
around the 1690s, including Jakob Bernoulli (1655-1705) and Gottfried Leibniz (1646-1716)
(Carlson, 2021).

When loads on a chain are concentrated at discrete points, the shape of the chain can
also be determined with a drawing. In this case, the smooth curve is discretized into bars and
nodes. James Clerk Maxwell (1831-1879) presented his reciprocal diagrams (Maxwell, 1864,
1868, 1870), which use a closed polygon to confirm equilibrium of a node. In the reciprocal
diagrams, two nodes connected by a common bar are represented by two polygons sharing
an edge. This graphical method is sometimes called the Cremona diagram or graphic statics

(Cremona, 1875). The method was adopted by Antoni Guadı́ (1852-1926), who designed the
compound of vaulted walkways and retaining walls of Park Güell (figure 1.5).

Figure 1.5: Graphical form-finding used by Antoni Guadı́ to design his retaining walls in Park Güell, Barcelona.
[Source: Collins, 1963]



8 1. Introduction

1.1.2. Form-finding methods for 3D membrane surfaces.
Mathematical. With the advances in mathematics, especially calculus, in the 19th and
20th centuries, scientists and engineers started to use partial differential equations to de-
scribe more sophisticated problems. The equation governing the equilibrium of membrane
shells is Pucher’s equation (see equation (2.20)), which was provided by A. Pucher in 1934
(Timoshenko & Woinowsky-Krieger, 1959). Some analytical solutions to this equation were
built into physical structures by Félix Candela (1910-1997) in his hyperbolic shells (fig-
ure 1.6). Various solutions based on various boundary conditions have also been selectively
documented by Heyman (1977) and Csonka (1987).

Figure 1.6: A Candela’s hypar shell—Restaurant, Xochimilco—completed in 1958. (Illustrated by Francisco Fuentes
for Faber, 1963, p. 194)

Physical. Analytical solutions can provide interesting shapes on certain boundary ar-
rangements. However, due to the limitation of mathematical “closed-form expressions”,
analytical solutions are only available for a small number of boundary conditions. Physical
form-finding methods have no such limitations.

As a rope can naturally rest in a pure-tension state, a fabric can similarly find a pure-
tension state. This technique was promoted by Heinz Isler (1926-2009) at the first congress
of the International Association for Shell Structure in 1959 (Chilton, 2000). He used hanging
cloths and latex membranes to find shapes of free-form shells (figure 1.1b). These physical
models allow designers to intuitively manipulate the shapes by shortening threads or rear-
ranging the supports.

Frei Otto (1925-2015) also used physical models to design the Institute for Lightweight
Structures in Stuttgart, a tent-like membrane structure. For this, he used the soap film
method. Threads that bounded the soap film were converted into tension cables, while the
soap film was translated into a wire mesh (figure 1.7).
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Figure 1.7: Soap film model (left) and the built structure (right) as designed by Frei Otto. [Source: von Buelow,
2007]

1.1.3. Numerical methods for form-finding 3D membrane surfaces.
Computational methods approach form-finding in two ways: simulating physical hanging
nets or numerically solving mathematical formulae.

Physics-based. The methods based on simulating physical experiments include dynamic

relaxation, introduced by A. S. Day in 1965 (as cited in Barnes, 1988). This method simulates
how a flexible net starts to move when external loads are applied, how the net then deforms
and dissipates excessive kinetic energy, and how it ultimately rests in a state of equilibrium.

Mathematics-based. Methods in the second category provide numerical solutions to
equilibrium configurations by adjusting all numerical variables, including the positions of
nodes and the forces in bars (Veenendaal & Block, 2012). The most prominent methods in-
clude the force density method (Schek, 1974), the methods of thrust network analysis (Block
& Ochsendorf, 2007) and self-supporting surface (Vouga, Höbinger, Wallner, & Pottmann,
2012).

A distinctive difference between these two categories is that the physics-based methods
can only deliver stable equilibrium states (e.g., a hanging rod), while the mathematics-based
methods can deliver both physically stable and unstable equilibrium (e.g., both hanging and
standing rods). For instance, the funnel-shaped shell in figure 1.8, which has a stress mix-
ture of both tension and compression, can only be found by a mathematics-based method
(Rippmann & Block, 2013).
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(a)

(b) (c) (d)

Figure 1.8: A funnel shell derived from the Thrust Network Analysis. (a) The 3D printed prototype. (b-d) The
collapse of the shell when the outer tie is cut. [Source: Rippmann & Block, 2013]

1.2. Research objectives and approach for form-finding
1.2.1. Objectives
Although the established methods have enabled designers to deliver spectacular shells, there
are still some limitations. With a more general design and form-finding tool, it is hoped that
more shells can be designed and built.

Statics. The statics of membrane shells is governed by Pucher’s equation, which might be
overlooked in many architecture and engineering curricula. The first objective of this re-
search is to explain and discuss this governing equation and related statics theories, namely
the Airy stress function and Maxwell’s reciprocal diagrams.

Two-way algorithm. The established numerical form-finding methods in both physics-
based and mathematics-based groups rely on discretized meshes. The arrangements of
edges, along with the assigned parameters (e.g., stiffness constants for dynamic relaxation
and force densities for the force density method), affect the flow of stresses (or load path)
and the form-found results. It is, however, generally unclear how to find a suitable set of
parameters that would result in the desired shape. Therefore, the second objective of this
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research is to establish a form-finding algorithm that works in both directions: to find the
shape based on the stress and find the stress based on the shape.

Horizontal loads. Classical form-finding problems generally focus on gravitational loads
whereas built structures are subject to multiple types of loads, including horizontal, such as
seismic loads or wind loads (Michiels, Adriaenssens, & Dejong, 2019). Theoretically, form-
finding methods are compatible with multiple load cases (Heyman, 1977, 1995), but hor-
izontal loads are often omitted in the form-finding process and only considered in finite
element modeling. The third objective is to incorporate horizontal loads in the form-finding
algorithm.

Stress visualization. Established algorithms mostly focus on the resulting form, which
is generally straightforward to render as a 3D surface. Stress flow, on the other hand, can
be rather complex to represent visually. The lack of visualization tools hinders communica-
tion among architects, engineers, and constructors or between teachers and students. The
fourth objective is to develop a stress visualization component for the proposed form-finding
method, which can translate a nebulous stress tensor field into a legible visual representa-
tion.

1.2.2. Proposed approach
This dissertation discusses the relevant theories of statics and identifies the relationships
among load, stress, and shape. These are stated in the partial differential equation—Pucher’s
equation, and thus fulfill the first objective listed in section 1.2.1. Then, the research uses
radial basis functions to establish an algorithm for finding solutions to Pucher’s equation.
When the load and one of the stress and shape functions are given, the other can be derived
from Pucher’s equation. This feature allows the resulting algorithm to work in the two
directions as explained above and satisfy the second objective. The load in Pucher’s equation
contains vertical and horizontal components, which allows the resulting algorithm to fulfill
the third objective. Instead of using meshes to represent the stress and shape discretely,
the radial basis functions represent the stress and shape smoothly. The smooth stress field
allows the algorithm to trace the stress flow easily, and thus benefits the realization of the
fourth objective.

Notably, the approach of using radial basis functions is novel. To the best of the author’s
knowledge, it has not been applied to solve form-finding problems. The method of radial
basis functions (RBF) is a numerical method that emerged in the late 1980s (Buhmann, 2003).
Compared with the popular finite element method, which can be traced back to the 1940s,
the RBFs method is still in development. Its structure and features are further introduced in
chapter 3.
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1.3. Interrelated design and construction
Although a form-found shape is a material-efficient design, the finished design still needs
to consider other aspects, such as the division between components, design drawing, fabri-
cation of each component, and assembling.

Division and connections. Buildings are often larger than fabrication or transportation
machinery; thus buildings consist of numerous smaller components. In the design phase,
designers have to divide a structure into individual parts, so that components can be fabri-
cated separately before assembling them into the designed configuration. This division and
assembly affect how forces are transmitted across components. Therefore a holistic struc-
tural design must also take into account fabrication and assembly to design the division
appropriately.

For medieval masonry vaults, the term for this geometric technique to divide the mas-
sive structure into individual blocks is stereotomy (Rippmann & Block, 2011; Calvo-Lópe,
2020). The division is often carefully designed and crafted since it is part of the finished
structure, as shown in figure 1.9. Furthermore, in contemporary architectural discourse, the
term tectonics is used to refer to the artistically designed and crafted connections between
components or materials, especially when material, artisanship, and structural expression
are thoughtfully integrated (Frampton, 1983, 1995; Leach, Turnbull, & Williams, 2004; Schu-
macher, 2014).

Figure 1.9: Vault above Capilla de los Reyes [Kings’ Chapel] in the Convent of Saint Dominic, Valencia. [Source:
Calvo-Lópe, 2020]
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Figure 1.10: A 6-axis articulated robot tracing a free-form curve with a milling cutter

Free-form design and fabrication. Mitchell (2001) suggested master builders “tend to
draw what they can build, and build what they can draw” which effectively depicts the
convention of the architecture-engineering-construction (AEC) industry. Especially in the
late 20th century, buildings tended to stay in orthogonal grids, which were (and still are)
easy to denote, efficient to produce, and practical to use. The stereotomy-like artisanship,
a labor-intensive process, had lost its market share. Concrete shells, which require curved
formworks, also declined from their heyday in the 1950s (Meyer & Sheer, 2005).

The introduction of computers revolutionzed the way designers draw. The emergence of
computer-aided design (CAD) software has allowed designers to denote construction draw-
ings with mouse and keyboard rather than with ruler and compass. Digital line segments
and arcs express primary geometric forms (e.g., corner-rounded rectangular). Furthermore,
the computational splines (e.g., Bézier curves, non-uniform rational B-splines, or NURBS)
permit designers to freely denote irregular curves and surfaces. Additionally, digital models
can generate renderings and animations in the virtual environment.

Regarding free-form construction, free forms might be only buildable either with te-
dious manual labor or with computer numerically controlled (CNC) machinery. The CNC
machines (e.g., gantry, articulated robots) redraw the curves with end effectors (e.g., milling
cutters, water-jet nozzles, extruders of 3D printers) in the physical world (figure 1.10). Then,
the physical materials can take shape according to the designer’s intention. For instance,
3D printing slicers (e.g., Cura) can translate a polyhedron into a tool path. A 3D printer can
then redraw the path with its extruder to complete the print. For more sophisticated produc-
tion processes, designers may use parametric design software (e.g., Grasshopper 3D (2020))
to break a design down into connected curves. Computer-aided manufacturing (CAM) soft-
ware (e.g., KUKA|prc (2019)) can translate the connected curves into a machine-readable
tool path for a CNC machine (e.g., KUKA robot). Once the design is a batch of components
with a similar topology, the tool path can be generated efficiently in a batch process.
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Free-from assemblies from planar elements. Although it is possible to build a free-
form structure with free-form components (or free-form formworks for casting), this ap-
proach is generally not economically feasible. Given most industrially produced construc-
tion materials have prismatic shapes (e.g., steel I-beams, extruded aluminum) or planar ge-
ometries (e.g., float glass, plywood broads), it is more practical to assemble a free-form struc-
ture from linear or planar materials. Pottmann (2013) summarized this practical approach
as fabrication-aware design, also known as design for manufacture & assembly (DFMA).

Theories from discrete differential geometry are used to discretize a curved surface into
a series of flat quadrilaterals or a planar quadrilateral mesh (figure 1.11). This allows the
builder to make the most efficient use of mass-produced planar materials. The planar panels
may be supported by a grid-like structure. Preferably, the linear members of the mesh shall
also be non-twisting and co-axial at the nodes (torsion-free nodes). However, this is only
possible when certain geometric conditions are fulfilled. Principal meshes fulfill such condi-
tions and thus can be built of planar panels and torsion-less nodes (figure 1.12; Pottmann,
Liu, et al., 2007). Generally, the divisions between panels have to follow principal curvatures

of the surfaces, hence the name.

Figure 1.11: A planar quadrilateral mesh. [Source: Kilian et al., 2017]
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(a) (b)

Figure 1.12: Nodes with torsion (a) and without torsion (b). [Source: Tellier et al., 2020]

1.4. Research objectives and approach for fabrication and
construction

1.4.1. Objectives
Although quite a few studies on shell design and free-from construction have been con-
ducted, there are still some issues that deserve more investigation.

Logistics. After discretizing free-form shells into components, the components can be
fabricated by CNC machines using mass customization. The remaining critical step is to
assemble all the components. As each component often has a unique shape, the logistics are
challenging and involve indexing components, sequences of fabrication, stacking, trans-
portation, hoisting, and assembling. One of the objectives of this dissertation is to explore
a potential strategy that can reduce these logistic challenges.

Prototyping. Dividing double-curved surfaces into flat panels is an economical way of
fabricating components for free-form surfaces. Although some established theories and
methods for executing such a task exist, the theories and methods are not well-known and
under-utilized in architectural designs. Showcasing such methods in prototyping would
increase awareness. The final objective is to implement relevant methods in prototyping to
raise awareness of the methods as well as validate them.

1.4.2. Proposed approach
This dissertation utilizes theories from discrete differential geometry to discretize smooth
shells obtained from the RBF algorithm into planar panels. Furthermore, this research de-
velops a reconfigurable mechanism with which the components are pre-assembled in a flat
configuration. The mechanism can then be deployed into the prescribed curved state. By re-
ducing the on-site component count, logistical challenges can be reduced. To carry out the
final objective, proposed methods are implemented to design prototypes. Relevant CAD-
CAM software and CNC machines will also be employed.
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Figure 1.13: Dissertation chapters and threads. Corresponding research objectives are shown in the parenthesis
next to the titles.
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1.5. Outline of chapters
Figure 1.13 schematically shows the structure of this dissertation in terms of the chapters
and the related research objectives. The chapters also are interwoven with multiple topic
threads, which split or merge in different stages. They are organized as follows.

Chapter 2 Membrane Shells and Pucher’s Equation discusses the statics of regular mem-
branes (thread A), which is formulated in mathematical expressions with stress (thread A1)
and shape (thread A2) functions. This chapter also presents self-Airy membranes (thread
B), which are defined as shells that have Airy stress functions identical to their shape func-
tions. This type of membrane can have a distinct actuation scheme after translation into a
reconfigurable mechanism.

Chapter 3 Finding Shell Structures with Radial Basis Functions develops a method to
find solutions that are in equilibrium and are close to prescribed shapes or stress distri-
butions. When form-finding a regular membrane, the task is to solve a boundary value
problem (A). In the algorithm, horizontal body forces are also considered, which bifurcates
the stress functions: some excluding horizontal loads (A1α) and others including horizontal
loads (A1β). Conversely, numerically finding a self-Airy membrane is formulated as solving
a free boundary problem (B).

Chapter 4 Discretizing Free-form Surfaces and Airy Stress Functions discusses the dis-
cretization of curved surfaces into panels and concentrations of curvatures into creases. The
developed technique can approximate shapes with ordinary or Euclidean principal meshes
(A2 & B) to reduce the fabrication complexity of curved surfaces. This technique can also
translate a smooth stress function into a polyhedral one, but relies on the isotropic metric
instead of the ordinary or Euclidean metric. Hence, the resulting mesh is called an isotropic

planar principal mesh (A1α), when body forces are absent. This chapter also identifies a
new way to present body forces in a discretized stress function, which turns out to give an
isotropic non-planar mesh (A1β).

Chapter 5 Programming Flat-to-Curved Mechanisms presents a mechanism that can
deploy a double-curved surface from a flat configuration. The mechanism is based on the
discretization results of the Euclidean principal mesh (A2 & B). For validation, prototypes
are made that consist of interconnected panels made from 3D printed polylactic acid (PLA)
and water-jet cut polypropylene (PP).

Chapter 6 Implementation documents three prototypes that are designed and materi-
alized with the proposed methods. The first two are gridshells with variable thickness in
order to accommodate stresses induced by load cases with different horizontal loads (A).
The second one is a reconfigurable shell that can be actuated by a tension hoop, of which
the shape is based on the self-Airy membrane (B).

Chapter 7 Conclusion summarizes the current findings and projects the direction for
further research.
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Membrane Shells and

Pucher’s Eqation

Structural design requires an understanding “to the backbone”

of the mechanical principles of inner equilibrium.

Eduardo Torroja1

Parts of this chapter have been presented in IASS Annual Symposium 2019–StructuralMembranes 2019 (Chiang,
Borgart, & Li, 2019) and submitted for publication (Chiang, 2021)
1as cited in Picon, 2003, p.301
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M embrane shells, which have minimized bending moments under certain load con-
ditions, are regarded as the most efficient structural forms for enclosing a space. As

suggested by Eduardo Torroja (1899-1961), structural designers should understand “to the
backbone” of the equilibrium of the internal stresses (as cited in Picon, 2003, p.301). To
design membrane shells, it is important to understand how the membrane stresses in the
curved shape are in equilibrium with the external loads. The equilibrium of a membrane
shell is governed by the Airy stress function and Pucher’s equation, which together form
the main themes of this chapter.

Shells are often conceptually divided into stretching and bending surfaces (Calladine,
1977). The first one carries in-plane forces but has zero bending moment capacity. The sec-
ond, on the other hand, can resist the bending moment and transverse shear forces but has
zero capacity of in-plane tension and compression. This dissertation follows the membrane

theory, which assumes that the bending rigidity is negligible and external loads are fully car-
ried by the stretching surface or a bending-pliable membrane. Unlike physical membranes
such as a soap film or plastic wrap which will wrinkle when compressed, the conceptual
membranes are capable of withstanding compressive forces. This dissertation refers to these
compression-capable membranes as membrane shells, a term also used by Csonka (1987).

This chapter focuses on the equilibrium of the membrane shell using mathematical equa-
tions. The equations and the related variables will serve as the essential foundation for
developing the numerical form-finding method in the further chapters.

Outline
The outline of the chapter is as follows. Section 2.1 investigates the relationship between
the equilibrium of a stress tensor field and the second derivatives of an Airy stress function.
Section 2.2 connects the Airy stress function with Maxwell’s reciprocal diagrams. Section 2.3
reveals that the external load is equilibrated by the double-inner product of the stress tensor
and the shape’s Hessian matrix. Section 2.4 focuses on the equilibrium at the boundaries.
Section 2.5 introduces self-Airy membranes, special cases in which the graphs of the Airy
stress functions are identical to the shapes of the membranes. Section 2.6 discusses the
statical determinacy of the membrane shells. Section 2.7 summarizes this chapter.

2.1. Two-dimensional eqilibrium and the Airy stress func-
tion

The stress function is the expression that automatically satisfies the equilibrium equations
(Sadd, 2009). As early as 1863, Airy proposed using a scalar function to express an arbitrary
auto-equilibrated stress tensor field in a 2D domain. Let N denote the 2D stress resultant
tensor:

N =
[

Nxx Nx y

Nx y Ny y

]
, (2.1)

in which Nxx and Ny y are normal stress resultants and Nx y is the shear stress resultant.
The stress resultant Ni j , i , j ∈ {x, y} is the integral of the stress σi j along the thickness
of the shell as Ni j = ∫ ztop

z
bottom

σi j d z. While σi j has the dimension of force per unit area
[force · length−2], Ni j has the dimension of force per length [force · length−1]. Equilibrium
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of the tensor field in directions x and y can be expressed as (Sadd, 2009, p. 67)

∂

∂x
Nxx + ∂

∂y
Nx y +px = 0, and (2.2a)

∂

∂x
Nx y + ∂

∂y
Ny y +py = 0, (2.2b)

where px and py are the body forces per unit area [force · length−2]. The directions of these
forces are shown in figure 2.1.

Ny y + ∂
∂y Ny y ·∆y

Ny x + ∂
∂y Ny x ·∆y

Nxx

Nx y

py

px

Nx y + ∂
∂x Nx y ·∆x

Nxx + ∂
∂x Nxx ·∆x

Ny x

Ny y

∆y

∆x

y

x

Figure 2.1: Membrane stress resultants in a plate

Airy (1863) suggested that whenever the stress resultants are derived from an arbitrary
scalar function F (x, y) as

Nxx = ∂2

∂y2 F −
∫

px d x, (2.3a)

Nx y =− ∂2

∂x∂y
F , and (2.3b)

Ny y = ∂2

∂x2 F −
∫

py d y, (2.3c)

the stress resultants automatically satisfy the equilibrium conditions (2.2a–b), since the
equality of mixed partials guarantees ∂

∂x
∂
∂y

∂
∂y F = ∂

∂y
∂
∂x

∂
∂y F and ∂

∂x
∂
∂x

∂
∂y F = ∂

∂y
∂
∂x

∂
∂x F . The

arbitrary scalar function F (x, y) in equations (2.3a–c) is called the Airy stress function in
recognition of the contribution from George Biddell Airy (1801-1892) (Green & Zerna, 1968).

Matrix expression. Although equations (2.3a–c) have expressed self-equilibrating stress
resultants, a one-line expression in matrix form is beneficial for follow-up discussions. Since
equations (2.3a–c) have terms that are either second derivatives of the Airy stress function
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or the integrals of the body forces, one may store two types of terms in different matrices
such as

N = F−P, (2.4)
in which F contains all the second derivatives and P contains the integrals of the body forces
as diagonal elements. Matrix P is given by

P =

 ∫
px d x 0

0
∫

py d y

 .

The matrix F shall be

F =

 ∂2

∂y2 F − ∂2

∂x ∂y F

− ∂2

∂x ∂y F ∂2

∂x2 F

 . (2.5)

By comparing matrix F with the Hessian matrix HF of F (x, y)

HF =

 ∂2

∂x2 F ∂2

∂x ∂y F

∂2

∂x ∂y F ∂2

∂y2 F

 , (2.6)

one can notice that F and HF have the same elements yet are in a different arrangement.
One can introduce a rotation matrix R90◦ and the Hessian operator H:

R90◦ =
[

0 −1
1 0

]
, H =

[
∂2

∂x2
∂2

∂x ∂y
∂2

∂x ∂y
∂2

∂y2

]
(2.7)

so that equation (2.5) can be expressed as

F = R90◦H
(
R90◦

)T
F (x, y).

Let Hr 90◦ denote the rotated Hessian operator, then the stress resultant tensor N can be
expressed as

N = Hr 90◦F (x, y)−P. (2.8)
This expression concisely represents equilibrium in x- and y-direction, which is convenient
for discussing the equilibrium of the third dimension in section 2.3.

The Airy stress function sufficiently describes equilibrium in a 2D domain. See sec-
tion 2.3 for a description of the equilibrium in the third dimension. The purpose of the
upcoming section 2.2 is to have a closer look at the Airy stress function and the related
theories.

2.2. The Airy stress function, graphic statics, and recip-
rocal diagrams

Besides the Airy stress function, equilibrium in a 2D domain can also be observed in other
perspectives such as graphic statics and reciprocal diagrams. By carefully examining the
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Figure 2.2: An example of graphic statics and reciprocal diagrams. (a) Form diagram. (b) Parallel force polygons.
(c) Force diagram (the corresponding edges are orthogonal to their counterparts in the form diagram). Panels (a,c)
are a pair of reciprocal diagrams. External loads are drawn in green, compression in blue, and tension in red.

graphic statics and reciprocal diagrams, one can develop in-depth knowledge of the Airy
stress function.

Graphic statics was initially developed by Varignon (1725) and later followed by Maxwell
(1864, 1868, 1870), Culmann (1866), Cremona (1875), and others. It is primarily used to
analyze the forces in truss-like structures. The equilibrium of a node is represented by a
closed force polygon. For instance, the top node in figure 2.2a has four forces: external load
p1 and three internal forces of bars a, b, and d . The four forces form a self-intersecting
quadrilateral as the corresponding force polygon in figure 2.2b.

Among the contributors of graphic statics, the works of James Clerk Maxwell (1837-
1879) are especially worth mentioning. Maxwell proposed reciprocal diagrams, that unify
graphic statics and the Airy stress function. Maxwell published an article in 1864 discussing
truss-like structures; in 1868, he published another article dealing with continuous stress
fields and smooth Airy stress function. Later, in 1870, he released one more article in which
he identifies that the reciprocal diagram of any polyhedral Airy stress function is the force
polygon derived in graphic statics.

A marginal difference between force polygons and reciprocal diagrams is that the edges
in force polygons are parallel to the corresponding bars (figure 2.2a, b) while the edges in
reciprocal diagrams are perpendicular the corresponding bars (figure 2.2a, c). The seemingly
counter-intuitive perpendicularity shall be discussed in the following paragraphs.

The method of reciprocal diagrams is based on a mathematical mapping between two
functions, say F (x, y) and F∗(ξ, η) (Maxwell, 1868):

ξ= ∂F

∂x
, η= ∂F

∂y
, F∗ = x

∂F

∂x
+ y

∂F

∂y
− F , (2.9a)

x = ∂F∗

∂ξ
, y = ∂F∗

∂η
, F = ξ∂F∗

∂ξ
+η∂F∗

∂η
−F∗. (2.9b)

When F (x, y) and F∗(ξ, η) are smoothly differentiable, a point x = (x, y, F (x, y)) maps to
another point ξ = (ξ, η, F∗(ξ, η)). The coordinates of ξ are the slopes and the height of z-
intercept of a plane tangent to z = F (x, y) at x. The same applies the other way around. The
coordinates of x are the slopes and the height of ζ-intercept of a plane tangent to ζ= F∗(ξ, η)
at ξ. Since the relation between the graphs of z = F (x, y) and ζ = F∗(ξ, η) is mutually
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Figure 2.3: Instances of reciprocal diagrams. (a–b) Smooth diagrams and their curvature-line networks. (c–d) Top
views of smooth and polyhedral diagrams. In smooth diagrams, a point maps to another point (red circles), and
an area maps to another area (blue patches). In polyhedral diagrams, a vertex maps to a facet and vice versa.
For example, the red circle (and the blue polygon) in (c) map to the red polygon (and the blue circle) in (d). (e–f)
Polyhedral diagrams.
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symmetrical, the graphs are said to be “reciprocal.” Examples of reciprocal diagrams are
provided in figure 2.3.

There exist three interesting features to these reciprocal diagrams.

• When the first graph is the Airy stress function and there are no body forces, the
resultant force passing through an oriented line segment ∆x = xb −xa is proportional
to the length of its corresponding segment ∆ξ = ξb − ξa , and the direction of the
resultant force is perpendicular to the line segment ∆ξ (Maxwell, 1868).

• When one graph is a polyhedral surface, the corresponding graph is also a polyhedral
surface. Furthermore, an edge in one graph corresponds to an edge in the other graph,
and a face in one graph corresponds to a vertex in the other (Maxwell, 1870), and vice
versa.

• In the absence of body forces, the (isotropic-)curvature lines of the Airy stress function
F (x, y) are the stress trajectories of N.

In the following paragraphs, these three features will be further elaborated.

Force passing through a segment. One can break an oriented segment ∆x = xb−xa into
n pieces such that ∑n

i=1δxi = ∆x. Then the resultant force f∆x will be the summation of n
pieces of the corresponding forces δfi so that ∑n

i=1δfi = f∆x. As n approaches infinity, the
δxi can be infinitesimal and thus δfi can be approximated by the expression

δfi =

 Nx y −Nxx

Ny y −Nx y

δxi ,

where the sign conventions of δfi =
[
δ fxi δ fyi

]T and δxi =
[
δxi δyi

]T are illus-
trated in figure 2.4.

δxi

Ny y

Nx y

δyi
Nxx

Nx y

δxi

δ fxi

δ fyi

y

x

Figure 2.4: Stress resultants acting on an infinitesimal segment δxi
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From equations (2.3), each Ni j can be expressed as a second derivative of the Airy stress
function in the absence of body forces, so that

δfi =

 − ∂2

∂x ∂y F − ∂2

∂y2 F

∂2

∂x2 F ∂2

∂x ∂y F

δxi .

Again, the matrix on the right-hand side can be expressed as a product of a rotation matrix
R90◦ defined in equation (2.7), and the Hessian matrix HF mentioned in equation (2.6), so
that

δfi =

 0 −1

1 0


 ∂2

∂x2 F ∂2

∂x ∂y F

∂2

∂x ∂y F ∂2

∂y2 F

δxi

= R90◦HF δxi .

(2.10)

On the other hand, one can construct the relation between corresponding segments δxi

and δξi via the Jacobian matrix. From the definition of the Jacobian matrix (Arfken, Weber,
& Harris, 2013, p. 227) and the expressions (2.3a–b), the matrix can be derived as

Jξ/x =

 ∂
∂x ξ

∂
∂y ξ

∂
∂x η

∂
∂y η

=

 ∂2

∂x2 F ∂2

∂x ∂y F

∂2

∂x ∂y F ∂2

∂y2 F

 . (2.11)

Since δxi and δξi are infinitesimally small, the Jacobian can provide δξi = Jξ/xδxi . One can
notice that the Jacobian Jξ/x is coincidentally identical to the Hessian HF (x, y). Therefore,
equation (2.10) can be expressed as

δfi = R90◦Jξ/xδxi = R90◦δξi . (2.12)

One can treat equation (2.12) as one of the addends and sum all the addends up. The result
provides

f∆x = R90◦∆ξ, (2.13)
which explains the first feature.

Reciprocal relations between vertices, edges, and faces. To explain why a vertex cor-
responds to a face and an edge corresponds to another edge, the following paragraphs in-
vestigate the connection between the second derivatives and the mapping.

First, the second derivatives, or the Hessian matrix, can classify whether a point is on a
vertex, an edge, or a planar face. It becomes even more evident after eigendecomposition is
conducted on the Hessian matrix HF (x, y) as

HF (x, y) =

 ∂2

∂x2 F ∂2

∂x ∂y F

∂2

∂x ∂y F ∂2

∂y2 F

= Q

 λ1 0

0 λ2

Q−1, (2.14)

in which Q is a 2×2 orthogonal matrix formed by the eigenvectors, and λ1 and λ2 are the
eigenvalues. A region is planar when the local λ1 =λ2 = 0, a point is on an edge when one
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of the eigenvalues equals 0 and the other has infinite magnitude, and a point is on a vertex
if |λ1| = |λ2| =∞.

Regarding the mapping, the Jacobian matrix can describe how a group of surrounding
points on F (x, y) maps to F∗(ξ, η). As discussed right after equation (2.11), the Jacobian Jξ/x

is coincidentally identical to the Hessian matrix HF (x, y).
Furthermore, the inverse mapping can also be described by another Jacobian matrix,

which would then be the inverse matrix of the Jacobian in the forward mapping (Arfken et
al., 2013, p. 230):

Jξ/x =
[
Jx/ξ

]−1. (2.15)

Since the inverse Jacobian matrix should also be the Hessian matrix of F∗(ξ, η), the Hessian
matrices can substitute the Jacobian matrices in equation (2.15) as

HF∗(ξ,η) =
[
HF (x, y)

]−1, (2.16)

where HF∗(ξ,η) is the Hessian matrix corresponding to HF (x, y). After eigendecomposition of
both sides of equation (2.16), the equation can be recast as

Q∗
[
λ∗

1 0
0 λ∗

2

][
Q∗]−1 =

{
Q

[
λ1 0
0 λ2

]
Q−1

}−1

= Q
[
λ−1

1 0
0 λ−1

2

]
Q−1, (2.17)

in which λ∗
1 and λ∗

2 are the eigenvalues corresponding toλ1 and λ2. Equation (2.17) suggests
interesting relations between F (x, y) and F∗(ξ, η). First, a point on F (x, y) has the same set
of eigenvectors Q as the corresponding point on F∗(ξ, η). Second, the eigenvalues λ1 and
λ2 on F (x, y) are the reciprocal numbers (or multiplicative inverses) of the corresponding
eigenvalues λ∗

1 and λ∗
2 on F∗(ξ, η). Table 2.1 classifies the types of geometric entities by

the magnitudes of their eigenvalues and shows for each entity its corresponding reciprocal
entity, in which a vertex corresponds to a planar facet and an edge corresponds to another
edge. This description explains the second feature.

Table 2.1: Reciprocal relations between geometric entities

Entity on F (x, y) |λ1| |λ2| Entity on F∗(ξ, η) |λ∗
1 | |λ∗

2 |
Vertex ∞ ∞ Planar surface 0 0

Straight edge ∞ 0 Straight edge 0 ∞
Straight edge 0 ∞ Straight edge ∞ 0

Planar surface 0 0 Vertex ∞ ∞

Principal orientation and principal stresses. Upon further extending the observation
on eigendecomposition, one can find that the matrix of eigenvectors Q is also the principal
orientation of the stress resultant field N, and that the eigenvalues λ2, λ1 are the principal
stress resultants.
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By directly eigendecomposing the stress resultant N, one can find that

N = QN

[
N1 0
0 N2

]
Q−1

N , (2.18)

where N1 and N2 are principal stress resultants, and QN contains the vectors of the principal
directions. However, one can also eigendecompose the stress resultant N using another
approach. From equations (2.8) and (2.14), one can find that

N = R90◦Q
[
λ1 0
0 λ2

]
Q−1R−90◦ −P.

In the absence of body forces, P will be a zero matrix. Since both R90◦ and Q are 2D rota-
tion matrices, the equations R90◦Q = QR90◦ and Q−1R−90◦ = R−90◦Q−1 hold. Therefore, the
sequence of matrix multiplication can be reorganized as

N = Q
(

R90◦
[
λ1 0
0 λ2

]
R−90◦

)
Q−1 = Q

[
λ2 0
0 λ1

]
Q−1. (2.19)

The newly derived equation (2.19) also successfully eigendecomposes the stress resultant
tensor N. Comparing equation (2.19) with equation (2.18), one may notice that the directions
of the principal stresses are eventually given by the eigenvectors of the Hessian matrix HF

and the principal stress resultants are given by the eigenvalues of HF with a minor difference
in the order: N1 =λ2, N2 =λ1.

The directions of principal stresses are important when visualizing the stress field. One
can trace how stresses flow along the stress trajectories. Some stress trajectories have already
been shown in figure 2.3. These trajectories are sometimes called isostatic lines, especially in
the field of photoelasticity. Section 4.3 will further show that the Hessian matrix is related to
the isotropic-curvatures of a graph. In short, the stress trajectories are also isotropic-curvature

lines of the Airy stress function. This explains the third feature.
The reciprocal relations between F (x, y) and F∗(ξ, η) have now been discussed briefly.

In section 4.3, reciprocal relations will be discussed in further detail, such as the intersection
of two graphs in (x, y, z) which corresponds to the surface tangent to both corresponding
graphs in (ξ, η, ζ).

2.3. Three-dimensional eqilibrium and Pucher’s eqation
In the previous two sections, equilibrium in the 2D domain was discussed. When one
projects the 2D equilibrated stress field onto a curved surface, the 2D equilibrium will be pre-
served, but it is still uncertain whether the equilibrium does hold in the third dimension. Let
Z (x, y) denote the height of the mid-plane of a membrane shell, then the third-dimensional
equilibrium can be expressed using Pucher’s equation (Timoshenko & Woinowsky-Krieger,
1959, p. 461):

Nxx · ∂
2Z

∂x2 +2Nx y · ∂
2Z

∂x ∂y
+Ny y · ∂

2Z

∂y2 = px · ∂Z

∂x
+py · ∂Z

∂y
−pz , (2.20)

where Z (x, y) is the elevation of the shell and pz is the vertical load per unit area [force ·
length−2]. Their directions are illustrated in figure 2.5 in which Ñi j are the stress resultants
of the curved surface that vertically project the 2D stress resultants Ni j on the horizontal
plane.
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Ñy y + ∂
∂y Ñy y ·∆y

Ñy x + ∂
∂y Ñy x ·∆y Ñx y + ∂

∂x Ñx y ·∆x

Ñxx + ∂
∂x Ñxx ·∆x
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px py

∂Z
∂y ∂Z

∂x

1 1

Ñxx

Ñx y Ñy x

Ñy y

Nxx Nx y Ny x
Ny y

z

xy

∆y
∆x

Figure 2.5: Membrane stress resultants on a curved surface. [Adapted Timoshenko & Woinowsky-Krieger, 1959,
p. 461]

Matrix expressions. Pucher’s equation can be turned into a matrix form as Nxx Nx y −px

Nx y Ny y −py

 :

 ∂2

∂x2 Z ∂2

∂x ∂y Z ∂
∂x Z

∂2

∂x ∂y Z ∂2

∂y2 Z ∂
∂y Z

=−pz , (2.21)

in which the operator “:” denotes the double-inner product such that A : B = ∑
i
∑

j Ai j Bi j .
The Airy stress function in equation (2.8) can be used to express the stress tensor Ni j . Fur-
thermore, let vector p denote the horizontal body forces such that p = [

px py
]T, H

denotes the Hessian operator, and ∇ denotes the gradient operator. Pucher’s equation can
then be written as [ (

Hr 90◦
F −P

) −p
]

:
[

H ∇
]

︸ ︷︷ ︸
DPucher

F

Z (x, y) =−pz ,

or
DPucher

F

[
Z (x, y)

]=−pz , (2.22)
when a new differential operator DPucher

F [·] is defined. The subscript F indicates that the
differential operator uses the derivatives of stress function F (x, y) as coefficients. Pucher’s
equation can also be reorganized as

Hr 90◦
Z :H︸ ︷︷ ︸

DPucher
Z

F (x, y) =−pz +
[

P p
]

:
[

HZ ∇Z

]
︸ ︷︷ ︸

p ′
h

,
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or
DPucher

Z

[
F (x, y)

]=−pz +p ′
h , (2.23)

when another differential operator DPucher
Z [·] is introduced. The subscript Z indicates that

this differential operator uses the derivatives of shape function Z (x, y) as coefficients. On
the right-hand side, the term p ′

h has a subscript h that denotes that this term contains hor-
izontal loads. The expressions (2.22) and (2.23) are convenient for further discussion, espe-
cially in chapter 3.

In the absence of horizontal body forces. When there are no horizontal body forces,
P and p have zero values. Equation (2.21) would then simply become

Hr 90◦
F :HZ =−pz , (2.24)

which suggests the vertical load pz is equilibrated by the double-inner product of two ma-
trices: the rotated and un-rotated Hessian matrices of the Airy stress function and the shape
function.

Furthermore, it becomes clear that the stress function F (x, y) and the shape function
Z (x, y) are interchangeable in equation (2.24). In other words, F (x, y) and Z (x, y) are com-
mutative.

2.4. Conditions for boundaries and supports
So far, only the equilibrium within the domain has been discussed. This section shall shift
the focus on equilibrium at the boundaries: the edges of shell structures. At an edge, mem-
brane stresses exist on the curved shell from one side. There is no shell element providing
membrane stresses from the other side. Nonetheless, all elements on an edge must remain in
equilibrium, with or without stresses transmitting across the edge. One can decompose the
stresses into normal and tangential components. The normal direction n = [

nx ny
]T is

defined to be pointing outward while the tangential t = [
tx ty

]T = [ −ny nx
]T trav-

els the domain counterclockwise, as illustrated in figure 2.6. The normal stress crossing the
edge Nnn , the normal stress parallel to the edge Nt t , and the shear stress against the edge
Nnt can be derived from tensor transformation (Arfken et al., 2013, p. 208):[

Nnn Nnt

Nnt Nt t

]
=

[
nx ny

−ny nx

][
Nxx Nx y

Nx y Ny y

][
nx −ny

ny nx

]
. (2.25)

If all elements on an edge segment can reach equilibrium without external stresses, one
can say the segment is a free edge, which is free from external supports. On a free edge, one
should have (Csonka, 1987, p. 183)

Nnn = 0, (2.26a)
Nnt = 0, (2.26b)

Nt t · ∂
2Z

∂t 2 = pn · ∂Z

∂n
+pt · ∂Z

∂t
−pz . (2.26c)



2.4. Conditions for boundaries and supports 31
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Figure 2.6: Local directions on an edge

Equation (2.26a) gives that the normal stress across the boundary equals zero, equation (2.26b)
gives that the shear stress against the boundary is zero, and equation (2.26c) is a degener-
ated version of Pucher’s equation which suggests that the boundary is in balance in the
vertical direction. Horizontal body forces px and py are represented by pn = nx px +ny py

and pt =−ny px +nx py .
Whenever any condition of (2.26a–c) is not satisfied, external support or a special re-

inforcement is needed to achieve an equilibrium. Practically, it costs differently for a shell
designer to violate different conditions. The condition (2.26b) can be bypassed by introduc-
ing a funicular rib (or an axial-force resistant reinforcement), the most cost-effective method
to bypass one of the three conditions. The horizontal component of the tension force T in
the funicular rib collects the unbalanced shear stress and tangential body force at the edge
so that

T =
∫ (

Nnt −pet
)

d s,

in which pet is the tangential component of body force per unit length on the edge with
dimension [force · length−1] and s is the distance along the projected edge. Although the
force T affects the conditions of equilibrium, one can still have alternative conditions for a
boundary element on a funicular edge:

Nnn = T
dt

d s
·n+pen , (2.27a)

−Nnn
∂Z

∂n
−Nnt

∂Z

∂t
+T

∂2Z

∂t 2 = pen · ∂Z

∂n
+pet · ∂Z

∂t
−pez , (2.27b)

where pen , pet , and pez are the body forces per unit length on the edge with dimension
[force·length−1]. Detailed locations and orientations of the forces are illustrated in figure 2.7.

A designer can also bypass condition (2.27b) by placing a vertical wall. The wall can
introduce extra load in the vertical direction to absorb any unbalanced force. The only
condition left for a wall-supported edge is

Nnn = T
dt

d s
·n+pen . (2.28)
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Figure 2.7: Forces and stress resultants on a rib segment

If the designer would like to bypass the last condition, then a rigid support must be
provided. Since membrane shells transmit no bending moment, the support only needs to
carry translational forces. Once a support capable of carrying forces in all directions is in
place, there is no condition for the fully supported edge.

On top of the four types of supports discussed above, another type of support exists. It
is not at an edge but within the domain. For a column-supported region, the pz in Pucher’s
equation (2.20) no longer is merely the external loads (e.g., self-weight, snow load) but in-
cludes the vertical supporting force from a column. If there is no prescribed vertical support-
ing force, then Pucher’s equation can be dismissed in this region. Equations (2.2a–b) still
govern the equilibrium in the horizontal directions within the domain including the region
above the column. A minor reminder is that if the column also provides horizontal forces,
the values of px and py should include the horizontal supporting forces. Thus the

∫
px d x,∫

py d y , and F (x, y) must also be updated. Table 2.2 summarizes the discussed boundaries
and supports and figure 2.8 shows some examples in realized projects.

Table 2.2: Conditions for boundaries and supports

Type
Condition in the direction of

n t x y z

Free edge (2.26a) (2.26b) - - (2.26c)
Funicular edge (2.27a) Free - - (2.27b)

Wall-supported edge (2.28) Free - - Free
Fully supported edge Free Free - - Free

Column-supported region - - (2.2a)* (2.2b)* Free

* px and py should include the horizontal supporting forces.
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(a) Free edge

(d) Fully supported point (e) Columns supported shell

(b) Funicular edge (c) Wall-supported edge*

Figure 2.8: Examples of boundaries and supports. (a) Raststätte Deitingen [Deitingen Service Station], Deitingen,
Switzerland. (b) Celebration Park, Allen, Texas, United States. (c) Kresge Auditorium*, Cambridge, Massachusetts,
United States. (d) Palazzetto dello Sport [Small Sport Palace], Rome, Italy. (e) Llotja de la Seda [Silk Exchange],
Valencia, Spain. [Source: (a) Peter Eigenraam; (b) PFEIFER FabriTec; (c) Daderot@commons.wikimedia.org, li-
censed under CC BY-SA 3.0; (d) Blackcat@commons.wikimedia.org, licensed under CC BY-SA 3.0; (e) TMaschler-
@commons.wikimedia.org, licensed under CC BY-SA 3.0]
* Kresge Auditorium was initially designed with edges that have no vertical supports. After noticing unexpected

deflections at the edges, the façade mullions, which were originally designed to take horizontal wind load only,
were redesigned to support the shell along its edges (Plunkett & Mueller, 2015).
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2.5. Self-Airy membranes: special cases of membrane shells
As mentioned in the previous sections, a membrane shell carries external loads by transmit-
ting tensile and compressive stresses through its curved shape. In the absence of horizontal
body forces, the vertical load is balanced by the double-inner product of rotated and un-
rotated Hessian matrices, one from the shape and the other from the Airy stress function.
Although Pucher’s equation (2.24) suggests the Airy stress function F (x, y) and the shape
function Z (x, y) are commutative, the Airy stress function is often overlooked by architec-
tural and structural designers since it is nowhere to be found in the physical world. However,
when the shape of the Airy stress function coincides with the shape of the shell, it can be
built as a tangible surface. This dissertation calls these special membrane shells self-Airy

membranes, parallel to the term of self-Airy gridshells in Millar et al. (2021).

Motivation. The motivation to investigate the self-Airy membranes arises from the de-
velopment of the flat-to-curved transformation mechanisms, which is discussed in detail in
chapters 5 and 6. It is arguably part of the nature that research goes back-and-forth be-
tween theory and execution. At the early stage of this research, the sequence was expected
to be rather linear. The research would start with mathematical membrane theory, to then
transform the theory into a computational form-finding algorithm. With some form-found
shapes, then, the research would perform geometrical analysis before the shapes could be-
come flat-to-curved transforming mechanisms.

However, after prototyping some mechanisms, it was found that a simple actuation
scheme is preferable for the flat-to-curved transformation. A scheme of bottom hoop ac-

tuation (see section 6.3) is investigated which requires the Airy stress function F (x, y) and
the shape function Z (x, y) to have similar principal orientations and solely vertical reac-
tions at the supports. A sufficient way to satisfy the above requirements is assuming the
supports are on flat ground and F (x, y) and Z (x, y) have exactly the same shape, which is
called a self-Airy membrane in this dissertation.

Definition. Let S(x, y) denote such a self-Airy membrane. Subsequently, Z (x, y) can be
replaced by S(x, y) and F (x, y) can be replaced by F0S(x, y), in which F0 is a factor with
dimension in force. Eventually, equation (2.24) becomes

Hr 90◦
S :HS =−pz

F0
. (2.29)

The membrane S(x, y) has a dimension in length. While elements in the Hessian HS are sec-
ond derivatives of S(x, y), these elements have dimensions that are the same as curvatures
[length−1]. One can check the dimension consistency by expanding the equation:

2

[
∂2S

∂x2 · ∂
2S

∂y2 −
(
∂2S

∂x ∂y

)2]
=−pz

F0
. (2.30)

The left-hand side has the same dimension as a Gaussian curvature [length−2] while the
right-hand side is [force · length−2] over [force] leading to [length−2]. The content within
the square brackets of the left-hand side does not only have the same dimension as a Gaus-
sian curvature, the content is exactly the isotropic-Gaussian curvature in isotropic-geometry
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(a) (b)

Figure 2.9: Trivial solutions to equation (2.29)

(see section 4.3). It is worth mentioning here that the content in the brackets is also the
determinants of both HS and Jξ/x. For an S(x, y) that has constant det(HS ), the reciprocal
diagrams S∗(ξ, η) also have constant det(HS∗ ).

Equation (2.29) is a second-order partial differential equation, and the sign of pz /F0

controls whether it is elliptic or hyperbolic. Only when the external load p equals zero, the
equation could be parabolic. This type of non-structural surface will not be discussed in this
dissertation.

This section first mentions the motivation of the investigation of self-Airy membranes
and subsequently provides some analytical solutions. Chapter 3 follows up the discussion
and provides a numerical method for finding more self-Airy membranes.

2.5.1. Trivial solutions
Equation (2.29) suggests that the isotropic-Gaussian curvature is linearly proportional to the
external load. When the load is constant as pz /F0 =±2, the solutions to this equation can
be as simple as paraboloids. If the constant term is negative, then the solution can be an
elliptic paraboloid like S(x, y) = (

x2 + y2
)

/2 (figure 2.9a). When the constant is positive, a
hyperbolic paraboloid such as S(x, y) = x y can be the solution (figure 2.9b).

2.5.2. Analytical solutions
The inspiration for investigating potential analytical solution arises from a numerical solu-
tion in figure 3.17, which shows a triangular shell with slender legs between free edges. The
profiles of these legs resemble decaying exponential curves. Therefore, this section expects
the existence of an analytical solution that propagates curvature from a narrow cross-section
to a wider cross-section similar to those legs.

This enlarging cross-section can be expressed mathematically by assuming an analytical
solution which is the result of a standard cross-section β(y0) sweeping along the x-axis and
gradually scaled by another function α(x):

S(x, y) =α(x) ·β(y0)+ax +by + c, (2.31)

where y0 = y/α(x), and a, b, c are constants.
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Figure 2.10: The general solution of the β-y0 curve.

Subsequently, one can derive the second derivatives as

∂2

∂x2 S =α′′β−α′′β′y0 + α′2

α
β′′y0

2,
∂2

∂x ∂y
S =−α

′

α
β′′y0,

∂2

∂y2 S = 1

α
β′′.

These expressions turn the governing equation (2.29) into

2
α′′

α
β′′(β−β′y0) =−pz

F0
. (2.32)

Since pz and F0 are set to be non-zero constants, the equation can be satisfied whenever
both α′′/α and β′′(β−β′y0) are non-zero constants. Function α(x) has three solutions:

α(x) = deλx , d cosh(λx), or d cos(λx), (2.33)

in which d and λ are constants. All of the expressions have constant α′′/α:

α′′

α
=λ2, λ2, or −λ2.

While β(y0) can be

β(y0) =C0

√
1−

(
ω

C0
y0

)2

+ ω

C0
y0 arcsin

(
ω

C0
y0

)+C1 y0, −C0

ω
≤ y0 ≤ C0

ω
, (2.34)

in which ω is a constant, and C0 = β(0) and C1 = β′(0) are constants of integration. This
expression has

β′′(β−β′y0) =ω2.

Then, these α(x) and β(y0) make equation (2.32) become 2λ2ω2 =±Pz /F0. The general solu-
tion of β(y0) is plotted in figure 2.10 and the solutions of S(x, y) are illustrated in figure 2.11.
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(a)

(b)

(c)

− 0 +
Stress

Figure 2.11: Analytical self-Airy surfaces. All surfaces are drawn with the same β-y0 curve when β(0) = 1 and
β′(0) = 0. The α curves are −eλx /2, −cosh(x) and cos(x) in (a), (b) and (c) respectively. Isometric views are drawn
on the left and top views on the right. Stress networks are shown on the surfaces with compression (−) in blue
and tension in red (+).
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Figure 2.12: The self-reciprocal membrane (a) and its reciprocal diagram (b). Curves connecting points a, b, c
reciprocally map to curves connecting the corresponding points a∗, b∗, c∗.

An interesting fact is that the anticlastic solution in figure 2.11c is not only self-Airy, but
also self-reciprocal, meaning that it has the same shape as its Maxwell reciprocal diagram. As
discussed, the reciprocal diagram of a constant isotropic-Gaussian-curvature surface is also a
constant isotropic-Gaussian-curvature surface. Here, the solution has an isotropic-Gaussian-
curvature equal to 1 within its domain. Furthermore, this very solution has only two types
of boundary conditions: supporting points and free edges. On a free edge, the conditions
∂t t S = 0 and ∂nt S = 0 require ∂x S and ∂y S to be constants (Csonka, 1987) which suggests
that a free edge in S(x, y) maps to a point in S∗(ξ, η), and vice versa. Since the surface has
two supporting points and two free edges, its reciprocal diagram has two free edges and
two supporting points. Qualitatively speaking, the boundary of this surface allows it to be
self-reciprocal. Analytically, it still requires some work to check if its reciprocal diagram
indeed has the same shape as itself. The solution is believed to be original, thus worth to be
mentioned and validated explicitly.

By setting ω = 1, C0 = 1, and C1 = 0 in equation (2.34), selecting α(x) = cos(x), and
letting a = b = c = 0 in equation (2.31), one can explicitly express this surface as

S(x, y) =
√

cos(x)− y2 + y arcsin

(
y

cos(x)

)
, −π

2
< x < π

2
, −cos(x) ≤ y ≤ cos(x).

With the reciprocal mapping stated in equation (2.9), one can obtain the reciprocal diagram:

S∗(ξ, η) =−
√

cos(η)−ξ2 −ξarcsin

(
ξ

cos(η)

)
, −cos(η) ≤ ξ≤ cos(η), −π

2
< η< π

2
.

Apparently, the two surfaces have the same shape although the orientations are different.
The reciprocity between these two surfaces is shown in figure 2.12.
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2.6. Lower-bound theorem and statical determinacy
Classical shell theories deal with three major topics, namely equilibrium of forces, com-
patibility of displacements (and rotations), and strain-stress relations. The latter two topics
relate to how a shell deforms from its original shape. In the form-finding process, there
is no original shape yet, let alone deformation. Hence, the compatibility and strain-stress
relations are not the main concern this dissertation.

However, focusing only on equilibrium is still relevant when designing structurally
sound shells. For ductile construction systems (including masonry, reinforced concrete),
one can check whether the structure is safe by using the plastic theory, or lower-bound the-

orem. Heyman (1977, p.71) provided a concise description of the theorem:

If any satisfactory equilibrium state can be found for a structure […], then this is

complete evidence that the structure is safe. The power of this theorem lies in the

fact that the equilibrium state under discussion need[s] not be the actual equilib-

rium state; a single satisfactory solution is all that is necessary.

The word satisfactory is referring to the stresses that are allowable for the materials and
connections. One of the two crucial premises is that the structure is sufficiently ductile to
redistribute (by yielding or cracking) the excessive stress to other materials or structural
members. The other premise is that the structure is sufficiently stiff to maintain stability (or
avoid buckling).

Applying the theorem to a shell, if there is a set of solutions of which the stress (F ) and
eccentricity (distance between the actual shell surface to the desired shape Z ) are allowable
under the considered load case (px , py , and pz ), then the shell shall be safe. Equilibrium
of these five functions (F , Z , px , py , and pz ) is governed by Pucher’s equation. Like a
five-variable equation can determine the fifth variable when the other four variables are
provided, Pucher’s equation can determine the fifth function whenever the other four func-
tions are provided. In the case of prescribed load condition (i.e., px , py , and pz ) and stress
distribution F (x, y), the shape of the shell Z (x, y) can be provided by solving Pucher’s equa-
tion. This process is a form-finding problem. Conversely, if the shape of the shell Z (x, y)
is given and a load case (i.e., px , py , and pz ) is assigned. The only unknown function, the
stress function F (x, y), can be determined with Pucher’s equation as well. For a statically
determinate truss, due to the absence of bending moment, the axial forces in the truss can
be determined by the equilibrium equations alone. Membrane shells have a similar statical
determinacy, so the membrane stresses in the shells can be determined by Pucher’s equation
alone.

However, an F (x, y) derived from arbitrarily given Z (x, y), px , py , and pz may conflict
with the desired boundary conditions. Chapter 3 provides a numerical method recommend-
ing an alternative Z (x, y) that allows for the derived F (x, y) to fit the boundary conditions.
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2.7. Summary
This chapter has revisited the statics of membrane shells. Some essential theories were
extracted:

• membrane shells are curved structures that carry loads with in-plane tension and
compression but without bending moments;

• the horizontal equilibrium of membrane shells can be formulated by the Airy stress
functions;

• the vertical equilibrium of membrane shells is governed by Pucher’s equation;

• equilibrium at boundaries is characterized by boundary conditions—free edge, funic-
ular edge, wall-supported edge, and supported edge; and

• for ductile construction systems, the lower-bound theorem suggests that an equilib-
rium state that satisfies yield criteria can sufficiently prove that a structure is safe.

The main contributions of this chapter are that:

• a special type of membranes—self-Airy membrane—has been defined, of which the
membrane shell has the same shape as its Airy stress function; and

• some analytical self-Airy membranes are provided.

These theories and contributions lay the foundations for later chapters (figure 1.13). Specifi-
cally, the static theories enable the numerical method, radial basis functions (see chapter 3),
to explore and design the forms of membrane shells. Meanwhile, the self-Airy membrane is
expected to simplify the actuation of the proposed flat-to-curved transforming mechanism
(see chapters 5 and 6).



3
Finding Membrane Shells

with Radial Basis Functions

The double-curvature vaulted structures are very economical and easy to build,

but [usually] cannot be easily represented in graphic documents.

Eladio Dieste1

Parts of this chapter have been presented in IASS Annual Symposium 2019 – Structural Membranes 2019 (Chiang et
al., 2019) and submitted for publication (Chiang & Borgart, 2022).
1adapted from Anderson 2004, p.183. The original work, Arquitectura y Construcción [Architecture and Construc-
tion], had been published in 1980.
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T he method of radial basis functions is often used to approximate arbitrary scalar func-
tions and to solve partial differential equations. When the method is used to approxi-

mate a function in a 2D domain, the graph of the function is a 3D surface, which is suitable
for representing shell roofs of which the projection does not intersect itself. The represented
surface is easy to be C∞ continuously smooth. This feature simplifies curvature interro-
gation and subsequently fabrication-aware discretization (Pottmann, 2013). However, the
method of radial basis functions has not yet been applied in form-finding tasks prior to this
PhD research and related publications: Chiang et al. (2019) and Chiang and Borgart (2022).

Tasks of form-finding seek alignment between stresses, shape, loads, and supports. The
relations among them are characterized by Pucher’s equation and boundary conditions,
which have been carefully examined in chapter 2. The current chapter focuses on how
to utilize radial basis functions (RBFs) to find the right set of stresses and shape under given
loading and supports. The loading may hereby include both vertical and horizontal com-
ponents. The latter component is often neglected yet still important, especially for seismic
hazard zones (Michiels et al., 2019). This chapter also investigates how to consider horizontal
loads in the form-finding process.

Outline
Section 3.1 reviews features of relevant computational form-finding methods. Section 3.2
briefly explains how to apply RBFs to represent an arbitrary function and to solve linear
differential problems. Section 3.3 exhibits basic procedures of applying RBFs by finding the
shape of hanging chains, which is in a 1D domain. Section 3.4 expands the application of
RBFs to 2D domains and finds the stresses and shapes of membranes. Section 3.5 dives
into finding self-Airy membranes and solving free boundary problems. Section 3.6 displays
how horizontal loads affect stress distribution in membranes. Section 3.7 summarizes the
features of the RBFs method and recommends ribs or peripheral walls to carry horizontal
loads.

3.1. Computational methods in form-finding
Numerical algorithms can analyze the statics of shells by discretizing continuous surfaces
into finite elements (Veenendaal & Block, 2012) and sometimes reconstruct them back into
smooth NURBS surfaces (Pugnale, Echenagucia, & Sassone, 2014). As previously mentioned
in section 1.1, these computational form-finding methods can be broken down into two
categories: simulating physical hanging models or numerically solving equations of statics
(figure 3.1).

Physics-based. In the category of simulating physical models, the most representative
method is dynamic relaxation (Barnes, 1988). The computational models contain parame-
ters such as the mass of each node, stiffness of each bar, support positions, etc. The model
computes the elongation of bars and residual forces on nodes, and subsequently, updates
the velocity and position of each node. Then, the model iteratively recalculates the elon-
gation and residual forces based on the updated position until all the nodes rest at a state
of equilibrium. Methods in this category are intuitive to use, but they only provide stable
equilibrium solutions.
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Initial

Step
a = F

m
∆v ∝ a
∆x ∝ v

f (x) =∑∥F∥
∆x = argmin

∆x
f (x+∆x)

Final

(a) Dynamic relaxation
(physics-based)

(b) Force density method
(mathematics-based)

Figure 3.1: Schemes of finding funicular structures. (a) The method of dynamic relaxation starts from a set of
springs, nodes, and loads. The residual forces accelerate the nodes toward a stable equilibrium. (b) The method
of geometric stiffness initializes the process with pre-stressed bars, nodes, and loads. The nodes actively search
for alternative positions to minimize the residual forces.

Mathematics-based. The methods of this category, in contrast, do not include mass in
their models. They solve equations of statics numerically, and sometimes are called geomet-
ric stiffness methods (Veenendaal & Block, 2012). The most representative method is the
force density method (Schek, 1974), in which the bars have prescribed forces proportional to
their lengths. The ratio of the force to the length is called the “force density”. The algorithm
computes the residual force of each node according to the “force densities” and the lengths
and seeks the alternative position of each node to minimize its residual force. The method of
thrust network analysis (Block & Ochsendorf, 2007) also falls under this category. Methods
in this category can be perceived as somewhat abstract, but they can generate both stable
and unstable equilibrium solutions.

Most of these methods are based on networks of funicular bars connected at nodes. The
results from the linear meshes are affected by the connectivity of the mesh and the param-
eters of the bars (e.g., spring constants in dynamic relaxation and force density in the force
density method). These methods can find funicular forms. However, they do no indicate how
to alter the connectivity and the parameters in order to approximate a predefined shape.

This dissertation uses radial basis functions to develop a form-finding algorithm in a
mathematics-based fashion. There is no mass, velocity, or acceleration in the algorithm.
Radial basis functions are used to represent the Airy stress and shape functions. The first
function is equivalent to the reciprocal diagrams in the thrust network analysis, while the
shape function is equivalent to the elevations of nodes.

Two features of this approach are worth mentioning. First, the radial basis function
method is a mesh-free method. The solution is not affected by the connectivity between
nodes. The results generated by the radial basis functions are two smooth functions—an
Airy stress function and a shape function. Secondly, the algorithm can also take a prede-
fined shape as input and then find a closely compatible Airy stress function (if not fully
compatible).
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3.2. Introduction to radial basis functions
Radial basis functions are used to represent a smooth multivariate function. An arbitrary
function f (x) can be approximated by a set of radial basis functions φ

(∥∥x−µi

∥∥ ;ρi
)

and
augment polynomial terms h(x) (Biancolini, 2017; Boyd & Gildersleeve, 2011; Buhmann,
2003):

f (x) =
n∑

i=1
λiφ

(∥∥x−µi

∥∥ ;ρi
)+h (x)+ε, (3.1)

in which x is the position of evaluation, λi are the magnitude coefficients of the RBFs, µi
are the source points, ρi are the shape parameters of the RBFs, and ε is the approximate
error.

The radial basis functions can be as simple as the Euclidean distance as φ
(
r ;ρ

) = r ,
thin-plate splines φ

(
r ;ρ

)= r 2 logr , Gaussian φ
(
r ;ρ

)= e−ρ
2r 2 , or multiquadrics

φ
(∥∥x−µ∥∥ ;ρ

)=√∥∥x−µ∥∥2 +ρ2.

The last one is used in all cases in this dissertation because its shape parameter ρ allows
the user to adjust the local intensity of the curvature. This benefit will be discussed in
further detail in the upcoming section 3.3. Furthermore, there is no necessity to augment
multiquadrics with polynomial terms (Boyd & Gildersleeve, 2011). Therefore, equation (3.1)
can be more specific and simplistic as

f (x) =
n∑

i=1
λi

√∥∥x−µi

∥∥2 +ρ2
i +ε. (3.2)

By a sufficient number of multiquadrics n and adequately arranged pairs of µi and ρi , the
representable space (Buhmann, 2003)

S =
{

n∑
i=1

λi

√∥∥x−µi

∥∥2 +ρ2
i

∣∣∣∣∣ {λi } ∈Rn

}
(3.3)

shall be large enough to include all instances on function f (x) or at least minimize the
approximate errors ε. Practically, only some of the instances will be sampled and used to
calibrate the λi . Let x j denote m calibration points, and f j denote the target values. The
individual errors εi will then be

ε j = f j −φ j i ·λi ,

where φ j i =φ
(∥∥x j −µi

∥∥ ;ρi
)=√∥∥x j −µi

∥∥2 +ρ2
i . In matrix form, this can be expressed as

ε= f−Φλ,

in which ε and f are two m × 1 column vectors with contents of ε j and f j ; λ is an n × 1
column vector containing λi ; while Φ is an m×n rectangular matrix with elements as φ j i .
Then, the best-fit coefficient vectorλ can be provided by minimizing the approximate errors
with the ordinary least-squares method (LSM):

λ= argmin
λ

εTε=
(
ΦTΦ

)−1
ΦTf. (3.4)

Equation (3.4) is often applied in such approximation problems.
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Hermite interpolation and solving a differential equation. When the same scheme
is applied to a Hermite interpolation, in which the interpolation includes not only values but
also derivatives, the method can also provide solutions to differential equations. Suppose
there is a linear partial differential equation problem as

L
[

f (x)
]= g (x), x ∈Ω⊂Rn ,

B
[

f (x)
]= q(x), x ∈ ∂Ω,

whereΩ is the domain, ∂Ω is the boundary, L[·] and B [·] are the differential operators of the
governing equation and the boundary condition respectively, and g and q are prescribed
functions. When xΩ and x∂Ω are selected as calibration points, radial basis functions can be
used to approximate the problem as

g (xΩ) =
n∑

i=1
L

[
φi (xΩ)

]+εΩ, xΩ ∈Ω,

q(x∂Ω) =
n∑

i=1
B

[
φi (x∂Ω)

]+ε∂Ω, x∂Ω ∈ ∂Ω,

or in a matrix form as [
g
q

]
=

[
ΦL

ΦB

]
λ+

[
εΩ
ε∂Ω

]
.

The least-squared method or weighted least-squared method can provide the solution:

λ= argmin
λ

[
wLεΩ
wBε∂Ω

]T [
wLεΩ
wBε∂Ω

]
=

([
wLΦL

wBΦB

]T [
wLΦL

wBΦB

])−1 [
wLΦL

wBΦB

]T [
wLg
wB q

]
,

where wL and wB are the weights. The weights are crucial and have dimensions when L[·]
and B [·] have different dimensions.

The generic theory of differential and the least-square operations has now been clarified.
The upcoming sections employ the method to form-finding problems.
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3.3. Numerically finding the shape of a hanging chain
This section demonstrates how to use radial basis functions to find the form of a hanging
chain in a vertical plane. The shape of a chain is governed by an ordinary differential equa-
tion. Although this problem is rather simple, it admits analytical solutions for validating the
results from radial basis functions. The demonstration begins at the most simple load cases.

Governing equation and boundary conditions. When there is only vertical load, the
shape of a hanging chain between two anchorages can be formulated as a boundary value
problem:

Th · d 2

d x2 Z (x) =−pz (x), x ∈ {x |a < x < b}, (3.5a)

Z (x) = q(x), x ∈ {a, b}, (3.5b)

where Th is the horizontal component of the tension force within the chain, Z (x) is the
shape of the chain, pz (x) is the vertical load per unit horizontal length at position x, a and
b are the positions of the anchorages, and q(x) is the prescribed elevation.
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Figure 3.2: Multiquadric curves and their derivatives
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Representation with RBFs. Assuming the shape function Z (x) is the aggregate of radial
basis functions, one can have

Z (x) =
n∑

i=1
λiφ(x −µi ;ρi )+ε.

Here the problem is in a 1D domain, therefore the independent variable x and the centers of
the radial basis functions µi are scalars, and hence they are denoted by non-bold symbols.
Since the governing equation (3.5a) is a second-order differential equation, it is necessary
to obtain the derivatives of the basis function—multiquadrics—up to the second order:

φ(x −µ ;ρ) =
√

(x −µ)2 +ρ2,

d

d x
φ(x −µ ;ρ) = x −µ√

(x −µ)2 +ρ2
,

d 2

d x2φ(x −µ ;ρ) = ρ2[√
(x −µ)2 +ρ2

]3 .

In the multiquadrics, the shape parameter ρ can affect the intensity of the second deriva-
tive. Figure 3.2 displays the functions with different values of ρ and their corresponding
derivatives.

The problem of the ordinary differential equation (3.5a) and the boundary condition (3.5b)
can be translated into a Hermite interpolation as

−pz (xΩ j ) = Th

n∑
i=1

λi
ρ2

i[√
(xΩ j −µi )2 +ρ2

i

]3 +εΩ j , (3.6a)

q(x∂Ω) =
n∑

i=1
λi

√
(x∂Ω−µi )2 +ρ2

i +ε∂Ω, (3.6b)

where, in the demonstration cases, the positions of anchorages x∂Ω = {a, b} are set to be
{−2, 2}, and the evenly distributed calibration points xΩ j =−2+4( j − .5)/m, j ∈ {1, 2, . . . , m}
have the number count m set to 64.

Arrangements of source points and shape parameters. Before deriving the magni-
tude coefficients λi , one must also determine the locations of source points µi and cor-
responding shape parameters ρi . As indicated in equation 3.3, the representable space is
affected by the arrangement of µi and ρi . In the following paragraphs, three sets of µi and
ρi are prepared. They produce different results under some testing load distributions pz (x).
The results are compared with analytical solutions. Subsequently, one can develop strategies
to arrange appropriate µi and ρi .

The source points are arranged at a regular spacing ∆µ from one end of the domain
to the other end, along with two extra positions outside the domain, or in a mathematical
expression:

µi ∈
({−3, 3

}∪{−2, −2+∆µ, −2+2∆µ, . . . , 2
})

.
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Figure 3.3: Chains under uniformly distributed load

The extra source points {−3, 3} are placed to add extra degrees of freedom to better comply
with the boundary conditions (3.6b) and to leave the main source points

{−2, −2+∆µ, −2+
2∆µ, . . . , 2

}
focusing on approximating the governing equation (3.6a). The spacing ∆µ is

tested at the values of 1, 0.5, and 0.25.
The shape parameters ρ are set to be proportional to the spacing ∆µ. A third of the cases

has the shape parameter ρ = 0.5 ·∆µ, another third has ρ = 2 ·∆µ, and the final third has
ρ = 8 ·∆µ.

Load distributions. Three load cases are tested out. Although the distributions are differ-
ent, the totals remain constant:

∫ 2
−2 pz (x)d x =−2·Th . The distributions include a uniformly

distributed load pz (x) = −Th/2, a triangular distributed load pz (x) = Th · (x − 2)/4, and a
uniformly distributed load over half of the span pz (x) = −Th · H(−x), where H(·) is the
Heaviside step function. Figures 3.3–5 are dedicated to the three distributions.

Result. In total, there are 27 cases, which are located in a 3×3×3 array. A location in
the array means a unique combination of arrangements. Each sheet has a load distribution,
each row has a constant ρ/∆µ ratio, and each column has a constant source point spacing
∆µ. All of them have the same calibration points xΩ j and x∂Ω at the same positions (see
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Figure 3.4: Chains under triangular distributed load

equations (3.6a–b)). With the least squared method, one can derive the best fit λi for each
case. The results of the 27 cases are plotted in figures 3.3–5.

Discussion and error estimation. Across the three sheets or three figures 3.3–5, all
cases show that the results of the RBFs ∑

λiφi (the red curves in the figures) match the
theoretical shapes Zanalytical (the pink curves). Only in the first rows, where (ρ/∆µ) = .5, the
results ∑

λiφi slightly deviate from the theoretical Zanalytical, especially in the last sheet.
The errors in the second derivative are more noticeable. One can see that the aggregate

of the second derivatives ∑
λi · dxx φi (the bold blue curves) undulates around the ideal

values −pz /Th (blue dots). Different settings in the spacing ∆µ and the ratio ρ/∆µ yield
different results. Because the multiquadric curves have a bell shape, the small ρ/∆µ ratio
gives narrow and isolated bells, the dxx φi (thin blue curves). When the ρ/∆µ ratio becomes
even smaller, the bells will look like nails on a bed. That will lead to even worse results than
in the first rows. However, it does not mean a larger ρ/∆µ ratio is always the better choice.
When the ratio is too large, the matrix inverse in the least square method would be singular.
Based on these test, the ratio of ρ/∆µ is recommended to be set between 2 and 8.

The ratio ρ/∆µ controls the magnitude of the undulation of the second derivative curve
around the ideal value, while the spacing∆µ affects the wavelength. Especially at the bottom
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Figure 3.5: Chains with distributed load over half span

row of figure 3.3, one can see all the bold blue curves can not closely match the steep rise
of the step function. But when ∆µ is smaller, the curve with a shorter wavelength can
converge to the plateau within a shorter range. Upon closer observation, one can find that
the wavelength is around two times the spacing ∆µ when the ratio ρ/∆µ allows certain
overlap between the bell curves. Assuming the pattern of the error of the second derivative
is approximately a sine curve with an amplitude α′′ and wavelength 2∆µ:

ε′′(x) ≈α′′ sin

(
π

∆µ
x

)
.

The error in the shape function is roughly

ε(x) ≈−α′′∆µ2

π2 sin

(
π

∆µ
x

)
.

Let α denotes the amplitude of the error ϵ (x). The amplitude α can be estimated by

α≈ ∆µ
2

π2 α′′. (3.7)
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Equation (3.7) explains that although the deviation of the second derivatives (bold blue
curves) from the ideal values (blue dots) is similar in rows of figures 3.3–5, the error εmax

is smaller when the spacing between radial basis functions ∆µ is smaller. Figure 3.6 com-
pares the error patterns of the results of the ordinary discrete approach with the radial basis
functions.

Analytical
Numerical

∣∣∣∣ pz

Th

∣∣∣∣ α′′

|εmax| =
∣∣∣∣∣ pz

Th
· ∆µ

2

8

∣∣∣∣∣ α≈α′′ · ∆µ
2

π2

∆µ ∆µ

dxx Z Z (x)

(a) (b)

Figure 3.6: Patterns of the errors. (a) Discrete approach. The infinite second derivatives are represented with Dirac
delta functions (arrows). (b) Radial basis functions.
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3.4. Finding membrane shells
When finding the form of a membrane shell, the radial basis functions are used to represent
two unknown functions of stress F (x) and shape Z (x):

F (x) =
n∑

i=1
λF, iφ

(∥∥x−µi

∥∥ ;ρi
)+εF ,

Z (x) =
n∑

i=1
λZ , iφ

(∥∥x−µi

∥∥ ;ρi
)+εZ .

The second derivatives of the Airy stress function F (x) are horizontal components of the
membrane stresses, which are equivalent to the Th (the horizontal component of the tension
force) in finding a hanging chain as in section 3.3. The functions F (x) and Z (x) will satisfy
Pucher’s equation (see section 2.3) at points within the domain xΩ and will also satisfy
boundary conditions (see section 2.4) at points on the boundary x∂Ω.

In this section, the above theory will be demonstrated on a point-supported membrane
shell with free edges—the most demanding boundary. The load conditions are given exter-
nally, or more specifically, the vertical load is set to be unit constant (pz = 1), and horizontal
loads are set to be zero (px = py = 0), in this section. Non-zero horizontal loads will be
introduced in section 3.6.

For the shape of such points-supported shell, the relevant conditions can be translated
into a Hermite interpolation problem:

−pz (xΩ) =
n∑

i=1
λZ , i DPucher

F

[
φ

(∥∥xΩ−µi

∥∥ ;ρi
)]+εPucher

Z , (3.8a)

Z∂Ω, s =
n∑

i=1
λZ , iφ

(∥∥x∂Ω, s −µi

∥∥ ;ρi
)+εSupport

Z . (3.8b)

where DPucher
F [·] is a linear differential operator introduced in equation (2.22), and Z∂Ω, s are

prescribed elevations at the positions of the supports x∂Ω, s .
On the other hand, for the stress function of such free-edge shell, the constraints include

−pz (xΩ)+p ′
h(xΩ) =

n∑
i=1

λF, i DPucher
Z

[
φ

(∥∥xΩ−µi

∥∥ ;ρi
)]+εPucher

F , (3.9a)

qNormal(x∂Ω,e ) =
n∑

i=1
λF, i DNormal [φ(∥∥x∂Ω,e −µi

∥∥ ;ρi
)]+εNormal

F , (3.9b)

qShear(x∂Ω,e ) =
n∑

i=1
λF, i DShear [

φ
(∥∥x∂Ω,e −µi

∥∥ ;ρi
)]+εShear

F , (3.9c)

F∂Ω, s =
n∑

i=1
λF, iφ

(∥∥x∂Ω, s −µi

∥∥ ;ρi
)+εSupport

F . (3.9d)

Equation (3.9a) originates from equation (2.23), in which p ′
h(·) is a function related to hori-

zontal loads and DPucher
Z [·] is a linear differential operator. Equations (3.9b) and (3.9c) orig-

inate from conditions (2.26a–b) concerning zero normal stress and zero shear stress at the
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edges. Since the conditions (3.9a–c) only refer to the second derivatives of the stress func-
tion, extra conditions to fix the three degrees of freedom on the overall value and the first-
order derivatives are necessary. Therefore, condition 3.9d is added.

The prescribed functions qNormal(·), qShear(·) and the differential operators DNormal
Z [·],

Dshear
Z [·] can be provided by

qNormal(x) = n2
x

∫
px d x +n2

y

∫
py d y, (3.10a)

DNormal[·] = n2
x

d 2

d y2 [·]−nx ny
d 2

d xd y
[·]+n2

y
d 2

d x2 [·], (3.10b)

qShear(x) =−nx ny

∫
px d x +nx ny

∫
py d y, , (3.10c)

DShear[·] =−nx ny
d 2

d y2 [·]− (n2
x −n2

y )
d 2

d xd y
[·]+nx ny

d 2

d x2 [·]. (3.10d)

With two unknown functions and only one governing equation, the form-finding prob-
lem is under-determined. However, for a membrane that has free edges, its stress func-
tion F (x, y) holds two boundary conditions (2.26a–b), which make the free edges over-
determined. Generally speaking, finding a membrane shell with free edges is a problem
with countless solutions yet in a certain subset. The upcoming algorithm provides a method
to identify if an arbitrarily given shape or stress function is one of the countless solutions.
When it is not, the algorithm can tweak the given function to reach the solution subset.

3.4.1. Proposed algorithm
The sequence of the proposed algorithm is illustrated in figure 3.7. The critical steps are as
follows:

1. Determine the ground plane. List the boundary conditions of the shell.

2. Describe load distributions (px , py , and pz ).

3. Identify potential singular points and arrange the basis functions accordingly.

4. Provide either (a) a initial stress function or (b) a initial shape function.

5. (a) When a stress function is provided, find the corresponding stress function with
Pucher’s equation.

(b) When a shape function is provided, find the corresponding shape function with
Pucher’s equation.

6. Revise the stress function according to the updated shape, and revise the shape func-
tion according to the updated stress until they converge.

7. Export the stress and shape functions.

The singular points mentioned in step 3 refer to points that have stress concentration (for
the stress function) or large curvature (for the shape function). This idea will be more clear
in the following demonstration.
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List boundary conditions (BCs)

Set converge condition

Find magnitude coefficients of 
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Figure 3.7: Flowchart of the algorithm
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3.4.2. Steps 1–3: calibration points and source points
The first 3 steps are eventually arranging two types of calibration points (xΩ and x∂Ω) and
the prescribed values on these points (e.g., pz (xΩ), Z (x∂Ω)) as well as the source points (µ
along with ρ). The arrangement of calibration points is rather simple once the ground plane
and boundary conditions are determined. For the calibration points of domain type xΩ, one
can scatter the points evenly within the domainΩ. Regarding calibration points of boundary
type x∂Ω, there is often more than one type of boundary (see section 2.4 and table 2.2). The
boundary can be divided into segments that have distinct boundary conditions from their
neighbors.

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

1.5

Calibration points
xΩ Domain
x∂Ω,e Free edge
x∂Ω, s Support

Source points
ρ = 0

ρ = 4 · ∥∆µ∥
ρ = 16 · ∥∆µ∥

Figure 3.8: Distribution of calibration points and source points for the triangular shell

Figure 3.8 shows the arrangement of the calibration points and source points for the
demonstration shell, which has a triangular domain, which is anchored to the ground at
the corners, and is subjected to a uniformly distributed vertical load. Triangular grid points
are arranged to be the domain type calibration points xΩ. Regarding calibration points of
the boundary type, the first group x∂Ω,e contains points on the three edges, and the second
group x∂Ω, s includes three vertices of the triangle. The edges are set to be free edges. Since
the edges are straight, the normal and tangential directions, which are needed for the free-
edge conditions (3.9b–c), are straightforward to be defined.

Regarding the source points µ of the basis functions, grid points within and around the
domain Ω are used. The shape parameters are set to be 4 times the spacing of the grid
(ρ = 4 · ∥∆µ∥) for most of the source points. Considering there will be stress concentration
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around the corners, each corner gets two source points. One of them has ρ = 0 and the other
ρ = 16·∥∆µ∥. Since the least-squares method will be used, the source points µ can have less
density than domain calibration points xΩ (see figure 3.8).

3.4.3. Steps 4–5: two paths to find the balance
After the common setup built in the first two steps, the remaining demonstration is split into
two paths. The first path starts with an initial stress function, and the second path starts
with an initial shape function.

Path A: stress initiation. In the path, the demonstration initiates the process from an
analytical stress function provided by Csonka (1987, p. 587). The initial input of the stress
function goes as

F (x, y) = 2(L0 ·L1 ·L2)

15(L0 ·L1 ·L2)+6(x2 + y2 −1)
,

where Li , i ∈ {1, 2, 3} are linear functions that Li (x, y) = cos(2πi /3) x + sin(2πi /3) y −1/2.
This stress function automatically satisfies the free edge conditions (3.9b–c). Figure 3.9 dis-
plays this stress function and its principal curvature network.

− 0 +
Curvature

Figure 3.9: Stress function and its principal curvature network

The only part left unknown is the shape function Z (x, y), or λZ , i which can be given by
minimizing the errors in equations (3.8). One can derive the coefficients for the differential
operator DPucher

F [·] in the governing equation (3.8a) by evaluating the second derivatives
of the stress function F (x, y) at the calibration points xΩ. Along with the boundary con-
dition (3.8b), λZ , i can be provided by the method of least squares (see equation (3.4)). The
shape solution provided by radial basis functions, together with the principal stress network,
is illustrated in figure 3.10.

The residual errors εPucher
F and εPucher

Z are eventually the same. Both of them represent
the difference between prescribed pz and the supporting stress that F (x) and Z (x) are actu-
ally provided. The error is within ±0.02pz at most of the surface as depicted in figure 3.11.
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Figure 3.10: Shape function and the principal stress network
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Figure 3.11: Distribution of the residual error
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Path B: shape initiation. For most ground plans, there may not be an analytical stress
function available. The designer can choose path B to input an initial shape, then the algo-
rithm can tweak the shape to meet the prescribed boundary conditions. For instance, the
designer can provide a paraboloid as the initial shape:

Z (x, y) = 7

10
(−x2 − y2 +1).

The initial shape function provides crucial coefficients to the differential operator DPucher
Z

in the governing equation (3.9a). As suggested by Csonka (1987), the paraboloid cannot
simultaneously be compatible with the two free-edge conditions (3.9b–c). The designer may
be obliged to place walls below the edges to reinforce and support the paraboloid shell to
bypass the condition (3.9c). The corresponding stress function and the initial shape function
are displayed in figures 3.13a and 3.14a.

The designer can also impose condition (3.9c), which will result in a different solution
for the stress function. Then, based on the updated stress function, the algorithm will find
the tweaked shape. The algorithm will alternately tweak or modify the stress and shape
functions before the convergence condition is satisfied. When the iteration does not con-
verge satisfactorily, the designer can first impose the condition (3.9c) with lower weight and
then gradually increase it. In this demonstration, the algorithm consists of four stages of
iteration. Each stage has a different value of the weight, which is set to be 0.25 in the first
10 iterations (1–10), 0.5 in the following 20 iterations (11–30), 0.75 in another group of 30
iterations (31–60), and eventually to be 1 in the last 40 iterations (61–100). Figure 3.12 shows
that the residual errors evolve along with the iterations. The overall root-mean-square error
εOverall =

√∑
(wε)2/

∑
w2 monotonically decreases, and jumps only when the weights are

changed.
Figures 3.13b and 3.14b show intermediate stress and shape functions after the first 30

iterations. Then, the stress and shape functions are turned into a free-edged shell after 100
iterations as illustrated in figures 3.13c and 3.14c.

3.4.4. Steps 6–7: convergence and export
Pucher’s equation consists of the double-inner product of derivatives of stress function and
shape function. When both stress function and shape function are unknown (or both λF

and λZ are unknown), finding the solution set of the stress function and shape function is
a non-linear problem.

The proposed algorithm adjusts the stress function and shape function alternately. In an
individual adjustment, either λF or λZ is treated as unknown and the other is treated as an
externally given constant vector. In this perspective, the error vector has a linear relation to
the unknown coefficient vector (λF or λZ ). The method of linear least square can provide
best fit magnitude coefficients without further trials, unlike the method of gradient descent
(Curry, 1944).

However, the overall path of the proposed algorithm still shows striking similarities to
the gradient descent (figure 3.15). In the gradient descent, there are three features. First,
the overall path is monotonically descent. Secondly, each step ends at the tangent point
to a contour of the minimizing function. Thirdly, any subsequent step is perpendicular
to the previous steps. In the proposed algorithm, each adjustment ends at a conditional
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Figure 3.12: Root-mean-square errors decaying with the iteration

global minimum, thus the overall path is monotonic and each endpoint tangents to the
minimizing function. Let λ = [

λT
F λT

Z

]T. Due to the nature of alternatively adjusting

λF or λZ , each step increment δλi equals
[

0 δλT
Z ,i

]T
or

[
δλT

F ,i 0
]T

. Then, δλi+1

is always perpendicular to δλi . Additionally, given that all the calibration points are at the
non-singular region, thus the smoothness of minimizing function ∑

[wε(λ)]2 is guaranteed.
These features ensure that the proposed algorithm will converge at stationary points so that
the gradient of the minimizing function is zero: ∂

∂λ

∑
(wε)2 = 0.

Practically, the sequence can be terminated when

• the minimizing function is smaller than a prescribed standard: ∑
(wε)2 ≤ (εstd1)2, or

• the process is near a stationary point: ∥ ∂
∂λ

∑
(wε)2∥ ≤ εstd2.

If the sequence reaches ∥ ∂
∂λ

∑
(wε)2∥ ≤ εstd2 before ∑

(wε)2 < (εstandard)2, then it is necessary
to redesign the arrangement of µi and ρi or increase their number.

Regarding the export, the algorithm will export the centers µi and the shape coefficients
ρi as well as the magnitude coefficients λF, i and λZ , i . For some users, a graphical output
may be more relevant than numbers. This chapter uses sets of stress trajectories, or principal

stress networks, to visualize the result. The widths of the trajectories are proportional to the
stress and are inversely proportional to the distances to the adjacent trajectories.
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(a)

(b)

(c)

− 0 +
Curvature

Figure 3.13: Stress function and its principal curvature network. (a) Stress function when the paraboloid shell is
supported on walls. The stress function is elliptic around the center and hyperbolic near the corners. (b) Evolution
toward satisfying free-edges conditions. (c) Result of the last iteration, which is parabolic near the corners.
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(a)

(b)

(c)

− 0 +
Stress

Figure 3.14: Shape function and the principal stress network. (a) Paraboloid shell and stress network when it is
supported on walls. The shell is purely compressed around the center and has tension stress near the corners. (b)
Evolution toward a free-edge shell. (c) Result of the last iteration, which has stress concentration at the corners.
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Figure 3.15: Converging path to a local minimum of
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Figure 3.16: Stress and shape functions of a triangular bubble shell
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3.5. Finding self-Airy membranes
The self-Airy membranes are the special cases of membrane shells of which the shape func-
tion coincides with the Airy stress function when there is no horizontal load. The detailed
definition and features have been introduced in section 2.5. With the numerical tool pro-
posed in this chapter, this section briefly revisits and visualizes the duality of the stress and
shape functions in ordinary shells. More importantly, this section finds numerical solutions
of self-Airy membranes and imposes the free-edge conditions on free boundaries (Friedman,
2000; Apushkinskaya, 2018).

Duality of the general membranes. For a general membrane shell, when there is no
horizontal load, the Airy stress function F (x) and shape function Z (x) have a commutative
relation, such that their Hessian matrices satisfy

Hr 90◦
F :HZ = Hr 90◦

Z :HF =−pz , (3.11)

where HF and HZ denote the Hessian matrices of stress and shape functions respectively,
the superscript r 90◦ denotes 90-degree rotation, and “:” refers to the double-inner product.
This commutative property allows the stress and shape functions to interchange roles. For
instance, the previous paraboloid shell in figures 3.13a and 3.14a has a parabolic shape func-
tion. The parabolic shape (uniformly distributed curvature) can be reinterpreted as the stress
function of a soap film (uniformly distributed stress). At the same time, the stress function
can be reinterpreted as the shape of a compressed bubble soap film under a vertical load as
depicted in figure 3.16.

Self-Airy membranes and free-boundary problems. In contrast, a self-Airy surface
S(x) follows governing equation (2.29) or a copy as follows:

Hr 90◦
S :HS =−pz

F0
, (3.12)

in which HS is the Hessian matrix and F0 is a factor with dimension in force. This equation
is a second-order non-linear partial differential equation. For this type of membrane, the
function S(x) has to satisfy the boundary conditions for both stress and shape functions.

For the free edge, the stress function at a free edge has to be tangent to a plane in the
absence of horizontal body forces (Csonka, 1987; Miki, Igarashi, & Block, 2015), and thus
the conditions (2.26a) and (2.26b) are automatically satisfied. Here, function S(x) inherits
the same conditions. Therefore, for a point x = (x, y) on a free edge, one gets (Csonka, 1987,
185)

S(x, y) = Ax +B y +C , (3.13a)

nx
∂

∂x
S(x, y)+ny

∂

∂y
S(x, y) = nx A+ny B , (3.13b)

where A, B , C are the constants of the tangent plane, and (nx , ny ) is the normal vector of
the boundary. These conditions are rather demanding for a second-order partial differential
equation. If they are imposed around the membrane shells at arbitrary edges, the overall
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(a)

(b)

(c)

− 0 +
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Figure 3.17: Triangular self-Airy membranes. (a) The moving free edges and the intermediate products in the
converging process. (b) The result of the point-supported self-Airy membrane. (c) An instance of the truncation
and the resulting bottom hoop.
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problem might be overdetermined. To realistically find the solution, the free-edge condi-
tions must apply on a free boundary, which is free to adjust its location, hence the name.
In ordinary boundary value problems, both the value and location of the boundary are pre-
defined at the outset of the problem. Conversely, the location of the free boundary is not
predefined in the problem. Only when the problem is solved, the location shall be answered
as part of the solution. Such a problem is called a free boundary problem (Friedman, 2000;
Apushkinskaya, 2018).

Consider a symmetrical self-Airy membrane supported by three points and bounded by
three free edges, like the shells in the previous section. This section expresses the potential
locations of a free edge with polynomials

y =
n∑

i=1
αi

(
x2 −1

)i
,

where αi are unknown coefficients waiting to be adjusted to control the shape of the bound-
ary. The curve, which is symmetrical and passes points (±1, 0), can be rotated and scaled to
connect the fixed ends of a free boundary. Meanwhile, the radial basis functions are used to
represent the potential height of the self-Airy membrane

S(x) =
n∑

i=1
λS, iφ

(∥∥x−µi

∥∥ ;ρi
)+εS .

To find the coefficients of αi and λS, i , the method of non-linear least squares is used. After
providing the preliminary guess of αi and λS, i , the Gauss-Newton method can suggest the
directions of changes for the coefficients. The magnitudes of changes can be turned down
to ensure convergence. A converging process and result are shown in figure 3.17a.

The free-edge conditions (3.13) together with the governing equation 3.12 require the
second-order derivatives to approach zero and infinity as

∂2

∂t 2 S → 0,
∂2

∂n∂t
S → 0,

∂2

∂n2 S = −2pz /F0(
∂2/∂t 2

)
S
→∞.

In other words, large curvature is demanded at the free edges. To understand the location
of the free edges, one can run the free-boundary algorithm first with regularly distributed
source points µ of radial basis functions (figure 3.8). After understanding the approximate
location of the free edges, one can rearrange the source points µ accordingly. Thus, the
residual error can be reduced. At edges and the corners where the edges meet, the error is
still high relative to the inner domain. Nonetheless, other than the critical area, the error
can be less than ±0.05pz as shown in figure 3.18.

Self-Airy membranes have an interesting feature that any plane intersecting the S(x)
also cuts it into a closed surface. The intersection can be interpreted as a hoop that provides
all horizontal thrust and leaves the supports to only provide vertical reactions (figure 3.17c).
This feature also benefits the actuation scheme for a flat-to-curved mechanism in section 6.3.
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Figure 3.18: Distribution of the rearranged source points and the resulting residual error

3.6. Membrane shells under horizontal loads
This section shows how boundary conditions affect the distribution of membrane stresses
when horizontal loads are acting. For cases in which the original shape function (or the
thrust surface) cannot contain horizontal loads, this section also shows how the thrust sur-
face deviates from the original position.

The shape in figure 3.10 is put under this horizontal loading analysis. The shape is re-
garded as the initial shape in the proposed form-finding algorithm introduced in section 3.4.
The load cases contain horizontal loads, which are set to be 30% of the pz in various direc-
tions: (

px , py
)= 0.3

∥∥pz
∥∥ (cosθ, sinθ) , θ ∈R.

For these uniform horizontal loads, a potential function V (x, y) can be introduced (Sadd,
2009, p. 144):

V (x, y) = px x +py y,

which satisfies ∂xV = px and ∂y V = py . The potential function can replace
∫

px d x and∫
py d y in equations 3.10a and 3.10c. In this arrangement, the principal curvatures of the

stress function F (x, y) still align with the principal stresses. This arrangement is not neces-
sary, but it simplifies the visualization of the upcoming figures.

The membrane shell is supported in two ways. In section 3.6.1, the corners of the shell are
anchored to the foundation and the reinforced edges rest on vertical walls, which only pro-
vide vertical reactions. In section 3.6.2, the walls and the edge reinforcements are removed.
The shell is supported as its form-finding configuration. More explicitly, it is anchored in the
three corners, and edges between the corners are free from any support and reinforcement.
These two support conditions generate quite distinct results. In the first case, the initial
shape function can sufficiently carry different load cases. On the other hand, the second
case requires the shape function to deviate significantly from the initial geometry.

3.6.1. Walls-supported shell
As previously discussed and shown in section 3.4, not all arbitrary shapes are compatible
with free-edge conditions under the uniform vertical load. This incompatibility also occurs
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when horizontal loads are introduced. The designer may opt for edge reinforcements and
supporting walls to bypass condition (3.9c). Thus, it is possible to find the appropriate stress
function under a given shape function.

Although the shape function can remain in the original geometry, the stress function
changes dramatically in response to the horizontal loads. Condition (3.9b) asks the stress
function to curve at the edges, and equation (3.9a) governs the stress function in the domain.
Figure 3.20 displays the stress functions under horizontal loads and figure 3.21 shows the
stress flows on the shell and the supporting walls. The shear force next to an edge accu-
mulates as the axial force in the reinforcement. This axial force, which is also curved in the
vertical plane, requires vertical stress in order to reach the balance. Such vertical stress can
be provided by the supporting wall. The stresses can be drawn as concentrated forces as in
figure 3.19, which shows the forces induced by a uniform horizontal load. In practice, the
vertical supporting forces can be provided by structural mullions, for instance.

3.6.2. Point-supported shell
Another way to set the boundary condition is to remove the edge reinforcements and the
supporting walls. As a result, when horizontal loads appear, the shape function must deviate
from the initial input. Even if the input is the form-found shape under the vertical load, the
deviation is still necessary in order to recover the balance from the altered load condition.
The algorithm proposed in section 3.4 can provide the solution sets of stress and shape
functions.

Figure 3.22 displays the solutions of the stress functions in response to the horizontal
loads. In the presence of horizontal body forces, the Airy stress functions must curve accord-
ing to condition (3.9b), which is shared with the stress functions in figure 3.20. Therefore,
the edges of the stress functions in these two figures have the same curves. Readers are
encouraged to flip the pages back and forth to observe this alignment.

However, the stress functions for free-edges must exclusively follow condition (3.9c),
which demands the stress functions to twist specifically at the edges. As a result, the prin-
cipal orientation of stresses will be parallel to one of the edges. One can see the curvature
lines on stress functions are parallel or normal to the edges. The orientation of stress func-
tions’ principal curvatures is the same as the orientation of the principal stresses, since the
potential function V (x, y) is adopted to represent the integrals

∫
px d x and

∫
py d y . There-

Figure 3.19: A wall-supported edge under horizontal loads. The external forces are represented by the green arrows.
Meanwhile, the red and blue lines represent tensile and compressive forces, respectively.
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(a)

(b)

(c)

− 0 +
Curvature

Figure 3.20: Stress functions and their principal curvature networks of the walls-supported shell under horizontal
loads of different directions. (a) θ =−90◦. (b) θ = 0◦. (c) θ = 90◦.
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(a)

(b)

(c)

θ

− 0 +
Stress

Figure 3.21: Shape functions and the principal stress networks of the walls-supported shell under horizontal loads
of different directions. (a) θ =−90◦. (b) θ = 0◦. (c) θ = 90◦.
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(a)

(b)

(c)

− 0 +
Curvature

Figure 3.22: Stress functions and their principal curvature networks under horizontal loads of different directions.
(a) θ =−90◦. (b) θ = 0◦. (c) θ = 90◦.
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(a)

(b)

(c)

θ

− 0 +
Stress

Figure 3.23: Shape functions and the principal stress networks under horizontal loads of different directions. (a)
θ =−90◦. (b) θ = 0◦. (c) θ = 90◦.
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fore, the parallelism between edges and curvature lines also shows parallelism between the
edges and principal stresses, which is required by condition (3.9c).

A side effect of condition (3.9c) is that the initial shape function may no longer satisfy
Pucher’s equation. The proposed algorithm can be used to find an alternative shape function.
After the iterations in the algorithm, one can get the shape functions in figure 3.23. These
shape functions only have three pin supports and no supporting forces from the walls. The
shapes must deviate from the original symmetrical geometry and lean into horizontal loads
as a cyclist leans into a strong crosswind.

The shape functions of various horizontal loads collectively define a pair of upper and
lower envelopes (see figure 3.24). The distance between the envelopes suggests the potential
eccentricity of the membrane stress in the shell. For this point-supported shell, the edges
tend to have larger eccentricities than the middle part, and the middle of an edge has larger
eccentricity than the ends. These envelopes can inform the design of the thickness of a
masonry vault. When the structural system can accept moderate stress eccentricity, the
structure can be much thinner than the distance between the envelopes. Nevertheless, this
distance variation can still indicate the rational design on the thickness variation or for
depths of reinforcing ribs.

Upper envelope 

Lower envelope 

Load direction

Thrust surface

Figure 3.24: The envelopes defined by the thrust surfaces under various horizontal loads

3.7. Summary and discussion
This chapter has presented the first research on utilizing the numerical method of radial basis
function to form-find membrane shells by solving Pucher’s equation. Some observations:

• the physics-based algorithms can only provide stable equilibrium configurations while
the mathematics-based algorithms can generate a wider range of solutions of both
stable and unstable equilibrium states;

• radial basis functions can smoothly interpolate generic multivariate functions; and

• when the method of radial basis functions is applied to Hermite interpolation, in
which the interpolation includes values and derivatives, the method can also solve
differential equations.

The main contributions of this chapter include:

• translating the form-finding problem into a weighted interpolation of Hermite type;
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• developing an algorithm that can work in two ways: providing a shape function based
on an initial stress function, and providing a stress function based on an initial stress
function;

• showing a boundary condition can be switched on or off by changing its weight in
the weighted Hermite interpolation;

• formulating the form-finding of the self-Airy membranes with a free-edge condition
as a free-boundary problem and solving it;

• incorporating horizontal loads in the form-finding process; and

• identifying peripheral walls or variable cross-section ribs that are desirable to brace
a shell against horizontal loads.

The current algorithm uses Pucher’s equation which only concerns the stretching stresses
and regards the difference between the external loads and the carried loads as residual errors.
A future refinement can be to incorporate the bending surface, which can carry part of the
loads by bending stresses. Then the refined algorithm would able to analyze both stretching
and bending surfaces in a shell.





4
Discretizing Free-Form

Surfaces and Airy Stress
Functions

The discrete geometric theory turns out to be

as rich as its smooth counterpart,

if not even richer.

Bobenko & Suris 1

Parts of this chapter have been published in Advances in Architectural Geometry 2020 (Chiang, Buskermolen, &
Borgart, 2021)
1Bobenko and Suris 2008, p. xiv
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E ach membrane shell can be represented by two surfaces: its shape and the graph of its
Airy stress function. This chapter applies geometric methods to discretize both surfaces.

For fabrication of the physical shapes, the free-form shapes of the shells are discretized
into planar principal meshes, which permit planar ribs and torsionless nodes. To visualize
the stress tensor field, the graphs of the Airy stress functions are discretized into panels,
which have curvatures that embody body forces. These rather intangible curvatures can
then be concentrated into the readable creases between panels, akin to distributed stresses
condensed into forces.

Outline
Section 4.1 reviews how architects and builders used to—and still do—benefit from geomet-
ric tools, and combines the fabrication methods with the resulting surfaces. Section 4.2 dis-
cusses the properties of principal meshes. Section 4.3 introduces how a graph of a function
can be visualized in isotropic geometry. Section 4.4 presents a method to discretize the Airy
stress function to include body forces. Section 4.5 summarizes the finding of this chapter
and discusses further implementation of the discretization method.

4.1. Geometry, architectural notation, and digital fab-
rication

Geometry can be regarded as an indispensable vocabulary in architectural design. For in-
stance, the primary shapes (e.g., squares, cubes, circles, spheres, prisms, cones, polyhedra,
etc.) are ubiquitously found in buildings of various ancient civilizations, even though they
were built by master builders who spoke different languages. It seems as if they unani-
mously used the primary forms in their architectural expression. Arguably, these primary
forms were the common architectural language, and they have ever since dominated the
design of our daily lives.

There must be a reason for these geometrical forms to be so universal. It might be due to
practicality. These primary forms are easily defined and reproduced. A designer can define
the form to scale in the design studio, then the crafter and builder can reproduce the drawing
at actual size on workpieces or construction sites.

Since the advent of computers, the designers’ expression is no longer limited to tradi-
tional drafting tools (e.g., ruler, compass, protractor, French curve) (Mitchell, 2001). Computer-
aided-design (CAD) software allows designers to denote free-form curves with a few mouse
clicks (e.g., Bézier curve ). Manufacturing is also no longer bound to drafting tools nor phys-
ical templates. Computer numerically controlled (CNC) machinery permits manufacturers
to produce free-form products from merely digital data.

However, the current technology does not guarantee that a free-form geometry can
be manufactured by any given CNC machine. Different geometrical complexities require
different fabrication techniques (see table 4.1). Although it is technically possible to reach
enormous design freedom using sophisticated 5-axis milling and 3D printing, these tools
are still not economically viable for most building construction. The size and quantity of
components needed for a building would require a significant amount of hours of milling
or 3D printing machinery.

Fortunately, in free-form architectural construction, methods exist to discretize 3D free-
form surfaces into series of 2D flat panels (Pottmann, Eigensatz, Vaxman, & Wallner, 2015),
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Table 4.1: Geometric features resulting from the fabrication methods

Fabrication technique Resulting geometry

M
ac

hi
ni

ng

2-axis cutting Prism
3-axis milling Surface without overhang
4-axis cutting Beveled prism and ruled surface
5-axis milling Free-form surface

3D printing Free-form object

D
ef

or
m

in
g Curved sheet Developable surface

Shrink wrap Minimal surface
Bent grid Chebyshev net

And more* -

* See chapter 5 and figure 5.3

and thus being relatively economical to fabricate. As discussed by Zipkin (2001), two-
dimensional manufacturing processes are always easier than three-dimension ones. The
flat components can be economically fabricated with a 2-axis (sometimes 4-axis, two axes
for moving and the other two axes for tilting), CNC cutting machine from planar materials.
The CNC machine may be equipped with a water-jet, laser, plasma torch, milling spindle,
circular saw, etc. depending on what material is being processed. The flat panels can then
be assembled into the designed 3D free-form surface.

Besides assembling 3D surfaces from flat panels, 3D curved surfaces can also be obtained
through deforming sheet material, such as curving flat lathes or planks (Correa, Krieg, &
Meyboom, 2019; Liddell, 2015; Schling, 2018), and other techniques, which will be further
investigated in chapter 5. The current chapter focuses on assembling flat rigid components.

Relevance to shell construction. As discussed in chapters 1 and 2, shells can have rather
complex curvatures. Before the existence of computers, only a few analytical forms of shells
(e.g., hyperbolic, spherical shells) could be economically produced. Form work was gener-
ally reused in the construction of free-form concrete shells in order to distribute the form-
work expense across multiple copies. Although not many concrete shells have been built
in the last decades, shells are still being built in other forms such as tessellated glass roof
(e.g., the Great Court of the British Museum, see Brown, 2005) and timber plate assembly
(e.g., the BUGA Wood Pavilion, see figure 4.1). The panels of these double-curved surfaces
have different dimensions and angles. Computer software is used to translate the unique
geometry of each panel into a cutting path for CNC machinery. This CNC machinery can
then economically “mass-customize” (Zipkin, 2001) each panel to its unique dimension (fig-
ure 4.1c–d).

Planar quadrilateral meshes. The two built cases previously mentioned are represented
by a planar triangular mesh and a planar hexagonal mesh, respectively. A triangular mesh
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(a) (b)

(d)(c)

Figure 4.1: BUGA Wood Pavilion. (a) The completed structure. (b) The top view drawing. (c–d) One of the panels
being machined by an industrial robot. [Source: BUGA Wood Pavilion, 2019]

naturally has planar panels as three vertices determine a plane. In the case of a hexagon-
dominated mesh with a uniform nodal valency of three, it is also easy to have planar panels,
as three planes naturally define three edges intersecting at a single vertex.

In contrast, it is not so trivial to generate planar quadrilateral meshes (Y. Liu, Pottmann,
Wallner, Yang, & Wang, 2006). Before sophisticated computation tools existed, planar quadri-
lateral meshes could only be achieved by simple geometric rules, such as rotational symme-
try as in the Glass Pavilion designed by Bruno Tout (1880–1938) and the transitional mesh
as in the house for hippopotami (figure 4.2) at the Berlin Zoo, engineered by the Schlaich
Bergermann Partner (Glymph et al., 2004; Schlaich & Schober, 1997).

Geometric theories and tools to generate free-form planar mesh keep evolving. The nu-
merical algorithm designed by Y. Liu et al. (2006), for instance, takes a non-planar quadrilat-
eral mesh as input, and gradually tweaks the positions of vertices to make all faces planar;
and the method of Marionette Meshes introduced by Mesnil, Douthe, Baverel, and Leger
(2017) pulls nodes of a 2D quadrilateral pattern up into the air to meet the planar criteria
and the given spatial guide curves.

Moreover, some meshes not only permit planar facets but also co-planar node axes,
which allows for simplified fabrication and assembly. These benefits come from stricter
geometric constraints, which will be discussed in the next section.

4.2. Principal meshes and grid shells
Principal meshes are quad-dominant meshes that can effectively reveal principal curvatures
of the surfaces (Y. Liu et al., 2006). Three types of such meshes exist: circular, conical,
and Koebe meshes, along with their parallel meshes (Pottmann, Liu, et al., 2007; Pottmann,
Asperl, Hofer, & Kilian, 2007; Zadravec, Schiftner, & Wallner, 2010; Sechelmann, Rörig, &
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(b)(a)

(c)

Figure 4.2: House for hippopotami at the Berlin zoo. (a) Aerial. (b) Interior. (c) Mesh generated form translation.
[Source: (a–b) House for Hippopotamus, Zoo Berlin, 1994; (c) Glymph et al., 2004]

Bobenko, 2012). These planar meshes have the offset property which offers great fabrication
and assembly simplicity. The mesh can be physically built out of planar panels and ribs, and
the planar ribs intersect at the nodes without twisting or torsion (figure 4.3b).

However, the third type of principal meshes—Koebe meshes, and the parallel meshes of
this kind— has creation limitation. They cannot faithfully approximate general surfaces but
isothermic surfaces and some special cases (Sechelmann et al., 2012; Young, 1909). Thus, only
the first two types, namely circular and conical, are under detailed discussion in this disser-
tation. A brief description of the first two types of meshes has been provided by Pottmann
and Wallner (2008):

Circular meshes are quadrilateral meshes all of whose faces possess a circumcircle,

whereas conical meshes are planar quadrilateral meshes where the faces which

meet in a vertex are tangent to a right circular cone [or a sphere].

These principal meshes have interesting offset properties. Offset for conventional smooth
surfaces means corresponding points have constant distance and parallel tangency planes.
To discuss the concept of offset for discretized surfaces, the parallelism has to be provided.
Two discrete surfaces M and M′ are parallel if they have the same combinatorics (i.e.,
same quantities of the vertices and the same connecting structure of edges and faces) and
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M′
M D =M′−M

(a) Offset meshes (b) Rib layout (c) Displacement Mesh
(scaled)

Figure 4.3: Notions of offset meshes. (a) A pair of meshes M and M′ with the same combinatorics. (b) When M
and M′ are parallel, the corresponding edges form planar trapezoids, which can serve as a rib layout for free-form
construction. (c) When the distances between M and M′ approximate to a constant, the displacement mesh D
approximates to a sphere.

all corresponding edges and faces are parallel. Then, one can check whether the Euclidean
distances between corresponding vertices, edges, and faces are constants. If the distances
are roughly equal to a constant d , the displacement of every vertices pair of M and M′
shall approximate a sphere of radius d .

Let D =M′−M denote such a displacement mesh, which is also a parallel mesh of M
(as M′ is parallel to M). The mesh D can hardly be a perfect smooth sphere, but it can fairly
approximate one (figure 4.3). To be more precise, it can be as organized as all vertices are on
the sphere of radius d (figure 4.4a), or all edges are tangent to the sphere (figure 4.4b), or all
faces are tangent to the sphere (figure 4.4c). In these three cases, M and M′ are constant
vertex, edge, and face offset meshes, respectively (table 4.2).

(a) Circular mesh (b) Koebe mesh (c) Conical mesh

Figure 4.4: Three types of displacement meshes for constant offset. (a) A displacement mesh is inscribed in the
sphere—all vertices are on a sphere. Thereby, all faces possess a circumcircle. (b) A mesh possesses a midsphere—
all edges are tangent to a sphere. (c) A mesh is circumscribed about a sphere—all faces are tangent to a sphere.
Thereby, all vertices possess a circular cone of revolution which is tangent to the surrounding faces.

The unit displacement mesh S can also be defined as S =D/d , which can be seen as a
discretized unit sphere. One can derive another offset mesh M′′ of the base M by M′′ =
M+δS , where δ is the offset distance. For any parallel mesh Mp of M or S (parallel
meshes of M and S are eventually the same set of meshes), the offset mesh M′

p can also
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Table 4.2: Fabrication benefits resulting from committing to specific geometric constrains

Type of mesh Fabrication benefit

Planar mesh Planar panels

Principal mesh Planar ribs and torsionless nodes

Circular mesh Constant vertex offset

Koebe mesh or
its parallel mesh Constant edge offset

Conical mesh Constant face offset

be derived with the same unit displacement mesh S as M′
p =Mp +δS .

The discretized sphere S , roughly has uniform curvature on every part and in every
direction. When a quadrilateral on S is elongating and forming a facet on the parallel mesh
Mp , the curvature is more diluted when the elongation is larger. When the elongations
differ in directions, the resulting diluted curvatures also differ. For a quadrilateral, there are
two degrees of freedom of parallel deforming, which are roughly parallel to the two pairs
of opposite edges. Thus, the orientations of the quadrilaterals resemble the orientations of
principal curvature on Mp .

Principal meshes may sound unfamiliar to most architects and engineers. However, ar-
chitects do design with a simple case of principal mesh, arguably on a daily basis. The cube

is one of the most common Platonic polyhedra, which is a special instance that sits at the
intersection of the three types of principal meshes (figure 4.5). All sorts of cuboids, or rect-
angular boxes, which frequently appear in almost every building, are parallel meshes of the
cube. Thus, these rectangular boxes enjoy the constant vertex, edge, and face offset. Princi-
pal meshes, in a way, generalize the offset property of a cube to other free-form meshes.

Prin
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m
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sh

Planar mesh

Circular
mesh

Conical
mesh

Koebe mesh or
its parallel mesh

Platonic polyhedron
(e.g., cube)

Figure 4.5: The Venn diagram of types of principal meshes
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4.3. Isotropic geometry
Isotropic geometry is used in this dissertation to analyze the graphs of the Airy stress func-
tions. In geometry, the term isotropic suggests the direction in which the length measure-
ment degenerates (Professor H. Pottmann, personal communication, June 23, 2020). Unlike
in materials science, isotropic means equal in all directions. In isotropic geometry, the term
“isotropic direction” refers to the distinct direction.

In general, isotropic geometry studies an n-variable scalar function as a graph in the
(n+1)-dimensional space (Chen, Decu, & Verstraelen, 2014; Pottmann & Liu, 2007; Pottmann
& Opitz, 1994). This way, a scalar function f : D ⊂R2 →R defined on a 2D domain D becomes
a 3D surface {

(x, y, f (x, y)) ∈R3∣∣ (x, y) ∈ D
}

.

Subsequently, the original intangible function can be discussed as a visualized surface from
a geometric point of view, so that the gradients of a function become slopes of a surface,
and the second derivatives turn into curvatures.

One can plot the Airy stress function as a surface in the 3D space and apply principal
meshes to discretize the Airy stress surface and thus visualize the principal stresses. Since
the curvatures on the Airy stress surfaces are the second derivatives indicating stresses,
principal meshes ultimately display the principal stresses. As the third dimension of the
Airy stress surfaces is not a physical dimension, it is essential to apply their counterparts in
isotropic geometry, isotropic-circular and isotropic-conical meshes (from here on referred to
as i-circular and i-conical meshes, respectively).

In isotropic geometry, the notions of distance, circle, and sphere differ from their Eu-
clidean counterparts. For detailed definitions, see Pottmann and Opitz (1994) and Pottmann
and Liu (2007). Here, this section briefly mentions the notions that are crucial to i-circular
and i-conical meshes.

Isotropic-distance. The major distinction of 3D isotropic geometry from the ordinary 3D
Euclidean geometry is that the first two dimensions are more important than the last one.
The i-distance between two points x1 = (x1, y1, z1) and x2 = (x2, y2, z2) is barely affected by
the third dimension, such that (Pottmann & Liu, 2007)

∥x1 −x2∥i := lim
ϵ→0

√
(x1 −x2)2 + (y1 − y2)2 +ϵ2(z1 − z2)2,

in which the third dimension is almost negligible as ϵ→ 0 and the subscript i following the
norm symbol ∥ ·∥ stands for isotropic.

Isotropic-sphere. Following the definition of i-distance, the i-sphere is the set of all points
x = (x, y, z) with a constant distance r from a center xc such that ∥x−xc∥i = r or

(x −xc )2 + (y − yc )2 +ϵ2(z − zc )2 = r 2.

When 0 < ϵ2 < 1, the sphere looks like an ellipsoid obtained by rotating an ellipse about the
z-axis, which has two foci. Let (xc , yc , zfocus

1 ) denote the higher focus and (xc , yc , zfocus
2 ) the

lower. When ϵ→ 0, the ellipsoid degenerates into a circular cylinder (as zfocus
1 → ∞ and
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zfocus
2 →−∞), or a paraboloid of revolution (as one of |zfocus

1 | and |zfocus
2 | approaches infinity

while the other stays finite). The former degenerated ellipsoid is the i-sphere of cylindrical
type

(x −xc )2 + (y − yc )2 = r 2,

and the latter is the i-sphere of parabolic type

(x −xc )2 + (y − yc )2 + c1z = c2,

where c1 and c2 are constants that relate to zc and r 2. Thus the unit i-sphere of parabolic
type Σ0 is defined as

Σ0 :=
{(

x, y,
1

2

(
x2 + y2))∣∣∣∣ (x, y) ∈R2

}
.

Isotropic-principal meshes and reciprocal diagrams. In isotropic geometry, the defi-
nition of spheres is changed. As a result, the definitions of i-circular meshes and i-conical
meshes must be updated as well. A paraphrase from Pottmann and Liu (2007):

• I-circular meshes refer to meshes where the vertices forming a face are on the inter-
section between a plane and an i-sphere;

• I-conical meshes refer to planar meshes where the faces meeting in a vertex are tan-
gent to an i-sphere of parabolic type.

An i-circular mesh inscribed in the unit i-sphere Σ0 is reciprocal to an i-conical mesh cir-
cumscribed about the unit i-sphere Σ0 (Pottmann & Liu, 2007). This dissertation extends this
notion and shows that an i-circular mesh inscribed in a surface

(
x, y, F (x, y)

)
is reciprocal to

an i-conical mesh circumscribed about the reciprocal surface
(
ξ, η, F∗(ξ, η)

)
. The reciprocal

relation is defined in equations (2.9). A copy is repeated here:

ξ= ∂F

∂x
, η= ∂F

∂y
, F∗ = x

∂F

∂x
+ y

∂F

∂y
− F , (4.1a)

x = ∂F∗

∂ξ
, y = ∂F∗

∂η
, F = ξ∂F∗

∂ξ
+η∂F∗

∂η
−F∗. (4.1b)

The proof consists of two steps:

1. Planes tangent to
(
ξ, η, F∗(ξ, η)

)
at points ξi =

(
ξi , ηi , F∗

i

)
meet at one vertex if and

only if the corresponding points xi = (xi , yi , Fi ) are on a common plane.

2. Planes tangent to
(
ξ, η, F∗(ξ, η)

)
at points ξi =

(
ξi , ηi , F∗

i

)
are tangent to an i-sphere

if and only if the corresponding points xi =
(
xi , yi , Fi

)
are on a common i-sphere.

In the first step, let ξi denote a point on 3 distinctive points, in which i ∈ {1, 2, 3}, and
xi denote the corresponding points. Planes tangent to the graph of F∗(ξ, η) at ξi can be
expressed as

ζ= F∗(ξi , ηi )+ ∂

∂ξ
F∗(ξi , ηi ) · (ξ−ξi )+ ∂

∂η
F∗(ξi , ηi ) · (η−ηi ).
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From equation (4.1b), the tangent planes are

ζ= xi ·ξ+ yi ·η−Fi . (4.2)

Let ξv = (ξv , ηv , ζv ) denote the intersection of the three tangent planes defined by the three
points. The intersection ξv is provided by ξv

ηv

ζv

=
 x1 y1 −1

x2 y2 −1
x3 y3 −1

−1  F1

F2

F3

 (4.3)

Any non-vertical plane that passes through ξv and is tangent to the graph of F∗(ξ, η) at
points ξt = (ξt , ηt , F∗

t ) should meet the condition:

ζv = xt ·ξv + yt ·ηv −Ft , (4.4)

where xt = (xt , yt , Ft ) is the point corresponding to ξt = (ξt , ηt , F∗
t ). Equation (4.4) de-

scribes that each valid point of tangency ξt corresponds to the xt which is on the plane
Ft = ξv ·xt +ηv · yt −ζv in the space of (x, y, z) as figure 4.6 shows.

xt

F (x, y)

ξv
ξt

F∗(ξ, η)

z

y

x

ζ

ξ

η

Figure 4.6: The intersection of the graph of F (x, y) and a plane is xt , which corresponds to a set of tangency points
ξt that define planes passing through ξv .

In the second step, the reciprocal diagrams of
(
x, y, F (x, y)

)
and

(
ξ, η, F∗(ξ, η)

)
are under

discussion along with the reciprocal diagrams of i-spheres. Let S denote an i-sphere of
hyperbolic type in (x, y, z)

S =
{(

x, y,
a

2

(
(x −xs )2 + (y − ys )2)+ zs

)∣∣∣ (x, y) ∈R2
}

.

Each i-sphere S has four parameters a, xs , xs , and zs denoting the curvature and the position.
Let S∗ denote the corresponding i-sphere of S. By equations (4.1), one can derive

S∗ =
{(
ξ, η,

1

2a

(
(ξ+axs )2 + (η+ays )2)− zs − a

2
(x2

s + y2
s )

)∣∣∣∣ (ξ, η) ∈R2
}

.

If an i-sphere S∗ is inscribed by the planes, from equation (4.2), the slopes of planes should
match the slopes of the i-sphere S∗ at the points of tangency ξS∗i = (ξS∗i , ηS∗i , ζS∗i ). For
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the slope in the x-direction, one has

∂

∂ξ
(xi ·ξ+ yi ·η−Fi )

∣∣∣∣
ξ=ξS∗i ,η=ηS∗i

= ∂

∂ξ

(
1

2a

(
(ξ+axs )2 + (η+ays )2)− zs − a

2
(x2

s + y2
s )

)∣∣∣∣
ξ=ξS∗i ,η=ηS∗i

.

It can be simplified as
ξS∗i = a(xi −xs ).

In the same manner, the condition in the y-direction gives ηS∗i = a(yi − ys ). The tangent
planes and the i-sphere S∗ shall have the same ζ coordination, so that

xi ·a(xi −xs )+ yi ·a(yi − ys )−Fi = a

2
(x2

i + y2
i )− zs − a

2
(x2

s + y2
s ),

which is equivalent to
Fi = a

2

(
(xi −xs )2 + (yi − ys )2)+ zs . (4.5)

The graph of equation (4.5) is exactly identical to the i-sphere S, which suggests that if the
unit i-sphere S∗ is inscribed in the tangent planes defined by ξi , the corresponding i-sphere
S is circumscribed about the corresponding points xi .

x1

x2

S(x, y)

F (x, y)

ξS∗1 ξS∗2

ξ1

ξ2

S∗(ξ, η)
F∗(ξ, η)

z

y

x

ζ

ξ

η

Figure 4.7: Points on the intersection of F (x, y) and S(x, y) correspond to lines tangent to both F∗(ξ, η) and
S∗(ξ, η) at ξi and ξS∗i respectively. Two instances of the tangent lines are explicitly drawn.

A vertex (xi , yi , Fi ) on the graph of F (x, y) is reciprocal to a plane tangent to the graph
of F∗(ξ, η) at the corresponding points (ξi , ηi , F∗

i ). Considering equations (4.4) and (4.5),
one can say that when (xi , yi , Fi ) is a set of i-concyclic vertices, the reciprocal planes meet
at one point and are circumscribed about an i-sphere. Thus, an i-circular mesh inscribed in
F (x, y) corresponds to an i-conical mesh that is circumscribed about F∗(ξ, η).

4.4. Visualizing and discretizing Airy stress functions
Visualization of stress fields is a more complicated task than visualization of a scalar field. In
the absence of body forces, an equilibrium stress field can be characterized by an Airy stress
function, which can be further discretized into a polyhedral surface, with which the forces
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can be visualized via Maxwell’s reciprocal theory (1864; 1868; 1870). However, there is no
theory that includes body forces in the discretization of Airy stress functions. This section
extends the notion of polyhedral Airy stress functions by incorporating body forces.

Stress fields are tensor fields, which have three scalar quantities at each position instead
of one. Contours or graded color maps are only appropriate for scalar fields, whereas a
scalar function, or an Airy stress function, can denote a stress tensor field. However, the
viewer has to observe and understand the curvatures to decipher the stress (figure 4.8a–b).

Other methods are often used in visualizing stress fields. Stress trajectory networks, or
isostatic lines, are often used to show the principal stress orientation of stress fields (fig-
ure 4.8c). Unfortunately, the magnitudes of principal stresses are omitted in such networks.
Quivers are also often used, which can show the orientation and the magnitudes at once (fig-
ure 4.8d). However, the overall stress flow is in this case not as clear as a stress trajectory
network.

Conversely, a polyhedral stress function can effectively condense distributed stresses
into forces. The resultant network can be drawn with linewidth proportional to the forces.
Although one may use a triangular or hexagonal mesh to discretize an arbitrary stress func-
tion (Fraternali, Angelillo, & Fortunato, 2002), the derived information is not structured and
not intuitively perceptible (Bobenko & Suris, 2007) (figure 4.8e). I-principal meshes pro-
vide a better solution. These meshes have edges as discretized curvature lines, which may
also be discretized isostatic lines (or stress trajectories), which are commonly used to indi-
cate the orientation of principal stresses. Unlike a generic triangular or hexagonal mesh,
an i-principal mesh has the customized edge arrangement to the Airy stress function being
approximated. Combined with the forces on the edges, the principal meshes of stress func-
tions can display principal orientation, the magnitude of principal stresses, and the overall
pattern in one diagram. (figure 4.8f)

Discretizing Airy stress functions into planar i-principal meshes is an effective way to
visualize the stress tensor field. The techniques introduced in section 4.3 can be applied to
discretizing Airy stress functions without body forces into i-principal meshes. However, to
the best of the author’s and supervisors’ knowledge, there exists no theory yet to integrate
body forces in discretized Airy stress functions into i-principal meshes or general meshes.
This dissertation extends the notion of polyhedral Airy stress function from flat panels to
curved ones. The method is presented as follows.

4.4.1. Body forces in a smooth Airy stress function
The Airy stress function F (x, y) can easily integrate body forces px and py once it is com-
bined with the integrals

∫
px d x and

∫
py d y , as clearly shown in an equation:

N =

 Nxx Nx y

Nx y Ny y

=

 ∂2

∂y2 F − ∂2

∂x ∂y F

− ∂2

∂x ∂y F ∂2

∂x2 F

−

 ∫
px d x 0

0
∫

py d y

 , (4.6)

in which N is the stress resultant tensor. This equation is a copy of (2.8). More detailed
discussion can be found in chapter 2.

Hydrostatic pressure. For demonstration, a simple two-dimensional stress field is rep-
resented by the Airy stress function. The pressure or the stress in a pool of static liquid is
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Figure 4.8: Visualizations of stresses in a compressed disc without body forces. The method of planar i-principal
meshes provides ideal results, but it can only work on cases without body forces. (a) Axonometric view of the
Airy stress function. (b) The contours of the stress function. (c) Stress trajectories of the stress tensor field. (d)
Quiver plot of the stress tensor field. (e) Triangular mesh of discretized Airy stress function. (f) I-circular mesh of
discretized Airy stress function. Edges of the meshes are drawn in widths proportional to their forces. Compression
is drawn in blue, tension in red, and external forces in green.
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x

y
z

(a) F (x, y) (b) ∂y y F (c)
∫

px d x (d) Nxx

x

y

(e) Stress distribution (f) ∂xx F (g)
∫

py d y (h) Ny y

Figure 4.9: Hydrostatic pressure. (a) The Airy stress function. (b–d) The process of deriving the normal stress Nxx .
The second-derivative ∂y y F (b) minus the integrals of the body forces

∫
px d x (c) equals the stress Nxx (d). (f–h)

The process of deriving the normal stress Ny y , equivalent to (b–d) but in the perpendicular direction. (e) The
stress distribution along the boundaries.

caused by gravity: py =−ρg , in which g is the gravitational load and ρ is the fluid density.
Since the fluid has no shear force capacity in any direction, the shear stress Nx y equals zero
and the normal stresses are equal: Nxx = Ny y . If the surface of the liquid is set as y = 0, the
stress equals

Nhydro =
[
ρg y 0

0 ρg y

]
. (4.7)
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Regarding the integrals of body forces, one can set∫
px d x = 0, (4.8a)∫
py d y =−ρg y. (4.8b)

Then, from equation (4.6), the stress function shall satisfy ∂xx F hydro = ρg y and ∂y y F hydro =
0. By setting the constant of integration to zero, a sufficient solution to satisfy these condi-
tions is

F hydro(x, y) = 1

6
ρg y3. (4.8c)

Figure 4.9 shows the graphs of the stress function, its second-derivatives, integrals of body
forces, and the resulting stresses. (Both ∂x y F and Nx y are left out since they are both zero
functions.) Although this case is rather simple, its intricate inner structure will be unveiled
once it is discretized.

4.4.2. Body forces in discretized Airy stress function
Different from stresses distributed across a continuous domain, discretized structures only
have stresses concentrated in nodes and bars, and thus zero stresses in the voids (i.e., all of
the space other than the nodes and bars). As the width of a bar approaches zero so that the
stresses become highly concentrated, one may refer to the overall stress as the axial force.
The result is a substitute truss that approximates the original continuous structure. Body
forces cannot be applied in the voids, as there are no structural members to transfer the load.
Hence, the substitute loads (equivalent to the body forces) must apply at either the nodes
or the bars. In this dissertation, bars are chosen to bear the body forces, which means the
integrals of body forces must be discretized into step-wise functions. In every void, since
px = py = 0, the

∫
px d x and

∫
py d y are constant. Loads in the x-direction are represented

by the difference in
∫

px d x across two adjacent voids. Equally, loads in the y-direction are
characterized by the difference in

∫
py d y across the voids.

At the same time, the Airy stress function is discretized into vertices, edges, and faces
which correspond to the nodes, bars, and voids of the substitute structure. Each face in the
Airy stress function represents a void bearing zero stress in the substitute structure. Hence,
in the voids, the Airy stress function F void(x, y) should satisfy Nvoid = 0. Following from
(4.6), it can be derived that

∂2

∂y2 F void =
∫

px d x, (4.9a)

∂2

∂x2 F void =
∫

py d y. (4.9b)

Since both
∫

px d x and
∫

py d y are constant in a void, F void should simply be a paraboloid.
Subsequently, the creases between these paraboloids should be conic sections in top view.
It must be noted that the second derivatives at the creases are extremely intense, or more
precisely, approach infinity. However, the integrals of such second derivatives are still a
finite number, which can be interpreted as the slope differences across the creases. The dif-
ferences between slopes represent the axial forces of the corresponding bars. As the second
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(a) F (x, y) (b) ∂y y F (c)
∫

px d x (d) Nxx

x

y

(e) Stress pattern (f) ∂xx F (g)
∫

py d y (h) Ny y

Figure 4.10: Discretization of hydrostatic pressure. (a) The discretized Airy stress function, with curved faces and
creases. (b–d) The derivation of the normal stress Nxx . The second-derivative Fy y (b) minus the integrals of the
body forces in the x-direction

∫
px d x (c) equals the stress Nxx (d). (f–h) The derivation of the normal stress Ny y ,

with the same process in (b–d). In panels (b, d, f, and h), the protruding surfaces ended by the black lines are a
schematic representation of the Dirac delta function. The distance from the curve to the x y-plane is proportional
to the crease angle of the stress function. (e) The structure approximating the hydrostatic pressure.

derivatives and the stresses approach infinity, the Dirac delta function (Arfken et al., 2013,
p. 75) will be used to represent them.

Discretizing hydrostatic pressure. Grid points xi j are used to construct the Airy stress
functions in the voids F void

i j . Grid points are given by

xi j = (δ · i , δ · j ),

where δ is the spacing and i , j are the indices such that i ∈Z, j ∈ {0, −1, −2, . . .}. Function
F void

i j is defined as polynomials that satisfy equations (4.9) and are tangent to the smooth
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Airy stress function given in equation (4.8c). The result is

F void
i j = ρg

(
1

6
δ3 j 3 + 1

2
δ2 j 2(y −δ j )− 1

2
δ j (x −δi )2

)
. (4.10)

Each F void
i j intersects with its adjacent faces. The intersection of two faces defines a curved

bar, and the intersection between bars defines a node. Figure 4.10 shows the result of the
discretized stress function, and figure 4.10e shows the inner structure of hydrostatic pres-
sure. At a deeper location, the rise of the arch is shallower as the thrust is larger, while the
column is thicker.

The proposed discretization method does not invent the structure, but rather discovers
its natural existence. Similar structures have been discovered by architects centuries ago.
Figure 4.11 displays how Christopher Wren (1632-1723) managed to use the inverted arch
and horizontal thrust to generate vertical support from an area of soil to the columns.

Figure 4.11: The inverted arches as
the foundations of Wren’s Library for
Trinity College, Cambridge. [Source:
McKitterick, 1995, image courtesy of
Cambridge University Press]
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4.4.3. Body forces in graphic statics and reciprocal diagrams
Besides analytical discussion via mathematical expressions, the idea of body forces repre-
sented by the curvatures of Airy stress function in voids can also be shown via graphic
statics and reciprocal diagrams.

Graphic statics is primarily used to analyze the forces in a truss-like structure (see sec-
tion 2.2). A classical demonstration of graphic statics is given by the analysis of a cable’s
shape by hanging several weights as figure 4.12a shows. The form diagram shows the cable
deformed due to three weights, and the closed force polygons indicate that each node is in
equilibrium.

When another cable (figure 4.12b) hangs right below the previous one, aggregate force
polygons are formed as in figure 4.12c. The force polygons corresponding to the lower chain
in figure 4.12c show that it is not the absolute magnitude of the applied load b′

i determining
the shape of the lower chain, but that the shape is determined by the difference between
the axial forces in ai and b′

i . In other words, part of b′
i is passing the lower chain and only

(b′
i −ai ) is interacting with the lower chain. Figure 4.12d shows the force polygons when the

loads are not just applied at three points, but all along the chain, as if they were distributed.
The last two rows of figure 4.12 display the stress functions and the reciprocal diagrams.

The stress functions in columns (a) and (b) add up into the stress function in (c), which has
vertical edges to represent the loads of ai and b′

i . The stress function in (d) has smooth
cylindrical surfaces with countless straight lines to represent distributed loads.

Regarding the reciprocal diagram, the principal curvatures at the corresponding points
have the same orientation and multiplicative inverse curvatures (see section 2.2 and equa-
tion (2.17)). The feature suggests a cylindrical panel of F void(x, y), which has principal cur-
vatures consisting of a finite value and a zero {a, 0}, corresponds to a curve line, which
has multiplicative inverse principal curvatures that consist of a finite and an infinite value
{a−1, ±∞}. For instance, in figure 4.12d, the middle patch in the stress function corresponds
to the middle curved crease in the reciprocal diagram. The reciprocal relations between
other types of surfaces are organized and displayed in table 4.3 and figure 4.13.

Table 4.3: Reciprocal relations between geometric entities

Entity in F (x, y) |λF
1 | |λF

2 | Entity in φ(ξ, η) |λφ1 | |λφ2 |
Vertex ∞ ∞ Planar surface 0 0

Curved edge 0 · · ·∞ ∞ Developable surface 0 · · ·∞ 0

Straight edge 0 ∞ Straight edge ∞ 0

double-curved surface 0 · · ·∞ 0 · · ·∞ double-curved surface 0 · · ·∞ 0 · · ·∞
Developable surface 0 0 · · ·∞ Curved edge ∞ 0 · · ·∞

Planar surface 0 0 Vertex ∞ ∞

Reciprocal diagrams for hydrostatic pressure. To find the reciprocal diagram of the
discretized stress function discussed in section 4.4.2, one may directly apply equations (4.1).
The result is the self-intersecting surface in figure 4.14b. To untangle the self-intersecting
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Figure 4.12: Hanging-chain models with corresponding force polygons and Airy stress functions. (a) A chain
supporting three weights and anchored at leveled supports. (b) Another chain anchored at differing heights. (c)
Two hanging chains in the same vertical plane. (d) Two chains with evenly distributed loads.
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Figure 4.13: A pair of reciprocal diagrams. (a) the left diagram consists of four surfaces (A: developable, B: double-
curved, C–D: planar), four edges (E–G: curved, H: straight), and one vertex (I). (b) The corresponding entities are
labeled in lowercase letters. Surfaces b, e, f, g, and i are continuous in slopes, and the borders between surfaces A,
B, C, and D have crease angles.

surface, instead of discretizing the stress function in expressions (4.8), one can choose dif-
ferent constants of integration as∫

px d x = ρgC , (4.11a)∫
py d y =−ρg y +ρgC , (4.11b)

F hydro(x, y) = 1

6
ρg y3 + 1

2
ρgC

(
x2 + y2) , (4.11c)

where C is such a constant of integration. Then, the subsequent discretization will lead to

F void
i j = ρg

(
1

6
δ3 j 3 + 1

2
C

(
δ2i 2 +δ2 j 2)+Cδi

(
x −δi

)+ (1

2
δ2 j 2 +Cδ j

)(
y −δ j

)
+1

2

(−δ j +C
)(

x −δi
)2 + 1

2
C

(
y −δ j

)2
)
. (4.12)

Figure 4.14c–d graphs this alternative discretized Airy stress function and its reciprocal
diagram (C =−5δ). The reciprocal diagram has a series of patches. At a deeper location, the
sizes of the patches are smaller and thus the gaps between them are wider. The wider gaps
correspond to the larger axial forces of the arches and columns (see figure 4.10e). The widths
of the gaps in (ξ, η, ζ) are determined by the sizes of patches (F void

i j )∗, which are determined
by the curvatures of the corresponding patches F void

i j in (x, y, z). Thereby, a local change in
the curvatures of F void

i j will locally change the magnitudes of axial forces. This observation
once again connects the body forces with the curvatures of the Airy stress function in the
voids.
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Figure 4.14: Reciprocal diagrams of the discretized Airy stress functions for the example of hydrostatic pressure.
(a–b) Stress function (4.10) and its reciprocal diagram. (c–d) Stress function (4.12) and its reciprocal diagram.

Relief-like discretized stress function. Despite the different constants of integration,
both expressions (4.8) and expressions (4.11) represent the same stress distribution Nhydro

stated in equation (4.7). Thereby, the two versions of discretization in equations (4.10) and
(4.12) are also the same. One may subtract the smooth Airy stress function (4.8c) from the
discretized version (4.10) and obtain

F void
i j = ρg

(
1

6

(
δ3 j 3 − y3)+ 1

2
δ2 j 2(y −δ j

)− 1

2
δ j

(
x −δi

)2
)
. (4.13)

The resulting graph will look like a relief shown in figure 4.15. Subtracting equation (4.11c)
from equation (4.12) will deliver the exact same result. In a way, the relief-like version
corresponds to the reciprocal diagram that has patches (F void

i j )∗ overlap one another. At the
same time, it is invariant to the constants of integration.

Figure 4.15: The relief-like discretized Airy stress functions. Left: Isometric
view. Right: Front view.
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4.4.4. Non-planar qadrilateral i-circular and i-conical meshes
When body forces are introduced, the discretized Airy stress function should have curved
faces to meet the zero stress conditions (4.9). Given that the existing definitions on i-circular
and i-conical meshes are restricted to planar faces, here generalized definitions of i-circular
and i-conical meshes are proposed.

• Non-planar i-circular meshes are quadrilateral dominant meshes that the vertices of
each face are on an i-sphere of cylindrical type;

• Non-planar i-conical meshes are quadrilateral meshes that the surrounding faces of
each vertex are tangent to lateral faces of a pyramid at the apex, and the pyramid is
circumscribed about an i-sphere of parabolic type.

Non-planar i-circular mesh. Figure 4.16 shows two sets of points xi that are on the
intersections of cylindrical i-spheres S, the graph of the local zero-stress stress functions
F void , and two smooth stress functions F . One is elliptic and the other is hyperbolic. These
xi would be legitimate vertices for non-planar i-circular meshes.

x1

x2

x3

x4S ∩F

F void ∩F

F void(x, y)

F (x, y)

S

x1

x2

x3

x4S ∩F

F void ∩F

F void(x, y)

F (x, y)

S

(a) (b)

Figure 4.16: Points xi on the intersection of an i-sphere of cylindrical type S, the graph of the local zero-stress
stress function z = F void(x, y), and the graph of the stress function z = F (x, y). (a) A case in which F has positive
Gaussian curvature. (b) A case in which F has negative Gaussian curvature.

In a discretization problem, a smooth Airy stress function F (x, y) and smooth integrals of
body forces Px (x, y) = ∫

px d x and Py (x, y) = ∫
py d y are assumed to be provided externally.

A systematic way is needed to translate F (x, y), Px (x, y), and Py (x, y) into their discrete
counterparts. This dissertation proposes a method to translate them.

Let functions F void(x, y), P void
x (x, y), and P void

y (x, y) denote the counterparts in a void
region, which is bounded by four points xi on F (x, y), in which only the first three points
are known. The first three points can determine the center (xc , yc ) and the radius of an
i-sphere of cylindrical type S. Then, the P void

x (x, y) and P void
y (x, y) are set to be constant

functions as discussed in section 4.4.2 and conditions (4.9). They can be arranged as

P void
x (x, y) = Px (xc , yc ), P void

y (x, y) = Py (xc , yc ).
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Subsequently, F void can be defined in a polynomial form:

F void(x, y) = Py (xc , yc )

2
x2 + Px (xc , yc )

2
y2 +ax +by + c, (4.14)

in which a, b, c are constants which can be determined by F void(xi∈{1,2,3}) = F (xi∈{1,2,3}). In
this way, conditions (4.9) are automatically satisfied. Thus, F void and S are determined. The
fourth point can be located at the intersection of F , F void , and S. This method can derive
one point of a 2-by-2 mesh when three points are given. In regions with no umbilical point
(Porteous, 2001), the method can derive a quadrilateral mesh with m-by-n points when
(m +n −1) points are given.

In the cases where
∫

px d x and
∫

py d y equal zero, all faces of F void(x, y) are planar, and
the derived mesh degenerates into a conventional planar i-circular mesh. Moreover, a planar
i-conical mesh circumscribed about F (x, y) can also be derived by applying this method, by
discretizing the reciprocal diagram F∗(ξ, η) into an i-circular mesh first. Then the reciprocal
mesh is an i-conical mesh in the x, y , z environment as discussed in section 4.3.

Non-planar i-conical mesh. Regarding a non-planar i-conical mesh that circumscribes
about a smooth graph of F (x, y), an example of hydrostatic pressure was shown in sec-
tion 4.4.2. In that example, each void region of the discretized Airy stress function was
constructed based on a grid point, so that the F void(x, y) were constructed as

F void(x, y ; xb , yb) = Py (xb , yb)

2
(x −xb)2 + Px (xb , yb)

2
(y − yb)2

+ ∂

∂x
F (xb , yb)(x −xb)+ ∂

∂y
F (xb , yb)(y − yb)+F (xb , yb), (4.15)

where (xb , yb) is the base point. The curvatures of F void(x, y) are informed by Py (xb , yb)
and Px (xb , yb), and the overall slope and elevation are determined such that F void(x, y) is
tangent to F (x, y) at the base point (xb , yb).

Suppose there are four base points xi = (xi , yi , zi ) that construct a set of F void
i (x, y). The

first three graphs of F void
i (x, y) can easily meet at one point, say xv = (xv , yv , zv ). If the

fourth face also passes the same point with correct slopes, then the criteria for non-planar
conical meshes can be fulfilled. The passing through the point xv is expressed relatively
easily in an equation:

F void
4 (xv , yv ; x4, y4) = zv . (4.16)

Regarding the slopes, one can approach xv from different base points xi . The observed slope
can be expressed as

x-component: ξvi = ∂

∂x
F void

i (xv , yv ; xi , yi ),

y-component: ηvi = ∂

∂y
F void

i (xv , yv ; xi , yi ).

In other words, the slopes (∂x F void
i , ∂y F void

i ) can be regarded as points (ξvi , ηvi ) in Maxwell’s
reciprocal diagram, and the vertex xv corresponds to the polygon formed by points (ξvi , ηvi ).
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Whenever the polygon is cyclic, the orientation of planes tangent to F void
i at xv will circum-

scribe an i-sphere, thus meet the criteria for i-conical meshes. The polygon is cyclic when
the following equation is met:

(ξvi −ξc )2 + (ηvi −ηc )2 = ρ2
c , (4.17)

in which (ξc , ηc ) is the center and ρc is the radius of the circumscribed circle (see figure 4.17).
Equations (4.16) and (4.17) together can determine the legitimate fourth base point and make
the vertex xv meet the i-conical condition.

x1

x2

x3

x4

xv

F void
i (x, y)

F (x, y)

ξc

ξv1ξv2

ξv3

ξv4

ξ1
ξ2

ξ3

ξ4

F∗(ξ, η)(
F void

i

)∗(ξ, η)

z

y

x

ζ

η

ξ

(a) (b)

Figure 4.17: Reciprocal diagrams of the smooth stress function F (x, y) and faces of the discretized stress function
F void

i (x, y). The faces tangent to F (x, y) at the base points xi . Correspondingly, their reciprocal counterparts(
F void

i

)∗(ξ, η) tangent to F∗(ξ, η) at ξi . The vertex xv meets the i-conical condition when it corresponds to a
polygon (with the four vertices ξvi ) having a circumscribed circle (the green circle).

The method can locate one base point when the other three base points are given. In
regions with no umbilical point, the method can derive a quadrilateral mesh with m-by-n
base points when (m +n −1) base points are given.

4.4.5. Application: Discretizing the stress function of beams
In linear elasticity, when compatibility is considered and the body forces are zero or uniform,
the Airy stress function should follow the bi-harmonic equation (Sadd, 2009, p. 145):

∂4F

∂x4 +2
∂4F

∂x2∂y2 + ∂4F

∂y4 = 0. (4.18)

A solution to the governing equation (4.18) for a simply supported beam with reinforced
ends can be expressed as (Sadd, 2009, pp. 157-158)

F (x, y) =−2R

L

[(
x2 − L2

4

)
y2

H 2

(
y

H
− 3

2

)
− y2

5

(
y

H
− 1

2

)( y

H
−1

)2
]

, (4.19)
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in which R denotes the reaction force at one of the supports, L the length of the beam, and
H the depth.

This analytical stress function can be interpreted as body forces being zero and all loads
acting at the top. Subsequently, the stress function can be discretized into a planar i-circular
mesh. The mesh highlights the principal curvatures of the graph (Bobenko & Suris, 2007;
Pottmann & Liu, 2007), or the principal stresses of the beam, as figure 4.18a shows. The
stress Ny y equals 2R/L at the top and gradually becomes 0 at the bottom of the beam.

One can also interpret the same stress function (4.19) when body forces are

px = 0, py = 2R

LH
.

In this case, the beam is loaded by its self-weight and there is no external load at the top.
Accordingly, one must discretize the stress function into a non-planar i-circular mesh, as
figure 4.18b shows. In this case, the stress Ny y equals 0 at the top, middle, and bottom of the
beam. Furthermore, by subtracting the smooth stress functions from the discretized ones,
one can get the relief-like stress function as in figure 4.18c–d.

These two load cases have the same governing equation and are represented by the same
smooth stress function. But after different ways of discretization, the planar and curved
faces develop different crease angles at the edges and therefore reveal different stresses in
the bars.

x
y z

ΣP = 2R

py = 0

R R

L

H

ΣP = 0

py = 2R/LH

R R

(a) (b)

(c) (d)

Figure 4.18: Discretized Airy stress functions of simply-supported beams. (a) The beam loaded on top without
body forces. (b) The beam loaded by its own weight. The diameters of the bars are proportional to their axial
forces. Blue bars resemble compression and red bars resemble tension. (c–d) Top views of the relief-like stress
functions.
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4.5. Summary and discussion
This chapter has discussed the application of geometry in fabrication-aware design and dis-
cretizing Airy stress functions. Some observations are made:

• principal meshes can approximate free-form surface with flat panels and planar ribs
intersecting at torsionless nodes;

• there are three types of principal meshes and two of them are appropriate for approx-
imating arbitrary surfaces—circular meshes and conical meshes;

• principal meshes are parallel meshes of polyhedral spheres;

• rectangular boxes are a family of principal meshes based on the same polyhedral
sphere—cube;

• isotropic-geometry is suitable for discussing a 2D Airy stress function as a graph in a
virtual 3D space;

• a smooth Airy stress function without body forces can be discretized into an isotropic-

principal mesh, in which the edges can visualize the principal stresses; and

• when a discretized Airy stress function undergoes Maxwell’s reciprocal mapping, a
face maps to a vertex, an edge maps to an edge, and a vertex maps to a face.

Based on the observations, the main contributions of this chapter are that:

• a method is proposed to discretize Airy stress functions, as well as body forces;

• the integrals of body forces are discretized into step-wise functions;

• Airy stress functions are discretized into curved meshes, in which the faces have cur-
vatures that echo the step-wise integrals of body forces;

• definitions of non-planar isotropic-circular and conical meshes are proposed, which
can visualize the principal stresses of a stress field with body forces; and

• when a discretized non-planar Airy stress function undergoes Maxwell’s reciprocal
mapping, other than the ordinary reciprocal relationship (a face maps to a vertex, an
edge maps to an edge, a vertex maps to a face), a curved edge maps to a developable
surface, a developable surface maps to a curved edge, and a double-curved face maps
to a double-curved face.

In later chapters, the conical mesh is used for discretizing synclastic shells and flatten-
ing them into reconfigurable mechanisms (chapters 5 and 6). For further developments in
visualizing stress fields, the proposed method currently only focuses on planar structures
with in-plane, or membrane, stresses. For curved shells, it can further be developed how
to consider the slopes of the shells when the Airy stress function is under discretization.
For bent plates, the method can be used to visualize the stresses of the top and the bot-
tom layers, while the shear forces between the two layers can be treated as body forces.
Regarding validating whether this visualization technique actually generates more percep-
tible results, experiments could also be designed and executed, which is beyond the scope
of this dissertation.
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New structural ideas are useless

unless they are based on practical and

efficient construction procedures.

Pier Luigi Nervi1

Parts of this chapter have been published in Advances in Architectural Geometry 2018 (Chiang, Mostafavi, & Bier,
2018) and in archiDOCT, 6(2) (Chiang, 2019)
1Nervi, 1956, p. 57
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T he emerging demand for double-curved surfaces challenges designers and manufac-
turers. Utilizing sheet material to produce curved surfaces is an economical solution,

given that such materials can be produced and processed with ease. To exploit the eco-
nomical benefits of sheet materials, numerous researchers investigate how to decompose a
free-form surface into planar components on an architectural scale (see section 4.2). Mean-
while, various advanced approaches have been proposed to transform flat mechanisms into
double-curved surfaces, and pilot prototypes have been produced on laboratory scales, such
as paper origami (Tachi, 2013), reconfigurable prestressed composite (Aldinger, Margariti,
& Suzuki, 2018) or deployable auxetic membranes (Konaković-luković, Konaković, & Pauly,
2018). These approaches make materials reconfigurable, yet leave them vulnerable to bend-
ing stresses and prone to buckling.

This chapter presents a novel flat-to-curved mechanism that enables the resulting double-
curved structure to resist moderate bending stresses and thus giving it stability under com-
pression. The mechanism consists of nearly vertical hinges and connected blocks. Blocks
can rotate about the hinges and thus the overall mechanism contracts or expands. Non-
uniform contraction or expansion causes change of the Gaussian curvature.

Geometrically, the major challenge lies in how to identify the set of hinges that can
allow the blocks to be reconfigured from a flat to a curved state without residual strain
or permanent deformation. Such hinges enable the material to stably maintain the desired
shape instead of returning to its initial configuration. Figure 5.1 illustrates an overview of
the design steps, which are explained in the following sections.

Unrolling

Restructuring

Reconfiguring

(a) (b)

(c) (d)

Figure 5.1: The proposed workflow of the design process. (a) The quadrilateral conical mesh. (b) Unrolled pan-
els. (c) Restructured panels with connectors. (d) The free-form synclastic surface formed by the reconfigurable
mechanism.
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Outline
In this chapter, relevant studies and mechanisms are reviewed in section 5.1. Section 5.2 in-
troduces the mechanical principles and the geometrical features of the bi-stable mechanism.
With these fundamental insights in mind, section 5.3 explains how to employ the explored
approaches to transform a synclastic surface into its flat configuration. For validation, pilot
prototypes have been produced, and the production is reported in section 5.4. Consequently,
features of the current method and future works are summarized in section 5.5.

5.1. Reconfigurable mechanism and architected materi-
als

Since the 2000s, the demand for free-form architecture has gradually increased (Pottmann
et al., 2015). The most effective way to build a large free-form surface is to decompose the
curved surface into a series of flat panels (Pottmann, Liu, et al., 2007). Although a consider-
able amount of unique components will be generated in the process, numerically controlled
machinery can economically produce all components from either 2D sheet materials (e.g.,
steel plates, float glass) or 1D profiles (e.g., steel tubes, extruded aluminum). However, the
assembly of components is still a labor-intensive and challenging task for builders. Intro-
ducing a bi-stable mechanism, this research aims to develop a fabrication method of flat
material that can be reconfigured into the target curved states. With this objective, the re-
search is built around the premise that such mechanisms can make the assembly process
more efficient and less labor-intensive.

Reconfigurable mechanism. In recent years, numerous ways have been proposed to
deliver flat-to-curved reconfiguration for fast deployment. The reconfigurable systems may
include embedded actuators or focus on the mechanisms to be actuated. In the first category,
two approaches can be distinguished. Some researchers build responsive reconfiguration
systems by layering materials with different expansion rates to moisture or temperature
changes (Reichert, Menges, & Correa, 2015; Tibbits, 2014; van Manen, Janbaz, & Zadpoor,
2017). With the ambient changes the layered materials expand unevenly, which cause the
composites to curve. Other researchers deposit stiff components on pre-tensioned mem-
branes (Aldinger et al., 2018; Guseinov, Miguel, & Bickel, 2017; Jourdan, Skouras, Vouga, &
Bousseau, 2021). Once the pre-tensioning is removed, the contracting membranes actuate
the composites to the curved configurations.

The research in the second category, on the other hand, concentrates more on the mech-
anism than actuation. The researchers investigate how to arrange the flexible joints to per-
mit mechanisms to be reconfigured into the desired shapes. In the research pursued by
Konaković et al. (2016), sheet materials are homogeneously cut into triangular panels, and
the connections between the triangles are considered as ball joints. The material can then be
stretched and bent into various free-form shapes. In the cases of origami and kirigami ex-
plored by Tachi (2013) and J. Liu, Liu, Eggers, and Sabin (2018) respectively, all components
are connected by linear hinges, or the crease lines, laying in the plane of the sheet material.
The sizes and shapes of the components are informed by the desired curved surface. The
difference between the approaches of Tachi and J. Liu et al. is that origami forbids the de-
signer to cut the sheet materials while kirigami allows one to do so. The ball joints and the
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linear hinges of these approaches make the flat materials pliable. This attribute makes the
products—in their target configurations—incompatible with bending stresses.

In contrast to arranging linear hinges in the plane, Haghpanah, Salari-Sharif, Pourra-
jab, Hopkins, and Valdevit (2016) place the hinges vertically and produce another type of
mechanism. The mechanism consists of multiple units that can be sequentially expanded to
other configurations and can stably maintain the shapes. This feature is termed bi-stability.
Although both the initial shape and the reconfigured shape are confined in the plane, it sug-
gests that the reconfigurable mechanism can also work on thick materials, which promises
certain bending resistance.

Rafsanjani and Pasini (2016) arrange the bi-stable unit in a way that the overall mech-
anism is auxetic. Auxetic is a property that an object shrinks (or expands) in all directions
when it is only compressed (or stretched) in one direction. Figure 5.2 shows the design of
Rafsanjani and Pasini. A feature has been pointed out that the sides of the rotating squares
(cyan squares in the figure) can adjust the expansion rate between the two stable states. The
feature encourages the author to find ways to distribute different expansion (or contraction)
rates at different positions to induce double-curved transformation.

Figure 5.2: One of the bi-stable auxetic mech-
anisms presented by Rafsanjani and Pasini.
[Source: Rafsanjani & Pasini, 2016]

A revised bi-stable mechanism is proposed in this PhD research, in which the linear
hinges are not arranged vertically but in various tilted orientations in the thickened sheet
that allows one of the stable states to be on a plane and the other on a double-curved sur-
face. Figure 5.3 recapitulates the classification of some of the latest developments in recon-
figurable mechanisms and positions this research among others.

Architected materials Part of this research is inspired by materials scientists who inves-
tigate the architected materials. The architected materials refer to the notion that the overall
material properties are determined not solely by the constituent materials but also by the
spatial configuration of voids and solids (Schaedler & Carter, 2016). The materials scientists’
approach is to miniaturize the mechanical units into microscopic scales and refer to them
as materials instead of mechanisms. However, in this research, the mechanical units stay at
a macroscopic scale, and are therefore denoted as mechanisms.
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Figure 5.3: Classification of related reconfigurable mechanisms.

5.2. Bi-stability and geometry
The bi-stable mechanism is also termed snap-through buckling (Huang & Vahidi, 1971). The
term refers to the features that when the mechanism is switched from one stable state to
another, the mechanism suddenly snaps through the unstable gap. This section reviews the
mechanical features of snap-through buckling and introduces the principles of designing a
snap-through mechanism capable of spatial reconfiguration.

One of the simplest in-plane bi-stable units is illustrated in figure 5.4, which consists
of two tilted bars (with cross-sectional area A, material elastic modulus E , length L, and
initial tilting angle α) hinged to each other at one ends and pinned to the supports at the
other ends. When an external force P is applied at the middle hinge, the two members
are compressed and rotated and the middle hinge is displaced with distance δ. Once the
external force exceeds the critical load, the reconfigurable unit will suddenly deviate from
the critical state to the alternative state. After the external force is removed, the elasticity
of the material brings the mechanisms back to the relaxed length, which leads the unit to
the final state. A simple load-displacement relation can be established when the bars are
compressed linearly (or without Euler buckling). The relation can be formulated as

P = 2E A

(
1− δ

L sinα

)[
1√

cot2α+ (1−δ/L sinα)2
− sinα

]
.

At the same time, the total displacement of the middle hinge in the two stable states is

δT = 2L · sinα, (5.1)

which suggests that the total displacement δT is proportional to the rotating arm L and the
sine of the tilting angle α.

From an energy point of view, the stable states correspond to the local minimum points
of the energy-displacement graph (figure 5.4). The energy disused here is excursively the
internal strain energy in the bars as the hinges are assumed to dissipate and store no energy.
As a result, the stable states are mirror images of each other. In this dissertation, all hinges
are assumed to behave ideally, in order to design bi-stable mechanisms with geometrical
principles.
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Figure 5.4: The reconfiguration process of the idealized bi-stable mechanism with two elements.

To make the mechanisms capable of conducting spatial reconfiguration, one can adjust
the length of the rotating arms L while keeping the rotating angle α constant. Four pre-
liminary examples are shown in figure 5.5, where snap-through units are installed between
two panels. The bars have lengths La , Lb at the top layer and Lc , Ld at the bottom. When
all lengths are the same, the panels have the translational motion between two stable states
(figure 5.5a). If one of the bars is longer than the other, in-plane rotation is introduced in the
reconfiguration (figure 5.5b). When the lengths at the top layer are different from the bot-
tom, the two layers contract unevenly. Therefore, out-of-plane rotation, or bending, occurs
(figure 5.5c). In-plane rotation and bending can co-exist as figure 5.5d shows.

To control the spatial transformation more precisely, one can first locate the virtual

axes of rotation, and then point the hinges through it as illustrated in figure 5.6a–b. Three
rigid blocks are interconnected with ideal hinges and the side hinges are coplanar. The
other stable configuration would be the mirror image against the plane defined by the side
hinges. The center block to which another panel would attach, located between the two
configurations, rotates around the virtual axes of rotation (dash-dotted line). The virtual
rotation axes must rest in the plane which bisects the dihedral angle of the two panels. To
physically make a mechanism resemble the ideal case, the material must be thickened to
approximate the stiff blocks while the compliant hinges must be notched to minimize the
strain energy it might store (figure 5.6c–d).
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Figure 5.5: Joints with different degrees of freedom. Flattened states and curved states are shown in the left and
middle column, respectively. The different arrangements of the rotating arm (right column) can result in different
degrees of freedom in the reconfiguration.
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(a) (b)

(c) (d)

Figure 5.6: The proposed spatial bi-stable unit. (a-b) Two stable states of a conceptual bi-stable unit. They are
mirror images of each other against the mirror defined by the four anchors. (c-d) Two stable states of the cor-
responding physically manufacturable bi-stable unit. The dashed lines are the extension of the hinges. They
intersect at points defining the dash-dotted line which serves as the virtual rotation axis of the center piece.

This section has described the temporary elastic deformation during reconfiguration.
After the bi-stable unit sets in the stable states, the deformation vanishes. Nevertheless,
given that the hinges store negligible strain energy, the two stable states are simply mirror
images of each other against the plane defined by the corner anchors. The next section
introduces the method for applying this spatial reconfigurable unit to synclastic surfaces.

5.3. Flat-to-curved bi-stable auxetic mechanism
As demonstrated by Rafsanjani and Pasini (2016), the bi-stable auxetic mechanism can be
achieved by arranging rotating quadrilaterals around concave octagons for in-plane recon-
figuration. To create a flat-to-curve mechanism, this paper revises two approaches of the
previous research. The homogeneously repeated pattern and the perpendicular cutting are
replaced by a heterogeneously graded pattern and tilted cutting. This way, the thick sheet
material can be reconfigured from flat to double-curved.

5.3.1. Basic elements in the proposed mechanism
Figure 5.7 illustrates how to build up the proposed mechanism with the spatial bi-stable
units. Basically, every spatial bi-stable unit defines a hexagonal void in the sheet mate-
rial, and the void can be closed in the other configuration. Between the hexagonal voids,
there are rotating connectors and restructured panels, which are discussed in more detail
in section 5.3.3. Additionally, the rotating connectors were prisms in the case presented by
Rafsanjani and Pasini (2016). Here, the connectors are rendered as pyramidal frustums. The
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different lengths at the top and the base cause different displacements as suggested by equa-
tion (5.1). In the case depicted in figure 5.7, the bottom surfaces with larger rotating arms
introduce larger displacement during the reconfiguration and deliver the desired curvature
without troubling bending stresses, which are commonly observed in other formative man-
ufacturing processes, such as cold forging.

Spatial bi-stable unit

Rotating connector

Hinge

Restructured panel

Flat configuration Curved configuration

Figure 5.7: The reconfigurable material consists of two types of blocks: rotating connectors and restructured
panels. The blocks are interconnected with hinges.

To arrange the hexagonal voids, the designers have to consider the voids as an inter-
related system rather than multiple independent units. Given the fact that each hinge is
affiliated to two hexagonal voids of two spatial bi-stable unit, the two units have to agree on
the position and the orientation of the shared hinges. Furthermore, the angle of rotation of
the hinge is also shared by the two voids. However, there is an outward method to design
the interrelated voids, for an arbitrary conical synclastic mesh; in other words, no recursive
iteration is required.

In the following sub-sections, a workflow is proposed to locate such solutions of the syn-
clastic surfaces. The process starts with a conical mesh, which guarantees that the solution
exists.

5.3.2. Unrolling an arbitrary synclastic conical mesh
Conical meshes belong to a type of principal meshes that have been discussed in section 4.2.
In a conical mesh, each node has an axis intersected by all bisector planes of the dihedral
angles between surrounding facets. As pointed out in section 5.2, firstly, axes of rotation
shall lay in the planes bisecting the dihedral angles between panels. Secondly, the linear
hinges shall point to the rotation axes. For a conical mesh, the linear hinges can conveniently
point to points on the node axes, then the two geometry constraints will easily be satisfied.

Here, a method for unrolling a synclastic conical mesh M is proposed to systematically
rotate all panels to a horizontal position. As shown in figures 5.1 and 5.7, a node in the mesh



110 5. Programming Flat-to-Curved Mechanisms

corresponds to a rotating connector in the mechanism, an edge corresponds to a spatial bi-
stable unit, and a face corresponds to a restructured panel. This method assumes, in the
curved configuration, that all linear hinges of a rotating connector pass through a point on
the node axis of the conical mesh M. The focal points of the rotating connectors define
a mesh, denoted as neutral surface N , on which the edges are the virtual rotation axes of
the spatial bi-stable unit. The rotation axes do not expand or shrink in the reconfiguration,
hence the name of the mesh—neutral surface.

The set of axes of rotation, or collectively the neutral surface N , is rather rigid. One of
its admissible deformations is vertically flipping inside out. Then, the corresponding faces
on mesh M can spread out into isolated panels as depicted in figure 5.8.

nc
N , i n f

N , i

nc
M, i n f

M, i

Neutral surface N
(virtual)

Mesh panels
(physical)

Curved configuration Flat configuration

Figure 5.8: The axes (dash-dotted lines), around which the mesh panels rotate, form the mesh of the neutral surface.
The inclination of the neutral surface is half that of the corresponding mesh panel. During the reconfiguration,
the neutral surface is turned inside out, which suggests that the inclination angles are opposite to the original.
The corresponding mesh panels will then follow the rotation of the neutral surface and turn to zero inclination in
the end.

The targeted normal vector of the unrolled panels can be set as the unit vertical vector
ez , which is expressed as (0, 0, 1) in Cartesian coordinates or as (1, 0,ϕ ) in spherical coor-
dinates, where the vector has a unit length, a zero polar angle, and an azimuth angle ϕ that
can be any real number. Let nc

M, i
be a normal vector of a panel in the curved mesh (where

the subscript M denotes the conical mesh and the superscript c denotes the curved mesh),
which in spherical coordinates can be expressed as

nc
M, i = (1, θi ,ϕi ).

The functional neutral surface shall have the corresponding normal vector

nc
N , i = (1,

θi

2
,ϕi ).

To unroll the conical mesh, the synclastic neutral surface shall be turned concave-side con-
vex, or be turned inside out (or be mirrored against the horizontal plane). Thus the normal
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vector of the flipped neutral surface will be

n f
N , i

= (1, −θi

2
,ϕi ),

where the superscript f stands for both flipped and flattened. Before and after the unrolling,
the facets of the neutral surface are turned −θi in total. Let every mesh panel of the curved
conical mesh be turned as the corresponding facet on the neutral surface does, which means
that the inclination of the mesh panel will also be turned −θi . Then the normal vectors of
the unrolled panels will be

n f
M, i

= (1, 0,ϕi ).

During the flipping of the neutral surface, the rotation angles make the normal vectors point
upright as desired. The unrolling process is illustrated in figure 5.8. Unrolling a synclastic
conical mesh via such a neutral surface allows for the legitimate hinges to be found in a
straightforward manner. The application of the unrolling method is also demonstrated in
figures 5.13 and 5.15.

The term neutral surface echoes the neutral plane in the conventional bending theory.
In bending, all lengths on the neutral plane are preserved, which means that there is no
compression or tension. While the material on either side of the neutral plane gets either
compressed or tensioned. A similar feature can be observed in the reconfiguration process,
as shown in figure 5.11. The material above or below the neutral surface reconfigures to the
curved state by either stretching or contracting.

5.3.3. Connecting panels with rotating pyramidal frustum
The primary task of this section is to locate the legitimate hinges, which dictate how the
blocks rotate around each other. Ideally, the hinges should bring all scattered nodes in the
flat configuration back to the same position in the curved configuration. Figure 5.9 shows a
set of functional hinges (dashed lines) that merges the panels and closes the gaps.

There are only three independent degrees of freedom (DoFs) available for a node when
designing the hinges, considering the hinges and the rotation axes have to correspond with
each other. In general, there are five degrees of freedom (DoFs) in a rotation in 3D space. Two
of them are the position of the axis of rotation, two of them are the orientation of the axis,
and the other one is the rotation angle. For an unrolled node (as shown in figure 5.9), the axes
of rotation should pass through the node on the neutral plane which fixes two of the DoFs
for every panel. If one of the panels is assigned with 3 values to fix the three undetermined
DoFs, all other panels have to rotate dependently of the first panels. Therefore, there are
only three independent DoFs; two of them can be regarded as the orientation of the merged
axis (black dotted line in figure 5.9), and the other one is the magnitude of the rotation angle.

Once the hinges are determined, the intersection points of the hinges and the mesh
panels define a polygon. For a node with four edges, the polygon is quadrilateral. When the
sheet material has a certain thickness, the quadrilateral becomes a frustum of a quadrilateral
pyramid. The gaps between the mesh panels have to be restructured accordingly as shown
in figure 5.9.

As discussed, for each node, there are three independent DoFs to define the rotating
connectors. But the nodes on the same edge of the mesh still have to agree on the inclination
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Figure 5.9: Close up of panels rotated around the hinges (dashed lines). Each panel has its hinge (in the same
color), while all panels merge at the same axis (the center black dotted line).

of the gap in the flat configuration. In other words, for a mesh with n internal nodes and
m internal edges, there are 3n−m DoFs to be determined for all of the rotating connectors.
One way to omit the iteration is to determine the rotating connectors node by node. A node
that is determined later has to align itself to the previously determined nodes. Therefore,
only the first node has three DoFs. Other nodes may have two or only one DoF, depending
on how the determination propagates. Figure 5.10 shows an example of how the process
propagates across all nodes of a free-form mesh.

So far, this section has presented the methods to unroll a synclastic conical mesh, locate
the legitimate hinges, and restructure the mesh panels. Figure 5.11 visually recapitulates the
relationship between the neutral surface and the legitimate hinges. It is noteworthy that if
hinges are extended to the other side of the neutral surface, a curved-by-stretching solution
can also be identified.

5.4. Pilots prototypes
Following the discussion on mechanical and geometrical features of the bi-stable joint, un-
rolling of conical meshes, and the rotating connectors, this section describes the validation
of the proposed methods through physical prototyping undertaken by the author during the
course of this PhD research. The prototypes are produced using fused filament 3D printing
with polylactic acid (PLA) and 4-axis water-jet cutting on sheets of polypropylene (PP).
The hinge between connectors and panels are fabricated as compliant hinges. Although
the bi-stable mechanism does not have to be manufactured with compliant hinges, it is a
convenient methods to embed the hinges into the mechanisms.



5.4. Pilots prototypes 113

2
34

4

4 4

5

5

5

6 5

Fronts of the propagation process

Node with 3 degrees of freedom (DoFs)

Node with 2 DoFs

Node with 1 DoFs

Figure 5.10: The propagation map of the free-form conical mesh
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Curved by
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Figure 5.11: The focal points of the hinges are located on the neutral surface. The neutral surface is mirrored during
the reconfiguration, which means that all lengths on the neutral surface remain constant before and after the
reconfiguration. On the other hand, above and below the neutral surface lie the expanding zone and contracting
zone, respectively.
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(a) (b)

Figure 5.12: Test of a bi-stable joint. (a) Pushing the panels from the sides. (b) The resulting curved configuration.
A video of the actuation is available on https://vimeo.com/503767095.

3D printed polylactic acid (PLA). One of the first successful prototypes of the spatial
bi-stable unit is shown in figure 5.12, which consists of 5 mm thick panels and 0.5 mm
wide compliant hinges. Indeed, PLA is rather stiff and brittle, which is not ideal for compli-
ant hinges, therefore this prototype cannot survive more than 10 cycles of reconfiguration.
However, it is the most accessible material for hobbyist 3D printers. Meanwhile, in this ini-
tial exploration of new mechanisms, the main purposes of prototyping are validating and
demonstrating the geometric design. This prototype shows a fruitful result.

Instead of a simple test on two panels with a curved edge, figures 5.13 and 5.14 show a
free-form design. A form-found smooth surface is first obtained via the algorithm presented
in chapter 3, then the smooth surface is approximated by a conical mesh via the process
stated in chapter 4. After the conical mesh is unrolled by the method of the neutral surface
in section 5.3.2, the rotating connector is generated by feeding the geometry into a computer
script, which is available at https://github.com/ChiangYuChou/SpatialAuxetic. Then, the
basic geometry is subjected to some detailed modification for physical production. The 3D
printed result shows even a mechanism made out of brittle PLA can be reconfigured into
the double-curved surface (figure 5.14).

Water-jet cut polypropylene (PP). Material of PP performs better than PLA, or more
precisely, PP is more flexible and has better fatigue resistance. Assisted and sponsored by a
water-jet cutting fabricator, OH Precision Corporation, two prototypes are produced via a
4-axis CNC water-jet.

The first one is a synclastic discretized spherical surface, which has a discretized parabolic
surface as neutral surface (figure 5.15). Then, using the proposed workflow, the unrolled
mesh is restructured as an inter-connected mechanism and finally translated into the tool
path for the CNC water-jet (figure 5.16). The result is shown in figure 5.17.

Anticlastic saddle surface, which also consists of hexagonal voids as bi-stable units, is
also possible to be fabricated with the reconfigurable technique as shown in figure 5.18.
However, in this case, the hinges of a rotating connector do not focus on a single point
but form a tetrahedron. To date, there is no systematic method to discretize and unroll an
anticlastic surface; this could be an interesting topic for future exploration.
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(a) (b)

(c)

Figure 5.13: Geometric design of a free-form surface. (a–b) Unrolling the mesh panels with the neutral surface
(gray transparent mesh). (c) Perspective view of the resulting mechanism. In the conical mesh, there is a six-
edge node which is the umbilical point of the curved surface. The six-edge node becomes the hexagonal rotating
connector in the mechanism.

(a) (b)

Figure 5.14: The 3D printed prototype of a free-from shell. (a) Flat configuration. (b) Curved configuration.
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(a) (b)

Figure 5.15: Geometry design of a spherical surface and the neutral surface (gray transparent mesh). (a) Curved
configuration. (b) Flat configuration.

(a)

(b)

(c)

(d)

Figure 5.16: The production process and the result of a 25-panel spherical surface. (a) Close-up of the geometrical
solution. (b) The producible solution. (c) The tool path for waterjet cutting. (d) Production with a 5-axis CNC
waterjet machine. A timelapse video is available on https://vimeo.com/317286896.
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(a)

(b)

(c)

(d)

Figure 5.17: The result of water-jet cut flat-to-synclastic mechanism. (a) Flat configuration. (b) Actuation. (C) Top
view of the curved configuration. (d) Perspective view. A video of the actuation is available on https://vimeo.com/
317286292

(a)

(b)

(c)

(d)

Figure 5.18: The result of water-jet cut flat-to-anticlastic mechanism. (a) Flat configuration. (b) Actuation. (C) Top
view of the curved configuration. (d) Perspective view. A video of the actuation is available on https://vimeo.com/
454308849
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Iterative processes between design and fabrication. There were trials and errors in
the background that facilitated the resulting prototypes mentioned above. The designs un-
derwent two processes before they became physical products. First, computer-aided-man-
ufacturing (CAM) software converts the geometries of the designs into “tool paths” for the
CNC machines. Then the CNC machines physically fabricate the prototypes by executing
and tracing the tool paths. Either one of them needs some trials to identify and overcome
potential obstacles.

The main challenging is to produce compliant hinges that store negligible strain energy
and can undergo reconfiguration. In other words, the hinges need to be as thin as possible,
on one hand, yet strong enough to withstand the critical load, on the other.

For 3D printing, the design geometry can be easily converted into a mesh then sent to a
slicer (CAM software for 3D printing) for generating a printing path. It took a few trials to
figure out the thinnest design of a compliant hinge is around 0.5 mm wide for a 3D printer
with a nozzle of 0.4 mm diameter. By default, the slicer ignores any part that is narrower
than the nozzle’s diameter. However, due to errors introduced by remeshing, the width
larger than 0.5 mm is reliable that the slicer will not miss. The fabrication side had only
some minor issues of tuning parameters (e.g., printing temperature) of the 3D printers.

For the water-jet cutting, both the generation of tool paths and the fabrication of proto-
types encountered notable issues. There was no program sophisticated enough to convert
the complex designs into tool paths with tilting information. The only available programs
can generate either simple tiling tool paths or complex 2D tool paths without tilting. Luck-
ily, the tool paths for the CNC water-jet are G-code-like ASCII files. The first part of the
solution is to learn the syntax of tilting tool paths from the ASCII files generated by the first
program. The second part is to write a piece of computer code, MATLAB (2018) in this case,
that can fill tilting angles into the 2D tool paths generated by the second software. Then,
the second program can work alongside the MATLAB code to generate complex and tilting
tool paths.

Regarding physical production, the first trial had compliant hinges that were too narrow
so that the resulting prototype fell apart. After calibrating the kerf width of the water-jet
and a few more revisions of the design, the resulting products became robust enough to
withstand multiple cycles of reconfiguration.

Manual actuation. It is a particular experience to actuate one of these prototypes by
hands. The person can feel the mechanism resists the load initially but suddenly gives up and
contracts on its own. The haptic experience may not be easy to convey in words. However,
the actuation processes are easy to record in videos. Accessible through the hyperlinks in
the captions of figures 5.12, 5.17, and 5.18, the videos capture the snap-through phenomena
of the mechanisms. The audio tracks contain the snap sounds, which were caused by the
sudden releases of the strain energy into vibrations of the mechanism and the nearby air
(and microphone).

These pilot prototypes prove the configurable mechanisms are feasible at the scale of
102 mm, in plastics, and manual actuation. The next chapter will investigate other scales,
materials, and actuation schemes.
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5.5. Summary and discussion
This chapter has reviewed some emerging reconfiguration mechanisms. Some observations
are made:

• some active mechanisms are built with layered materials that expand or contract dif-
ferently which induces flat-to-curved transformation; and

• some passive mechanisms are built by arranging ball joints or linear hinges, but the
existing arrangements provide either no compression stability or no flat-to-doubly-
curved capability.

This chapter has also presented a method to translate free-form synclastic conical meshes
into mechanisms, in which a node is translated into a rotating connector, an edge into a
hexagonal void, and a face into a concave panel. The ordinal method has components in-
cluding:

• a spatial bi-stable unit, which can connect two thick panels rotating about a remote
axis;

• unrolling of a synclastic conical mesh with the method of the neutral surface, which
automatically introduces gaps with appropriate widths between the spread-out pan-
els;

• locating the linear hinges and rotating connectors, which automatically distribute
different displacements at the top and bottom surfaces;

• converting the geometric solutions into producible designs; and

• validating the designs by producing 3D-printed and water-jet-cut prototypes.

To investigate the capacity of the proposed mechanisms, some further explorations need
to be continued. So far, neither the applicability on larger scales nor the dynamic behavior
during the reconfiguration has been explored. Additionally, the proposed unrolling method
of the neutral surface is not compatible with anticlastic surfaces, even though the spatial bi-
stable unit can still work for anticlastic surfaces. After these topics are addressed, broader
applications may be achieved.





6
Implementation

Ideas are useless unless used.

The proof of their value is their implementation.

Until then they are in limbo.

Theodore Levitt 1

Innovation is always risky

but without risk we don’t advance.

David Blockley 2

1Levitt, 2002
2Blockley, 2012
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C hapters 2–5 in this dissertation have yielded results independently, including analyti-
cal solutions of membrane shells in section 2.5; numerical shells found with radial basis

functions in sections 3.4 and 3.6; relief-like discretized stress function from section 4.4.3;
and water-jet-cut polypropylene reconfigurable mechanisms in section 5.4. Conversely, this
chapter presents the prototypes that employ methods across multiple chapters from form-
finding to the reconfigurable mechanism.

This chapter implements the theories to build two sets of prototypes. The first set in-
cludes triangular shells spanning 0.8 m and 4 m, which need to be actuated sequentially.
The second set of prototypes use self-Airy membranes as the target surfaces which allows
actuation by contracting their bottom hoops.

Outline
Section 6.1 reports the 0.8m-span triangular shell which is built with 3D-printed compo-
nents. Section 6.2 repeats a similar design at a 4m-span scale with laser-cut pieces. Sec-
tion 6.3 utilizes self-Airy membranes as the target surfaces to design the flat-to-curve mech-
anisms, which can be actuated with their bottom hoops. Section 6.4 discusses the results
from these prototypes.

6.1. 3D-printed triangular reconfigurable shell
This section not only integrates form-finding but also explores different production methods
from the pilot prototypes in chapter 5. First, all reconfigurable mechanisms produced in the
previous chapter are either printed or cut in one piece and the components are connected
by compliant hinges. This section extends the investigation to a structure that is larger than
its production machines. To achieve that, the structures are produced in individual com-
ponents, which are later connected with pins instead of compliant hinges. Secondly, the
scale of the finished prototype span a 0.8 m distance, which is also larger than the previous
mechanisms (ca. 20 cm). Thirdly, instead of a quadrilateral mesh and quadrilateral rotating
connectors, this section employs a hexagonal mesh, which has valence-3 nodes that auto-
matically meet the criteria for being a conical mesh. Critical steps of design and fabrication
include designing the overall form, discretization into a hexagonal mesh, converting the
mesh into a flat mechanism, designing connection details, and finally printing and assem-
bling the components. The following paragraphs explain the process as well as the salient
design decisions.

Overall form. The design process starts at finding the overall form, which has a triangular
footprint, three free edges, and three supports at the vertices. Both the shape and its variable
thickness are determined by the algorithm of radial basis functions in chapter 3. Using
the algorithm, a series of shape functions is derived. Each shape function migrates from a
common provisional shape (section 3.4) to another shape that accommodates the stresses of
a load case. The load cases have a common vertical component and variable horizontal body
forces in various directions. Then the shape functions collectively determine the upper and
lower envelopes which give the variable thickness (figure 6.1).

Discretizing and converting into the flat mechanism. To design the flat mechanism
introduced in chapter 5, the lower envelope is discretized into a hexagonal mesh, in which
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Upper envelope 

Lower envelope 

Load direction

Thrust surface

Figure 6.1: The general form is form-found with the radial basis function algorithm, and the thickness is deter-
mined by envelopes of shape functions, or thrust surfaces, under tilted loads.

all vertices of the mesh have valence 3 (i.e., all vertices connecting to 3 edges). Since faces
that meet in a 3-valence vertex are tangent to a right circular cone, the hexagonal mesh also
meet the criteria of a conical mesh. Then, the lower envelope can be unrolled via the neutral
surface (section 5.3.2). Subsequently, rotating connectors are generated with a computer
script, which has also been uploaded to an open-access repository (Chiang, 2020). Figure 6.2
shows the intermediate results of this stage. For simplicity, the upturned edges are kept in
the flat configuration. Meanwhile, the thickness of the shell follows the envelopes that were
form-found in the previous step. The shell is thinner at the center and supports, and thicker
at the mid-points of the edges.

Flat configuration Curved configuration

Figure 6.2: The shell is subsequently divided into a hexagonal mesh and converted to the flat-to-curved mecha-
nism.

Connections and details. From this step onwards, the design process includes more pro-
duction consideration. Occasionally, the design decision inclines to visual simplicity when
there are multiple producible alternatives.

The most crucial details are the pin joints between panels and rotating connectors.
Dressmaking pins (ca. 0.8mm diameter) are used, and the knuckles (1mm thick) are 3D
printed along with the linked components. Additionally, the panels are hollowed out for
weight purposes. The voids also make the variable thickness more visible. The remain-
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Figure 6.3: Design details. (a) Dimensions of the hinge. (b) Reciprocal pattern in a triangular connector.

ing walls have a thickness 3 mm for sufficient clearance between pins and the surrounding
knuckles (figure 6.3a).

The reconfigurable mechanism requires each edge to have a translational eccentricity,
such that each polygon has sides offset alternatively outward or inward. The sides are con-
nected by some short segments bordering the rotating connectors. When the short segments
are omitted, the pattern is coincidentally identical to a reciprocal frame or nexorades from
the translation method (Mesnil, Douthe, Baverel, & Gobin, 2018), in which every node has
a uniform valence of 2. The design adopts the pattern of the reciprocal frame and extends it
to the triangular nodes (figure 6.3b).

Printing, assembling, and reconfigurating. The dimensions of the hollowed hexago-
nal panels range from 178×89×19 mm to 73×63×8 mm, which fit well in the employed 3D
printer (Ultimaker 2+, build volume: 223×220×205 mm). The panels and connectors are
pinned in a flat configuration, which later can be transformed into the prescribed curved
configuration. The completed structure is supported on the three vertices of the triangle.
Between the supports, the free edges span a 0.8-meter distance. The scale of the overall
prototype is rather modest, yet it is still larger than the build plate of the employed 3D
printer. The reconfiguration runs with the click-sound when the mechanism snaps through
the critical state (see video on https://vimeo.com/523523759). Figure 6.4 displays the result-
ing prototype.
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(a)

(b) (c)

Figure 6.4: Assembled prototype. (a) Close-up view. (b-c) Before and after reconfiguration. A video is available on
https://vimeo.com/523523759.
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Flexible edge

Rotating node

(a) Flat configuration (b) Curved configuration

Figure 6.5: Designs of the edges.

6.2. Laser-cut triangular reconfigurable shell
This section repeats the same basic design from the previous section, but in a different ma-
terial and on a larger scale. Explicitly, plywood is used to build a 4m-span structure, which
has a clear height of 1.6 m at the center and has a thickness from 120 mm (mid-points of
free edges) to 40 mm (center and corners). After fabrication of the components, a crowd
of volunteers assembled the components on the ground and lifted the mechanism into the
double-curved configuration. The reconfiguration process was repeated with an overhead
crane again, which shows the sequential process more clearly.

Design. The overall form and the hexagonal discretization are the same as the previous
prototype. Some modifications on connections and details are necessary due to the changes
in material, scale, and fabrication machinery. Since the mechanism requires temporary de-
formation for snapping-through and long-term rigidity for structural integrity, the hexag-
onal units have two different designs for the edges. Each outwardly offset edge, which is
hinged with connectors, is simply materialized as one piece of plywood. Each inwardly off-
set edge, which will work in bending, is built with three plywood pieces forming a c-shaped
profile (figure 6.5). Meanwhile, sheets of plastic, working as compliant ligaments, are placed
between plywood units and nodes (figure 6.6).

Fabrication, assembly, and reconfiguration. The plywood planks and the plastic sheets
are fabricated by 2D CNC machines: a laser cutter, and an oscillating knife. Embedded mor-
tise and tenon guide the assembly and gluing process. On-site, the components were assem-
bled on the ground by untrained volunteers in less than 2 hours. It was initially attempted
to reconfigure the structure via ratchet tie-down straps (orange straps in figure 6.8) but this
caused some mortise-tenon joints to be dislocated. Instead, the structure was raised by lift-
ing the mechanism and sequentially squeezing it. Using this approach, it took merely 10
minutes to reconfigure the structure and peg it down to the ground (figure 6.10a-f). The
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Hexagonal unit
(plywood)

Compliant ligament
(plastic)

Triangular node
(plywood)

Figure 6.6: The units are built with laser-cut plywood. Plastic sheets work as compliant hinges connecting hexag-
onal units and the triangular nodes.

(a) (b) (c)

Figure 6.7: The reconfiguration process. (a) Flat configuration. (b) The triangular node rotates and the plywood
deforms significantly before the mechanism rests in the targeted configuration. (c) Curved configuration.
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reconfiguration is also reversible as shown in figure 6.10g-h. A time-lapse video of the first
reconfiguration test is available on https://vimeo.com/523592087. The second reconfigura-
tion test was aided by an overhead crane which reconfigured the mechanism in the same
sequential manner as the 3D printed 0.4m-span prototype. The video of the second test is
available on https://vimeo.com/523593297.

Figure 6.8: Top views of the mechanism in its flattened (left) and curved (right) configuration

Figure 6.9: Photo of the finished shell



6.2. Laser-cut triangular reconfigurable shell 129

(a) (b)

(c) (d)

(e) ()

(g) (h)

Figure 6.10: The reconfiguration processes. Time-lapse videos can be accessed via https://vimeo.com/523592087.
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Figure 6.11: The workflow of designing the hoop-actuated mechanism: from providing boundary conditions (a) to
3D printing and actuation (h).
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6.3. Hoop-actuated mechanism
The inspiration for seeking hoop actuation came from the unsuccessful attempt of using
ratchet tie-down straps to actuate the triangular shell in the previous section. Although the
attempt was an immature speculative idea, it hinted at the simple actuation scheme in which
a continuous bottom hoop provides the actuation forces. To design such shells, this research
iterates the steps from numerical form-finding to mechanical detailing (figure 6.11).

To find shells for which the horizontal thrusts are provided by the bottom hoops, a
sufficient condition is that the shapes of the Airy stress functions coincide with the shapes
of the shells. Such shells are called self-Airy membranes (section 2.5). A self-Airy membrane

provides a convenient feature that any intersection with a horizontal plane locates a hoop.
As a self-Airy membrane is discretized, the force and bending moment can be also visual-

ized, given that its shape is also its Airy stress function. When a smooth self-Airy membrane
is discretized into a planar conical mesh, the differences in slopes show the axial forces.
Much more interestingly, when the planar mesh is further converted into the flat-to-curved
mechanism, vertical jumps across the edges emerge. Since the vertical discontinuities in
the stress function represent bending moments (Williams & McRobie, 2016), these jumps
actually display bending moments. Figure 6.12 shows a simple paraboloid example, which
has hollowed-out panels connected by hinges. The hollowed-out voids require the stress
function to be planar locally, and the hinges require vertical continuity. The bent bars in
figure 6.12c-d are widened according to their bending moments.

Tension Compression

(a) (b)

(c)(c) (d)(d)

Figure 6.12: Bending moments in a reconfigurable self-Airy shell. (a) The Airy stress function of the initial planar
conical mesh. (b) The Airy stress function of the reconfigurable reciprocal frame. (c) Flat configuration. (d) Curved
configuration.
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Numerical form-finding and mechanism converting. As discussed in section 3.5, a
free edge in finding a self-Airy membrane has to be formulated as a free boundary problem, in
which the exact location of the boundary is not prescribed but part of the solution. Although
the free boundary problem adds some complexity, the algorithm of RBFs can handle it as
non-linear optimization and deliver a smooth solution (figure 6.11a-b). Then, the smooth
surface is discretized into a conical mesh and truncated to leave the singular corners out.
The mesh is further unrolled and restructured into a preliminary design of the mechanism
(figure 6.11c-f).

Compliant hinges and monostability. For fast validation of the hoop-actuation scheme,
the prototype is 3D printed in one piece. Previously, the 3D-printed compliant hinges in
chapter 5 were defined by notches, causing intense strains and potentially inducing fatigue
failure for some materials (polylactic acid, or PLA). For a more durable design, this section
uses thin-walled circular arcs to distribute the strain across a wider area. Figure 6.13 shows
how the schematic design based on ideal hinges (the greenish-blue circles) is translated into
the producible design (black lines) in which the hinges are replaced by thin flexures.

Furthermore, the mechanism can be monostable instead of bistable. In chapter 5 the pan-
els are solid (figure 6.14a), but here the panels are hollowed out (figure 6.14b). As a result, the
base of each reconfigurable unit is not as rigid as in previous examples. In combination with
the flexural spring of the compliant hinges, the mechanism can be monostable—the mech-
anism can bounce back to the original configuration when the hoop tension is removed.
The feature of monostability might be helpful since the bottom hoop provides full control
of both flat-to-curved and curved-to-flat transformations. The recovery transformation can
be done by simply releasing the hoop, so that the mechanism can return to its initial shape.

Schematic
Producible

(a)(a) (b)(b)

Figure 6.13: Close up of the compliant hinge. (a) Flat configuration. (b) Curved configuration.

Printing and reconfiguring. The section uses a 3D printer (Anycubic Chiron, build vol-
ume: 400×400×450 mm, nozzle diameter: 0.4 mm) for printing the prototypes with the
material of glycol-modified polyethylene terephthalate (PET-G). The hinge width is drawn
as 1 mm which is the minimal printable width under the used slicer and relevant parameters
(Cura ver:3.6.0, line width = 0.4 mm, and horizontal expansion =−0.2 mm).
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1 2 3 4

(a) (b)

Figure 6.14: Schematic representations of the reconfigurable units. (a) Bistable reconfigurable unit, in which the
solid panels are connected by ideal hinges (hollow circles), the distance between hinges 1 and 2 is rather rigid.
(b) Monostable reconfigurable unit, in which the hollowed panels are connected by flexural hinges (black spirals
schematically represent the elasticity) and the distance between hinges 3 and 4 is relatively flexible.

Two designs are printed: a free-edge shell and a dome. The former is shown in fig-
ure 6.11g-h. Figures 6.15 and 6.16 display the mechanism in larger frames. The other design
has also been disclosed in figure 6.12c-d. Figure 6.17 shows the top views of the dome.
Deployment of both cases was filmed, the links for the online videos are provided in the
figures’ captions.

6.4. Discussion
This chapter has presented the design and fabrication of prototypes that integrate the pro-
posed form-finding method and the reconfigurable mechanism. The resulting reconfigurable
shells include a 0.8m-span 3D printed one, a 4m-span plywood-built one, and a 0.3m-span
hoop-actuated one. Some different design and production processes were also examined in
this chapter. Specific learning from the prototyping includes that

• the hexagonal mesh is demonstrated compatible with the reconfigurable mechanism;

• the reconfigurable mechanism can work up to 4 m span;

• both pin and flexural hinges allow for some sleek designs;

• self-Airy membranes can help the design of hoop-actuated mechanism; and

• flexural hinges with hollowed-out panels can make the mechanism monostable.
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Figure 6.15: Flat configuration of the free-edge shell
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Figure 6.16: Curved configuration of the free-edge shell. The green arrows indicate the external forces applied to
the string. A video of the transformation is available at https://vimeo.com/575721997.
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(a)(a)

(b)(b)

Figure 6.17: Deployment of the hoop-actuated dome. (a) Flat configuration with a loose bottom string. (b) Curved
configuration when the string is tightened. The green arrows indicate the external forces applied to the string. A
video is available at https://vimeo.com/573955920
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Conclusion

T his dissertation has presented novel ways of design and fabrication of shell structures.
Specifically, designing the membrane shells with smooth radial basis functions (RBFs),

discretizing smooth surfaces into principal meshes, displaying the 2D stress tensor fields
by discretizing Airy stress functions with and without body forces, and fabricating double-
curved surfaces with the flat-to-curved mechanisms. The overarching prototype—the hoop-
actuated reconfigurable mechanism—displays an interesting reciprocal frame, in which the
deployed structure has a shape identical to the graph of its Airy stress function. The observer
can infer the flow of forces from the dihedral angles at the edges.

7.1. Contributions
The dissertation contributes to the study of shell structures by investigating novel approaches
to numerical form-finding and digital fabrication. The form-finding aspect was achieved by
closely revisiting the statics of membrane shells, especially the mathematical formulations:
the Airy stress function and Pucher’s equation. Then, the numerical method of RBFs is
adopted to find and represent free-form shells and their stress functions. Theories from
discrete differential geometry were applied to discretize free-form shells into economically
producible flat panels and extended to discretize stress functions into visually legible force
networks. Fabrication was executed by introducing an auxetic mechanism that enables the
fabrication of shells in a flat and interconnected configuration. The flat mechanism can be
deployed into the double-curved configuration. To validate the mechanism, various proto-
types at scales ranging from 0.2 to 4 m were produced. Specifically, the contributions to new
knowledge are as follows:

• Identifying the mathematics-based form-finding methods that have a wider range of
solution space, including shells that contain both compression and tension stresses
(sections 1.1, 3.1).

• Proposing the definition of self-Airy membranes and providing some analytical solu-
tions (section 2.5).
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• Developing a form-finding algorithm based on radial basis functions (RBFs) that works
in two ways: finding the form based on a given stress distribution, and finding the
stress distribution based on a given form (section 3.4). The algorithm is also compati-
ble with horizontal body forces (section 3.6).

• Identifying that how a shell is supported might be more important than how its shape
curves to resist the ever-changing load (section 3.6).

• Proposing a method to translate continuous stress tensor fields into visually legible
force networks by discretizing Airy stress functions into quadrilateral meshes, and
customizing the connectivity to fit the given stress distribution (section 4.4).

• Identifying that body forces require Airy stress functions to be discretized into non-
planar quadrilateral meshes (section 4.4).

• Inventing a type of bi-stable auxetic mechanism which can perform flat-to-curved
transformations (section 5.3.1).

• Proposing the method of the neutral surface for converting a given synclastic surface
into a bi-stable mechanism (section 5.3.2).

• Producing reconfigurable prototypes up to a 4 m span (section 6.2).

• Producing a reconfigurable reciprocal frame with legible bending stresses (section 6.3).

7.2. Future work
There are, however, some limitations associate with the methods used and developed in this
study. In particular, the following unresolved matters may be worth investigating further
to make additional contributions to the design and fabrication of shell structures:

• Although the RBFs can bypass limitations induced by the connectivity of conven-
tional meshes, the locations of RBFs’ centers and their shape parameters still affect
the set of representable functions. A clear strategy to arrange and fine-tune these
meta-parameters is desirable.

• The algorithm of RBFs currently excludes bending stresses. It would be more realistic
to consider bending in some load cases.

• There does not yet exist a systematic method to translate an anticlastic surface into
the bi-stable auxetic mechanism. Therefore, it might be worthwhile to develop one.
Otherwise, integrating current flat-to-synclastic mechanisms with other complemen-
tary systems (such as deployable cable nets which can easily form anticlastic surfaces)
will also broaden the solution set.

• Both algorithms for form-finding and the mechanism design are in the form of MAT-

LAB (2018) scripts without user-friendly interfaces. Further development into a robust
and user-friendly subroutine is desired.
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7.3. Final remarks
This research focuses on membrane actions and funicular networks of shells. In contrast
to beams that have underutilized materials between zones of high tension and compression,
funicular structures are lean. This does not mean that bending moments should be avoided
at all costs. For instance, the self-tied structures (e.g., self-anchored suspension bridges,
tied-arch bridges, hoop-tied shells in figure 3.17c) have tension members (e.g., cables, ties,
hoops) and compression members (e.g., compressed deck, arch, shell) forming simply sup-
ported bending-resistant structures. The merit of these self-tied structures is that the spaces
between the tension and compression are available for peoples’ activities while minimizing
the loads on the foundations.

7.4. Personal reflections
Shell structures exhibit astonishing slenderness, especially for a Taiwanese civil engineer.
When the shells were popular in Europe and the Americas between the 1920s and the 1970s,
Taiwan was ruled by autocratic regimes and experienced only modest economic develop-
ment. Therefore, Taiwan had little exposure and there was not a single notable instance of
such structures. In a way, thin shells are mythical structures for most Taiwanese students in
architecture and civil engineering. As a result of this historical and cultural context, the au-
thor initially approached this subject with distant awe. However, throughout this research,
he progressively understood the relevant theories and contributed his efforts to this subject.
The author looks forward to sharing the pleasure of learning about this fascinating struc-
tural system and, even more so, to anticipating the construction or conservation of such
structures.
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Vouga, E., Höbinger, M., Wallner, J., & Pottmann, H. (2012). Design of self-supporting
surfaces. ACM Transactions on Graphics, 31(4). doi: 10.1145/2185520.2185583

Williams, C. (2014). What is a shell? In S. Adriaenssens, P. Block, D. Veenendaal, &
C. Williams (Eds.), Shell structures for architecture (pp. 21–32). Abingdon: Routledge.

Williams, C., & McRobie, A. (2016). Graphic statics using discontinuous Airy stress
functions. International Journal of Space Structures, 31(2-4), 121–134. doi: 10.1177/
0266351116660794



148 References

Young, A. E. (1909). On a certain class of isothermic surfaces. Transactions of the American

Mathematical Society, 10(1), 79–94.

Zadravec, M., Schiftner, A., & Wallner, J. (2010). Designing quad-dominant meshes with
planar faces. Computer Graphics Forum, 29(5), 1671–1679.

Zipkin, P. (2001). The limits of mass customization. MIT Sloan Management Review, 42(3),
81–87.



Index

Airy stress function, 21
discretized, 85, 131

architected materials, 104
architectural geometry, 14
auxetic, 104

bistable, 105, 132
body force, 21, 86
boundary condition, 30, 46, 55

free edge, 30, 132
fully supported edge, 32
funicular edge, 31
wall-supported edge, 31

catenary curve, 6, 7
circular mesh, 78

isotropic, 82
non-planar isotropic, 96

conical mesh, 78, 109, 132
isotropic, 82
non-planar isotropic, 96

Cremona diagram, 7
curvature line, 28

design for manufacture & assembly
(DFMA), 14

double-inner product, 29
dynamic relaxation, 9, 42

fabrication-aware design, 14
force density method, 43
form-finding, 2, 5

mathematical, 7, 8
numerical, 9
physical, 7, 8

free boundary problem, 65, 132
free-form construction, 14, 76
funicular structure, 6

graphic statics, 7, 23

Hermite interpolation, 45, 52
Hessian matrix, 22

isostatic line, 28, 86
discretized, 86

isothermic mesh, 78
isotropic geometry, 82

Koebe mesh, 78

least-squares method (LSM), 44
lower-bound theorem, 39

Marionette Mesh, 78
membrane shell, 3, 20
monostable, 132
multiquadrics, 44

nexorades, 124

parametric design, 13
planar quadrilateral mesh, 14, 77
plastic theory, 39
principal curvatures, 14
principal mesh, 14, 78
principal orientation, 27
principal stress network, 59
principal stresses, 27
Pucher’s equation, 28, 34, 52

reciprocal diagrams, 7, 23, 92
reciprocal frame, 124
reconfigurable mechanism, 102, 122

self-Airy membrane, 34, 63, 131
self-supporting surface, 9
stereotomy, 12
stress trajectory, 28, 59, 86

discretized, 86

tectonics, 12

149





Curriculum Vitæ

Yu-Chou Chiang

姜毓洲

1987-10-21 Born in Taoyuan, Taiwan.

Education
2006–2010 Bachelor of Science in Civil Engineering with a Minor in Economics

National Taiwan University

2010–2012 Master of Science in Hydraulic Engineering
National Taiwan University

2017–2022 Candidate for Doctor of Philosophy
Delft University of Technology
Thesis:

Promotor:

Design and Fabrication of Shell Structures: Aided by 
radial basis functions and reconfigurable mechanisms 
Prof.dr. M. Overend and Dr.ir. F. Veer

Awards
2008 & 2009 The Presidential Award, National Taiwan University

2010 The Dean’s List Award, National Taiwan University

2012 Best Design Project Tutor, Dept. of Civil Engineering, National Taiwan
University

2016 Scholarship to Study Abroad, Taiwan Ministry of Education

151



152 Curriculum Vitæ

Journal articles
2022 Chiang, Y.-C. & Borgart, A. (2022). A form-finding method for membrane

shells with radial basis functions. Engineering Structures, 251, 113514. https://
doi.org/10.1016/j.engstruct.2021.113514

2019 Chiang, Y.-C. (2019). Programming flat-to-synclastic reconfiguration. archi-

DOCT, 6(2), 64–79. http://www.archidoct.net/Issues/vol6 iss2/ArchiDoct vol6
iss2%2004%20Programming%20Flat%20to%20Synclastic%20Chiang.pdf

2018 Chiang, Y.-C., Bier, H., & Mostafavi, S. (2018). Design to robotic assembly:
An exploration in stacking. Frontiers in Digital Humanities, 5. https://doi.org/
10.3389/fdigh.2018.00023

Conference papers
2021 Huang, Z., Chiang, Y.-C., & Sabin, J. E. (2021) Automating Bi-Stable Aux-

etic Patterns for Polyhedral Surface. In ACADIA2021 Realignments: Toward

Critical Computation.

Chiang, Y.-C., Buskermolen, P., & Borgart, A. (2021). Discretised Airy
stress functions and body forces. In Advances in Architectural Geometry 2020

(pp. 62–83). Champs-sur-Marne, France. https://thinkshell.fr/wp-content/
uploads/2019/10/AAG2020 04 Chiang.pdf

2019 Chiang, Y.-C., Borgart, A., & Li, Q. (2019). Finding membrane shells sub-
jected to horizontal body forces with radial basis functions. In IASS Annual

Symposium 2019–Structural Membranes 2019 (pp. 1556–1563). Barcelona,
Spain. https://www.ingentaconnect.com/content/iass/piass/2019/00002019/
00000018/art00022

2018 Chiang, Y.-C., Mostafavi, S., & Bier, H. (2018). Assembly of shells with bi-
stable mechanism. In Advances in Architectural Geometry 2018 (pp. 54–71).
Gothenburg, Sweden. https://research.chalmers.se/en/publication/504188

Manuscript
2021 Chiang, Y.-C. (2021). Maxwell-Rankine stress functions of membrane shells

and their relation to that of planar funicular gridshells [Manuscript submitted
for publication].

Github repository
2020 Chiang, Y.-C. (2020). SpatialAuxetic [MATLAB code]. GitHub repository.

https://github.com/ChiangYuChou/SpatialAuxetic





Design and Fabrication of Shell Structures | Yu-Chou Chiang

Design and Fabrication of Shell Structures
Aided by Radial Basis Functions and Reconfigurable Mechanisms

Yu-Chou Chiang

Shell structures carry loads with their thin yet curved shapes. Being thin means shells require 
little material, which is desirable for minimizing embodied carbon footprints. However, the 
feature of being curved implies shells require immense effort to design and fabricate. To address 
the challenges, this dissertation consists of three parts: developing a design algorithm based 
on radial basis functions (RBFs), inventing a fabrication technique based on reconfigurable 
mechanisms, and producing prototypes based on the new algorithm and mechanism.

The first part of this dissertation introduces a new algorithm based on RBFs for designing smooth 
membrane shells, which is more versatile than existing methods. The algorithm can generate 
membranes with both tensile and compressive stresses. It can also tweak an initial shape to meet 
free-edge conditions. It can also incorporate horizontal loads in the form-finding process.

The second part of the dissertation presents a new system of flat-to-curved mechanisms, which 
allows a shell to be fabricated in a flat configuration and deployed into a double-curved state. 
Such a mechanism consists of panels connected by tilted hinges. The mechanism can contract 
non-homogeneously and change its Gaussian curvature.

The last part of this dissertation demonstrates the integral application of the RBFs form-finding 
algorithm and the flat-to-curved mechanisms. The prototypes designed and produced deliver 
form-found shapes that have spans ranging from 0.2 to 4 meters.

This dissertation contributes to the development and distribution of shell structures by 
developing computer algorithms and digital fabrication techniques to minimize the hurdles of 
designing and fabricating shell structures.
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