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Abstract: Location is capitalized into the price of the land the structure of a property is
built on, and land prices can be expected to vary significantly across space. We account
for spatial variation of land prices in hedonic house price models using geospatial data
and a semi-parametric method known asmixed geographically weighted regression.
Tomeasure the impact on aggregate price change, quality-adjusted (hedonic
imputation) house price indexes are constructed for a small city in the Netherlands and
compared to price indexes based onmore restrictive models, using postcode dummy
variables or no location information at all. We find that, although taking spatial
variation of land prices into account improves themodel performance, the Fisher
house price indexes based on the different hedonic models are almost identical. The
land and structures price indexes, on the other hand, are sensitive to the treatment of
location.
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.............................................................................................................................

§ 6.1 Introduction
.............................................................................................................................

Housingmarkets have two distinct features: every house is unique and houses are sold
infrequently. This is problematic for the construction of house price indexes because
the usual matched-model method, where the prices of goods are tracked over time,
breaks down. Hedonic regressionmethods and repeat sales methods deal with these
problems. The uniqueness of properties is mainly due to location. Within a single
neighborhood, the value of two properties with similar structures can differ
significantly, depending on the exact location.
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Repeat sales indexes fully control for location since they track the prices of the ‘same’
properties over time (in a regression framework). The problemwith repeat sales
methods is threefold. First, because they only usematched pairs of houses during the
sample period, thesemethods ignore single sales and are therefore inefficient and
prone to sample selection bias. Second, standard repeat sales methods do not adjust
for quality changes of the individual houses. Third, thesemethods cannot provide
information on the shadow prices of the property characteristics and thus do not allow
the estimation of, for example, price indexes of the land the structure sits on. Given
these problems with repeat sales methods, we focus on hedonic regressionmethods.

Traditional hedonic price indexes also have a number of disadvantages. First, data on
housing characteristics must be available. Second, location is typically included in
hedonic models at some aggregated level, such as postcode areas, rather than at the
individual property level, potentially leading to ‘location bias’, which is a form of
omiɦed variable bias. Third, land is often not included as an independent variable,
again potentially giving rise to bias andmaking it impossible to estimate price indexes
for land. Geospatial data, i.e. information on the exact location of the dwellings in
terms of geographic coordinates such as longitude and latitude, can help aɦenuate the
laɦer disadvantages. Our aim is to show how this can be done and how hedonic house
price indexes can be constructed accordingly.

A general problemwith the estimation of hedonic models for housing is omiɦed
variables bias. Not properly accounting for location can be amajor cause of bias and
often leads to spatial autocorrelation of the error terms. As mentioned above, the
easiest way to deal with the problem is to include dummy variables for postcode areas.
Another straightforward approach, which has also been frequently investigated
empirically, is to include explanatory variables for all kinds of amenities. While being of
interest because it provides information on the shadow prices of the amenities, this
method is rather data intensive and, just like the inclusion of dummy variables, cannot
fully capture location effects. As a result, some omiɦed variables bias and spatial
autocorrelation will likely remain.

In recent years, more sophisticatedmethods have been put forward to handle the
problem of spatial autocorrelation. Spatial error models aɦempt to explicitly model the
spatial autocorrelation while spatial lag models include the value of neighbor
properties in themodel. Bothmethods can be used in a time dummy hedonic
framework, where themodel is estimated on pooled data for the whole sample period
and price indexes are computed from the time dummy coefficients (Hill et al. 2009;
Dorsey et al. 2010). Also within the time dummy hedonic framework, Thanos et al.
(2016) comprehensively control for both spatial and temporal effects in computing
house price index. It is also possible to apply these spatial (and temporal) methods in a
hedonic imputation framework (Rambaldi and Rao, 2011; 2013). Another method
uses a spatio-temporal filter which eliminates spatial autocorrelation in order to
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estimate an index for a dwelling with specific characteristics (Pace et al., 1998; Tu et
al., 2004; Sun et al., 2005).

A disadvantage of the above parametric methods is that a spatial weight matrix has to
be specified a priori but that its precise structure is unknown. Nonparametric or
semi-parametric methods are more suitable to account for spatial dependence.
Semi-parametric methods have become increasingly popular. The effect of variables
relating to location, for example, can be estimated nonparametrically in ‘characteristics
space’, whereas the effect of variables relating to the structure of the property can be
estimated parametrically, as in traditional hedonic models.

In this paper, we assume that location affects the price of land but not the price of
structures. That is, we postulate that land prices vary across space whereas the price of
structures is ‘fixed’. We deal with this type of spatial nonstationarity using a
semi-parametric approach known asMixed Geographically Weighted Regression
(MGWR) in which the land prices are estimated by Geographically Weighted Regression
(GWR), a nonparametric method proposed by Brunsdon et al. (1996) and
Fotheringham et al. (1998b). An additional advantage is that we will be able to plot a
continuous surface of land prices.

Apart from the fact that it deals with spatial nonstationarity in a straightforward way,
GWR enables us tomodel the local form of autocorrelation. Moreover, it allows land
prices to vary not only across space but also across time by estimating themodel for
each period separately. The laɦer is a prerequisite for the construction of hedonic
imputation price indexes. In conclusion, (M)GWR is a flexible approach, which can be
seen as a generalization of traditional hedonic methods.

We are specifically targeting statistical agencies engaged in the compilation of house
price indexes. This has several consequences. The agencies should have access to
geocoded data, but this is hardly a problem these days. Themethods applied should be
relatively easy to explain. Most importantly, the price indexes should be non-revisable.
This means that the use of the time dummymethod, where previously published index
numbers change when the sample period is extended and new data is added, is ruled
out. This strengthens the case for constructing hedonic imputation indexes.

Furthermore, our paper tries to fill a gap in the recent Handbook on Residential
Property Price Indices (Eurostat et al., 2013) in which the use of geospatial data in the
estimation of hedonic house price models is not very well covered. The Handbook uses
data for detached dwellings sold in the Dutch city of “A” from the first quarter of 2005
to the second quarter of 2008 to illustrate the variousmethods. We exploit sales data
for the city of “A” also but extend the data set in three dimensions. We have data from
the first quarter of 1998 to the fourth quarter of 2007, so our data set covers a period
of 10 years. Note that we will use annual rather than quarterly data in our empirical
work. The range of characteristics for the structures is broader than that in the
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Handbook. Finally, we include houses other than detached dwellings.

The paper proceeds as follows. Section 6.2 outlines some basic ideas. Our hedonic
model is linear, with non-transformed property price as the dependent variable and
size of land and size of structures as explanatory variables. A normalized version, with
price per square meter of living space as the dependent variable, is discussed as well.
We also address the inclusion of additional characteristics to describe the quality of
structures, including age of the structure to adjust for depreciation. Section 6.3
describes how we treat location. As mentioned before, location is capitalized into the
price of land, and we would expect land prices to differ at the property level. The GWR
andMGWRmodels and the way in which they are estimated are explained in detail.
Section 6.4 shows how we calculate hedonic imputation indexes. Section 6.5 presents
empirical evidence for the Dutch city of “A” and discusses the results. Section 6.6
concludes and identifies potential improvements.

.............................................................................................................................

§ 6.2 A simplification of the ‘builder’s model’
.............................................................................................................................

§ 6.2.1 Some basic ideas
.............................................................................................................................

Our starting point is the ‘builder’s model’ proposed by Diewert et al. (2011; 2015). It is
assumed that the value of a property i in period t, pt

i , can be split into the value vtiL of the
land the structure sits on and the value vtiS of the structure:

pt
i = vtiL + vtiS. (1)

The value of land for property i is equal to the plot size in square meters, ztiL, times the
price of land per square meter, αt, and the value of the structure equals the size of the
structure in square meters of living space, ztiS, times the price of structures per square
meter, βt. After adding an error term ut

i with zeromean, model (1) becomes

pt
i = αtztiL + βtztiS + ut

i . (2)

The (shadow) prices of both land and structures in (2) are the same for all properties,
irrespective of their location. In section 6.3 we relax this assumption and allow for
spatial variation of, in particular, the price of land. The ‘builder’s model’ takes
depreciation of the structures into account, a topic we address in section 6.2.2.

Equation (2) can be estimated on data of a sample St of properties sold in period t. This
approach, however, suffers from at least three problems. First, themodel has no
intercept term, which hampers the interpretation of R2 and the use of standard tests in
Ordinary Least Squares (OLS) regression. Second, a high degree of collinearity between
land size and structure size can be expected, so that αt and βt will be estimated with
low precision. Finally, heteroskedasticity is likely to occur since the absolute value of
the errors tends to grow with increasing property prices.
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Our next step is to divide the left hand side and right hand side of equation (2) by
structure size ztiS, giving

pt∗
i = αtrti + βt + ϵti , (3)

where pt∗
i = pt

i/z
t
iS is the normalized property price, i.e. the value of the property per

square meter of living space, rti = ztiL/z
t
iS denotes the ratio of plot size to structure size,

and ϵti = ut
i/z

t
iS. This resolves the first two problems as themodel now has an intercept

term and a single explanatory variable.

However, the normalization is unlikely to resolve the issue of unstable parameter
estimates. Estimating (3) by OLS regression is equivalent to estimating (2) by
Weighted Least Squares (WLS) using weights equal to 1/ztiS. That is, dividing by z

t
iS

adjusts for heteroskedasticity when the error variance in (2) would be proportional to
the square of structure size. This kind of error variance seems quite extreme, so this
weighting systemmay not help reduce the heteroskedasticity problem. Also, the ratios
rti (as well as the normalized values pt∗

i ) may exhibit relatively liɦle dispersion.

Some statistical agencies publish changes in normalized rather than unadjusted
property prices, often prices per square meter of structures, to adjust for compositional
change of the properties sold. We do not recommend this approach because it is
changes in unadjusted property prices and price changesmost people will be
interested in. Yet, given that (3) is a straightforward regressionmodel, including an
intercept term, we do favor specification (3) over (2).

§ 6.2.2 Adding structures characteristics
.............................................................................................................................

A potential weakness of hedonic modeling for housing is omiɦed variables, leading
to biased (OLS) parameter estimates and predicted prices. Omiɦed variables in the
models (2) and (3) can relate to land or structures. Improving the treatment of land is
the topic of section 6.3. In the present section, we discuss the inclusion of additional
characteristics for structures. There are twomain issues: depreciation and renovation
of structures have been ignored so far, and the use of size as the only price-determining
feature seems too simplistic.

Following Diewert et al.(2015), we initially assume a straight-line depreciationmodel.
The adjusted value of the structure is βt (1− δtαt

i
)
ztiS, where δ

t is the depreciation rate
and αt

i is age of the structure. Information on renovations at the level of individual
dwellings is unavailable so that−δtαt

i measures the effect of net depreciation, i.e. the
combined effect of ‘true’ depreciation and renovation. Wriɦen in linear form, the
adjusted structures value is βtztiS − βtδtαt

iz
t
iS. Adding the second term to the right-hand

side of equation (2) yields

pt
i = αtztiL + βtztiS − βtδtαt

iz
t
iS + ut

i . (4)

We do not know the exact age of the structures, but we do know the building period in
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decades, fromwhich we can calculate approximate age in decades. Thus, age in our
data set is an ordinal (categorical) variable. The net depreciation rate is of course
ordinal as well. Usingmultiplicative dummy variables Dt

ia that take on the value 1 if in
period t property i belongs to age category a (a = 1, · · · ,A) and the value 0 otherwise,
and after reparameterizing such that βtztiS is no longer a separate term, model (4)
becomes pt

i = αtztiL+
∑A

a=1 γ
tDt

iaz
t
iS + ut

i . To be able to use standard techniques, we
modify this model as follows:

pt
i = αtztiL+

A∑
a=1

γt
aD

t
iaz

t
iS + ut

i . (5)

No restrictions are placed on the parameters γt
a, and the new functional form is neither

continuous nor smooth. This is somewhat problematic from a theoretical point of view,
because it is at odds with the initial straight-line depreciationmodel. On the other
hand, our approach introduces some flexibility. Age of the structures is not only
important for modeling depreciation, it can also be seen as an aɦribute of the dwelling
itself in that houses built in a particular decade are more in demand than other houses,
perhaps for their architectural style or other age-related aɦributes.

Diewert et al. (2015) also show how to incorporate the number of rooms. The new
value of the structures becomes βt (1− δtati

) (
1+ µtztiR

)
ztiS, where µ

t is the parameter
for the number of rooms ztiR. The linear form for this expression is
βtztiS + βtµtztiRz

t
iS − βtδtatiz

t
iS − βtδtµtatiz

t
iRz

t
iS. Using dummiesDt

ir for the number of
rooms with the value 1 if in period t the property belongs to category r (r = 1, · · · , R)
and the value 0 otherwise, and reparameterizing again, the extended version of
(5)becomes

pt
i = αtztiL +

A∑
a=1

γt
aD

t
iaz

t
iS +

R∑
r=1

λt
rD

t
irz

t
iS +

A∑
a=1

R∑
r=1

ηt
arD

t
iaD

t
irz

t
iS + ut

i . (6)

Next, in order to save degrees of freedom, we ignore the ‘second-order’ effects due to
the interaction terms Dt

iaD
t
ir, yielding

pt
i = αtztiL+

A∑
a=1

γt
aD

t
iaz

t
iS+

R∑
r=1

λt
rD

t
irz

t
iS+ut

i = αtztiL+

[
A∑

a=1

γt
aD

t
ia +

R∑
r=1

λt
rD

t
ir

]
ztiS + ut

i (7)

The second expression shows that the price of structures, i.e. the price per square
meter of living space, equals γt

a + λt
r for properties in age class a (a = 1, · · · ,A) and

category r (r = 1, · · · , R) for number of rooms. A high degree of multicollinearity can
occur among the various structures components, but we do not worry about this
because we are only interested in the combined effect. Multicollinearity between these
components and plot size might still be a problem though. Dividing the first expression
in (7) by ztiS gives

pt∗
i = θt + αtrti +

A−1∑
a=1

γt
aD

t
ia +

R−1∑
r=1

λt
rD

t
ir + ϵti (8)
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We included an intercept term θt and then excluded dummy variables for age class A
and category R for the number of rooms to identify themodel.

Model (8) is a straightforward estimating equation for the overall property price per
square meter of living space. Additional categorical variables for the structures can be
incorporated in a similar way as the number of rooms. As amaɦer of fact, we will use
type of house instead of the number of rooms in our empirical work.

.............................................................................................................................

§ 6.3 Land and spatial nonstationarity
.............................................................................................................................

§ 6.3.1 Location and the price of land
.............................................................................................................................

Location is themost important omiɦed variable in the hedonic models presented so
far. In many empirical studies, location is treated as a ‘separate characteristic’ by
including additive locational dummy variables in models for the overall property price.
This is not the solution we prefer. Location is definitely capitalized into property prices.
However, at least within relatively small regions or cities, the price of structures is most
likely to bemore or less constant across space. It is the price of the land the structure is
built on that can vary significantly across different locations, even within a single
neighborhood. The question then arises as to how this spatial variation, or spatial
nonstationarity as it is sometimes referred to, in the price of land should bemodeled.

We couldmake the simplifying assumption that the price of land varies across
postcode areas but is the same within each postcode area k (k = 1, · · · ,K) and
denoted by αt

k. This idea is widely used in empirical studies, such as Diewert and
Shimizu (2013) who estimated the ‘builder’s model’ for Tokyo. Usingmultiplicative
postcode dummy variables Dik, which take on the value of 1 if property i belongs to k
and the value 0 otherwise, an improved version of model (7) for the unadjusted
property price is

pt
i =

K∑
k=1

αt
kDikz

t
iL +

A∑
a=1

γt
aD

t
iaz

t
iS +

R∑
r=1

λt
rD

t
irz

t
iS + ut

i , (9)

and an improved version of model (8) for the normalized property price is

pt∗
i = θt +

K∑
k=1

αt
kDikr

t
i +

A−1∑
a=1

γt
aD

t
ia +

R−1∑
r=1

λt
rD

t
ir + ϵti (10)

The assumption of equal land prices within postcode areas could be too crude,
depending of course on the level of detail of the postcode system. Generalized versions
of themodels (9) and (10) are obtained by assuming that the price of land can differ at
the individual property level, i.e. at themicro location. We denote the property-specific
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land price by αt
i , yielding

pt
i = αt

iz
t
iL +

A∑
a=1

γt
aD

t
iaz

t
iS +

R∑
r=1

λt
rD

t
irz

t
iS + ut

i (11)

and

pt∗
i = θt + αt

ir
t
i +

A−1∑
a=1

γt
aD

t
ia +

R−1∑
r=1

λt
rD

t
ir + ϵti . (12)

Models (11) and (12) obviously cannot be estimated by standard regression
techniques. In section 6.3.2 we will discuss a semi-parametric approach that does
allow us to estimate thesemodels. Because themethod utilizes data on the prices of
neighboring properties (in addition to the price of property i itself) to estimate αt

i , it is
not necessarily true that the use of models (11) or (12) will lead to aggregate price
indexes that are very different from those found by usingmodels (9) or (10).

§ 6.3.2 Mixed Geographically Weighted Regression
.............................................................................................................................

Onemethod that deals with spatial nonstationarity of property prices is the ‘expansion
method’ (Caseɦi, 1972; Jones and Caseɦi, 1992). The property price, or in our case the
price of land, can be viewed as an unknown function of the property’s location in terms
of latitude xi and longitude yi or a similar geographic coordinate system. This function
can be approximated using a Taylor-series expansion of some order; typically, second-
order approximations are applied. The expansionmethodmakes use of geospatial data
but is basically parametric as it calibrates a prespecified parametric model for the trend
of land prices across space (Fotheringham et al. 1998a).

Themethod we will apply, referred to as Geographically Weighted Regression (GWR),
deals with spatial nonstationarity in a truly nonparametric fashion (Brunsdon et al.
1996; Fotheringham et al. 1998b). Let us remove the structures characteristics from
model (11) for a moment and thus consider land as the only independent variable.
Using αi = α (xi, yi), themodel becomes

pi = α(xi, yi)ziL + ui. (13)

Note that we have dropped the superscript t for convenience; it should be clear that we
estimate all models for each time period separately. Note further that land prices can
be estimated for each location in the area under study, not just for the sample
observations, enabling us to plot a continuous surface of land prices.

Model (13) can be estimated using amoving kernel window approach, which is
essentially a form ofWLS regression. In order to obtain an estimate for the price of land
α(xi, yi) for property i, a weighted regression is run where each related observation j, i.e.
each neighboring property, is given a weightwij(i ̸= j). The weights should follow a
monotonic decreasing function of distance dij between (xi, yi) and (xj, yj). There is a
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range of possible functional forms fromwhich we have chosen the frequently-used
bi-square function

wij =


(
1− d2

ij/h
2)2 if dij < h

0 otherwise
(14)

where h denotes the bandwidth. The choice of bandwidth involves a trade-off between
bias and variance. A larger bandwidth generates an estimate with larger bias but
smaller variance whereas a smaller bandwidth produces an estimate with smaller bias
but larger variance. The usual solution is to select the optimal bandwidth by
minimizing the cross-validation (CV) statistic

CV(h) =
n∑

i=1

[pi − p̸̂=i(h)]
2 (15)

where p̸̂=i(h) is the predicted price of property iwhere the observations for i have been
omiɦed from the calibration process.

The nonparametric GWR approach to dealing with spatial nonstationarity of the price
of land has to be adjusted for the fact that models (11) and (12) include structures
characteristics with spatially fixed parameters. This leads to a specific instance of the
semi-parametric Mixed GWR (MGWR) approach discussed by Brunsdon et al. (1999),
where some parameters are spatially fixed and the remaining parameters are allowed
to vary across space. To outline the estimation procedure, it will be useful to change
over to matrix notation. Denoting the number of observations by n, model (11) can be
wriɦen inmatrix form as

P = ZL ⊗α+ ZSβ + u, (16)

whereα = (α(x1, y1), α(x2, y2), · · · , α(xn, yn))T is a vector of land prices to be
estimated,⊗ is an operator that multiplies each element ofα by the corresponding
element of ZL, ZS is thematrix of structures characteristics included inmodel (11),
given by

ZS =


D11z1S D12z1S · · · D1jz1S
D21z2S D22z2S · · · D2jz2S

...
...

. . .
...

Dn1znS Dn2znS · · · DnjznS

 ,

and β = (β1, β2, · · · , βn)
T is the vector of coefficients relating to ZS to be estimated.

We follow Fotheringham et al. (2002), who proposed an estimationmethod that is less
computationally intensive than themethod described by Brunsdon et al. (1999). We
will broadly describe the actual estimation procedure and present the estimators for
the parameters, but we do not provide the exact MGWR algorithm. For details, the
readers can refer to Fotheringham et al. (2002), Mei et al. (2006), and Geniaux and
Napoléone (2008). To economize on notation, we write the GWR projection or hat

143 Accounting for spatial variation of land prices in hedonic imputation house price indexes: A semi-parametric

approach



matrix as

S =


z1L
[
ZTLW(x1, y1)ZL

]−1 ZTLW(x1, y1)
z2L
[
ZTLW(x2, y2)ZL

]−1 ZTLW(x2, y2)
...

znL
[
ZTLW(xn, yn)ZL

]−1 ZTLW(xn, yn)


whereW(xi, yi) = diag [w1(xi, yi),w2(xi, yi), · · · ,wn(xi, yi)]. The calibration of themodel
consists of four steps:

1. regressing each column of ZS against ZL using the GWR calibrationmethod and
computing the residualsQ = (I− S)ZS;

2. regressing the dependent variable P against ZL using the GWR approach and then
computing the residuals R = (I− S)P;

3. regressing the residuals R against the residualsQ using OLS in order to obtain the
estimates β̂ = (QTQ)−1QTR;

4. subtracting ZSβ̂ from P and regressing this part against ZL using GWR to obtain
estimates α̂(xi, yi) =

[
ZTLW(xi, yi)ZL

]−1 ZTLW(xi, yi)(P− ZSβ̂).

The predicted values for the property prices can be expressed as

P̂ = S(P− ZSβ̂) + ZSβ̂ = LP, (17)

with L = S+ (I− S)ZS
[
ZTS(I− S)T(I− S)ZS

]−1 ZTS(I− S)T(I− S).

The parameter estimates and the predicted property prices obviously depend on the
choice of weights, hence on the choice of bandwidth h. The optimal value for h is
determined byminimizing the CV statistic given by (15). In the case of MGWR, the CV
statistic is equivalent to (Mei et al., 2006)

CV(h) =
1
n

n∑
i=1

[
pi − p̂i(h)
1− lii(h)

]2
(18)

where p̂i(h) is the predicted price for property i and lii(h) is the ith diagonal element of
matrix L in equation (17).

.............................................................................................................................

§ 6.4 Hedonic imputation price indexes
.............................................................................................................................

This section addresses the issue of estimating quality-adjusted property price indexes.
Suppose that sample data is available for periods t = 0, · · · , T, where 0 is the base
period (the starting period of the time series we want to construct), and supposemodel
(12) has been estimated separately for each period. The predicted property prices,
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obtained usingMGWR, are given by p̂t
i = α̂t

iz
t
iL +

[
θ̂t +

∑A−1
a=1 γ̂

t
aDt

ia +
∑R−1

r=1 λ̂t
rDt

ir

]
ztiS.

For short, we write the predicted price of structures, θ̂t +
∑A−1

a=1 γ̂
t
aDt

ia +
∑R−1

r=1 λ̂t
rDt

ir, as
β̂t
i and the predicted overall property price as p̂

t
i = α̂t

iz
t
iL + β̂t

i z
t
iS (t = 0, · · · , T).

We denote the sample of properties sold in the base period by S0. The hedonic
imputation Laspeyres property price index going from period 0 to period t is defined by

P0t
Laspeyres =

∑
i∈S0 p̂

t(0)
i∑

i∈S0 p̂
0
i

(19)

Equation (19) may need some explanation. All quantities are equal to 1, reflecting the
fact that each property is considered unique. The index is not affected by
compositional change because it is based on a single sample. Most, if not all, of the
properties sold in period 0 are not re-sold in period t, and the ‘missing prices’ have to
be imputed by p̂t(0)

i . We have also replaced the observed base period prices p0
i by the

predicted values p̂0
i , a method known as double imputation1.

The p̂t(0)
i are estimated period t constant-quality property prices, i.e. estimates of the

prices that would prevail in period t for properties sold in period 0 if the properties’
price-determining characteristics were equal to those of the base period, which serves
to adjust for quality changes of the individual properties. These constant-quality prices
are estimated by p̂t(0)

i = α̂t
iz

0
iL + β̂

t(0)
i z0iS, where β̂

t(0)
i = θ̂t +

∑A−1
a=1 γ̂

t
aD0

ia +
∑R−1

r=1 λ̂t
rD0

ir

denotes the estimated constant-quality price of structures.

Substitution of p̂0
i = α̂0

i z
0
iL + β̂0

i z
0
iS and p̂t(0)

i = α̂t
iz

0
iL + β̂

t(0)
i z0iS into (19) yields

P0t
Laspeyres =

∑
i∈S0

[
α̂t
iz

0
iL + β̂

t(0)
i z0iS

]
∑

i∈S0

[
α̂0
i z

0
iL + β̂0

i z
0
iS

] = ŝ0L

∑
i∈S0 α̂

t
iz

0
iL∑

i∈S0 α̂
0
i z

0
iL
+ ŝ0S

∑
i∈S0 β̂

t(0)
i z0iS∑

i∈S0 β̂
0
i z

0
iS

(20)

where
∑

i∈S0 α̂
t
iz

0
iL/
∑

i∈S0 α̂
0
i z

0
iL is a price index of land and

∑
i∈S0 β̂

t(0)
i z0iS/

∑
i∈S0 β̂

0
i z

0
iS is

a price index of structures. Equation (20) decomposes the overall house price index
into structures and land components; the weights
ŝ0L =

∑
i∈S0 α̂

0
i z

0
iL/
∑

i∈S0

[
α̂0
i z

0
iL + β̂0

i z
0
iS

]
and ŝ0S =

∑
i∈S0 β̂

0
i z

0
iS/
∑

i∈S0

[
α̂0
i z

0
iL + β̂0

i z
0
iS

]
are estimated shares of land and structures in the total value of property sales in period
0. The double imputationmethod ensures that the weights sum to unity.

The price indexes of land and structures in (20) are Laspeyres-type indexes and can be
wriɦen as weighted averages of price relatives for the individual properties. For
example, the Laspeyres price index of land can be wriɦen as

∑
i∈S0 ŝ

0
iL
(
α̂t
iL/α̂

0
iL
)
, where

the weights ŝ0iL = α̂0
i z

0
iL/
∑

i∈S0 α̂
0
i z

0
iL for the price relatives α̂

t
iL/α̂

0
iL reflect the shares of

1 Hill andMelser (2008) discuss different types of hedonic imputationmethods in the context of housing. For a
general discussion of the difference between hedonic imputation indexes and time dummy indexes, see Diewert
et al. (2009) and de Haan (2010).
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the properties in the estimated value of land (implicitly) sold in period 0. Properties
with relatively large value shares, like properties in wealthy and sought-after
neighborhoods with large plot sizes and high land prices, therefore have a big influence
on the index.

An alternative to the Laspeyres index is the hedonic double imputation Paasche price
index, defined on the sample St of properties sold in period t(t = 1, · · · , T):

P0t
Paasche =

∑
i∈St p̂

t
i∑

i∈St p̂
0(t)
i

. (21)

The imputed constant-quality prices p̂0(t)i are estimates of the prices that would prevail
in period 0 if the property characteristics were those of period t, which are estimated as
p̂0(t)
i = α̂0

i z
t
iL+ β̂

0(t)
i ztiS, where β̂

0(t)
i = θ̂0+

∑A−1
a=1 γ̂

0
aDt

ia+
∑R−1

r=1 λ̂0
r Dt

ir denotes the period
0 constant-quality price of structures. By substituting the constant-quality prices and
the predicted prices p̂t

i = α̂t
iz

t
iL + β̂t

i z
t
iS into (21), the hedonic imputation Paasche index

can be wriɦen as
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where
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t
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t
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i∈St α̂
0
i z

t
iL and
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i∈St β̂

t
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i ztiS are Paasche price indexes
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]
. The weights are now of a hybrid nature and

reflect the shares of land and structures in the estimated total value of property sales in
period t, evaluated at base period prices.

A drawback of the above indexes is that they are based on the sample of either the base
period or the comparison period t, but not on both samples. When constructing an
index going from 0 to t, the sales in both periods should ideally be taken into account in
a symmetric fashion. The double imputation Fisher price index

P0t
Fisher =

[
P0t
Laspeyres × P0t

Paasche

] 1
2 (23)

does so by taking the geometric mean of the Laspeyres and Paasche price indexes. Note
that, because the Fisher index number formula is not consistent in aggregation, it is
not possible to provide an exact decomposition of the Fisher property index into
structures and land components.

Double imputation Laspeyres, Paasche and Fisher property price indexes and the land
price indexes based on themore restrictive hedonic models (10) or (8) are found by
replacing α̂0

i and α̂t
i in (20) and (22) by the corresponding postcode-specific estimates
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α̂0
k and α̂t

k or the city-wide estimates α̂0 and α̂t. In the laɦer case, the estimated land
price index of course equals α̂t/α̂0, irrespective of the index number formula used.

.............................................................................................................................

§ 6.5 Empirical evidence
.............................................................................................................................

§ 6.5.1 The data set
.............................................................................................................................

The data set we utilize was provided by the Dutch Association of Real Estate Agents.
It contains residential property sales for a small city (population is around 60,000) in
the northeastern part of the Netherlands, the city of “A”, and covers the first quarter
of 1998 to the fourth quarter of 2007. Statistics Netherlands has geocoded the data.
We decided to exclude sales on condominiums and apartments since the treatment
of land deserves special aɦention in this case. The resulting total number of sales in
the data set during the ten-year period is 6,058, representing approximately 75% of all
residential property transactions in “A”.

The data set contains information on the time of sale, transaction price, a range of
structures characteristics, and land characteristics. We included only three structures
characteristics in our models, i.e., usable floor space, building period and type of house.
For land, we used plot size and postcode or latitude/longitude. Initially, we deleted 43
observations withmissing values or prices below €10,000, properties withmore than
10 rooms and those with ratios of plot size to structure size (usable floor space) larger
than 10 as well as transactions in rural areas. Finally, we removed 32 outliers or
influential observations detected by Cook’s distance and were left with 5,983
observations during the sample period.

Table A1 in the Appendix reports summary statistics by year for the numerical
variables. Both the average transaction price and the price per square meter
significantly increased from 1998 to 2007. Average land size and usable floor space
were quite stable over time. The urban area of the city of “A” seems to have expanded
along the east-west axis; the standard deviation of the x coordinate in later years is
generally much larger than that in earlier years.

§ 6.5.2 Estimation results for hedonic models
.............................................................................................................................

Given the small size of the city of “A” and the resulting low number of observations,
we decided to use annual rather than quarterly data. We estimated three normalized
hedonic models: model (8), which does not include location (denoted by OLS), model
(10) with 9 postcode dummy variables (OLSD), andmodel (12) with property-specific
land prices (MGWR).
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When estimating theMGWRmodel, we used the adaptive bi-square function to
construct the weighting scheme, given that the transactions were not evenly
distributed across space. In this case, the bandwidth is generally referred to as the
window size, and the choice of window size is equivalent to the choice of the number of
nearest neighbors. To find the optimal value, we varied the window size from 10% to
95% using a 5% interval and selected the size that yielded the lowest CV score as given
by equation (18). Each annual sample has a unique optimal window size. The CV
scores indicated that a 10%window size was preferred for most of the years, except for
1999, 2000 and 2002, with an optimal size of 15%, and 2003, with an optimal size of
30%. However, for the construction of price indexes, we would prefer using the same
window size for all years, especially since the number of sales is almost evenly spread
across the whole period. So we chose a window size of 10% for each year, leading to 60
nearest neighbors that were used in the estimation of the annual MGWRmodels.

TABLE 6.1 Parameter estimates for structures characteristics, 2007

OLS OLSD MGWR

Intercept 1480.70***
(46.93)

1405.41***
(53.71)

1395.76***
(57.51)

Building period:1960-1970 -370.48***
(25.94)

-389.50***
(36.67)

-398.40***
(41.75)

Building period:1971-1980 -311.17***
(23.36)

-261.50***
(33.96)

-323.50***
(41.75)

Building period:1981-1990 -232.93***
(23.37)

-173.08***
(32.59)

-226.14***
(42.87)

Building period:1991-2000 -58.64***
(21.64)

-49.34*
(26.55)

-115.13***
(37.26)

Terrace -285.65***
(35.17)

-264.34***
(35.24)

-187.28***
(37.32)

Corner -281.36***
(31.77)

-274.54***
(31.18)

-192.85***
(34.07)

Semidetached -122.89**
(47.96)

-149.50***
(47.57)

-96.93**
(48.73)

Duplex -151.08***
(30.60)

-147.24***
(30.17)

-104.56***
(31.03)

Notes:Standard errors are reported in parentheses; ***, ** and * denote significance at the 1%
, 5% and 10% level, respectively.

As an illustration, Table 6.1 shows the 2007 parameter estimates for the structures
characteristics. Almost all of the estimates differ significantly from zero at the 1% level.
To some extent they vary across the different models. For example, the OLS intercept
term is relatively high compared to the OLSD andMGWR intercepts. Note that, since
dummy variables for houses built after 2000 and for detached houses were not
included, the intercept measures the price in euros of structures per square meter of
living space for detached houses built after 2000. In accordance with a priori
expectations, detached dwellings are more expensive than other types of houses. For

148 The Spatial Dimension of House Prices



all models, there is a clear tendency for the structures to become less expensive as they
are geɦing older.

TABLE 6.2 Summary statistics for estimated land prices

OLS
OLSD MGWR

Mean S.D. Min Max Median Mean S.D.

1998 116.80 131.50 31.14 72.30 231.03 122.66 125.49 28.66
1999 154.64 178.50 34.85 105.95 223.66 174.07 167.77 30.39
2000 239.77 239.41 36.24 138.53 319.32 251.34 241.83 44.27
2001 214.54 235.58 47.59 110.41 295.01 229.52 226.70 48.77
2002 234.77 245.11 38.41 156.15 323.63 255.05 242.23 40.89
2003 166.07 185.11 44.23 82.12 248.23 179.93 172.26 44.55
2004 186.40 197.19 29.75 104.95 254.20 197.70 195.41 33.78
2005 226.13 224.11 36.55 127.53 299.74 214.19 205.89 35.17
2006 202.84 195.77 30.85 125.90 274.24 207.43 201.27 32.05
2007 214.87 236.73 27.96 141.46 286.91 235.07 229.25 30.99

Notes: For OLS, the land price estimates are reported. For OLSD, the columns show the
weightedmean and standard deviation of the estimated land prices for 9 postcode areas where
the weights are equal to the share of transactions within each postcode area. For MGWR, the
columns provide summary statistics for the land price estimates of all transacted properties.

Table 6.2 contains summary statistics for the estimated price per square meter of land
from the threemodels. The three average land price series exhibit a similar paɦern
over time, which differs substantially from the changes in the average transaction price
of the properties (see Table A1 in the Appendix). After a sharp increase in 1999, the
estimated average land price fluctuated during a couple of years, experienced a
dramatic drop in 2003, and then increased again.

As mentioned earlier, a virtue of MGWR is that it allows us to plot a continuousmap
with estimated prices of land per square meter. For the year 2007, such amap is
depicted in Figure 6.1 for the city of “A”, where the land prices have been rescaled to
the range [0,1]. The postcode areas are indicated as well. While the spatial paɦern in
Figure 6.1 is largely consistent with the paɦern found using the OLSDmodel (shown in
Figure A1 in the appendix), the MGWR land prices estimates do vary within some of
the areas. This suggests that the use of postcode dummies, as in the OLSDmodel, is a
rather crude strategy to incorporate spatial variation of land prices.

To formally compare the performance of the three hedonic models, two statistics were
calculated, the Corrected Akaike Information Criterion (AICc) and the Root Mean
Square Error (RMSE). The AICc takes into account the trade-off between goodness of fit
and degrees of freedom. The AICc expressions for the OLS and OLSDmodels can be
found in Hurvich and Tsai (1989). And for MGWRmodels, it is defined by

AICc = 2nln(σ̂) + nln(2π) + n
(

n+ tr(S)
n− 2− tr(S)

)
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FIGURE 6.1 Price of land per square meter, 2007

where σ̂ is the estimated standard deviation of the error term and tr(S) the trace of the
hat matrix described in section 6.3.2. The RMSEmeasures the variability of the
absolute prediction errors of themodels and is given by

RMSE =
1
n

√∑
i

(pi − p̂i)2.

Table 6.3 shows the AICc and RMSE and their differences for the threemodels. A rule
of thumb states that if the difference in the AICc for twomodels is larger than 3, a
significant difference exists in their performance (Fotheringham et al. 2002). It can be
seen that the OLSDmodel performsmuch beɦer than the OLSmodel in all years, as we
would expect, and in turn that theMGWRmodel outperforms the OLSDmodel (except
for 2003, when the difference is insignificant). The same ranking is found if the RMSE
is used to assess the variousmodels. These results confirm the earlier finding that land
prices vary across space, both across and within postcode areas.

AlthoughMGWR is obviously beɦer suited tomodel the variation of land prices and to
predict property prices, the OLSDmodel does a surprisingly good job. In several years,
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for example in 1998, 1999 and 2003, the inclusion of postcode dummy variables
accounts for themajor part of the variance in overall property prices, almost as much as
theMGWRmodel does.

§ 6.5.3 Hedonic imputation price indexes
.............................................................................................................................

Changes in average property prices and their land and structure components are
affected by compositional change and quality change of the traded properties. The
hedonic house price indexes and the land and structures components that we
estimated control for these effects. We estimated chained rather than direct indexes
because imputing the ‘missing prices’ over a very long period of timemay not be useful
and because the value shares of land and structures will then be updated annually. A
drawback of chaining is that the resulting price indexes cannot be exactly decomposed
because they are not consistent in aggregation.

In Figures 6.2-6.4, the estimated double imputation hedonic Laspeyres, Paasche and
Fisher price indexes for the overall property are ploɦed, based on the threemodels
(OLS, OLSD, andMGWR). A comparison of Figures 6.2 and 6.3 shows that, for each
model, the chained Laspeyres index sits above the Paasche index, as expected. The
Laspeyres and Paasche indexes based on OLSD andMGWR are very similar; for the
Laspeyres index, the difference can even hardly be noticed. This result is in accordance
with our finding that the OLSDmodel captures the spatial nonstationarity of land
prices reasonably well.

FIGURE 6.2 Hedonic imputation Laspeyres house price index

Not using location information at all does make a difference though, at least for the
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Laspeyres and Paasche house price indexes. The OLS-based Laspeyres and Paasche
indexes seem to be biased downwards and upwards, respectively. However, the biases
almost cancel out in the Fisher index: the OLS-based Fisher index is very similar to the
OLSD-based andMGWR-based Fisher indexes. In other words, the hedonic imputation
Fisher house price index is insensitive to the treatment of location in the hedonic
model, which is a surprising result.

FIGURE 6.3 Hedonic imputation Paasche house price index

FIGURE 6.4 Hedonic imputation Fisher house price index and SPAR index

The house price index for the Netherlands published by Statistics Netherlands is also
ploɦed in Figure 6.4. This official index is based on the Sale Price Appraisal Ratio
(SPAR) method (de Haan et al. 2009; de Vries et al. 2009). Our hedonic indexes show a
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muchmoremodest price increase. There may be two reasons for this. First, house
prices in the city of “A” appreciated less compared to the rest of the country. Second,
our indexes beɦer adjust for quality changes while the SPARmethod only adjusts for
compositional change of the properties sold. We think that the second reason is more
important.

FIGURE 6.5 Hedonic imputation Fisher price indexes for land

FIGURE 6.6 Hedonic imputation Fisher price indexes for structures and official
construction cost index

The picture changes when we look at the Fisher indexes for the price of land in Figure
6.5. The OLSD- andMGWR-based indexes, which explicitly account for location, are
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similar, although theMGWR-based index is less volatile, at least during 2003-2007.
However, the OLS-based index seems to be significantly upward biased. For example,
between 1999 and 2000 as well as between 2003 and 2005, the OLS-based index
rises much faster than the other two indexes.

Figure 6.6 shows the Fisher price indexes for structures based on the threemodels.
Again, the OLSD-based andMGWR-based indexes are similar. The OLS-based index
sits below the other indexes, but the difference is less pronounced than for land. This
is in line with our expectations: location should affect the price of land and is modeled
accordingly, but it should leave the price of structures unaffected.

FIGURE 6.7 Estimated value shares of land and structures, MGWR-based

Figure 6.7 shows theMGWR-based value share estimates for both structures and land.
Prior to 2003, these shares are quite volatile, but from 2003 on they remain fairly
constant. The average estimated shares for structures and land across the entire
sample period are 0.67 and 0.33. The OLS- and OLSD-based shares show similar
paɦerns and levels; the average shares for structures are 0.68 and 0.66, respectively,
hence for land 0.32 and 0.34. Given that the estimated value share of structures is
twice as large as that of land, the overall house price indexes are affectedmost by
changes in structures prices. Yet, combining Figures 6.4, 6.5, 6.6 and 6.6 suggests that
the increase in house prices between 1998 and 2001 has been drivenmainly by the
increase of land prices: both the (average) price of land and its value share show a
sharp increase.

§ 6.5.4 Discussion
.............................................................................................................................
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Figures 6.5, 6.6 and 6.7 raise a number of issues. The first issue is the volatility of the
land and structures price indexes. Volatile series can of course be expected with sparse
data (and without smoothing). Another causemight bemulticollinearity. Diewert et al.
(2015) found that multicollinearity (between land and structure size) led to price
changes for land and structures which consistently had opposite signs. To deal with
this form of multicollinearity, some studies (e.g.,Diewert et al. 2009; Diewert and
Shimizu 2013; Francke and van deMinne 2016) included exogenous information in
the hedonic models; they all used the officially published construction cost index as the
measure of price change for structures. Put differently, their models do not provide an
endogenously determined price index of structures. We do not follow their approach
because, as we discuss in the next paragraph, multicollinearity does not seem to be the
most important issue and because the trend of the endogenous price index of
structures might bemore consistent with the evolution of themarket values of
structures.

In Figure 6.8, the MGWR-based Fisher price indexes for land and structures from
Figures 6.5 and 6.6 are copied. In some years, for example in 2003 when the land price
index suddenly falls and starts to sit below the structures price index, the price changes
for land and structures have opposite signs, but in other years the price changes are in
the same direction. The variance inflation factor (VIF) for the ratio of plot size to
structure size did not point to significant multicollinearity either. Further, there is a
considerable amount of variation in these ratios in our data set; see Table A1. We
therefore suspect that multicollinearity is not themain issue.

FIGURE 6.8 Chained Fisher price indexes for land and structures, MGWR-based

The second issue is whether the trends of the (Fisher) price indexes for land and
structures are plausible. For land, this cannot be checked since information on the
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price change of land is not available for the Netherlands 2. For structures we use the
official nationwide construction cost index (CCI) for new dwellings as a benchmark.
This price index, rebased to 1998=100, is shown in Figure 6.6 as well. Our structures
price indexes rise much faster than the construction cost index, especially during the
second half of the sample period when the construction cost index flaɦens.

At first, a construction cost index does not necessarily have to coincide with an implicit
price index for structures derived from a hedonic model. Since structure is producible,
it is believed that, in a completely competitive market, the construction cost is equal to
themarket value of structure (Davis and Heathcote 2007; Davis and Palumbo 2008).
This equality might be held in a stable market where the developers can take a
sufficiently long time tomeet the demand. However, themarket of structures in reality
tends to be less competitive due to the restriction of new constructions and the high
cost of replacing old structures with new ones. In this case, it is very likely that a
persistent markup is imposed on structure prices and hence it is no surprising to see
the structure price index siɦing above the construct cost index. This disparity can be
evenmore striking during a housing boom, which is exactly the case of this study.
Kuminoff and Pope (2013), who estimated the land values for USmetropolitan areas
using a refined hedonic approach that mitigates the omiɦed variable bias, presented a
similar finding that the increase of market value of structures exceeds the growth of
replacement cost in the booming period in some places. On the other hand, the
flaɦening of the construction cost index between 2003 and 2007 has been subject of
debate in the Netherlands. The discussion arose because the construction cost index
increased by only 4.9%, which was even lower than the increase in the CPI of 5.8%,
while house prices were still rapidly rising.

Nevertheless, a divergence that large is still a bit worrying. One of the reasons for the
strong increase of our structures price indexes could be omiɦed variables bias –
resulting in quality-change bias – because we included only a few structures
characteristics in the hedonic models. Unless they are highly collinear with included
variables, adding characteristics will lead to beɦer quality adjustment for structures
and lower the price indexes for structures if, as can be expected during this period of
booming house prices, the quality of structures has improved over time. One obvious
omiɦed variable that is related to depreciation of the structures is the level of
maintenance.

The third issue concerns the share of land in the value of properties sold, which was
estimated at roughly one third across the sample period. van deMinne and Francke
(2012) estimated the share of land for properties (excluding

2 Municipalities do have information on what are sometimes referred to as realizations of the value of land sold to
developers of residential construction. These realizations are determined residually, but it is doubtful whether
they accurately measure the ‘true’ value of land.
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apartments/condominiums) sold during 2003-2010 in the city of ‘s Hertogenbosch at
0.39 on average. In a follow-up study (Francke and van deMinne 2016), where they
made a distinction between the part of the land plot that the structure sits on and the
part used as gardens, the estimate was almost 0.50. It is not unreasonable to find that
the value share of land for the city of “A” is lower than that for ‘s Hertogenbosch. The
city of “A” lies in a less prosperous part of the Netherlands with fewer amenities that
households appreciate, and we expect this to have a downward effect on the price of
land rather than the price of structures, hence on the value share of land.

de Groot et al. (2015), also using hedonic models to decompose property values into
land and structures components, estimated the price of land for most Dutch cities,
though unfortunately not for “A”. They found substantial cross-city differences. For
example, the price per square meter of land in 2005 was estimated at 717 euros for
the capital city of Amsterdam, 308 euros for ‘s-Hertogenbosch, and 184 euros for
Leeuwarden. Like “A”, Leeuwarden is a city in the northeastern part of the Netherlands
but bigger. In light of their findings, our MGWR estimates of the average price of land
for the city of “A”, 206 euros in 2005 (Table 6.2), and the value share of land are not
surprisingly low after all.

.............................................................................................................................

§ 6.6 Summary and conclusions
.............................................................................................................................

Land is often not explicitly included in hedonic models for house prices, which can bias
the results. Ignoring spatial nonstationarity of land prices can also generate bias. As far
as we know, the present paper is the first aɦempt to account for nonstationarity of land
prices in the construction of hedonic imputation house price indexes. We linearized
the ‘builder’s model’ proposed by Diewert et al. (2015), allowed the price of land to
vary across individual properties, and estimated themodel for the normalized property
price (the price of the property per square meter of living space) by MGWR, a
semi-parametric method, on annual data for the Dutch city of “A”. We then
constructed chained imputation Laspeyres, Paasche and Fisher indexes, and compared
these indexes with price indexes based onmore restrictive models, i.e. a model where
land prices vary across postcode areas and amodel with no variation in land prices and,
both estimated by OLS.

The Fisher house price indexes were quite insensitive to the choice of model, but the
Laspeyres and Paasche indexes for the ‘fixed’ land price model differed from those for
themodels where location was explicitly included. The use of postcode area dummy
variables produced price indexes very similar to indexes obtained byMGWR. Hill and
Scholz (2014), who treated location as a ‘separate characteristic’ in their hedonic
models in that they estimated property-specific shift terms for the overall property

158 The Spatial Dimension of House Prices



price, also concluded that the use of geocoded information did not significantly
improve hedonic imputation house price indexes compared to indexes based on
models with postcode dummy variables. This result is reassuring for statistical
agencies that do not have the expertise or resources to apply more sophisticated
methods. It should be noted that the similarity between OLSD-based and
MGWR-based house price indexes could also be due to the small size and homogeneity
of the city “A” where relatively liɦle variation of land prices can be expected.

Apart from being able to capture spatial variation of land prices at the property level,
the MGWRmodel has two additional advantages. A potential problemwith the OLSD
model is that if a large number of postcode areas are distinguished, observations in
some areas may not be available, leading to difficulties in the construction of hedonic
imputation price indexes. TheMGWRmethod deals with this problem by using data of
the nearest neighbors which are not necessarily confined to a particular postcode area.
Most importantly, the use of nearest-neighbor information in the (semi-parametric)
MGWRmethodmakes it possible to properly account for spatial effects in the absence
of detailed information on amenities, such as the availability of, and distance to, public
transport, green space, schools, shopping centers, and so on.

For some purposes, separate price indexes for land and structures are needed. As was
demonstrated already by Diewert et al. (2015), the decomposition into land and
structures using hedonic modeling is not straightforward and raises several statistical
and functional form issues. First, our MGWR-based price indexes of land and
structures for the city of “A” are quite volatile, in spite of the use of annual data, which
can be aɦributed to the sparse data in combination with possibly multicollinearity
(though we believe this is less important). Second, the structures price index increases
much faster than expected, perhaps due to omiɦed variables or quality-change bias,
i.e. a failure to fully control for changes in structures characteristics. Third, the
estimated value share of land seems rather low. The above-mentioned problemsmay
have played a role here, but the low land share could also be a real phenomenon:
households do not value a square meter of land in the city of “A” as much as they would
do inmore prosperous cities withmore and beɦer amenities. Anyhow, in future work it
would be useful to re-examine our models and compare the results for the city of “A”
with those for bigger andmore densely populated cities in the western part of the
country, like Amsterdam, Roɦerdam or The Hague. Havingmore observationsmight
also enable us to estimate biannual or even quarterly price indexes.

Functional form problemsmight be evenmore important. The original ‘builder’s
model’ is nonlinear, in particular due to the treatment of net depreciation. We
linearized themodel, which basically means we ignored interaction terms. Another
potential type of misspecification arises from the linear relationship between land price
and plot size in our models. As Diewert et al. (2015), Francke and van deMinne (2016)
and others have argued that themarginal price of land tends to decrease with plot size.
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Diewert et al. (2015) accounted for this form of nonlinearity by using linear splines. In
future work wemaymodify our ‘normalized’ models by using linear splines as well and
estimating different parameters for the plot size to structure size ratio for different
categories of lot size or by explicitly specifying some nonlinear function of this ratio.

.............................................................................................................................
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FIGURE A1 Price of land per square meter, 2007, OLSDmodel
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TABLE
A1

Sum
m
ary

statistics
by

year

Total
1998

1999
2000

2001
2002

2003
2004

2005
2006

2007

#
ofobs.

5983
545

549
559

574
597

597
612

618
651

681
Transaction

price
(Euro)

M
ean

157073.87
95124.15

117936.77
131907.96

144672.16
151363.75

162956.98
174998.71

180882.00
191491.09

198546.51
S.D

.
72782.29

40240.34
53569.32

54793.53
58064.72

53220.31
63278.10

82975.61
68777.60

76120.61
83639.92

Standardized
price

(Euro)
M
ean

1232.38
742.30

930.70
1039.71

1168.13
1240.63

1287.24
1353.89

1420.07
1469.62

1518.50
S.D

.
374.83

206.31
273.33

279.98
293.14

285.56
285.87

296.73
294.31

321.20
348.89

Lotsize
(m

2)
M
ean

251.57
234.08

259.73
242.23

239.68
239.20

250.46
261.38

248.93
263.15

270.98
S.D

.
148.16

135.05
169.59

132.98
120.00

115.39
145.76

163.19
136.00

149.26
187.52

Floorspace
(m

2)
M
ean

125.87
126.00

125.42
126.48

123.34
122.05

125.29
126.57

125.89
128.52

128.39
S.D

.
30.61

23.59
31.99

31.97
29.59

28.16
29.87

36.90
30.29

31.14
30.09

Ratio
oflotsize

to
floorspace

M
ean

1.96
1.81

2.04
1.89

1.93
1.97

1.96
2.01

1.93
2.01

2.04
S.D

.
0.82

0.77
0.99

0.72
0.72

0.80
0.84

0.80
0.72

0.78
0.95

x-coordinate
M
ean

233733.81
233972.85

234200.97
234180.34

233948.97
234007.39

233624.00
233480.63

233519.69
233222.34

233385.19
S.D

.
1796.35

1453.72
1427.35

1551.87
1716.67

1713.60
1794.99

1984.82
1927.09

1918.80
1948.29

y-coordinate
M
ean

558597.10
558739.46

558805.54
558830.14

558660.23
558721.99

558522.02
558397.61

558549.11
558429.21

558410.25
S.D

.
1414.88

1436.14
1463.14

1428.62
1424.92

1410.80
1451.63

1413.94
1354.34

1322.63
1381.24
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