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3	 Effects of occupant behavior 
on the energy performance of 
dwellings: a sensitivity analysis

Introductory note

Chapter 3 is a sensitivity analysis conducted using the actual heating behavior data 
of occupants in the OTB sample. The aim was to model heating behavior and heating 
energy consumption using Markov chains and Monte Carlo methods. Secondly we 
wanted to evaluate the robustness of energy consumption of a dwelling to heating 
behaviors such as thermostat, radiator and ventilation control, as well as presence. The 
results of this Chapter were compared to Guerra Santin’s work (2010), which analyzes 
the same data using correlation and regression analyses.

This Chapter deals with the Research Question I of this thesis: 
“Q I. What is the sensitivity of a dwelling’s heating energy consumption to 
occupant behavior?" 

The sub-questions are:
1.	� What are the existing models developed for the occupant behavior and energy 

performance relationship? and how different are the results of these models in terms 
of calculating the influence of occupant behavior on energy performance?

2.	� How can behavior be modelled in order to assess the robustness of the energy 
performance in dwellings to occupant behavior?

3.	� What is the weight of each behavioral aspect in terms of its influence on energy 
consumption?”

The research reported in this Chapter was a collaborative work between Harputlugil and 
Bedir. The data was collected by a questionnaire prepared by Guerra Santin and Bedir, 
using OTB’s means of data collection. Data organization and initial statistical analysis 
was done by Bedir, simulations were conducted by Harputlugil and Bedir together, and 
finally the evalutation of outputs were done by the same authors. The co-author (G. 
Harputlugil) has given permission to include this paper in this thesis.
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This Chapter was published as: 
Harputlugil, G. Bedir, M. Effects of Occupant Behavior on the Energy Performance of 
Dwellings: A Sensitivity Analysis. Journal of Architectural and Planning Research 33:2 
(Summer, 2016) 159.
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§   3.1	 Introduction

The amount of energy consumed by a building depends on the characteristics of the 
building’s envelope; the service systems installed for heating and ventilation, electricity, 
and hot water; the site and climate in which the building is located; and the behavior 
of its occupants. Occupants interact with a dwelling in order to achieve the indoor 
comfort conditions they require or to engage in certain activities. These interactions 
can include regulating the indoor temperature; opening windows or grilles; switching 
lights on or off; or intermediate actions involving the operation of lighting and devices, 
such as watching TV, reading, studying, eating, and performing household activities. 
Research on occupant behavior has increased recently, as newly designed dwellings 
have not achieved expected energy performance levels, leading to the possibility that 
occupant behavior is a factor in their underperformance (Guerra Santín and Itard, 
2010). Although expected occupant behavior is taken into consideration during the 
design process for concept buildings, designers do not know exactly how a building and 
its user(s) will interact before the building is occupied. A more accurate understanding 
of the effects of occupant behavior on building energy performance is essential to meet 
the growing demand for more sustainable buildings (Hoes, et al., 2008).

Most of the existing calculation methods- the Dutch energy performance coefficient 
(EPC), Chartered Institution of Building Services Engineers (CIBSE) certification, and 
the Building Research Establishment Environmental Assessment Method (BREEAM)- 
assume a very deterministic modeling approach to occupant behavior. For instance, 
the EPC assumes schedules for weekdays and weekends for thermostat use, continuous 
mechanical ventilation, and constant lighting heat gain (6 kWh/m2) (Uitzinger, 2004).

Research on the influence of occupant behavior on the energy performance of dwellings 
tends to follow one of two methodological approaches: deductive or inductive. The 
deductive approach deals with the relationship at a macro level, considering household 
characteristics, income, rent, and energy consumption data garnered through a 
survey and establishing correlative and regressive statistical models to explain the 
relationships among these factors. In contrast, the inductive approach is based on 
actual occupancy patterns, including the operation of heating and ventilation systems, 
lighting, and appliances, and utilizes a bottom-up model that includes simulations of 
probabilities and considers presence as a precondition of behavior. The data-collection 
methods used in the inductive approach are mostly daily records and monitoring, 
while the data-processing techniques are generally more related to components, 
such as Monte Carlo (MC), Markov chain, S-curve, and probabilistic methods. These 
models suggest a greater influence of occupant behavior on the energy performance of 
dwellings (Figure 1) (for further reading, see Bedir, et al., 2011).
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Figure 3.1  The inductive and deductive models of occupant behavior-energy performance relationship

The research presented in this article follows the inductive methodological approach, 
focusing on the heating energy demand of dwellings that originates from occupant 
behavior, namely the heating energy required to sustain indoor comfort levels and 
the internal heat gain that results from presence and intermediate activities. The core 
principle of the inductive approach is the presence of the occupant as the determining 
element of energy consumption, causing internal heat gain and the probability to act. 
As Mahdavi (2011) explained, internal heat gain is the passive effect of occupancy, so 
the model first deals with presence, which generates an indoor resultant temperature. 
Next, the model addresses the required heating energy demand and the internal heat 
gain from the occupant’s behavioral patterns; this is the active effect of the occupant’s 
presence and is more representative of the occupant’s influence on the energy 
performance of the dwelling. This research evaluates the influence and weight of these 
patterns on heating energy demand and creates a model of the relationship between 
occupant behavior and heating energy demand based on this evaluation.

In this study, the data on behavioral patterns was derived from a survey of 313 
dwellings in the Netherlands conducted by the OTB – Research for the Built 
Environment Department at Delft University of Technology in autumn 2008. The 
survey collected data on household and dwelling characteristics, as well as behavioral 
patterns related to heating and ventilation systems, lighting, and appliances. The raw 
survey data were refined, and energy simulation models were constructed based on the 
properties of the Dutch reference row house (tussenwoning) and the derived behavior 
samples using the MC method.

TOC



	 95	 Effects of occupant behavior on the energy performance of dwellings: a sensitivity analysis

In order to discuss the methodological approaches (deductive versus inductive) in 
detail, this study compares its findings with an analysis conducted by Guerra Santín 
(2010), which applied the deductive method (i.e., correlation and regression) to the 
same survey sample. 

Some of the existing studies discuss realistic methods of modeling occupant behavior 
patterns in building simulations (see, for example, Baetens and Saelens, 2011; 
Mahdavi, 2011; Reinhart, 2004; Saelens, et al., 2011), but in this study, simulation-
based modeling was used only as a tool for acquiring the energy performance outcomes 
of each behavioral pattern. Thus, realistic methods of modeling the active and passive 
behavior of occupants were not included in the scope of this work.

The next section discusses the literature related to the modeling of occupant behavior 
and its relationship with energy performance. Earlier research has addressed the 
subject either by modeling each behavioral pattern regarding presence, heating and 
ventilation systems, lighting, and appliances separately or by developing an umbrella 
modeling approach that deals with all behavioral patterns. Existing research can 
also be divided into building functions, namely residential or office. Another aspect 
worth mentioning here is that, while some research has considered the consequent 
behavioral probabilities, other studies have begun with the causes of behavior, such 
as thermal or visual comfort. The third section presents the aims of the research and 
the research questions, which were derived from the existing literature, and the fourth 
section explains the research methodology. The fifth section provides the results of the 
analyses, followed by a discussion of the results in the sixth section. The final section 
presents the research conclusions.

§   3.2	 Literature Review

In this section, existing research on modelling behavior and energy performance 
inductively is presented according to the building function, presence, and type of 
behavioral pattern it addressed. All of the models discussed here deal with modeling 
occupant behavior, but they do not all relate these behavior models to energy 
performance calculations; however, they assume the possibility of connecting the 
models to energy performance calculations. As mentioned in the introduction, the 
inductive method is built on presence and actual behavioral patterns. 
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One study that focused on presence in residential buildings is Richardson, et al. (2008), 
which used a Markov chain approach to consider active presence in a dwelling both 
during the week and on the weekend. Data were collected through daily diaries, with 
a data-collection frequency of 10 minutes. Richardson, et al.’s model was based on 
the hypothesis that presence/activity in a zone at a specific time step is dependent on 
the presence/activity in that zone in the previous time step, noting that the presence/
activity in the latter time step would have a smaller probability of occurring than the 
presence/activity in the time step preceding it.

Most of the existing research has dealt with office buildings. Like the work on dwellings, 
rather than focusing on occupants’ movements, many of these models are based on 
occupants’ presence in a space. In contrast to Richardson, et al.’s (2008) analysis 
of an entire dwelling, these studies have dealt with individuals or groups in a single 
office space. For instance, Page, et al.’s (2008) model included two years of usable 
data collected on presence in an office space, with the longest period of uninterrupted 
monitoring being six months. Page, et al.’s Markov chain model was based on 
Richardson, et al.’s hypothesis on the probability of presence, as well as the hypothesis 
that presence can be simulated either by multiplying the obtained pattern by the total 
number of occupants (in the case of collective behavior such as that in a meeting room) 
or by simulating each occupant’s pattern of presence and then adding the produced 
patterns together.

Tabak et al (2006) developed a model on the presence, use of space and the circulation 
between spaces (USSU), using actual behavioral information: This model was based 
on the resource management model (elements: persons, abstract spaces, facilities) 
combined with an activity scheduler. The resource management model included two 
different models, one for organization of the people and one for the building. The 
activity scheduler was made up of 8 different elements: skeleton activities, interaction 
between activities, intermediate activities, gaps in schedules, overlaps in schedules, 
joining activities, appropriate location, required movement time. He, then validated 
the model by observing behavior with Radio Frequency Identification (RFID) (2008).

While all of the work on office spaces has considered presence as an initial input to the 
model, some of the research has looked at the influence of different behavioral patterns 
on the energy performance of a building as a following step. Glicksman, et al.’s (1997) 
work on inductive modeling of occupants’ heating behavior at home revealed that 
analogue control of heating, ventilating, and air conditioning (HVAC) systems resulted 
in a reduction of energy consumption by 13%. Bourgeois, et al. (2006) confirmed 
that automatic management of a heating system led to a higher consumption level. 
Studies on ventilation patterns were first developed by Fritsch, et al. (1990) and Yun, 
et al. (2008, 2009) based on monitored data on the operation of windows in offices 
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(probabilistic) (assumption: active-passive-medium occupant). Using the MC and 
Markov chain methods, the main conclusion of these studies was that ventilation 
use is a function of temperature. Slightly different than Fritsch, et al. and Yun, et al., 
Humphrey’s algorithm on window-opening behavior and energy consumption (used in 
Rijal, et al., 2007) is based on adaptive thermal comfort theory. Rijal, et al., used data 
on temperature, season, time of day, and active versus passive occupancy recorded four 
times per day in offices across the United Kingdom. Their model showed that improved 
thermal comfort and, accordingly, window operation would lead to a 7% reduction in 
annual heating energy demand.

Andersen (2009) made a theoretical study on a single room with a single occupant 
in Copenhagen, focusing on different comfort levels (3 PMV factors) and behavioral 
modes (naïve and rational) and their impact on primary energy consumption. The 
occupant behavior in the study referred to the use of table fan, window opening, blinds, 
and heating, in reaction to the perception of comfort. In this respect naïve behavior 
means to turn on the table fan at 0,03 PMV, to open the window at 0,06 PMV, to drawn 
the blinds at 0,09 PMV, to remove clothing garment at 0,11 PMV, and finally the to turn 
off the heating beyond 0,17 PMV. Rational behavior, on the other hand, is assumed as 
more considerate reaction to the perception of comfort, such as turning off the heat in 
the first step, rather than turning on the table fan. The result is that the naïve behavior 
results in 3 times more energy use than the rational (3948 kWh/year-1198kWh/year).

Tanimoto et al’s (2008) research on single dwellings in Tokyo proposed a method 
to predict the peak energy requirement for cooling, that combines an algorithm that 
generates short-term events that are likely to occur in residences, and the stochastic 
variations in these short-term events. Research about simulating behavior either by 
statistics or by simulation programs, deal with office spaces, on a single zone model, or 
more zones with less details on use, more articulation on movement. This underlines 
the gap in the research field of modelling occupant behavior in residences, in a manner 
that involves both use of space and circulation patterns, and in relation to the dwelling 
energy performance.

Lighting control is another aspect of modeling occupant behavior and energy 
performance that appears in the literature, though most of the studies are in their 
initial phase. Widen, et al. (2009) asked the occupants of 167 dwellings to keep a diary 
for one weekday and one weekend to record their presence and lighting control; the 
authors then developed a Markov chain model to predict lighting behaviors. Lindelöf, 
et al. (2006) studied 14 offices, taking measurements of lighting control, inside and 
outside temperatures, solar radiation, luminance, wind speed and direction, window 
opening, and presence for three years. The authors used a Poisson process to set up 
their model and concluded that different users behaved quite differently from one 
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another, so both active and passive lighting patterns needed to be generated. Reinhart 
(2004) developed a lighting control algorithm in which he used data related to lighting 
control, presence, electric lighting and blinds garnered from existing literature. 
The algorithm was to be used in energy demand calculations, and validation of the 
algorithm through stochastic processes was needed. This algorithm. was inserted in 
Esp-r by Bourgeois (2006).

Research by Ioannou and Itard (2015) on the influence of building characteristics and 
occupant behavior on heating energy consumption utilize a Monte Carlo sensitivity 
analysis based on the results of energy performance simulation. A single residential 
housing unit in the Netherlands was selected for this. The analyses were conducted 
using the technical and physical properties of the building, which are the thermal 
conductivity of the walls, floor and roof, window U and g values, orientation, window 
frame conductivity and indoor openings. The simulations were carried out with the 
variations of: multi-zone and single-zone versions of the building, two different grades 
of insulation, three different types of HVAC services, and the occupant behavioral 
characteristics focusing on the heating period in the Netherlands (thermostat level, 
ventilation behavior, metabolic rate, clothing and presence which in simulation terms 
is the heat emitted by people). The predictor parameters were chosen in such a way 
that they cover all of the parameters mentioned above. The thermally efficient and 
thermally inefficient reference building were first simulated with predictor variables: 
walls, roof and floor conductivity, window glazing U and g values, window frame 
thickness, building orientation, and then with the additional occupant behavior related 
parameters of ventilation, thermostatic level and the heat emitted due to the presence 
of the occupant. 

The technique of sensitivity analysis was used to assess the thermal response of 
buildings and their energy consumption (Lomas and Eppel, 1992).  The findings were 
articulated on the basis of the simulation results of physical characteristics alone and 
when combined with occupant behavior; compared the themally efficient building with 
the thermally inefficient one; the different heating systems; and the comfort index. 
This research revealed that when behavioral parameters were not taken into account, 
the most critical parameters were the window U-value, window g value and wall 
conductivity in the thermally efficient building, and in the thermally inefficient building 
the orientation of the building replaced the window U-value. 

Ioannou and Itard (2015) found the predominance of behavioral parameters on energy 
performance (thermostat setting and ventilation flowrate), meaning they reduce the 
explanatory power of the physical parameters considerably. For both the thermally 
efficient and inefficient model, specifically the thermostat setting was the parameter 
that dominated the effect on the heating consumption, and the physical parameters 
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had a very small impact. For most of the simulation model configurations and different 
heating systems, the proportion of variance in the heating that was explained by the 
parameters used in the study (higher than 70%, and in some cases reached 98%, 
except the thermally inefficient building with behavioral parameters and floor heating 
as the heating system). 

The literature reviewed thus far has dealt with presence and/or specialized behavioral 
patterns, such as those related to heating and ventilation systems and lighting. Using 
an inductive, holistic approach to behavior, Herkel, et al. (2008) studied user behavior 
in 21 offices, monitoring presence, outdoor temperature, window control, and internal 
heat gain for one month. They found that the MC method is an appropriate tool for 
calculating thermal building performance, with a true mean value and standard 
deviation (SD).

Finally, in order to make a methodological comparison between the findings of the 
present research and an earlier analysis conducted on the same survey sample, it 
is important to briefly explain Guerra Santín’s (2010) study. Her analysis of the 
relationship between occupant behavior and energy consumption in dwellings 
revealed that the most important factor in energy use was the number of hours that 
the thermostat was at the highest chosen setting. She also found correlations with 
the number of hours the radiators were turned on, the number of bedrooms that were 
used as living areas, and the presence of a programmable thermostat (which was 
associated with more hours with the radiator on). These results confirmed the findings 
of Haas, et al. (1998); Hirst and Goeltz (1985); Jeeninga, et al. (2001); and Linden, et 
al. (2006). Guerra Santín found that (1) there were statistically significant differences 
in energy consumption depending on whether the windows in the living room were 
sometimes open or always closed; (2) the effect of open grilles on energy consumption 
was independent of the effect of open windows, though both played an important role 
in energy consumption; and (3) households tended to use natural ventilation (windows 
and grilles) more than mechanical ventilation.

To conclude the literature review, it is important to highlight a few points: first, in the 
existing literature, presence is assumed to be a precondition of occupant behavior 
in buildings. Second, the inductive methodological approach to occupant behavior 
and energy performance follows a bottom-up, probabilistic modeling method, 
driven by the presence and actual behavior of occupants. The most common tools 
for data processing in these models are the MC and Markov chain methods. The 
inductive approach predicts a much greater influence of occupant behavior on energy 
performance than the deductive methodological approach. Third, research into window 
opening behaviors correlates to one or more of these aspects: the daily schedules 
of occupants, indoor thermal comfort, indoor air quality, and/or outdoor weather 
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conditions. Finally, the use of lighting has been modeled to an advanced detail level. It 
has been inserted into building performance simulation programs and seems to work 
correctly, though how much lighting behaviors influence energy performance has not 
been fully explored.

In spite of advances in the modeling of presence and the operation of windows and 
lighting devices, some aspects of the field merit further research:

–– Existing research has tended to focus on behavior in offices, while analyses of 
residential properties are rare.

–– Occupant behavior has been scrutinized in several models, but few studies have 
conducted a sensitivity analysis (SA).

–– Studies on the use of heating systems, namely the thermostat and radiator controls, 
are conspicuously absent from the literature.

–– Time of day and seasonal differences in natural ventilation patterns should be 
investigated in detail.

–– Most of the existing research has taken window position into account in a very simple 
way, being either open or closed. However, windows are operated in several different 
ways, such as always closed, closed, open, ajar, and always open. This level of detail has 
yet to be covered in the literature.

§   3.3	 Aims and Research Questions

This paper presents a SA of the influence of occupant behavior on the energy 
performance of dwellings. The aims of the study were to determine occupant behavior 
patterns quantitatively and reveal the robustness level of energy consumption in 
dwellings with respect to occupant behavior. Unlike in the existing research, in this 
study, presence is not assumed to be a precondition for behavior; instead, the occupant 
is assumed to have both an active and a passive influence on energy consumption. The 
passive influence results from the default settings of control mechanisms, which affect 
energy consumption even when the occupant is not present; active influence results 
from the occupant being present in a space, changing the systems and devices according 
to his or her needs, and the internal heat gain resulting from his or her presence.

This research addresses certain aspects of the literature that have not yet been studied 
to any great extent, namely, the use of heating systems and the control of natural 
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ventilation in residences. Considering previous literature related to occupant behavior 
and energy performance in dwellings, the authors derived the following research 
questions:

–– How can behavior be modeled in order to assess the robustness of the energy 
performance of dwellings with respect to occupant behavior?

–– What is the weight of each behavior in terms of its influence on energy performance? 
Which occupant behaviors are more robust than others?

–– How do the results of inductive models differ from those of deductive models in terms 
of calculating the influence of occupant behavior on energy performance?

It is hypothesized that, by using an SA method and building performance simulation 
tools, the behavioral patterns obtained from a dataset on presence, heating, 
and ventilation can be modeled, allowing the effects of behaviors on the energy 
consumption of a dwelling to be investigated free of the original dataset.

§   3.4	 Methodology

The literature review presented a number of methods for modeling and analyzing 
the influence of occupant behavior on the energy performance of dwellings. Since 
the objective of this research considers the robustness of behavior, the research 
methodology is based on an SA (see Hamby, 1994; Helton, et al., 2006; Saltelli, et al., 
2000). 

Sensitivity analysis (SA) is the study of how the variation in the output of a model 
(numerical or otherwise) can be apportioned, qualitatively or quantitatively, to different 
sources of variation. A mathematical model is defined by a series of equations, input 
factors, parameters, and variables aimed to characterize the process being investigated. 
Input is subject to many sources of uncertainty including errors of measurement, 
absence of information and poor or partial understanding of the driving forces and 
mechanisms. This imposes a limit on our confidence in the response or output of 
the model. SA is used to increase the confidence in the model and its predictions, by 
providing an understanding of how the model response variables respond to changes in 
the inputs (Saltelli, 2000)
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There are several ways of carrying out SAs, the most common of which is based on 
sampling. “A sampling-based SA is one in which the model is executed repeatedly 
for combinations of values sampled from the distribution (assumed known) of the 
input factors” (Saltelli, 2000). A number of sampling-based strategies are available, 
including random, importance, and Latin hypercube sampling. This study uses the 
latter.

There are many examples of the use of SA in building thermal modeling (Bedir, et al., 
2011; Corson, 1992; Fürbringer and Roulet, 1999; Harputlugil, et al., 2011; Lam and 
Hui, 1996; Macdonald, 2004; Spitler, et al., 1989; Westphal and Lamberts, 2005). For 
energy-sensitivity simulation models, a set of input parameters and their values are 
defined and applied to a building model, and the simulated energy consumption of the 
model is used as a base for comparison to determine the extent to which output (here 
measured in terms of heating energy demand per year) changes as a result of particular 
increments of input values (Corson, 1992; Harputlugil, et al., 2011). The results show 
which parameters can be classified as “sensitive” or “robust.” Sensitive parameters 
are those that cause effective changes in the outputs when changes are made to their 
values; in contrast, a change to robust parameters causes a negligible change in the 
outputs (Harputlugil, et al., 2011).

Hamby (1994); Hansen (2007); and Saltelli, et al. (2000) discussed the various 
classifications of SAs, including local SAs and global SAs. According to the definitions 
put forward by Hansen (2007), a local analysis follows a one-at-a-time approach, is 
less complex, has a sensitivity ranking that is dependent on the reference building, 
and has parameters that are assumed to be independent. In contrast, a global analysis 
requires random sampling, has a large degree of complexity, has a sensitivity ranking 
that is less dependent on the reference building, and provides information about 
possible correlations (interdependencies) between parameters. The present study uses 
a global SA.

In this study, the sensitivity of occupant behavior is analyzed using the MC method, 
which is a popular means of analyzing the approximate distribution of possible results 
on the basis of probabilistic inputs (Hopfe, et al., 2007; Lomas and Eppel, 1992). 
Moreover, it permits the application of a global SA in order to gather information about 
possible correlations between parameters. Here, the input parameters are presence 
and occupant behaviors that affect energy consumption in the dwelling (use of the 
heating and ventilation systems). Figure 2 illustrates the five steps followed in the 
analysis:

1	 The raw survey data are preprocessed in a statistical analysis program. The mean and 
SD per hour value of each input parameter is determined.
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2	 The SimLab 2.2 (https://ec.europa.eu/jrc/en/samo/simlab) pre-processor is used 
to create 250 Latin hypercube samples, which represent behavioral patterns for each 
24-hour period. The sampling method produces data points around the mean value, 
using a normal distribution pattern based on mean and SD  values. This way it provides 
a realistic representation of the distribution of the studied parameters' actual values.

3	 Each behavioral sample is tested in terms of the energy use of the reference dwelling, 
simulated in ESP-r. 

4	 Inputs and outputs are combined in the SimLab post-processor to conduct MC 
analysis.

5	 The results are interpreted using graphical outputs.
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Figure 3.2  Flow chart of the study methodology

Data

Data on occupant behavior was collected from two neighborhoods developed after 
1995 in Utrecht and the Hague, the Netherlands. A survey conducted in these two 
neighborhoods in autumn 2008 resulted in a response sample of 313 dwellings, 
117 (37%) of which were row houses. The survey was developed in the form of 
a questionnaire by researchers in the OTB – Research for the Built Environment 
Department at Delft University of Technology to obtain information on dwelling and 
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household characteristics, energy consumption, and actual household behavior 
patterns related to heating and ventilation. Respondents were asked a wide variety of 
questions about their dwelling’s characteristics and their actual behavior related to 
their use of heating and ventilation systems, lighting, and appliances, including their 
hourly presence at home generally and in each room during the week and on weekends 
in the summer and winter, their hourly control of heating and ventilation devices in 
each room during the week and on weekends in the summer and winter, and their total 
hours of use of lighting in the living room and electrical appliances in the house (Bedir, 
et al., 2011; Guerra Santín, 2010). Table 1 lists the types of data collected in the OTB 
survey.

Individual (user) level Dwelling and household level

Heating 
behavior

Ventilation 
behavior

Lighting 
behavior

Appliances 
behavior

Household 
characteristics

Dwelling 
characteristics

- Heating system 
type

- Ventilation 
system type

- Nu. of low energy 
light bulbs in the 
living room

- Appliances in the 
house

- Presence in the 
house

- Dwelling type

- Radiator use 
(hours, set point)

- Window use 
(room, hours, 
opening)

- Number of 
normal or halogen 
light bulbs in the 
living room

- Hours appliances 
are used (daily and 
weekly)

- Presence in 
specific rooms

- Nu. of rooms

- Thermostat use 
(hours, set point)

- Grilles use 
(room, hours, 
opening)

- Nu. of appliances 
on stand by mode 
in the living room

- Duration of 
presence

- Function of 
rooms

- Mechanical ven-
tilation use (hours, 
set points)

- Household size

- Age

Table 3.1  Types of data collected in the OTB survey (based on Bedir, et al., 2011; Guerra Santín, 2010). Data highlighted in 
blue are used in the MC analysis.

For this study, the authors used the specific survey data related to actual household 
behavior in row houses in winter (the heating season). These included (1) presence 
at home (number of people at home); (2) hourly data on heating behaviors, including 
thermostat settings, radiator use in each room, and set points; and (3) hourly data on 
ventilation behaviors, including use of windows and grilles in each room and position 
of windows. Building simulations were conducted for heating energy demand using the 
heating-season data from the questionnaires.
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The consumption values of the dwellings were used to calibrate the initial heating 
energy demand models. In 1995, the Netherlands introduced a set of energy 
performance regulations that focused on the overall energy performance of buildings. In 
1999, the Dutch Organisation for Energy and Environment (SenterNovem) responded 
by developing six reference houses using the regulations. The reference houses are 
used for calculating the impact of energy-saving measures on energy performance in 
dwellings, as well as for determining whether a dwelling meets the health and safety 
requirements outlined in the Dutch building standards and regulations. 

The reference houses illustrate a schematic view of reality to allow builders and 
designers to assess real houses as accurately as possible, and using the reference 
houses at an early stage in the design process is strongly encouraged to make the 
process of obtaining building permits more successful. In this study, the reference row 
house (tussenwoning) was modeled using simulation software (SenterNovem, 2006). 
Figure 3 presents the plan/section/elevation of the reference row house, and Table 2 
presents the envelope characteristics and energy use of the reference row house based 
on the Netherlands Standardization Institute (NEN) standards 5128 and 5129 (NEN, 
2006, 2010). The Dutch standard values for ventilation (NEN 1087) were assumed for 
calculating the total ventilation rates (NEN, 2001) (Table 2)

Survey respondents were asked to fill in tables recording whether they opened 
windows or grilles in each room for each hour and whether and how they adjusted their 
mechanical ventilation each hour. A value was recorded for both weekdays and the 
weekend. The data recorded in the survey tables were converted into values to permit 
further mathematical calculations (for example, 1 = open window/grille, mechanical 
ventilation on; 0 = closed window/grille, mechanical ventilation off), which were then 
used to calculate the air change per hour (AC/h) values for each room with or without 
natural and/or mechanical ventilation. All 117 row houses from the survey dataset 
featured open kitchens, so the reported data on ventilation behaviors in the living 
room and kitchen were combined. The natural ventilation patterns for the entrance, 
bathroom, and circulation zones reported in the survey were not simulated because the 
reference row house did not propose natural ventilation through windows in these areas.

The air-change rates for each room during the day were calculated using the AC/h 
value assumptions calculated from the NEN standards, the reference row house, and 
the converted ventilation-behavior data from the survey dataset. The AC/h values for 
each room were determined using the following formula and the physical description 
of the reference row house:
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Supply Air Rate (AC/h) = Volume Flow Rate (m3/h) / Room Volume (m3)
Living room = 1.25 AC/h
Bathroom, Bedroom 1, Bedroom 2, Entrance, and Circulation = 1.26 AC/h for each
Attic = 1.47 AC/h
Bedroom 3 = 1.15 AC/h

Figure 3.3  Plans and sections of the Dutch reference row house

Characteristics

Measure Dimension

Width (m.) 5.1

Depth (m.) 8.9

Floor height (m.) 2.6

Floor area (m2) 45.4

Volume (m3) 118.0

Rc  for Façade (m2K/W) 3.0

Rc  for Roof (m2K/W) 4.0

Rc  for  Ground floor slab (m2K/W) 3.0

U  for Window (W/m2K) 1.8

U for Front door (W/m2K) 2.0

EPC value 0.78

Yearly energy consumption (MJ/m2) 359.0

Table 3.2  Envelope characteristics and energy use of the Dutch reference row house (NEN, 2006, 2010; 
SenterNovem, 2006)
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To calculate internal heat gain, the authors used data from CIBSE Guide A, which 
suggested that each person is responsible for 95W of sensible heat and 45W of 
latent heat (CIBSE, 2006). These Figures were required for the energy performance 
simulation. One limitation of using an energy simulation program is that the program 
allowed only one air-flow value for ventilation, meaning that it was only possible to use 
the combined effect of natural and mechanical ventilation in the simulations.

Characteristics

Room Value

Living room 1 dm3/s/m2 floor area

Bedroom 1 dm3/s/m2 floor area

Kitchen 21 dm3/s

Bathroom + water closet 14 dm3/s

Water closet only 7 dm3/s

Table 3.3  Dutch standards for ventilation (NEN, 2001)

§   3.5	 Results

In this section, the results of the MC analysis are explained to provide an understanding 
of the variance of inputs and the outputs of heating energy demand and minimum 
indoor resultant temperature. The Pearson product-moment correlation coefficient 
(PCC) values are also discussed. To derive the energy simulation results, all input data 
(each parameter for each of the 250 Latin hypercube samples) were inserted into the 
model in ESP-r, one parameter at a time.

TOC



	 108	 Occupant behavior and energy consumption in dwellings

Weekday Weekend

Input Min Max Mean SD Min Max Mean SD

Presence (number of 
people at home)

0.00 4.00 1.06 0.87 0.00 5.00 1.58 1.32

Heating (thermostat set 
point)

0.00 22.20 13.33 8.27 0.00 23.00 14.19 8.73

Heating (radiator 
setting)

7.00 27.00 10.54 5.93 7.00 27.00 10.54 5.93

Ventilation (air change 
rate including window, 
grilles, mechanical 
ventilation)

0.20 2.17 1.53 0.58 0.20 2.17 1.53 0.58

Table 3.4  Minimum, maximum, mean and SD values for presence, heating, and ventilation for weekdays and 
the weekend.

§   3.5.1	 Variance of Inputs

Table 4 shows the minimum, maximum, mean, and SD values for presence, heating, 
and ventilation behavior pattern inputs gathered from the survey. The greatest number 
of people at home during the week was four, occurring between 12:00 pm and 7:00 
pm; on the weekend, the maximum number was five, occurring between 9:00 am and 
7:00 pm. The variance of presence was quite high for both weekdays and the weekend. 
During the week, the highest value recorded for the thermostat setting was 22°C, 
while the mean was 13°C. On the weekend, the highest chosen thermostat setting 
was 23°C, and the mean was 14°C. The SD of the thermostat setting was high for both 
weekdays and the weekend. These values indicate that more people were at home for 
longer periods on the weekend, when the chosen maximum thermostat setting was 
almost 1°C higher.

Figures 4-7 present the average presence and behavior patterns obtained from the 
250 samples. (For ventilation and radiator use, the weekday and weekend data were 
combined into a single average value.) Figure 4 shows there were higher numbers 
for presence during the weekend, while people stayed at home for shorter durations 
during the week. As Figure 5 shows, the highest value for ventilation was recorded in 
the afternoon (3:00-4:00 pm); the lowest values occurred at night. During the day, 
ventilation was kept at a constant value that was higher than the night values. Figure 
5 shows that radiator use varied considerably throughout the day, peaking in the early 
evening and lowest at night (midnight to early morning). As might be expected, the 
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thermostat use patterns generally followed the presence patterns. The patterns for 
Saturday and Sunday were very similar, both in terms of schedule and set point, and the 
weekend set points were a little higher overall than the weekday set points (Figure 7).

§   3.5.2	 Heating energy demand and minimum indoor resultant temperature

The heating energy demand and minimum indoor resultant temperature values were 
garnered from the 250 samples using the dynamic simulation program ESP-r. For the 
heating energy demand values, the authors chose the winter seasonal values (heating 
season), which started at midnight on October 1 and ended at midnight on March 31. 
The authors chose the minimum indoor resultant temperature output to reveal the 
effects of occupant behavior on the indoor temperature as a trigger of heating demand. 
Figure 8 presents the output data for the entire sample. Most of the minimum indoor 
resultant temperature values ranged from 9°C to 11°C; the lowest value was 7°C, and 
the resulting heating energy demand was 347.18 kWh.

§   3.5.3	 PCC values

As a simple measure of sensitivity, the PCC value was used as the linear correlation 
coefficient based on a regression analysis. PCC values reveal the correlations between 
input and output data; positive values represent a direct correlation, while negative 
values represent an indirect correlation. A comparison of the PCC values for different 
behavioral patterns for weekdays and the weekend showed that heating energy 
demand was most sensitive to presence between 6:00 pm and 5:00 am on weekends 
(r = -.14), to the thermostat setting between 7:00 am and 2:00 pm on weekdays (r = 
.34), to the radiator setting between 5:00 am and 8:00 am (average of weekend and 
weekday values) (r = -.11), and to the ventilation rate between 11:00 pm and 6:00 am 
(average of weekend and weekday values) (r = .20) (Figure 9).

The minimum indoor resultant temperature was most sensitive to presence between 
12:00 pm and 7:00 pm on weekdays (r = .17), to the thermostat setting between 7:00 
am and 2:00 pm on weekdays (r = .32), to the radiator setting between 8:00 am and
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2:00 pm (average of weekend and weekday values) (r = .15), and to the ventilation rate 
between 11:00 pm and 6:00 am (average of weekend and weekday values) (r = -.21) 
(Figure 10).

Figure 3.4  Average hourly presence at home pattern

Figure 3.5  Average air change rate (per hour) during the day
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Figure 3.6  Average hourly radiator-thermostat setpoint preference during the day

Figure 3.7  Average hourly thermostat-set point preference during the day

§   3.6	 Discussion

Research on energy performance of dwellings covers thorough investigation of the 
aspects that are involved in the design and building processes, as well as the behavioral 
performance in the post occupancy process. There has been extensive progress on the 
building physics aspects of energy performance; concerning methods and practices 
for specification of building geometry, material properties, and external conditions. 
However, the resolution of input information regarding occupancy is still rather low. 
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Mahdavi and Pröglhöf (2009) claimed that recent and ongoing research attempts 
to construct models for the effects of passive and active occupancy on building 
energy performance, require physical and psychological descriptions of occupancy, 
and empirically based observational data and inductive models require extensive 
observational data (Mahdavi, 2011). This leads us to our hypothesis: By using an SA 
method and building performance simulation tools, the behavioral patterns obtained 
from a dataset on presence, heating, and ventilation can be modeled, allowing the 
effect of behaviors on the energy consumption of a dwelling to be investigated free of 
the original dataset.

Figure 3.8  (Top) Heating energy demand and (bottom) minimum indoor resultant temperature values for the 
entire dataset

Figures 4-7 present the average presence and behavior patterns obtained from the 
250 samples. The presence values for both weekdays and weekends were as expected, 
setting the background for the heating and ventilation behaviors. For ventilation, the 
highest values were achieved in the afternoon, and the lowest values were seen at 
night. During the day, ventilation tended to be kept at a constant value that was higher 
than the night values. This variance indicates that people tended to ventilate their 
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houses when they got up in the morning (around 6:00 am), maintained ventilation 
at a constant level during the day, and increased ventilation in the late afternoon and 
early evening when they came home and possibly cooked or showered. They then 
decreased the ventilation as they relaxed in the evening and went to bed. Radiator use 
varied considerably, reaching a peak in the early evening and falling to its lowest levels 
at night. This was rather unexpected, as heating is generally regulated via thermostats. 
Finally, the patterns for thermostat use generally followed the presence patterns. 
The thermostat settings on Saturday and Sunday were very similar, both in terms of 
schedule and set point, and the weekend set points were a little higher overall than 
those during the week. Thus, one part of the hypothesis is confirmed: SA can be used as 
a method of evaluating the impact of occupant behavior on the energy consumption of 
a dwelling.

One important difference in our modeling approach is that it does not assume presence 
is an initiator of behavior or a precondition for behavior. Behavior can indirectly 
influence energy consumption in a space because heating and ventilation systems and 
lighting may be set to certain control points without the occupants even being present 
in a space. This is fundamentally in contrast to the existing research, which has carried 
out the inductive modeling of occupant behavior considering presence as a preliminary 
factor for occupant behavior. Nevertheless, presence can influence energy performance 
through indoor heat gain.

In this paper, an attempt has been made to address how occupants control their 
thermostat and radiator settings in dwellings. Previously, this aspect had not been 
considered in the research. The times and values of ventilation use during winter were 
carefully modeled. Existing research has covered window positions in a very simple way, 
defining them as only open or closed; however, this research incorporated a number 
of different window positions — always closed, closed, open, ajar, and always open — 
as well as the positions of grilles in terms of air flow. Research into window-opening 
behaviors correlates to one or more of these aspects: the daily schedules of occupants, 
indoor thermal comfort, indoor air quality, and/or outdoor weather conditions. 

The survey did not address thermal comfort, so the assumption in the literature that 
thermal comfort has a large influence on window-opening behavior still needs to be 
validated with the current model. The sensitivity of energy performance to the use of 
appliances was not analyzed in this study because the model made an assumption 
based on the Dutch regulations, which was then used as a constant value for each 
sample. The influence of thermal comfort and the use of appliances on occupant 
behavior needs to be investigated in future studies.
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With regard to the second set of research questions (What is the weight of each 
behavior in terms of its influence on energy performance? Which occupant behaviors 
are more robust than others?), according to the results of the MC analysis, this study 
found that the energy performance of a dwelling was most sensitive to the thermostat 
setting (r = .34), followed by the ventilation rate (r = .20), presence (r = -.14), and the 
radiator setting (r = -.11). (The findings related to presence and the thermostat setting 
were discussed at the beginning of this section.) The ventilation finding was recorded 
during the 11:00 pm-6:00 am time period, indicating that ventilating at night and 
early in the morning has a great influence on the energy performance of a dwelling. 
The attribute that was least influential to energy performance was the radiator setting, 
which is an interesting finding that merits further investigation since the inputs of 
radiator-control behaviors varied broadly. In terms of minimum indoor resultant 
temperature, sensitivity was most affected by the thermostat setting (r = .32), followed 
by the ventilation rate (r = -.21), presence (r = .17), and the radiator setting (r = .15).

TOC



	 115	 Effects of occupant behavior on the energy performance of dwellings: a sensitivity analysis

Figure 3.9  PCC values for heating energy demand (left) and minimum indoor resultant temperature 
(right). (WE = weekend, WD = weekday, SA = Saturday, and SU = Sunday). The values for radiator setting and 
ventilation are an average of both weekend and weekday values.  PCC values reveal the correlations between 
input (presence, thermostat setting, radiator setting, ventilation) and output data (heating energy demand, 
minimum indoor resultant temperature). The positive values in the chart represent a positive correlation with 
the output parameter, meaning as the value of the input parameter increase, the output value increase with 
a factor of the correlation coefficient, while negative values represent an negative correlation with the output 
parameter, meaning as the value of the input parameter increase 

In order to discuss the second part of the hypothesis (i.e., investigating the effect of 
behaviors by statistically modeling patterns obtained from a dataset) and address the 
third research question (How do the results of inductive models differ from those of 
deductive models in terms of calculating the influence of occupant behavior on energy 
performance?), the authors compared their results with those of a previous deductive 
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analysis conducted on the same sample (Guerra Santín, 2010), as explained in the 
literature review.

Guerra Santín’s (2010) analysis of the relationship between occupant behavior and 
energy consumption in dwellings revealed that the most important factor in energy 
use was the number of hours that the thermostat was at the highest chosen setting. 
She also found correlations with the number of hours the radiators were turned 
on, the number of bedrooms that were used as living areas, and the presence of a 
programmable thermostat (which was associated with more hours with the radiator 
on). Guerra Santín found that (1) there were statistically significant differences in 
energy consumption depending on whether the windows in the living room were 
sometimes open or always closed; (2) the effect of open grilles on energy consumption 
was independent of the effect of open windows, though both played an important role 
in energy consumption; and (3) households tended to use natural ventilation (windows 
and grilles) more than mechanical ventilation.

While this paper did not look specifically at the number of hours the thermostat was at 
a specific temperature setting, it did find that the thermostat setting between 7:00 am 
and 2:00 pm was the most significant parameter for energy performance in dwellings, 
and this finding incorporates the number of hours at a particular thermostat setting. 

In terms of ventilation, it was not possible to investigate the sensitivity of a dwelling’s 
energy performance to occupants’ behaviors regarding natural versus mechanical 
ventilation due to limitations in the simulation software. However, this study did find 
that the ventilation rate had the second greatest influence on energy performance. The 
highest ventilation rates occurred in the afternoon, but they were most influential on 
energy performance in the evening and early morning.

Comparing our results with those of Guerra Santín (2010), it appears that our 
method may be used to generate homogenous sample characteristics by statistically 
remodeling the actual dataset, but further research using real-time measurements 
should be carried out for validation.

§   3.7	 Conclusion

This paper has focused on exploring the sensitivity of a dwelling’s energy performance 
to different occupant behavior patterns, investigating presence, heating control 
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(thermostat and radiator), and ventilation control (natural and mechanical) patterns 
in the winter for both weekdays and the weekend for a sample of Dutch residents. 
Occupant behavior served as the input, while the outputs were heating energy demand 
and its triggered factor, minimum indoor resultant temperature. The sample dwelling 
was a typical Dutch row house.

In this sample, more people spent more time at home on the weekends, when the 
maximum thermostat setting was 1°C higher than during the week. Radiators were 
mostly used at the maximum setting during the evening (7:00 pm-11:00 pm), both 
during the week and on the weekend. Ventilation was used most in the morning and 
during the day (6am-3pm). The minimum indoor resultant temperature was 7°C, and 
the resulting heating energy demand was 347.18 kWh.

Heating energy demand and minimum indoor resultant temperature were most 
sensitive to the thermostat setting (r = .34 and .32 respectively) and most robust in 
relation to the radiator setting (r = -.11 and .15 respectively). A comparison of the 
heating energy demand and minimum indoor resultant temperature sensitivities 
reveals that both outputs were most sensitive to ventilation and thermostat settings at 
roughly the same times of day (evening and morning/midday respectively). However, 
heating energy demand was most sensitive to the radiator setting in the early morning 
hours, while minimum indoor resultant temperature was most sensitive to the radiator 
setting later in the morning and early afternoon.

The results of the PCC analysis revealed a direct, positive relationship between presence 
and minimum indoor resultant temperature. In contrast, ventilation had the most 
negative relationship with minimum indoor resultant temperature. As a triggering 
factor of heating energy demand, the minimum indoor resultant temperature was 
most sensitive at night, when presence (and therefore the internal heat gain caused 
by the presence of occupants) was at its highest. Heating energy demand is closely 
related to system operation, hence the thermostat setting would appear to be the most 
sensitive parameter in this regard. Interestingly, the high negative PCC values show an 
indirect relation, as when presence was high (like at night and on weekends), heating 
energy demand actually decreased.

In conducting this research, it became apparent that creating a model of a dataset 
of occupant behavior using our approach would make it possible to work on the data 
in a more general way, without necessarily relating our results specifically to the 
original sample. 

One of the most important next steps for further research is to collect more real-time 
data in order to validate the proposed model. Second, modeling thermal comfort and 
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indoor air quality could lead to results that would further explain the sensitivity of 
certain factors. Future studies to model other dwelling, household, and system types 
would also be helpful.

Notes

The envelope characteristics and energy use for the reference houses were updated in 2006, 2013, and 2015. 
This research used the 2006 version and was completed before the 2013 and 2015 versions were published. 
Following a government restructuring, SenterNovem merged with other agencies and was incorporated into 
the Rijksdienst voor Ondernemend Nederland (RVO.nl) in 2014. Data for the current versions of the reference 
houses can be found on the RVO.nl website (RVO.nl, 2015).

The data in this paper are based on the 2010 version of NEN 5128; the standard was updated in 2013 and again 
in 2015. Likewise, this paper uses the 2006 version of NEN 5129; the standard was updated in 2011. NEN 1087 
has not been updated since it was published in 2001. The current Dutch standards can be found on the NEN 
website (https://www.nen.nl)
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