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Abstract: The spatial variation of interurban house prices and the spatial clustering
paɦern cannot be fully explained by local-specific characteristics; cross-city spillovers
also play an important role in the formation of house prices. Existing studies that
consider the spatial aspect usually include a spatial lag of house prices as an indicator
of house price interaction. However, the underlying theoretical foundation of such
spatial lag is rather weak. This paper investigates a special form of spatial interaction:
city network externality. Such network spillovers can be properly modelled by the
spatial lag of Xmodel and spatial Durbin error model in spatial econometrics. Using
panel data for the Pan-Yangtze River Delta (PYRD) in eastern China, we present
evidence for positive network spillovers.
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.............................................................................................................................

§ 3.1 Introduction
.............................................................................................................................

In the spatial equilibrium framework of Rosen (1979) and Roback (1982), house prices
of cities are determined by local productivities and amenities (Glaeser et al. 2014).
Some local-specific indicators that reflect these two aspects, together with local
housing supply conditions, form themainstream specification of empirical house price
models (e.g.,Ozanne and Thibodeau 1983; Malpezzi 1996; Potepan 1996; Zheng et al.
2010). Nevertheless, the fact that house prices are geographically clustered, which is
still prevalent after reasonably controlling for local-specific characteristics, suggests
that cross-city spillovers might be also important in the formation process of house
prices.

The spillover of interurban house prices is well documented in the time series analysis
of house price dynamics. In the UK housingmarket, for instance, the lagged changes of
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house prices in Greater London can be used to predict other regions’ price dynamics in
current period (Giussani and Hadjimatheou 1991; Holly et al. 2011). Further, such
propaganda of house prices is not necessarily restricted to a hierarchical paɦern – from
a core city to periphery cities; it can also be present in amore general sense.
Pollakowski and Ray (1997) revealed that house price shocks in one area can Granger
cause subsequent shocks in other areas at the spatial level of both U.S. census divisions
and primary metropolitan statistical areas.

This paper investigates the (static) house price spillovers from a cross-sectional
perspective. We are particularly interested in the question whether cross-city spillovers
are responsible for explaining the house price variation and hence for the spatial
clustering paɦerns. Several aɦempts have been devoted to this issue by using recently
developed spatial econometric models, such as the well-known spatial autoregressive
model (SAR), spatial error model (SEM) and some of their variants (Fingleton 2008;
Fingleton and Le Gallo 2008; Baltagi et al. 2014; Brady 2014). All of these studies
found highly significant estimates for the spatial lag of house prices, confirming the
existence of cross-city spillovers.

Existing studies using spatial econometrics aɦributed the house price spillovers either
to displacement effects (e.g.,Fingleton 2008) or to yardstick competition (Brady
2014)1. However, whether cross-city spillovers are truly caused by suchmechanisms is
difficult to judge only from the significant spatial autoregressive parameter of the SAR
model, because this model has inherent identification problems (Gibbons and
Overman 2012). The present paper, instead, investigates the house price spillovers
from a city network externalities perspective. In other words, we seek to examine
whether the (average) house price in a city depends on themarket size of neighbouring
urban concentrations. In an urban hierarchy, it is well documented that the house
prices of hinterland urban areas are much lower than that in higher-tier urban cores
and that the house price differences are positively related to the distance between
them, which bears the spillovers of higher-tier cities (Partridge et al. 2009; de Bruyne
and van Hove 2013; Gong et al. 2016). Furthermore, Partridge et al. (2009) shows that
local market potential, a measure of the aggregate personal income of surrounding
regions, has a significantly positive effect on urban wages and house prices. The
importance of market potential underlines the idea of city network externalities (Boix
and Trullén 2007): each city interacts with other cities (not necessarily the higher-tier
cities) in the network and benefits from such connectivity. Our analysis follows this
tradition, and we assume that the effect of network externalities on house prices arises

1 The displacement mechanism assumes that a high house price signal in onemarket will force demand to be
displaced to and aɦract supply from nearby markets. As such, the spatial lag of house prices will be present
in the reduced form house price equation. Yardstick competition simply assumes that home buyers and
developers take the actions of their counterparts in neighbouringmarkets into account when theymake their
buying and selling strategy, so that house prices are connected with each other.
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not only from the productivity channel represented bymarket potential, but also from
the amenity channel. Themechanism of amenity effect is closely related to the concept
of ‘borrowed size’, whereby a city can perform beɦer in terms of higher-order amenities
without enlarging its own size through borrowing functions or performance from its
neighbours (Alonso 1973; Meijers and Burger 2015).

Unlike the commonly usedmarket potential measure, which represents the aggregated
market demand weighted by inverse distance (Harris 1954), this paper uses the
toolbox of spatial econometrics to investigate the effect of network spillovers on house
prices, as the theoretical foundation of network externality can be perfectly fiɦed into
the exogenous interaction assumption of spatial econometrics. Based on a panel data
set of the Pan-Yangtze River Delta in eastern China, we find significant evidence for the
presence of positive network spillovers. These results add to the literature on Chinese
interurban housingmarkets by analysing its spatial aspects, which has been absent in
most of the studies explaining house price variation across cities in China (e.g.,Zheng
et al. 2010; Li and Chand 2013; Zheng et al. 2014).

The remainder of the paper is organised as follows. Section 3.2 briefly reviews the
literature focusing on the spatial interaction of house prices. The theoretical
foundation of city network externality on house prices is presented in section 3.3.
Section 3.4 discusses the empirical spatial econometric models, followed by the data
description in section 3.5. Section 3.6 reports the empirical results, and section 3.7
concludes.

.............................................................................................................................

§ 3.2 Literature on spatial spillovers of house prices
.............................................................................................................................

When assessing the value of a property, the sellers and buyers are very likely to take
recent transaction prices of nearby properties as a reference. As such, the price of a
property has direct influence on the prices of nearby properties, which is known as the
adjacency effect or spillover effect. Can (1990, 1992) was the first to use spatial
econometrics in order to incorporate the spillovers of house prices into the traditional
hedonic model and found that the spatial models are superior to the conventional
ones2. Since then, spatial econometric modeling based on three different interaction
assumptions – endogenous interaction, exogenous interaction and correlated effects –
has become a standard tool for hedonic house price analysis, for example in estimating
the benefits of improvement of air quality and water supply (Kim et al. 2003; Anselin et

2 Another strategy, which relates to the field of geostatistics, directly specifies the covariance of residuals of
hedonic models as a function of the distance between locations (Basu and Thibodeau 1998; Bourassa et al.
2007).
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al. 2010)3. Among the family of spatial econometric specifications, the spatial
autoregressive model (SAR) with endogenous interaction and the spatial error model
(SEM) with correlated effects are themost popular approaches. Recently, Osland
(2010) introduced the spatial Durbinmodel (SDM), with both endogenous and
exogenous interaction, into the hedonic analysis of property prices.

House price spillovers also seem to be prevalent between cities’ housingmarkets given
the fact of geographical clustering of house prices. Such spillover effects have received
increasing aɦention in regional house price studies. For example, Fingleton (2008)
proposed a SAR-type cross-sectional house price model for local authority districts of
England. Later on, this model was extended to incorporate spatially dependent
disturbances (Fingleton and Le Gallo 2008). Baltagi et al. (2014) expanded the
cross-sectional data set used by Fingleton (2008) to a panel data and estimated a
house price model with spatial lag and random hierarchical error components. In
markets outside the UK, Brady (2014) examined the spatial diffusion of house prices
across continental U.S. states, using a spatial impulse response function derived from a
single equation spatial autoregressive panel model. Holly et al. (2010) also proposed a
spatio-temporal house price model for U.S. states, in which the spatial correlation is
assumed to be aɦributed to common shocks.

Not surprisingly, endogenous interaction and correlated effects are still themain focus
of these studies; the endogenous interaction is often difficult to justify, and SAR-type
models cannot clearly tell us whether there is truly an endogenous interaction in the
house price formation process (Gibbons and Overman 2012). On the other hand, the
exogenous interaction of house prices, which is well established in economic theory,
has been largely overlooked in the applied literature. The New Economic Geography
(NEG) predicts that factor prices, such as wages, house prices and land rents, are higher
in those areas with beɦer access to major consumer and supplier markets (Head and
Mayer 2004). This implies the interdependence between the house price of a city and
themarket size of neighbouring cities, which can also be interpreted as city network
externality. Using themeasure of market potential, which aggregates themarket
demand of other places through an inverse distance weighting scheme (Harris 1954),
Hanson (2005) and Partridge et al. (2009) provided strong evidence of such network
spillovers on U.S. county wages and/or house price. With regard to our focus on house
prices, spatial econometric models based on the exogenous interaction assumption
can properly deal with the network spillovers. Thus, spatial econometrics offers us an
alternative to test for cross-city spillovers of house prices caused by network externality.

3 Endogenous interaction assumes that the house price of a city depends directly on the house prices of other
cities, while exogenous interaction assumes that the house price of a city depends on other cities’ house price
determinants. The assumption of correlated effects is that the dependence of house prices stems from omiɦed
house price determinants that are spatially correlated or from common shocks (Elhorst 2010a).
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For a very long time, studies on Chinese regional house prices are largely absent in the
literature because of the lack of housing transactions data. Only recent years have
witnessed the emergence of studies on the role of fundamentals in explaining regional
house prices (Li and Chand 2013), especially the influence of urban environmental and
climate conditions (Zheng et al. 2009; Zheng et al. 2010; Zheng et al. 2014). In
contrast, the spatial dimension of regional house prices is less investigated. Gong et al.
(2016) explored the spillover effects of higher-tier cities on the house prices of small
cities from the perspective of an urban hierarchy. This study, however, does not pay
aɦention to the spillovers of neighbouring cities, which will be addressed in this paper.
Hanink et al. (2012) considered the spatial dependence and spatial heterogeneity in
Chinese county-level house prices using the SEMmodel and Geographically Weighted
Regression (GWR), respectively. However, cross-city spillovers cannot be properly
investigated by the SEM specification. Therefore, this paper also contributes to the
literature by analysing the spatial aspects of interurban housingmarkets in the biggest
developing economy, China.

.............................................................................................................................

§ 3.3 Network externalities on interurban house prices
.............................................................................................................................

Let us consider an economy that consists of a set of cities. These cities are linked by
trade andmigration, but workers are assumed not to commute between cities for
working purpose. In spatial equilibriumwhere themarginal migrant is indifferent
across cities, the urban house price of a city i (Pi) depends on the quality of life (Ai) and
urban productivity (Wi) of that city (Glaeser et al. 2001):

Pi = p (Ai,Wi) (1)

Quality of life refers to urban amenities, and has two components: common amenities
(ci) and higher-order amenities (ai). The former ones are those natural andman-made
amenities that are consumed locally and regularly by consumers so that their effects
are largely confined to the city border, such as temperature, basic healthcare and
education services. Higher-order amenities, on the other hand, are likely to be
concentrated in a few big cities and have a broader influence on other areas because
they require a sufficiently largemarket potential to be sustained. For instance, in the
classical framework of Central Place Theory, the central urban core provides
higher-order functions for the smaller urban areas in the hinterland. This market
structure induces the effect of “borrowed size” whereby small cities can somewhat
“borrow” the higher-order functions from their neighbouring large cities through easy
access (Alonso 1973).

However, a modern urban system seems to show some network relationships that are
beyond the hierarchical interaction suggested by Central Place Theory (Capello 2000).
The city network paradigm, which nests the possibilities of both hierarchical and
non-hierarchical structures, seems to be amore comprehensive theory to describe the
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spatial organisation of cities. ‘Borrowing size’ in a city network paradigm exhibits
broader interaction paɦerns; it may occur between any two neighbouring cities, not
only from large to small cities, but also between cities of the same rank or even from
small to large cities (Boix and Trullén 2007). Indeed, large cities need small cities to
help themmaintainmore higher-order amenities that cannot be supported by their
own size. Meanwhile, small cities can share those surplus higher-order amenities
through network accessibility, allowing them to perform beɦer (Meijers and Burger
2015). Such ‘borrowing size’ effect in the context of city network is thus referred to as
‘city network externality’ and we will use this term throughout the paper. Empirical
evidence for the effect of city network externality on presence of higher-order amenities
has recently emerged. For instance, in an analysis of the distribution of metropolitan
functions across Western European countries, Meijers et al. (2016) noted that network
connectivity positively contributes to the presence of those higher functions. In this
regard, the quality of urban amenities presented in city i is a function of its own urban
size (si) and the urban sizes of its neighbouring cities (θs−i), Ai = A (ci, si, θs−i), where
ci is a bundle of common amenities.

On the productivity side, network externalities also play an important role. Small cities
that are readily accessible to large cities can borrow the technological externalities of
thosemajor urban cores, and hence improve the productivity without increasing their
own size (Phelps et al. 2001). Beyond such vertical interaction, a more general form of
network externalities on productivity side is the ‘market access’ effect stressed by New
Economic Geography (NEG) – being access to large consumer and supplier markets
contributes to the productivity of an area by saving on transportation costs (Fujita et al.
1999). That is, major urban cores in the urban system also benefit from the relatively
large neighbouringmarkets. Many studies have revealed that market potential, a
similar concept to population potential which has been suggested by Alonso (1973) as
an index of ‘borrowed size’, positively contributes to the wage level of an area (Brakman
et al. 2004; Hanson 2005). In line with these facts, a city’s productivity level can be
wriɦen as: Wi = W (li, si, θs−i), where li indicates a set of locational characteristics.

After including the amenities and productivity components into equation (1), the
reduced-form house price equation becomes Pi = P (ci, li, si, θs−i). This expression
clearly shows that the house price of city i depends on an interaction term (θs−i),
representing the effect of city network externalities.

.............................................................................................................................

§ 3.4 Empirical models
.............................................................................................................................

§ 3.4.1 Spatial econometric models
.............................................................................................................................

There are several alternatives that canmodel network spillovers based on different
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interaction assumptions in spatial econometrics. One approach assumes that city
network spillovers directly enter into the right-hand-side of the house price equation,
which can bemodelled by the spatial lag of Xmodel (SLX) (LeSage and Pace 2009;
Gibbons and Overman 2012; Vega and Elhorst 2015):

p = Xβ +WXθ + ϵ, (2)

where p denotes a vector of observations of house prices, X is a matrix of observations
on exogenous house price determinants,WX denotes the spatial lag of exogenous
independent variables, and ϵ represents the independently and identically distributed
disturbances. The parameter vector θ thusmeasures themagnitude of spillovers of
independent variables. The SLXmodel, which has been largely overlooked, is actually
an appealing tool in applied studies because of its superiority in avoiding identification
issues and its flexibility in measuring spillover effects (Gibbons and Overman 2012;
Vega and Elhorst 2015). In practice, the SLXmodel may suffer from amulticollinearity
problem. However, our study is largely free of this problem because not all the variables
have cross-city effects according to the theoretical setup.

Apart from network externalities, house price spillovers can also arise from other
mechanisms, such as spatially correlated omiɦed variables and common shocks. The
failure to properly model such spatial dependence will lead to inconsistent estimates of
network spillovers. Conditional on the presence of spatial dependence in the residuals,
the spatial Durbin error model (SDEM) is preferred, which takes the form (LeSage and
Pace 2009):

p = Xβ +WXθ + ϵ

ϵ = λMϵ+ u,
(3)

where the error terms ϵ follow a spatial autoregressive process and u denotes the
independently and identically distributed disturbances. ThematrixM, which captures
the interaction of error terms, could be the same asW or not.

Pure house price spillovers can also occur, as suggested by yardstick competition
whereby the house price formation process of a city takes into account the price signal
of other cities (Brady 2014). In this case, the spatial Durbinmodel (SDM), which has
aɦracted increasing aɦention recently, can be estimated:

p =ρMp+ Xβ +WXθ + ϵ, (4)

where the termMP captures the spillovers of house prices4. However, including

4 Conditional on the common factor restriction θ + ρβ = 0, the SDMmodel collapses to the well-known spatial
error model (SEM) which assumes that the error term follows a spatial autoregressive process. If the truemodel
is SEM, the estimation of SDMmodel is preferred because it can produce unbiased estimates even if omiɦed
variables are correlated with the explanatory variables and follow a spatial autoregressive process. However,
Gibbons and Overman (2012) demonstrated that SDM can only solve a particular type of omiɦed variable
problem, and it should not be seen as a general solution.
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endogenous interactions in themodel is somewhat risky; one can easily obtain
significant spatial autoregressive parameter ρ in applied work, while it cannot be
readily identified (e.g.,Gibbons and Overman 2012). This parameter might also pick up
the information of omiɦed variables or even the nonlinearity in theWX variables if they
are misspecified (Corrado and Fingleton 2012). Thus, the interpretation of the causal
effect of pure spillovers is problematic.

If the parameter vector θ in model (4) is insignificant, the SDMmodel collapses to the
SARmodel (Anselin 1988):

p =ρMp+ Xβ + ϵ. (5)

Again, the interpretation of this model is difficult. The parameter ρ in this model can
reflect pure spillovers of house prices, but it could also indicate that network
externalities work indirectly through spillovers of house prices. For example, a positive
population shock to city iwill drive up house prices of this city. Afterwards, the house
prices of neighbouring cities might also increase just because households change their
expectations based on the price signal of city i. This is very likely to happen in housing
markets wheremarket participants are characterized by bounded rationality. However,
this model cannot tell whichmechanism the parameter ρ exactly points to.

Models (2) – (5) will be estimated accordingly in the following section. As our purpose
is to examine the network spillovers on interurban house prices, we are particularly
interested inmodels (2) and (3) because they can perfectly deal with the theoretical
foundation of city network externalities. Themost popular specifications, models (4)
and (5), are mainly estimated for comparison purposes.

§ 3.4.2 Measuring cross-city spillovers
.............................................................................................................................

Due to the presence of spatial weight matrixesW (orM) in spatial models, the
interpretation of the parameter estimates is a bit complicated, especially for the SAR
and SDMmodels. In this paper, we use the partial derivative approach proposed by
LeSage and Pace (2009) to calculate the direct effect – the effect of changes of the kth
variable in a city on its own house prices – and the indirect effect – the effect of
changes of the kth variable in a city on the house prices of other cities. By definition,
the indirect effects represent the cross-city spillovers that we are interested in.

In the SARmodel, the partial derivatives of the expectations of pwith respect to the kth
independent variable can be expressed as[

∂E (p)
∂x1k

· · · ∂E (p)
∂xnk

]
= (I− ρM)−1 βk = Sk(M). (6)

Similarly, the partial derivative matrix for the SDMmodel can be expressed as
(I− ρM)−1 [βk +Wθk]. The diagonal and non-diagonal elements of the partial
derivative matrix Sk (W) in (6) measure the direct effects and indirect effects,
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respectively. Since these effects differ across the cities in the sample, LeSage and Pace
(2009) suggests to report the direct effect as the average of the diagonal elements and
the spillovers as the average of the row (column) sums of the non-diagonal elements.
In the case of the SLX and SDEMmodels, the spillover effects are exactly equal to the
parameter estimates θk. Note that, in the SARmodel, the ratio of spillover effect to
direct effect is constant across variables whereas there are no such restrictions in the
SLX, SDEM and SDMmodels (Elhorst 2010a).

FIGURE 3.1 Cities in Pan-Yangtze River Delta

.............................................................................................................................

§ 3.5 Data
.............................................................................................................................

We empirically analyse the cross-city house price spillovers between 42 cities
(prefecture cities or municipalities under the central government) of Pan-Yangtze River
Delta (PYRD) in eastern China from 2006 to 20105 (Figure 3.1). The cities in PYRD

5 Prefecture cities form the second level of Chinese administrative system, under which are city districts and

53 Network externalities in Chinese housingmarkets: A spatial econometric approach



form a ‘city network’ connected through railways, highways and telecommunication
networks. Some formal planning with regard to this area is currently under discussion
by scholars and policy makers, aiming to facilitate further economic integration.
Therefore, we can expect the presence of significant interaction between the housing
markets of the cities in this area.

TABLE 3.1 Description of variables

Variables Description

House prices Real average sale price of newly sold residential buildings in the
city proper (Yuan/m2); deflated by CPI (base year of 2000); 2006-
2010

Winter temperature Average temperature of December, January and February
(Centigrade); 2006-2010

Smoke and dust emission Annual amount of industrial smoke and dust emissions per real
GDP in the city territory (Tons per 100million Yuan); 2006-2010

Student/Teacher ratio The ratio of student to teacher in the city territory; 2006-2010
Doctor Number of doctors per 10,000 inhabitants in the city territory;

2006-2010
Coast =1 if the city proper borders an ocean; =0 otherwise
Arable land Arable land per capita of the city territory in the year 2004 (m2 per

capita)
Population density Urban population density of the city territory ( person per km2);

2006-2010
Land Land area of the city territory (km2)

The panel data set is compiled from various sources, such as the city- and province-
level statistical yearbooks and the China City Statistical Yearbook. We have no access to
property transaction data sets so that it is impossible for us to build a constant-quality
house price measure. House price in this paper refers to the real average sale price of
newly sold residential buildings in the city proper (see footnote 5). The city
characteristics that have a local effect are captured by variables on natural and
environmental conditions, human amenities, location and supply conditions. We use
winter temperature and intensity of smoke and dust emission tomeasure the natural
and environmental conditions of each city. The education and healthcare performance
of a city, which reflect the level of human amenities, are approximated by the ratio of
students to teachers and the number of doctors per thousand inhabitants, respectively.
We also include a dummy variable ‘coast’ to indicate whether the city proper borders an
ocean. The inclusion of arable land per capita aims to capture the construction land
supply potential. To facilitate the efficient use of urban land and to ensure the grain

counties (or county-level cities); the city districts make up the city proper (‘shiqu’) of a prefecture city. The
municipality under the central government is positioned in the first level, but has similar subdivisions with
prefecture cities.
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security, Land Use Planning is compulsory in each city and limits the conversion of
arable land to construction land. We expect that the lower arable land per capita will
reduce the construction land supply and hence drive up house prices. Urban size is of
our main interest in this paper and we investigate two aspects of urban size: intensity
and scale. The former one is measured by urban population density, while the laɦer
one is approximated by land area of the city. The definition of each variable is reported
in Table 3.1 andmore details can be found in appendix. Note that house price and its
determinants pertain to different spatial aggregation level, which can partly avoid the
endogeneity between house prices and urban size.

The geographical distance between two cities used for constructing the spatial weight
matrix refers to the straightforward distance between the city hall of the two cities.
Among the 861 city pairs, the distance between themost separated cities reaches 803
km, while the closest two cities are only 21 km away. The average distance that
separates a city pair is 305 km. Spatial weight matrixes are also constructed based on
travel time, whichmeans the shortest driving time between two cities without traffic.
These figures are extracted from Google Maps in the year 2011. One has to drive 693
minutes for the twomost distant cities, while only 45minutes for the nearest two
cities. In average, the city pair is separated by a 267minutes journey.

.............................................................................................................................

§ 3.6 Results
.............................................................................................................................

§ 3.6.1 Nonspatial model
.............................................................................................................................

The house price models without cross-city spillovers are first estimated and serve as
the benchmark. The results of the pooledmodel estimated by Ordinary Least Squares
(OLS) and the random effect model estimated by Maximum Likelihood (ML) are
reported in the first two columns of Table 3.26. We prefer the random effects model to
fixed effects model because of several reasons. First, in our model there are several
time-constant variables including one of our focus variables, the effects of which
cannot be estimated by fixed effects model. Second, some variables have liɦle
within-group variation, which affects the precision of fixed effects estimators. Third,
the fixed effects model discards the cross-sectional information that we are most
interested in.

All of the parameter estimates of the pooledmodel have expected signs and are
statistically significant at 1% significance level except for the variable arable land per

6 TheML estimation of random effect model is performed by an iterative two-stage procedure suggested by
Breusch (1987).
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TABLE 3.2 Estimates of nonspatial model and SLXmodel

Dependent variable = Ln(House prices)

Pooledmodel
OLS

RE
ML

SLX_G(RE)
ML
(W = W0-160

G )

SLX_T(RE)
ML
(W = W0-150

T )

Winter temperature 0.0617***
(5.14)

0.0262***
(2.74)

0.0258***
(2.75)

0.0260***
(2.77)

Ln(Smoke and dust
emission)

-0.1231***
(-5.24)

-0.1396***
(-4.37)

-0.1297***
(-4.12)

-0.1325***
(-4.22)

Ln(Student/Teacher
ratio)

-0.4662***
(-3.82)

-1.3482***
(-7.24)

-1.1673***
(-6.21)

-1.1815***
(-6.39)

Doctor 0.0358***
(6.01)

0.0253***
(2.69)

0.0268***
(2.93)

0.0243***
(2.66)

Coast 0.2537***
(4.78)

0.3009**
(2.54)

0.2230*
(1.93)

0.2104*
(1.78)

Ln(Arable land) -0.0082
(-0.11)

-0.0160
(-0.13)

-0.0497
(-0.40)

-0.0856
(-0.71)

Ln(Population density) 0.1561***
(5.29)

0.1712***
(2.91)

0.1181*
(1.87)

0.1006*
(1.63)

Ln(Land) 0.1721***
(4.93)

0.1817**
(2.55)

0.1897***
(2.72)

0.1630**
(2.36)

W× Ln(Population
density)

0.2719***
(3.04)

0.2795***
(3.17)

W× Ln(Land) 0.2590**
(2.00)

0.1691
(1.35)

Constant 6.4704***
(8.23)

9.2550***
(6.48)

5.3201**
(2.38)

6.6990***
(3.21)

R-Squared 0.823 0.923 0.925 0.925
Corr-Squared 0.764 0.785 0.787
Log-likelihood 24.544 59.043 63.849 63.973
CD test 19.551*** 7.6129*** 7.955*** 8.051***
Sample size 210 210 210 210

Notes: Corr-Squared is the squared correlation between fiɦed and actual value. t-values are
reported in the parentheses. W0-160

G andW0-150
T denote the spatial interaction structure

between a city and its neighbouring cities within the distance band 0 – 160 km and within
the travel time band 0 – 150min, respectively. The CD test, which detects the global cross-
sectional dependence of residuals, tends to standard normal distribution under the null
hypothesis. ***, ** and * indicate a 1%, 5%, 10% significance level, respectively.
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capita which implies no significant influence of land supply constraint. After controlling
for random city-specific effects, the results in the second column do not show any
noticeable changes compared to the results of pooledmodel. In general, a warmer
winter, less industrial smoke and dust emission, a beɦer education and healthcare
condition, and bordering to an ocean increases the house price of a city. Note that the
estimated effect of education quality in the random effect model is much higher than
that in the pooledmodel, while the influence of winter temperature is weakened
drastically. As expected, the two variables measuring urban size have statistically and
economically significant effects on house prices in bothmodels. Interestingly, an
increase in urban density has almost the same effect as an expansion in urban scale. A
1 percent increase of urban population of a city will drive up house prices by around
0.17%. The fixed effects estimation, including only the time-variant variables, also
confirms the importance of climate, education quality and urban population density in
determining the house prices.

Overall, the explanatory variables we have chosen perform satisfactorily as indicated by
a relatively high Corr-Squared statistic (0.764) which represents the squared
correlation between actual and fiɦed value. However, the CD test (Pesaran 2004)
detects significant global cross-section dependence in residuals, suggesting the
existence of cross-city spillovers7.

§ 3.6.2 Results of spatial models
.............................................................................................................................

Estimation of SLX model

The spatial weights matrixW is vital to measuring the city network spillovers asW
carries the underlying spatial interaction structure. In this paper, we expect that the
network externalities are only noticeable within a certain radius; at some farther
distance between the two cities, network spillovers vanish.

Such spatial interaction structure can be captured by different weight matrixes. Based
on geographical distance, we first divide the cities surrounding city i into three distance
bands, namely 0 – 160 km, 160 – 320 km and 320 – 480 km. A spatial weight matrix
for each distance band is then constructed. For instance, for a city jwithin distance
band 0 – 160 km, the spatial weightwij ofW0-160

G is defined as

wij,i ̸=j = d−2
ij , for 0 ≤ dij < 160. (7)

Geographical distance has some intrinsic pitfalls; it does not take into account the
physical obstacles, such asmountains and bays. So we have also constructed spatial

7 The CD test is constructed based on the average of pair-wise correlations of the residuals of each cross-sectional
unit. AsN → ∞, this test tends standard normal distribution under the null hypothesis of no cross-sectional
correlation.
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weight matrixes based on travel time, which represent the shortest driving time
between two cities. Using the same strategy as for the distance-basedmatrixes, three
time-basedmatrixes,W0-150

T ,W150-300
T andW300-450

T , are formed, corresponding to the
time band 0 – 150min, 150 – 300min and 300 – 450min. Following usual practice
in spatial econometrics, all the spatial weight matrixes are row-standardized.

For the different distance/time bands, we calculated the correlation coefficient
between the house price of a city and the spatial lag of population density of
neighbouring cities. The correlation coefficients reported in Table 3.3 show that the
house price of a city is indeed related to the population density of cities within the
distance band 0 – 160 km (= 0.304) and within the time band 0 – 150min (= 0.358).
As the neighbouring cities are farther away, the correlation coefficients fall dramatically
towards to zero or even become negative. The results confirm our hypothesis that
network externalities have a local spillover effect; it only influences the nearby cities.

Given the nature of network externalities, we estimated the SLXmodel in equation (2)
using the twomatrixes,W0-160

G andW0-150
T , and theML estimators are shown in the

third (SLX_G) and fourth column (SLX_T) of Table 3.28. For the variables of
local-specific characteristics (excluding population density and land area), both of the
two SLXmodels produce similar estimates with respect to nonspatial models.

TABLE 3.3 Correlation coefficients between house prices and spatial lags of
population density

Ln(House prices) Ln(House prices)

× Ln(Population density) × Ln(House prices)
W0-160

G 0.304 W0-150
T 0.358

W160-320
G 0.098 W150-300

T 0.036
W320-480

G -0.190 W300-450
T -0.057

Notes: For the definition of matrixW0-160
G andW0-150

T , see notes of Table 3.2. All the other
matrixes are defined in a similar way.

After including local network spillovers based on geographical distance neighbours
(W0-160

G ), the effect of population density on its own house prices decreases by about
one third (from 0.17 to 0.12) and becomes less significant, while the direct effect of
land area remains relatively stable. The network spillovers are muchmore important
now, as shown by the large and statistically significant estimates of spatial lag of
population density and land area. A similar finding occurs when we specify the
neighbours based on travel time (W0-150

T ), except that the expansion in urban scale has

8 We also estimate themodel based on the remaining four matrixes. The parameter estimates are very unstable
compared to the nonspatial model because they fail to properly measure the spatial interaction structure. The
results are available upon request.

58 The Spatial Dimension of House Prices



no spillovers on other cities. It is worthmentioning that our travel timemeasure is a
post-measure that is collected after the study period so that it may not reflect the true
interaction structure in our sample. Therefore, we insist on the findings of SLX_G
model and our following analysis will be based on the geographical distancemeasure9.

Although we have included network spillovers into our model, there is still significant
global cross-sectional dependence in the residuals according to CD test. Such
dependencemight be caused by omiɦed spatially correlated variables, common shocks
or pure spillovers of house prices. Thus it is necessary to estimate a SDEM or SDM
model, which controls for the remaining dependence and hence producesmore reliable
estimates of network spillovers.

Estimation of SDEMmodel

Unlike the city network externalities, the presence of spatial dependence in residuals or
pure house price spillovers is not necessarily confined to the scope of nearby
neighbours, as pointed out by Pollakowski and Ray (1997). Indeed, when households
coming from a large city form their decisions, they are more likely to refer to the price
signal of a large, distant city rather than a small, nearby city. A similar argument was
made by Fingleton and Le Gallo (2008) who stated that, in an economic sense, big
cities may be less remote than their distance suggests, while very small cities may in
fact bemore isolated. Therefore, we believe that the spatial weights matrix based on
economic distancemeasures will beɦer capture the remaining spatial dependence
structure.

We define a distancemeasure that combines geographical distance and economic
similarities. To do so, we first measure the ‘economic similarity’ (es) of two cities, say
city i and j, as the difference in their disposable income, that is
esij = |incomei − incomej|. To avoid the potential endogeneity of this distance
measure, income in the year 2000 is used. The economic-geographical distance (EGij)
between city i and j is then calculated by

EGij =

√(
esij

std(es)

)2

+

(
dij

std(d)

)2

(8)

where std(es) and std(d) denote the standard deviation of economic similarities and
geographical distance, respectively. The corresponding spatial weight matrix,WEG, is
specified in the same way as in equation (8), with distance band being set to 0 – 1.5.

Table 3.4 reports the (robust) LagrangeMultiplier (LM) tests (Anselin et al. 2008;
Elhorst 2010b) for the existence of spatially lagged dependent variable and spatial

9 We also conducted analyses based on time distancemeasure. The findings are similar to those based on the
geographical distancemeasure.
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error correlation in the SLX_Gmodel based on different spatial weight matrixes.
Assuming the remaining dependence structure is still confined to the neighbours in
physical distance space, the SDMmodel is a beɦer choice and the results will be
discussed laɦer. On the other hand, if a city is assumed to interact with the cities that
are nearby on the economic-geographical space, the LM tests are in favor of the SDEM
specification.

TABLE 3.4 LM tests on residuals of SLXmodel

Residuals of SLX_Gmodel estimated in Table 3.2

LM spatial lag Robust LM spatial
lag

LM spatial error Robust LM spatial
error

W0-160
G 57.784* 59.056* 18.162* 9.434*

W0-1.5
EG 0.091 1.760 17.504* 19.173*

Notes: For the definition of matrixW0-160
G , see notes of Table 3.2. W0-1.5

EG has the similar
definition but are constructed based on economic-geographic distance. The LM and robust
LM tests, developed by Anselin et al. (2008) and Elhorst (2010b) for the spatial panel data,
are based on the residuals of SLX_Gmodel estimated in Table 3.2 and follow the χ2(1)
distribution under null hypothesis. * denotes the 1% significance level.

The SDEMmodel is estimated by aML procedure suggested by Elhorst (2014); the
results are reported in second column of Table 3.510. For the sake of comparison, the
first column replicates the estimates of SLX_Gmodel. Based on the
economic-geographical distancematrix, we find a highly significant spatial
autoregressive process in residuals of the SLX_Gmodel. After controlling for the spatial
error correlation, the influence of population density on its own house prices becomes
highly significant at 1% significance level. The point estimates of population density
and land area as well as their spillovers effects are almost in line with the estimates of
SLX_Gmodel, showing the robustness of SLX_Gmodel in measuring the
agglomeration spillovers. In contrast, the estimates for the local-specific
characteristics show a noticeable discrepancy between the twomodels. For example,
smoke and dust emission and the ratio of students to teacher no longer significantly
affect the house prices, whereas land supply constraint becomes an important house
price determinant in SDEMmodel. This discrepancy might be due to the fact that the
spatial paɦern of some local-specific variables is closely related to the spatial paɦern of
the residuals of SLX_Gmodel.

Estimation of SDM and SAR model

As previously discussed, if the spatial interaction of house prices after controlling for

10 The following random effects SDM and SARmodel are also estimated by ML procedure. Thematlab routine can
be found at hɦp://www.regroningen.nl/elhorst/.
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TABLE 3.5 Estimates of SDEM, SDM and SARmodels

Dependent variable = Ln(House prices)

SLX_G (RE)
ML
(W = W0-160

G )

SDEM_G (RE)
ML
(W = W0-160

G )
(M = W0-1.5

EG )

SDM_G(RE)
ML
(W = W0-160

G )
(M = W0-160

G )

SAR_G
ML
(M = W0-160

G )

Winter temperature 0.0258***
(2.75)

0.0601***
(3.14)

0.0122
(1.52)

0.0126
(1.57)

Ln(Smoke and dust
emission)

-0.1297***
(-4.12)

-0.0219
(-0.74)

-0.0409
(-1.54)

-0.0420
(-1.59)

Ln(Student/Teacher
ratio)

-1.1673***
(-6.21)

-0.6218***
(-3.07)

-0.7090***
(-4.33)

-0.7080***
(-4.29)

Doctor 0.0268***
(2.93)

0.0026
(0.31)

0.0065
(0.85)

0.0069
(0.90)

Coast 0.2230*
(1.93)

0.1560*
(1.68)

0.1793*
(1.91)

0.1671*
(1.77)

Ln(Arable land) -0.0497
(-0.40)

-0.2906**
(-2.40)

-0.1091
(-1.09)

-0.1178
(-1.24)

Ln(Population density) 0.1181*
(1.87)

0.1278***
(2.65)

0.2042***
(3.95)

0.1909***
(4.10)

Ln(Land) 0.1897***
(2.72)

0.1702***
(2.80)

0.1737***
(3.07)

0.1757***
(3.12)

W× Ln(Population
density)

0.2719***
(3.04)

0.2493***
(2.91)

-0.0686
(-0.85)

W× Ln(Land) 0.2590**
(2.00)

0.2490**
(2.02)

-0.0564
(-0.52)

M× Error 0.7364***
(14.25)

M× Ln(House prices) 0.5510***
(9.48)

0.5280***
(9.96)

Constant 5.3201**
(2.38)

5.5096**
(2.67)

4.4485**
(2.43)

3.8541***
(3.05)

R-Squared 0.925 0.940 0.948 0.948
Corr-Squared 0.785 0.788 0.819 0.812
Log-likelihood 63.849 82.073 95.108 94.721
Sample size 210 210 210 210

Notes: Corr-Squared is the squared correlation between fiɦed and actual value. t-values are
reported in the parentheses. For the definition of the various spatial matrixes, see notes of
Table 3.2. The SDEM, SDM and SARmodels are estimated by theML procedure introduced in
Elhorst (2014). ***, ** and * indicate 1%, 5%, 10% significance level, respectively.
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network spillovers occurs based on geographical proximity, the SDMmodel is a beɦer
specification. The third column of Table 3.5 shows theML estimates of SDMmodel.
Again, the point estimate of spatial lag of house prices is statistically significant,
suggesting the existence of remaining dependence arising from other channels.
Compared to the SDEMmodel, whichmodels the spatial interaction in the residuals,
themagnitude of the direct effect of population density in the SDMmodel increases
from 0.13% to 0.21%. Most importantly, the spatial lags of population density and
land area have negative signs, which finding contradicts network spillovers, but these
effects are not statistically significant. In this case, the SDMmodel collapses to the SAR
model which only includes the spatial lag of house prices. The SARmodel estimates
presented in the fourth column of Table 3.5 are largely in line with the results of SDM
model. The results of the SDM and SARmodels suggest that the spatial lag of house
prices also contains the information of network spillovers, which cannot be
distinguished from other mechanisms that can result in spatial dependence.

§ 3.6.3 Network spillovers
.............................................................................................................................

All of the four models, SLX, SDEM, SDM and SAR, can be used tomodel the network
spillovers in the housingmarkets. The first twomodels directly reflect our theoretical
foundation and generate local network spillovers whereas the last twomodels generate
global spillovers which are not easy to justify11. Table 3.6 summarizes the direct and
spillovers effects of the four models. For the SLX and SDEMmodel, the direct and
spillover effects are the corresponding point estimates. On the other hand, the partial
derivative approach is needed to calculate the direct and spillover effects for the SDM
and SARmodels.

The direct effect of land area is almost the same among the four spatial models, while
the direct effect of population density estimated by the SDM and SARmodels is much
more pronounced than that in the SLX and SDEMmodels. In contrast, the SDM and
SARmodels estimatemuch lower network spillovers of both population density and
land area than the SLX and SDEMmodels do. In the SDM specification, there is no
significant network spillover at all. Since the spatial lag of house prices mixes various
sources of spatial interaction, and because the global spillovers assumption is not
consistent with our theoretical foundation, our interpretation is based on the SLX and
SDEMmodels, and in particular on the laɦer model which considers the remaining
spatial dependence in residuals.

11 Local spillovers are those spillovers occuring only between a city and its neighbouring cities connected by a
spatial weight matrix. In contrast, global spillovers are those spillovers that originate from a city and transmit
to all other cities.
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TABLE 3.6 The estimated direct effects and spillovers

RE SLX SDEM SDM SAR

Direct effects
Ln(Population density) 0.1712***

(2.91)
0.1181*
(1.87)

0.1278***
(2.65)

0.2148***
(3.90)

0.2059***
(3.84)

Ln(Land) 0.1817**
(2.55)

0.1897***
(2.72)

0.1702***
(2.80)

0.1832***
(2.68)

0.1914***
(3.01)

Spillovers
Ln(Population density) 0.2719***

(3.04)
0.2493***
(2.91)

0.0941
(0.66)

0.1989***
(3.07)

Ln(Land) 0.2590**
(2.00)

0.2490**
(2.02)

0.0895
(0.38)

0.1850***
(2.56)

Notes: For SLX and SDEMmodel, the direct effect and network spillovers are
exactly the point estimates, whereas the partial derivative approach is used for
SDM and SARmodel. The inferences of direct effects and spillovers in SDM and
SARmodel are based on 1000 simulations using the variance-covariancematrix
implied by theML estimates (LeSage and Pace 2009; Elhorst 2010a). t-values are
reported in the parentheses. ***, ** and * indicate 1%, 5%, 10% significance level,
respectively.

The direct effect of the SDEMmodel shows that the influence of land area is bigger
than the effect of population density, suggesting that, in current China, city growth is
likely to be characterized by an expansion of urban scale rather than an increase in
intensity. The network spillover is evenmore noticeable. If a city becomes 1% denser
and larger, the total house price increases of neighbouring cities are about 0.25%,
whereas its own house price only rises by 0.13% and 0.17%, respectively. Considering
that each city on average has 8 neighbours within the radius of 160 km, the network
spillover on each neighbouring city is by average around 0.03%, which is much lower
than themagnitude of the direct effect.

§ 3.6.4 Discussion
.............................................................................................................................

As previously discussed, the estimation of network spillovers depends on the choice of
spatial weight matrix because this matric reflects the underlying interaction structure.
In this paper, the distance band used for constructing the spatial weight matrix is
somewhat arbitrarily chosen. To check the robustness of our findings, we replicated our
analysis based on 4 distance bands: 120, 200, 240 and 280 km. Table B1 in the
appendix reports the SDEM estimation of direct effect and network spillovers based on
different matrixes. Clearly, the estimation of the direct effect is very robust to the
choice of spatial matrix. The estimation of network spillovers, on the other hand, shows
some variation, though small. When the definition of neighbours is restricted to the
radius of 120 km, the network spillovers decrease substantially with the spillover of
land area becoming insignificant. As we includemore cities as neighbours, the
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magnitude of network spillover becomes a bit larger (see the results of distance band
240 and 280 km), which is in line with our expectation. Nevertheless, given that the
spatial weight matrix is based on a squared inverse distance function, themajority of
the network spillovers still falls into the nearby neighbours despite the total number of
neighbours being increased. In this sense, we believe that the evidence on network
spillovers presented in this paper is reliable.

The existence of network spillovers means that, all else being equal, house price in a
city surrounded by large cities are much higher than those in a city that has small
neighbours. If we see high house prices as a sign of the ‘triumph of the city’, our
findings would indicate a core-periphery structure in our study area. We checked this
implication usingMoran’s I plot, which is based on a spatial weight matrix which
assumes that every city within the 160 km radius of a specific city has the same
influence on that city (a bit different from thematrix defined by equation (7))12. The
global Moran’s I plot (Figure C1 in the Appendix) clearly shows a positive correlation
between a city’s house price and the neighbouring cities’ urban population13. In
particular, almost all of the cities that are surrounded by small cities have relatively
lower house prices. The local Moran’s I map, also known as local indicators of spatial
association (LISA) (Anselin 1995), depicts a detailed clustering paɦern. In general, we
find a ‘successful’ group (high prices – high population) in the east of the study area
and a ‘lost’ group (low price – low population) in the western part. There is one
exception: a coastal city (Nantong) in the east with large neighbours is characterized by
relatively low prices. Yet, the paɦern that a city surrounded by small cities has high
house prices is not supported. A lesson learned is that the vast number of ‘lost’ cities in
the western part will not flourish in the near future, since they are unable to benefit
from network spillovers of big cities.

.............................................................................................................................

§ 3.7 Concluding remarks
.............................................................................................................................

Most studies aɦributed the spatial variation of interurban house prices to local-specific
characteristics. However, the spatial clustering paɦern of house prices cannot be fully
explained by these local-specific variables, pointing to the importance of spillovers. To
account for spatial interaction, spatial econometrics is becoming the standard toolbox
in the analysis of house prices. In particular, the spatial model with spatial lag of house
prices has been widely used by researchers. Nevertheless, SAR-typemodels have been
heavily criticized because the endogenous interaction is difficult to justify.

12 Both the global Moran’s I plot and the LISAmap are calculated by the software ‘Geoda’ which is available at
hɦps://geodacenter.asu.edu.

13 TheMoran’s I statistic is 0.193. Based on the distribution of 999 simulations of spatially random distributed
data, it is significant at 5% significance level.
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This paper differs from conventional spatial analysis of house prices in that we
investigate spillovers caused by city network externalities. In a city network system, the
house price of a city is influenced by the urban size of accessible neighbouring cities,
because the performance of amenities and productivity advantage of that city, which
are the two basic components of house prices, can be somewhat ‘borrowed’ from its
neighbours. The network spillovers justify the assumption of exogenous interactions in
spatial econometrics which has been overlooked in applied studies. Hence, we argue
that, when analyzing house price spillovers, the SLX and SDEMmodels are aɦractive
alternatives to SAR-typemodels.

Using a panel data set of Pan-Yangtze River Delta (PYRD) in eastern China, the SLX
model, which incorporates exogenous interaction, strongly supports the presence of
network spillovers. Even after controlling for the spatial interaction in residuals, the
effect of network externality is still significant. On the other hand, the SAR-type
models, SAR and SDM, cannot properly measure the local network spillovers. They
estimated a less amount of the network spillovers than the SLX and SDEMmodel did.
Our findings are in line with studies based on themeasure of market potential, such as
Partridge et al. (2009). The evidence underlines the importance of cross-city spillovers
in the formation of house prices. Especially cities that are proximal to super big cities
are likely to have higher house prices than their own local-specific characteristics
suggest. This point should be remembered when assessing ‘house price bubbles’:
taking cross-city spillovers into account may lead to opposite conclusions.

This paper is also relevant to the increasing studies that focus on ‘borrowed size’, which
is currently used to explain the faster growth of small andmedium-sized cities in
Europe (Meijers et al. 2016). While most studies investigate the ‘borrowing size’
concept from a functional view by examining the presence of metropolitan functions,
such as science, sport, political-administrative functions and cultural amenities
(e.g.,Burger et al. 2015; Meijers et al. 2016), this paper provides new evidence from
the perspective of house prices. Furthermore, our results suggest that ‘borrowed size’
might alsomake sense in explaining the city growth in China, though China has
significantly different social-economic conditions fromWestern Europe. This calls for
themaking of more regional policies that involve more collaboration and integration
between cities. However, it should be noted that, despite the existence of network
externalities, it is still not easy for small cities in more peripheral areas to achieve fast
development.

.............................................................................................................................
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Appendices
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Appendix A.Variable compilation
.............................................................................................................................

House prices. The only data set available to us is the total transaction price of all the
newly sold residential buildings, fromwhich we derived the average unit price. A few
cities only have combined sales data for all the buildings (commercial, residential and
mixed used), but, according to the data in other cities, residential buildings account for
the great majority of total transactions. The average unit price for residential buildings
in these few cities is estimated by correcting the average unit price of all buildings; the
correction coefficient is the average ratios of residential price to mixed price in
neighbouring cities.

Student/Teacher ratio. This ratio is calculated based on the aggregate data on primary
and regular secondary schools. The teachers and students in regular institutions of
higher education (universities or colleges) are excluded from the calculation.

Population density. We do not have consistent data on urban population and
urbanisation rate in each year for each city in our sample, but we do have the data for
total permanent population (including urban population and rural population). In
2000 and 2010 population census year, the urbanisation rate can be accurately
calculated. We assume a linear growth paɦern for urbanisation during the decades,
and so we can estimate the corresponding urbanisation rate during our sample year.
With the urbanisation rate and total population in hand, we can estimate the urban
population in each year.
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Appendix B.Tables
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TABLE B1 Direct effect and spillovers based on different spatial weight
matrixes, SDEM

W0-120
G W0-160

G W0-200
G W0-240

G W0-280
G

Direct effects
Ln(Population density) 0.1228***

(2.60)
0.1278***
(2.65)

0.1348***
(2.80)

0.1319***
(2.65)

0.1361***
(2.74)

Ln(Land) 0.1412**
(2.32)

0.1702***
(2.80)

0.1753***
(2.85)

0.1716***
(2.77)

0.1770***
(2.78)

Spillovers
Ln(Population density) 0.1198*

(1.78)
0.2493***
(2.91)

0.2484***
(2.70)

0.2765***
(2.76)

0.2894***
(2.69)

Ln(Land) 0.0589
(0.63)

0.2490**
(2.02)

0.2504*
(1.93)

0.2747*
(1.94)

0.3127*
(1.93)

Notes: The direct effects and network spillovers are estimated by the spatial Durbin
error model specified in equation (3), withM = W0-1.5

EG . The spatial weight
matrixes are defined in the same way as those defined in Table 3.2. t-values are
reported in the parentheses. ***, ** and * indicate 1%, 5%, 10% significance level,
respectively.

TABLE B2 Fixed effects estimation of time-variant variables

Dependent variable = Ln (House prices)

Winter
temperature

Ln (Smoke and
dust emission)

Ln (Student
/Teacher ratio)

Doctor Ln (Population
density)

R-squared

0.0226***
(0.0065)

0.0200
(0.0337)

-1.0950***
(0.3369)

0.0088
(0.0142)

2.0576***
(0.3739)

0.730

Notes: The robust standard errors are reported in the parentheses. ***, ** and *
indicate 1%, 5%, 10% significance level, respectively.
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FIGURE C1 Global Moran’s I plot

FIGURE C2 LISA cluster map
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