2 Existing Knowledge About Occupant
Behavior and Energy Consumption

Introductory note

Chapter 2 provides an overview of a literature study of the existing knowledge on energy
consumption from the urban to the user scale, energy performance modelling methods,
the energy performance gap, and insights to determinants of heating energy and
electricity consumption.

This review first helped to set up a reference point for the reasons to actual occupant
behavior, how perception, lifestyle, norms, rules lead to various actions at home (Figure
1). Secondly, through this study, a framework for the relationship between occupant
behavior and energy consumption was created (Figure 2), based on the determinants

of behavior, i.e. occupant characteristics (educational, economic, social), dwelling
characteristics (envelope, systems, lighting and appliances...). This literature study set
the context and also the first steps of this research. The determinants found through this
review (Table 2) gave input to the content and structure of the questions of the survey
designed for the OTB dataset.

The paper below was written by Bedir. The co-authors commented on the drafts and
gave advise on the structure, and the content of the paper. The co-authors have given
their permission to include the paper in the thesis. The review of determinants of energy
consumption was first published as:

Bedir, M. Hasselaar, E. Itard, L. (2008) A Review of Energy Performance and Comfort in
Dwellings: The Human Factor. Proceedings of the Conference on Sustainable Building
SBO8 Melbourne, Australia p.3009-3016
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Housing more than half of global population in 2013, cities account for about two-
thirds of primary energy demand, and 70% of total energy-related carbon dioxide
(CO2) emissions (IEA, 2013). The energy and carbon footprint of cities will increase
with urbanization and the growing economic activity of citizens. This puts cities at

the heart of the sustainable energy transition. Efforts aimed at fostering sustainable
urban energy paths, a vision for meeting demand for end-use energy services in cities
while at the same time significantly reducing primary energy use and its environmental
impacts, are crucial to meet energy ambitions. Improvement in the rural areas is also
important, since buildings in rural areas might have greater potential to be sustainable.
However, the current trends of urbanization attract more attention to cities, zero-
energy buildings (ZEBs) and near-zero energy buildings (nZEBs) remain as the niche
fields of development more for rural areas. The scope of this review is the urban, in
relation to the focus of this thesis.

Urban planning and buildings, mobility and transportation, low-carbon/efficient
energy supply and smart energy networks are the main fields of research and
development. Attention is growing for the concept of ‘prosumers’i.e. active citizens
taking initiative in issues of energy, environment and sustainability.

Urban planning and buildings

Achieving the goal of limiting global temperature rise to 2 C degrees would require

an estimated 77% reduction in total CO2 emissions in the building sector by 2050,
compared to today's level. If no action is taken to improve energy efficiency in the
buildings sector, the energy demand is expected to rise by 50% by 2050 (EC, 2012).
This increase is driven by rapid growth in the number of households, residential and
services floor area, higher ownership rates for existing electricity-consuming devices
and increasing demand for new products. However, this growth could be limited to just
over 10% by implementing several energy efficient installations in dwellings including
high-performance windows, optimal levels of insulation, reflective surfaces, sealants,
heat pumps, solar thermal heating, co-generation, energy efficient appliances and
equipment, efficient cook stoves and solid-state lighting (SSL), among others. Another
important first step in improving the energy efficiency of the global building stock

is to establish and enforce stringent building codes that include minimum energy
performance for new and refurbished buildings.

Occupant behavior and energy consumption in dwellings



Though no one-size-fits-all solution exists to ensure energy and environmental
sustainability, compact and dense urban development is a structural assumption
towards energy use reduction. For instance, compact urban form and density create
the premises for reduced demand for mobility and for greater efficiency of energy use
in buildings. Urban form that incorporates mixed-use and public-transport oriented
developments, as well as size, density, maturity, economy and the local policy-making
capacities of urban areas will heavily influence the appropriate choices of policies and
technologies for sustainability.

Improved building envelopes in all regions allow for the downsizing of heating and
cooling equipment, and for a significant reduction in energy use. Tougher regulations
are needed to reduce the electricity demand for lighting, appliances and cooling.
Efficient district heating systems benefit from thermal energy storage coupled with
waste heat and renewables, offering increased systems efficiency and flexibility. While
low or zero energy buildings (nZEB) are well applicable in rural areas; they are still a
niche field of implementation in urban areas. High densities, limited on-site renewable
potential and cultural heritage conventions are some of the reported reasons that
constrain the potential for broader implementation of nZEB's in cities.

Energy renovation of existing buildings is as important as the advanced implementations
for new buildings, especially in highly urbanized areas, and where population is not
expected to grow more in future. In these contexts, reducing building energy demand
through renovation can facilitate electricity export, avoid grid infrastructure investments,
unlock biomass to substitute fossil fuels in transport and enable deployment of new
technologies such as low temperature district heating and cooling systems. Reduced
energy demand also brings togetherimportant energy security benefits. Building
renovation could be supported by more advanced building technologies and intelligent
energy management systems that empower consumers and encourage behavior change.

The speed of urbanization is an opportunity to the transition towards low-carbon/low-
energy urban energy systems, new buildings, retrofits of existing buildings and new
transport infrastructure to service the growing urban population. The greater density
of urban areas leads to infrastructure investments like public transport, cycling, district
heating and cooling, and utilization of excess heat. This tempers the additional costs
to achieve lower energy consumption levels in urban areas compared with rural areas.
Advanced building and laboratory programs striving for zero-energy buildings need to
continue.
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Energy efficient supply

Renewable energy sources located in urban areas can make an important contribution
to meeting the energy needs of cities while at the same time increasing energy
resilience and retaining economic value within communities. Among renewable
energy sources that can be deployed in urban areas, rooftop solar photovoltaic (PV),
solid waste (SW), and sewage and wastewater gas are already cost-effective today and
can play a relevant role in covering the electricity, heating and cooling needs of cities.
Though the potentials from SW, sewage, and wastewater gas are not large, these energy
resources can provide relevant cost savings for waste and water treatment services.
Rooftop solar PV can make a significant contribution to meeting electricity demand

in cities. The technical potential for rooftop solar PV could provide up to 32% of urban
electricity demand and 17% of global total electricity demand by 2050. The solar PV
potential is largerin small cities, due to the lower density (ECEEE, 2016).

Currently, space heating and cooling together with water heating are estimated to
account for nearly 60% of global energy consumption in buildings (IEA, 2016). They
therefore represent the largest opportunity to reduce buildings energy consumption,
to improve energy security and reduce CO2 emissions. Meanwhile, cooling demand is
growing rapidly in countries with highly carbon-intensive electricity systems. A systems
approach, where equipment upgrades are coordinated in particular with improved
building envelopes, is crucial to achieving higher energy efficiencies and a low-carbon
heating and cooling supply. The use of electric resistance heaters in existing buildings
is promoted to be avoided, and eventually be prevented for new installations and
equipment replacements. Instead, heat pumps, solar thermal and co-generation for
space heating and cooling as well as hot water are prioritized (ECEEE, 2016).

In regions that are highly dependent on traditional biomass, energy use in buildings
represents as much as 80% of total final energy use (IEA, 2016). In these regions, a
major initiative seems to be needed to promote modern biomass equipment that can
reduce air pollution and improve human health, while allowing more of the scarce
resource to be used in central systems. The priority for countries with hot climates
seems to be highly reflective external surfaces to reduce the need for cooling, and the
development and wide adoption of high-performance cost-effective air conditioners.
The implementation of minimum efficiency standards helps to improve energy
efficiency and control the growth in electricity demand from this end-use. This will be
particularly beneficial in reducing peak loads, which often coincide with demand for
space cooling.
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Cities can decrease the carbon footprint of their thermal demand by reusing

excess heat from industrial plants located in the proximity of urban areas. The
cost-effectiveness of using industrial excess heat (IEH) in cities depends on local
conditions such as the existence of thermal distribution networks and the quality of
the heat source among others. Systems integration of distributed energy services in
cities can allow accelerated penetration of distributed energy sources and renewable
sources, increasing the resilience and security of energy systems. In a global scenario
characterized by a high build-up of renewables and distributed generation (DG),
smarter urban energy infrastructure is an important prerequisite, providing additional
non-climate benefits. The monitoring and control potential from ICT is incorporated
into urban grid planning.

Lighting has significant potential for energy efficiency improvements through the
application of more efficient technologies, better matching of lighting intensity to need,
and continued emphasis on technical and behavioral solutions that turn off or reduce
lighting levels when no longer needed. With better use of natural lighting and adoption
of highly efficient lamp technologies, buildings energy consumption for lighting is
reduced by 40% in 2050 compared to current levels (IEA, 2016). Variable controls and
sensors are added to the existing lighting systems via retrofit programs.

In many countries, appliances and other electrical equipment represent the fastest-
growing end-use for energy in buildings. Some improvements have been realized,

but additional effort is required to address stand-by energy use. Innovative, low-cost
sensors and controls for appliances and electronic equipment could reduce peak

loads on average by about 15%. Cooking is currently one of the largest end-uses in the
residential sub-sector, accounting for nearly one-quarter of global residential energy
consumption and about 20% of total buildings energy use (IEA, 2016). Common
medium- and long-term targets for implementing building codes and minimum
energy performance standards for lighting, appliances, heating and cooling equipment
seem to require immediate action.

Smart energy networks

Smart urban energy networks can leverage the combined potential of DG and
integrated urban energy grids to provide increased flexibility to the main energy system.
Smart, ICT-enabled distributed energy resources (including energy storage) within
urban smart energy networks are claimed to provide a range of technical services,
allowing grid operators to better plan and operate main power systems and, in turn,
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increase the hosting capacity for renewable and decentralized energy technologies

at lower cost. Integrating power, heat and fuel networks is claimed to increase the
utilization of the system, reduce total costs and offer the national electricity system
greater flexibility (ECEEE, 2016). For instance, a district heating network can link
power and heat production and consumption locally, providing operational flexibility to
accommodate periods of excess or scarce variable renewable generation in the national
grid. Overall, the greater flexibility provided by such urban power-to-heat systems can
not only balance variable renewable generation in the main system but also provide
local balancing and other system services to support the integration of distributed
energy sources. By enabling a more distributed system where energy is produced and
consumed locally, smarterintegrated urban energy grids can reduce the need for
investments in the main energy infrastructure. More broadly, they can also enhance
energy security through greater redundancy and resilience to external shocks.

Innovative management models for effective system integration at the urban level are
interesting. New models such as micro-grids or the various existing models that turn
consumers into producers and “prosumers”, enable a wide range of benefits at the
local level, including reduced environmental impact, reduced energy cost for urban
communities, increased energy access and greater security of supply.

Energy technology and innovation

Energy technology and innovation is central to meeting climate mitigation goals while
also supporting economic and energy security objectives. Continued dependence on
fossil fuels and recent trends such as unexpected energy market fluctuations reinforce
the role of countries, individually and collectively, to stimulate targeted action to
ensure that resources are optimally aligned to accelerate progress.

The buildings sector uses a wide array of technologies including the building envelope
and its insulation, space heating and cooling systems, water heating, lighting,
appliances and consumer products, and business equipment. Broader deployment of
district heating, heat pumps and solar heating helps to transition the energy supply
away from fossil fuels and direct electric heating. In cities with district heating, it
seems it may be more cost effective to pursue only moderate building energy efficiency
improvements together with investments in low-carbon district heat supply with lower
temperatures and peak demand.
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Primary strategies and technologies needed for efficient building include high-
performance envelopes optimized to harvest passive solar energy and daylight,
combined with advanced windows, optimal insulation and proper sealing, along with
reflective surfaces in hot climates. With buildings in some countries lasting well over
100 years and expensive to retrofit, urgent action is needed to ensure that high-
performance building envelopes rapidly gain market share and quickly become the
standard for all new construction globally. More than 40% of the savings expected

in heating and cooling energy demand under a low-carbon scenario can be directly
attributable to improvements in the building envelope (ECEEE, 2016). Lower heating
and cooling requirements will also allow downsizing of the equipment needed to reach
a desired indoor temperature.

Among energy end uses, heating and cooling systems offer substantial potential for
energy efficiency. The energy sector accounted for around two-thirds of global CO2
emissions in 2012, highlighting the benefits of clean energy technologies that are
essential for de-carbonization. Wind and PV power have the potential to provide
22% of reduction in annual electricity sector emissions in 2050; to fully exploit the
performance improvements achieved through technology (ECEEE, 2015).

In 2015, clean energy technologies continued their advancement as mainstream
energy solutions in 2015. The threshold of one million electric cars was crossed in
2015, with an overall annual sales growth rate of 70%. Renewable power generation
grew by an estimated 5% in 2015 and now accounts for around 23% of total electricity
generation globally. Energy efficiency improvements continued at a steady pace,

with buildings and appliances improving at a faster rate than other end uses. Despite

a notable scale-up of production capacity over 2014-2015; advanced biofuels are

not on track to meet 2DS targets. Global solar heat deployment has slowed in recent
years due to challenging economics, insufficient support and non-economic barriers.
Broader integration of sustainable energy into policy and market frameworks is needed,
as well as strategic planning in all energy end-use sectors. In the transport sector,
improved land-use, infrastructure and integrated territorial planning are important
for curtailing energy demand. Necessary further effort is emphasized for technological
advancements in district energy, car technology, and lighting (IEA, 2016).

Prosumers

The European Commission recognizes the importance of putting citizens at the core of
the energy transformation, but citizens still do not have their rights set up on the EU
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level. In order for the EU Energy Union to work, individuals and communities should
no longer be treated only as passive consumers of established energy companies, but
also as potential energy producers, or ‘prosumers’, particularly through self-generation
of renewable energy, storage, and energy conservation, and participation in demand
response (Clientearth, Greenpeace, 2016).

However, prosumers now currently face a number of obstacles due to the lack of a
dedicated legal framework in the EU, and their situation varies from state to state. Not
only do prosumers contribute to the energy transition, they themselves benefit from
reduced energy bills as well.

The human being shapes the physical environment around itself and in response; the
physical environment that he deformed begins to change it. Currently, this mutual
interaction has been leading to environmental depletion and energy resource decay
in broad terms. On the other hand, the measures proposed for reducing energy
consumption have to meet the demands for the optimum livable environment for
the inhabitant. Nevertheless, in most cases, these two goals cannot be achieved at
the same time, either because of the design of building systems and components, or
resulting from the behavior of the occupant. The aim of this section is to develop an
understanding of the relation between occupant behavior, indoor comfort and energy
consumption in dwellings, based on previous research. Literature on the subject
matter is analyzed in order to derive out the following: what the actual behavior of an
occupantis, how it occurs, and what they mean in terms of comfort, health and energy
consumption; as well as to produce a framework for evaluating the relationship.

Considered literature focuses on the relationship between occupant behavior and
energy performance/consumption or occupant behavior and comfort/health. Few
studies make assessments of actual occupant behavior from both energy consumption
and comfort/ health respects. This kind of research is mainly within the context of a
specific dwelling type (single family dwellings-multifamily dwellings/apartments),
condition of the dwelling (renovation/new built or old/new), the energy conservation
approach (‘energy efficient’/conventional), or from a project framework. Besides, when
the occupant behavior is considered, it is either a typical activity domain (heating,
cooling, ventilation...) or an activity scenario (studying, eating, cooking....).
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Reviewed literature is classified according to the parameters related to the occupant
behavior (Figure 1). In the literature reviewed, the common method used is post
occupancy evaluation. Data about actual behavior of occupants are collected mainly
through interviews, questionnaires and diaries; and in some of the cases through
measurements like photography, micro switches and observation. Data about indoor
air quality, thermal comfort and energy performance is collected also through field
measurements and evaluated with simulation and/or statistical analysis.

Actual behavior of the occupant

Planned behavior is a consequence of behavioral intentions. These intentions result
from attitudes, norms, and perception. Underneath behavior lie beliefs of behavior,
norms and control. In Giddens’s structuration theory, the analysis of environmental
behavior focuses principally on the behavioral or social practices in which human
agents participate. Discursive and practical consciousness affects behavior through
lifestyle; rules and resources affect behavior through provision systems (in Spaargaren
etal. 2000).

As actual behavior influences indoor air quality and energy consumption in dwellings,
existing or resulting indoor air quality influence behavior through perception (Figure
2). Forexample, ventilation behavior (Engvall et al. 2004) is strongly correlated with
indoor air quality through perception. The occupant (re)acts depending on how he
perceives fresh/ stuffy air, dry/humid air, cooking odors and other strong odors. At
this point it should be emphasized that adaptation is also involved in perception.
Occupants adapt to the changing indoor air quality levels in every 15 minutes. Besides,
adaptation raises the acceptability to indoor pollutants when the pollutant source

is human behavior (like smoking), whereas building originated pollutants are less
acceptable. Also, cross adaptation is observed when among many sources of pollution;
acceptability changes according to the change of concentration of the main pollutant
that the occupant is exposed to (Gunnarsen et al. 1992).

Existing Knowledge About Occupant Behavior and Energy Consumption



Consciousness Norms and rules

-

Perception Lifestyl Provision systems

F 3

[}

Actual behavior

r -

Indoor air quality + health Energy consumption

FIGURE 2.1 Framework of causes and impact of actual occupant behavior and energy consumption (interpreted
from literature review)

§ 2.2.2 Relation between occupant behavior - energy consumption and Health

Analyzing energy consumption of a dwelling has building related and occupant
behavior related aspects. The occupant influences energy performance through its
daily activities like studying, watching TV, washing up etc.; through internal heat

gain generated from metabolic rate; and through reactions to the changes in the
indoor environment (Tanimoto et al. 2008). Since indoor air quality and indoor
comfort level have health consequences, health could also be an indicator to evaluate
indoor air quality and energy consumption. It is important to build and sustain low
energy buildings that are also healthy. In some cases, energy efficient measures and
interventions modestly improve some aspects of physical health of occupantsin
dwellings (Fisk, 2000; Wilson et. al., 2014; Willand et. al., 2015), while in many cases,
this cannot be managed (Roulet et.al., 2006).

Energy technologies and occupant behavior have been treated separately in the
domains of indoor environment, energy engineering, and social fields (Moezzi and
Lutzenhiser, 2010). In literature, occupant behavior in dwellings is analyzed by specific
daily activities, most of which are, in fact, interrelated in terms of the output patterns
such as heating and electricity use, cooling and ventilation etc. Relation between
occupant behavior, energy consumption and health is bilateral: Either the occupant
behavior affects them and/or they affect occupant behavior.
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Occupant characteristics

Size and composition of a household has an influence on occupant behavior (Fleury et
al. 2001; Liddament, 2001; Ndiaye and Gabriel, 2010; Yohannis et al., 2008; Genjo et
al., 2005; Bartiaux and Gram-Hanssen, 2005; Rooijers et al., 2003; ECN, 2009), and
especially in terms of electricity consumption by the use household appliances and
lighting (Papakostas et al. 1997; Al-Mumin et al. 2003; Tyler et al. 1990). Household
size (Vringer, 2005; Biesiot & Noorman, 1999) together with poor ventilation, volume
of the house and heating system has a significant impact on NO2 concentration, as well
as energy consumption. Increase in NO2 concentration may lead to health problems
like asthma and allergen illnesses (Zota et al. 2005).

Some studies claim that occupant’s lifestyle has strong effects in energy consumption
and should be changed through education for energy conservation (Groot-Marcus et
al. 2006), whereas some others show that differences in lifestyle do not have much
effect on space heating energy behavior (such as Emery et al. 2006). Occupant’s age
is an important predictor of both heating energy and electricity consumption at home
(Brasche et al. 2005; Liao & Chang, 2002; Linden et al., 2006; Yohannis et al., 2008;
O'Doherty et al., 2008; Baker and Rylatt, 2008).

Habits are also major elements of behavior; the motivation to achieve a goal within

a context and with cues create habits. Repeating the habit strengthens it, and then,
even when the original motivation is not there, habits will still be triggered by the
contextual cues. Most of everyday behaviors are claimed to be led by habits, especially
using technologically advanced devices and systems. At home, research shows higher
probability that occupants will act upon habits; because at home behavior with

cues do not require cognitive effort (Maréchal, 2010; Pierce, et. al., 2010; Martinez,
2011, Ortiz, et. al., 2017). Habits allow the individual to achieve goals in a quick and
effective way that requires minimal thought (Maréchal, 2009). In other words, the
stronger the habits are the weaker the influence of knowledge and attitude on behavior
(Verplanken et al. 1994). For example, clothing habit is a means for the occupants of
the dwelling to maintain their own energy balance with indoor climatic conditions, and
the extent to which they rely on physiologic responses to maintain that energy balance
determines the magnitude of their thermal discomfort and attendant dissatisfaction.
Indoor thermal conditions influence body heat balance which leads to thermal
discomfort feeling through physiological strain and this process results in behavioral
thermoregulation (clothing) (Morgan et al. 2003; Baker and Rylatt, 2008; ODYSSEE,
2008). In naturally ventilated buildings, clothing behavior of the occupants is more
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related with outdoor temperature than mechanically ventilated buildings (De Carli et
al. 2007).

Educational characteristics

The increase in education level of the occupant (Mansouri et al., 1996) may result

in awareness about energy consumption and environment, hence reducing energy
consumption. Motivation is another important determinant of electricity consumption
(Vringer & Blok, 2007; Linden et al., 2006), and could be created through educational
and economic measures. In a study in Finland, economic reasons provided the
motivation for households to save energy: the occupants were eager to save energy by
changing their lighting appliances, sealing windows, lowering room temperature and
reducing hot water consumption. Further, households wished to get advice on use of
electricity, space heating, ventilation and use of water. Half of the users began to turn
down lights in the rooms not occupied, 29% reduced water use, 27% change clothing
habits (Haakana et al. 1997).

In Denmark, eco accounts were used to provide information (Jensen, 2003) for
tenants; after one year, heating energy consumption was reduced by 9% and electricity
consumption by 22%. Product information about energy conservation also affects
behavior but relies on the actual willingness of the user to initiate or change specific
behavior patterns (Wiese et al. 2004). Provided feedback and general information
about energy consumption to the occupants have strong influence on occupant
behavior. For example, in many cases occupants do not know that ventilation demands
are only met at the highest speed level of the exhaust fan, and they do not operate it
correctly. This results in poor indoor air quality (Ginkel et al. 2003, Liddament, 2001).
Feedback should not be handled alone; factors such as the conditions of housing,
personal contact with a trustworthy advisor when needed, and support from utilities
and government which can provide the technical, training and social infrastructure

are important to make learning and change possible (Darby, 2000). Satisfaction of the
occupant and education about using the energy efficient features, good performance
of a passive house, and about cleaning and maintenance requirements are important
behavioral aspects. Lastly, occupant involvement in design stage is crucial for achieving
intended energy performance levels (Blum et al. 1989).

Economical characteristics

Economics treat attitudes, beliefs, values and the like as mere preferences, and tastes
are exogenous to economic models. Economic psychology provides psychological
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and financial influence in combined and contrasting means (Brandon et al. 1999).
Psychological influence could be observed in owner occupied houses where energy
consumption level is less compared to the similar conventional (Schneiders et al.,
2006). Financial influence could be used by supplying energy consumption feedback
to users (Haakana et al. 1997). Design Context Booklet, the report of Task VIII
conducted in IEA-SHC program, states the economical determinants of user behavior
as ownership (as well as O'Doherty et al. 2008 and Leth-Petersen and Togeby, 2001),
income level (as well as in Vringer, 2005; Biesiot and Norman, 1999), savings,
employment situation or general; subsidy and advancement, tax reduction, energy
(aswell as Linden et al. 2006), building and appliances costs (as well as Lohnert et al.,
1989).

Building characteristics

In this study, the components of a dwelling that have impact on occupant behavior
directly or indirectly are categorized as site & climate, building envelope, mass
composition, mechanical system and lighting and appliances.

Site and climate

Outdoor air temperature, horizontal global irradiance, wind velocity and wind direction
have an impact on user behavior in terms window opening (Erhorn, 1988; Feustel et

al. 1985). Users tend to open windows less depending at night and temperature below
12 Cdegrees and when the wind velocity is greater than 3 m/s whereas horizontal
global irradiance has a minor impact on user behavior in correlation with outdoor
temperature. The use of windows is linearly correlated with the outside temperature
for temperatures between -10 C degrees and 25 C degrees and inversed correlated with
wind velocities. When it is raining or snowing, windows are less often used (Hainard et
al. 1986). In mild climates, residents’ behavior during the summer season and whether
the residents opened windows/doors or operated air conditioners is very different
(Iwashita et al. 1997). Next to the weather characteristics, the quality of the outdoor
environment; air pollution (odour) and noise (Van Dongen et al. 1990) are important
factors. People shut the windows when the outside noise level is between 60 and

65 dB(A) and take more serious precautions like sound insulation, changing spatial
organization, when it is noisier than 65 dB(A) (Lambert et al. 1984). On the corridor
side of the apartments the windows or vent-lights were opened maximum half an hour
on average and on the balcony side maximum 1.4 hour when nobody was at home.
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Fear for burglary plays a role here, but also fear for escaping of pets (Van Dongen,
1990).

Building envelope

Basic natural ventilation is through the cracks in building envelope (Van Dongen,
1990). Air tightness of the wall and material choice for infill, insulation and cladding
are alsoinfluencing. Thus, construction quality and maintenance are crucial. Reducing
the air tightness of the envelope may cause an impaired air quality perception and may
lead to health-related consequences (Stymne et al. 1994, Singh, 1996; Engvall et al.
2005). This is a proof of the necessity for further studies to figure out occupant reaction
to the change in indoor air quality conditions. However, a profound review about
airborne particles in the indoor environment reveals that existing scientific evidence
does not necessarily prove that indoor air quality has direct health consequences
(Schneiders et al. 2003).

Mass composition

Occupants use natural ventilation less when volumes of rooms are smaller; windows
are less oriented to sun and more oriented to the prevailing wind direction (Van
Dongen, 1990). Windows that are fixed on the bottom of the frame and that open
inwards are more often open than other types of windows (Wouters et al. 1986). Upper
wings of windows are open twice more often than the lower ones that are opening
outwards. If the window in open stand cannot be fixed at several positions through a
grip, itis possible that the window will never be used (Van Dongen, 2004).

Type of dwelling and floor area are important determinants of occupants’ energy
consuming behavior at home (Linden et al, 2006; Yohannis et al., 2008; O’Doherty et
al., 2008; Bartiaux and Gram-Hanssen, 2003; Vringer et al., 2007; Baker and Rylatt,
2008; ODYSSEE, 2008; Fuks and Salazar, 2008; Rooijers et al., 2003; ECN, 2009)

The location of the dwelling (Yohannis et al., 2008; O'Doherty et al., 2008) is another
important parameter and the age of the dwelling (O'Doherty et al., 2008; Vringer et al.,
2007) also appears to have a significant impact on electricity consumption. Lastly, the
number of rooms (Baker and Rylatt, 2008; ECN, 2009) and bedrooms (Baker and Rylatt,
2008) also emerge as significant predictors of electricity consumption.
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Mechanical systems

The type of heating system plays a role. In dwellings with central heating windows

are less often open than in other dwellings (Wouters et al. 1986). In addition, several
studies focus on the effect of the type of thermostat control on energy use. Households
with programmable thermostats are claimed to set the thermostat temperature ata

lower level when nobody is at home or during night time. Nevius and Pigg (2000) found

that presence of thermostat has a minimal effect on energy use, and temperature
settings do not significantly differ between dwellings with programmable and
manual thermostats. Shipworth et al. (2010) research showed that households with
thermostats set the mean temperature slightly lower than those without thermostat.
Lutzenhiser (1992) proved that households with manual thermostats consume less
energy in comparison to households with programmable thermostats. The other
parameters are heating system type and appliances (Haas et al., 1998; Leth-Petersen
and Togeby, 2001; Papakostas and Sotiropoulos, 1997).

Closely related with heating system, ventilation system isimportant both in terms

of occupant use and indoor air quality effects (Liddament and Orme, 1998; Iwashita
and Akasaka, 1997; Erhorn, 1988). Ventilation rate should be as low as possible for
energy conservation. On the other hand, to sustain indoor air quality it should be at a
certain level which may conflict with energy conservation target. This relation is open
to the impact of occupant behavior (Dubrul, 1988; Soldaat et al., 2007). Behavior is
related with ventilation system type: Natural and/or mechanical ventilation use differ
depending on household size, dwelling age, single/multifamily (Stymne et al. 1994).
When a household includes elderly and children, mechanical ventilation is less used.
Grills are preferred more than windows for natural ventilation (Van Dongen, 1990).
However, air temperature fluctuations may cause feeling of draught in rooms, largest
temperature fluctuations appear in mechanical exhaust ventilation system, and the
minor changes are measured with balanced ventilation systems (Melikov et al., 1997).

Besides thermal comfort, health aspects are means for ventilation behavior: Higher
ventilation reduces the prevalence of air borne infectious diseases. Ventilation rates
below 10 Ls-1 per person are associated with a significantly higher prevalence of one
or more health or perceived air quality outcomes. Increases in ventilation rates above
10 Ls-1 per person, up to approximately 20 Ls-1 per person, are associated with a
significant decrease in the prevalence of Sick Building Syndrome (SBS) symptoms or
with improvements in perceived air quality (Wouters et al. 1986). Poor ventilation

in longer periods would lead to fungi growth in bathrooms, but there is no clear
relationship stated between ventilation and dust mite allergies (Ginkel et al. 2003).
Ginkel et al. further state that number showers, together with age of the ventilation
system has a direct relationship with the mold growth in bathrooms (Ginkel et al.
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2005). However, Seppanen (2001) puts forward respiratory allergies and asthma as
health consequences of poor ventilation system use. On average, the prevalence of SBS
symptoms is higher in mechanically ventilated buildings than in naturally ventilated
buildings. Better hygiene, building commissioning, operation and maintenance of air
handling systems may be particularly important for reducing the negative effects of
HVAC systems.

Romer indicates that together with the introduction of balanced ventilation to houses,
as energy consumption decreased around 15-20%, health risk is elevated mainly due
to the change in tap water temperature, relative humidity, dust and air exchange rate
(Rémer, 2001). Lembrechts et al. (1996) point out that seldom use of the mechanical
ventilation system in full capacity result in radon increase in Dutch dwellings, in
addition to the decrease in air tightness levels and building material use change. Dirty
filters/heat recovery cores/HRV (Heat Recovery Ventilation) cabinets, substandard
ventilation and unbalanced supply and exhaust air flows create health problems in
dwellings (CMHC, 1999).

Satisfaction and comfort level with respect to heating and ventilation system
performance is another important factor in ventilation and indoor air quality. If the air
inlets do not fit with the aesthetical preferences of the occupants, they may remove
them. Noise from ventilation system also plays a main role (Van Dongen, 2004).1In a
field study about HRV use, itis found out that; cooking, noise from outside, smoking,
shower and cooling are the mentioned behaviors not to use HRV, so additional exhaust
ventilation is required. Occupants have complaints about perceived air quality and dust
around filters, nevertheless feel control over the HRV system and satisfied (Macintosh
etal. 2005). Most failures leading to discomfort and dissatisfaction are observed
owing to bad manufacturing of components, improper selection and installations of
components, bad system flow balancing, and inadequate commissioning, too high
sound emission at supply and extract terminals and sound transmission, excessive
window airing by occupants and general poor acceptability (Dorer et al. 1998).

Lighting and appliances

Lighting behavior in a dwelling depends on the type and characteristics of the dwelling,
the type and duration of activities performed there, and the lighting habits of the
members. Variations and behavioral factors about lighting and appliances among
households can also be explained, in part, by the demographic composition of an area
or country and its institutional setting (Bartlett, 1993). Several studies are conducted
to measure how different household appliances are used (Papakostas et al. 1997;
Al-Mumin et al. 2003; Tyler et al. 1990) and it could be stated that use of household
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appliances is also directly and mostly related with culture and habits. Appliance control
behavior is clearly different according to occupant characteristics and thermal comfort
level (Vine et al. 1989).

Appliance ownership and size are proved to be significant predictors of electricity
consumption. The appliance index of Cramer et al. (1985) included number, frequency
of use, location in dwelling, published efficiency, and estimated seasonality factor.
Appliance index combined with the air conditioning index explained the variance

in electricity consumption by 51%. Cramer's research further included electricity
price, income, education, ethnic background, occupation, age, thermal comfort,
conservation, environmentalism, and energy knowledge scales were able to explain
34%, and the combined model of appliance, air conditioning indexes and household
characteristics was able to explain 58% of the variance in summer electricity
consumption. The appliance index of Tiwari (2000), on the other hand, was based on
ownership of appliances and their power data. Tiwari's work also included household
and dwelling characteristics, i.e. dwelling age, type, and location, number of rooms,
household size and age, income and electricity tariff.

In addition, number of household appliances (Yohannis et al., 2008; O'Doherty et al.,
2008; Genjo et al., 2005; Mansouri et al., 1996; Bartiaux and Gram-Hanssen, 2003;
Vringeretal., 2007; Saidur, 2007; Baker and Rylatt, 2008; ODYSSEE, 2008; Parti and
Parti, 1980; Fuks and Salazar, 2008), number and type of lighting appliances (Vringer
etal. 2007), labels of appliances (Mansouri et al., 1996) were found as crucial factors
of electrical energy consumption in dwellings.

Determinants of behavior and energy consumption: A framework

Occupant behavior is influenced by (1) occupant’s educational and economical
background and household characteristics, (2) dwelling’s outdoor environment

and climate characteristics, envelope and mass composition, mechanical systems
installed, and lighting and appliances used in the house. Behavior is either a reflection
of the occupant’s inherited and developed personal characteristics or a reaction to
the perception of the indoor comfort conditions created. Dwelling's architectural
characteristics, service systems and outdoor environment affect occupant behavior
in terms of their contribution to the indoor comfort conditions. Therefore, in order
to understand the occupant behavior with respect to indoor comfort and energy
performance of the house, these relations must be analyzed in correlation (Figure 1).
However, in the literature revised, there is little research that covers these aspects in
correlation but rather, approaching from one aspect.
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Guerra Santin et al. conducted research on the occupant behavior and heating energy
consumption using OTB dataset (2010), and revealed that the determinants of heating
energy consumption are household size, age of the respondent, ownership of the house
and income, the number of heated bedrooms and thermostat settings.

Perception of comfort is an important part of occupant behavior and adaptation to
indoor comfort might have a considerable impact on energy consumption. loannour
and Itard (2015) explain the three forms of adaptation: psychological adaptation, i.e. a
person’s thermal expectations based on his past experiences and habits (Humphreys
and Hancock, 2007; Shove, 2004; Holmes and Hacker, 2007) physiological adaptation
to a thermal environment over a period of time; and behavioral adaptation, i.e.
modifications or actions of an individual that changes in the heat and mass fluxes
governing the body's thermal balance (Brager and de Dear, 1998). Adaptations are
interrelated and affect one another, besides modifications are grouped as personal
(Holmes and Hacker, 2007; Fiala and Lomas, 2001; Baker and Standeven, 1996),
technological or environmental adjustments (ASHRAE, 2004).

In literature, systematic studies are missing covering both occupant and dwelling
related aspects; research generally focuses on energy consumption or indoor comfort/
health. It should be emphasized that long term measurement covering both winter
and summer behavior in relation to energy performance and comfort, and validation
is needed. Occupant and building characteristics that are covered in literature are
categorized in Table 1 and Figure 2.

Moreover, it is important to realize if behavior should be modified or the technology
should be adapted to achieve reduced energy consumption levels and how. Practical
information is necessary for the actors in building process about the design of systems
and equipment to better adapt the systems to user behavior. In addition, more
information for legislation especially about air tightness and ventilation rate standards
is needed. In some studies, the abovementioned characteristics were able to explain as
much as 75% of the variance in electricity consumption. More research on the voltage
of appliances, the use of battery charged appliances and stand-by/on-off function use
seems lacking in existing body of literature.
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FIGURE 2.2 Framework for evaluation of occupant behavior in relation to indoor comfort and health, and
energy consumption (interpreted from literature review)
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TABLE 2.1 Characteristics affecting occupant behavior (interpreted from literature review)
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There is significant evidence to suggest that buildings do not perform as expected when
they are completed as was expected when they were being designed (such as Bordass
et. al., 2001; Bordass, 2004; Demanuele, et. al., 2010). The difference between
expected and actual performance is known as the energy performance gap (Menezes
etal. 2012). Energy performance gap means that products and systems developed

for energy efficiency do not meet expected levels. In addition, differences in occupant
behavior is responsible for part of energy performance gap. This is a serious threat for
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negotiating energy conservation with policymakers, with sectoral actors, consumers/
users, ... Furthermore, in terms of the developing technologies and experiments, if this
gap exists to such an extend today, it might be too difficult to catch up with later on,
reducing the possibilities of implementing new technologies in future in more radical
occupancy and user patterns, and climate conditions. Therefore, it's important to
identify the source(s) of energy performance gap and bridge them.

Findings from studies such as PROBE (Post Occupancy Review of Buildings and their
Engineering) which assessed 23 ‘exemplar designs’ in the Building Services Journal
between 1995 and 2002, revealed that actual energy consumption in buildings

is often twice as much as predicted (Designing Buildings (last view: 2017)). More
recent studies (Zero Carbon Hub; Carbon Trust (last view 2016); Carbon Buzz, 2011;
Turner and Frankel, 2008; Menezes et al. 2012) have suggested that in-use energy
consumption can 2 to 10 times higher than compliance calculations carried out
during the design stage. Leeds Metropolitan’s monitoring research on 700 dwellings
show a significant gap between the energy use expected before construction and the
actual, once the house is occupied. Thermal bridges on the building envelope, but also
between adjacent dwellings have the largest share in this discrepancy (Wingfield et al.,
2011).

Uncertainties

The energy performance gap is mainly due to uncertainties (Ramallo-Gonzélez, 2013).
As early as 1978, Gero and Dudnik presented a methodology to solve the problem of
designing subsystems (HVAC) subjected to uncertain demands. After that, several
studies looked into the uncertainties that are present in building design, including
measurement errors, lack of information, and a poor or only partial understanding of
the driving forces and mechanisms (Lomas and Eppel, 1992; Hopfe, 2009, and Rabl
and Rialhe, 1992; Turner and Frankel, 2008; Wang et. al., 2011, Lee and Chen, 2008;
Saporito et. al., 2001 found in Ioannou and Itard, 2015). Uncertainties a limit on the
reliability of the output of the model (Hamby et al., 1994; Helton et al., 2006; Saltelli et
al., 2000). The uncertainties in building design/construction are categorized in three
different groups: environmental, workmanship, and occupant behavior.

Uncertainties on climate data concern the consideration of climate change in weather
data and the use of synthetic weather data files. Regarding the former, long life span of
buildings makes them likely to operate with climates that might change due to global
warming. De Wilde and Coley (2012) proved the importance of designing buildings
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that are resilient to extreme weather conditions. Regarding the latter, the uncertainties
in weather data may cause great variations (0.5% - 57%) in energy demand
calculations (Wangetal.,, 2012; Eames et al., 2011; Soebarto and Williamson, 2001;
Dell'isola and Kirk, 2003).

As early as 1994, Pettersen researched the uncertainties regarding workmanship and
occupant behavior in energy performance calculations. He showed that the total energy
use follows a normal distribution with a standard deviation of around 7.6% considering
the uncertainties due to occupant behavior, and of around 4.0% considering those by
building characteristics. Following research showed that lack of information on the
building's envelope and installations might have a share in the discrepancies between
theoretical and actual energy use, as low as 30% and as high as 100% in some cases
(Soebarto and Williamson, 2001; Dell'isola and Kirk, 2003; Majcen et. al., 2013;
Majcen et. al., 2013; Guerra Santin and Itard, 2012; Yudelson, 2010).

Hopfe and Hensen (2011) proved that the uncertainty in the value used for infiltration
is the factor that is likely to have the largest influence on cooling and heating demands.
Another study performed by de Wilde and Wei Tian (2009), compared the impact of
most of the uncertainties affecting building energy calculations taking into account
climate change. In addition to infiltration value, they introduced factors including
uncertainties in weather, U-Value of windows, and other variables related with
occupants’ behavior (equipment and lighting). Uncertainties could be due to the
underestimation of the role of, and the variance in occupant behavior, also proving
that occupants have a substantial influence on energy use (Blight and Coley, 2012;
Richardson et. al., 2008; Soebarto and Williamson, 2001; Yudelson, 2010; Clevenger
and Haymaker, 2006).

Sources of energy performance gap

De Wilde and Jones (2014) make a summary of the sources of energy performance gap
under five titles during four phases of building: actual occupant behavior; weather conditions;
workmanship/installation errors; systems' control settings and modelling issues:

In design stage, issues of communication among the different actors within the team
can be a root cause for the later performance gap issues (Newsham, et al. 2009), where
the design itself might constitute an initial issue, incorporating inefficient systems,
missing construction details, or lack simplicity and buildability. At this stage, it is

hard to predict the future occupancy and user patterns. Energy saving technologies

Existing Knowledge About Occupant Behavior and Energy Consumption



planned in the design stage might not meet the manufacturer’s energy performance
specifications and are subject to degradation over time, which lead to a performance
gap once the building is operational (Newsham et al. 2012). Predictions made on
energy performance might not account for all energy uses in buildings, unregulated
sources of energy consumption such as small power loads, server rooms, external
lighting, and so on. Appropriate tools and models, or adequate training of the analyst
might be lacking in calculating the building energy performance. Any calculation at
this stage includes a degree of uncertainty. Building energy performance modelling
and uncertainty analysis are fields that still need further development (Reddy and
Panjaporn, 2007; Ryan and Sanquist, 2012).

2 During a building's construction process, other factors might also contribute to the
energy performance gap (Bell et al. 2010). Implementing the defined insulation and
airtightness levels are challenging, construction defects might be hidden from view
inspection, thermal bridges might occur.

3 Building commissioning is a difficult process, when a full performance testing might
not be possible due to budget and time constraints (Bunn and Way, 2010).

4 During post occupancy phase, one issue is that actual building use and real weather
conditions might not match the assumptions made during the design process.
Thermostat control and the Building Energy Management System (BEMS) might not
fit the design intentions, might be used quite differently by occupants. Furthermore,
metering itself might come with uncertainties (NMN, 2012) especially capturing
contextual factors such as weather data and occupant behavior. Measurement/
monitoring can often have issues of calibration, accuracy, missing data, which causes
an energy performance as well.

§ 2.3.3 Energy Performance Gap in Dwellings

Majcen et al.'s (2013) article about understanding the reasons to the discrepancies
between theoretical and actual gas consumption is based on a regression analysis on
the Energy Label and CBS (Central Office for Statistics), coupled by housing register
(WoONruimtereregister), municipal records (Gemeentelijke Basisadministratie),
employment dataset (Social Statistisch Bestand Banen), and the WoON survey. The
analysis revealed that variables such as floor area, ownership type, salary and the value
of the house, which predicted a high degree of change in actual gas consumption,
were not significant (ownership, salary, value) or had a minorimpact on theoretical
consumption (floor area). Besides, the installation system predictors showed that
there was more overestimation in less energy-efficient systems. These are most
likely a consequence of occupant behavior influencing actual energy use. In her
sensitivity analysis, average indoor temperature was found to have a large influence
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on the theoretical gas consumption together with the ventilation rate. The number of
occupants together with internal heat load have a more limited impact on theoretical
gas consumption.

Research by Ioannou and Itard (2015) on the influence of building characteristics and
occupant behavior on heating energy consumption utilize a Monte Carlo sensitivity
analysis based on the results of energy performance simulation. A single residential
housing unitin the Netherlands was selected for this. The analyses were conducted
using the technical and physical properties of the building, which are the thermal
conductivity of the walls, floor and roof, window U and g values, orientation, window
frame conductivity and indoor openings. The simulations were carried out with the
variations of: multi-zone and single-zone versions of the building, two different grades
of insulation, three different types of HVAC services, and the occupant behavioral
characteristics focusing on the heating period in the Netherlands (thermostat level,
ventilation behavior, metabolic rate, clothing and presence which in simulation terms
is the heat emitted by people). The predictor parameters were chosen in such a way
that they cover all of the parameters mentioned above. The thermally efficient and
thermally inefficient reference building were first simulated with predictor variables:
walls, roof and floor conductivity, window glazing U and g values, window frame
thickness, building orientation, and then with the additional occupant behavior related
parameters of ventilation, thermostatic level and the heat emitted due to the presence
of the occupant.

The technique of sensitivity analysis was used to assess the thermal response of
buildings and their energy consumption (Lomas and Eppel, 1992). The findings were
articulated on the basis of the simulation results of physical characteristics alone and
when combined with occupant behavior; compared the themally efficient building with
the thermally inefficient one; the different heating systems; and the comfort index.
This research revealed that when behavioral parameters were not taken into account,
the most critical parameters were the window U-value, window g value and wall
conductivity in the thermally efficient building, and in the thermally inefficient building
the orientation of the building replaced the window U-value.

Ioannou and Itard (2015) found the predominance of behavioral parameters on energy
performance (thermostat setting and ventilation flowrate), meaning they reduce the
explanatory power of the physical parameters considerably. For both the thermally
efficient and inefficient model, specifically the thermostat setting was the parameter
that dominated the effect on the heating consumption, and the physical parameters
had a very small impact. For most of the simulation model configurations and different
heating systems, the proportion of variance in the heating that was explained by the
parameters used in the study (higher than 70%, and in some cases reached 98%,
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except the thermally inefficient building with behavioral parameters and floor heating
as the heating system).

Majcen etal.'s (2015) second (more in-depth) study on theoretical and actual heating
energy consumption focused on a survey conducted in a subset of Amsterdam
dwellings that had an official energy label, which provided a deeper understanding

of the performance gap. Upon evaluating descriptive results of several statistical

tests, several regression analyses were performed on different subsamples. They
proved once more that occupant behavior has a large effect on heating consumption,
in particular where it accounts for almost half of the variance. Also in theoretical
consumption and in the difference between the theoretical and actual consumption
(DBTA) occupant behavior accounted for over 7.5 and 9.1% of variance, which is still
remarkable. The research found significant differences in the separate analysis of
under and over predictions of heating energy consumption. Water saving shower head
and programmable thermostat are the two factors that seem to effect DBTA in under-
predictions but these two were not significant with regard to theoretical gas use. Some
presence variables (morning and midday) were significant predictors, but were also
difficult to interpret, since the results were conflicting (positive predictive power for
morning and negative for midday presence).

Majcen et al. (2015) found that occupant behavior explained the most variance in
actual gas use, and comfort relevant for only the DBTA. They proved that actual gas
use could be predicted with a higher correlation of household and behavioral variables
with, which was detected in household composition, the ability to pay energy bills,
presence at home, set point temperature and efficiency of behavior. Presence and
indoor temperature were found to be two very important parameters in determining
real gas use of a dwelling. Midday presence related to a decreased DBTA, which could
mean that households who spend more time at home somehow matched conditions
assumed by the theoretical calculations better. On the other hand, occupants who
spent more time at home during the night tended to have an increased DBTA. It also
seemed that people who were not often sleeping elsewhere tended to have a larger
DBTA. Conversely, the ones that often slept elsewhere had a smaller DBTA.

Current concerns and future work regarding energy performance gap
Most work on the performance gap is based on deterministic predictions and

measurements. Work at Plymouth University has piloted a probabilistic approach,
contrary to several other works which follow more deterministic methods (Field, 2005;
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de Wilde, et al. 2013). De Wilde makes a summary of the current concerns and future
work regarding energy performance gap, as follows:

There are different types of energy performance gap that vary over time and with
context. The models used for energy performance simulation of buildings are sensitive
toinput parameters. The accurate representation of the building in these models
depend on the correct modelling of the sensitive parameters (Lam et. al., 2008; Lam
and Hui, 1996; Rabl and Rialhe, 1992, loannou and Itard, 2015).

Need for further monitoring: In spite of the advancement in measurements and
monitoring in building energy consumption field, the resolution of data necessary to
clearly understand the main causes of energy performance gap is still rather low.
Actors and responsibilities of a building's energy performance: The responsibility for
the energy performance gap has not been shared by different actors in the design,
construction and post occupancy stages of building, hence the actors and their
responsibilities are unclear to bridge the performance gap.

Most research into the energy performance gap focusses on non-domestic buildings;
hence the uncertainties for dwelling sector remain unclear. Determining the exact
U-values of walls is very important. Considering that dwellings' vintage might influence
the amount of information that can be gathered on building characteristics, a faster
and more reliable method is needed for the determination of the U-values of the
building envelope (Ioannou and Itard, 2015; Majcen et. al., 2013).

Research on the influence of occupant behavior on the energy performance of dwellings
tends to follow one of two methodological approaches: deductive orinductive. The
deductive approach deals with the relationship at a macro level, considering household
characteristics, income, rent, and energy consumption data garnered through a

survey and establishing correlative and regressive statistical models to explain the
relationships among these factors. In contrast, the inductive approach is based on
actual occupancy patterns, including the operation of heating and ventilation systems,
lighting, and appliances, and utilizes a bottom-up model that includes simulations of
probabilities and considers presence as a precondition of behavior. The data-collection
methods used in the inductive approach are mostly daily records and monitoring,
while the data-processing techniques are generally more related to components,

such as Monte Carlo (MC), Markov chain, S-curve, and probabilistic methods. These
models suggest a greater influence of occupant behavior on the energy performance of
dwellings (Figure 3) (for further reading, see Bedir, et al., 2011).
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Chapter 3 of this thesis follows the inductive methodological approach, focusing on
the heating energy demand of dwellings that originates from occupant behavior,
namely the heating energy required to sustain indoor comfort levels and the internal
heat gain that results from presence and intermediate activities. The core principle of
the inductive approach is the presence of the occupant as the determining element of
energy consumption, causing internal heat gain and the probability to act. As Mahdavi
(2011) explained, internal heat gain is the passive effect of occupancy, so the model
first deals with presence, which generates an indoor resultant temperature. Next, the
model addresses the required heating energy demand and the internal heat gain from
the occupant’s behavioral patterns; this is the active effect of the occupant’s presence
and is more representative of the occupant’s influence on the energy performance of
the dwelling. This research evaluates the influence and weight of these patterns on
heating energy demand and creates a model of the relationship between occupant
behavior and heating energy demand based on this evaluation.

Deductive models

Climate
Household characteristics Survey Statistics
i Questionnaire Energy
Energy bills 1 i consumption
Systems & appliances nterview
Presence Statistics Energy
Monitorin .
Circulation Ol: ° " g consumption /
; servation ) .
Operation of systems & app. Simulation performance

Inductive models

FIGURE 2.3 The inductive and deductive models of occupant behavior-energy consumption relationship

Chapter 3 presents a Sensitivity Analysis (SA) of the influence of occupant behavior
on the energy performance of dwellings. The aims of the study were to determine
occupant behavior patterns quantitatively and reveal the robustness level of energy
consumption in dwellings with respect to occupant behavior. Unlike in the existing
research, in this study, presence is not assumed to be a precondition for behavior;
instead, the occupant is assumed to have both an active and a passive influence on
energy consumption. The passive influence results from the default settings of control
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mechanisms, which affect energy consumption even when the occupant is not present;
active influence results from the occupant being presentin a space, changing the
systems and devices according to his or her needs, and the internal heat gain resulting
from his or her presence.

The literature review presented a number of methods for modeling and analyzing

the influence of occupant behavior on the energy performance of dwellings. Since

the objective of this research considers the robustness of behavior, the research
methodology is based on an SA (see Hamby, 1994; Helton, et al., 2006; Saltelli, et

al., 2000). Sensitivity analysis is the study of how the variation in the output of a

model (numerical or otherwise) can be apportioned, qualitatively or quantitatively,

to different sources of variation. A mathematical model is defined by a series of
equations, input factors, parameters, and variables aimed to characterize the process
being investigated. Input is subject to many sources of uncertainty including errors

of measurement, absence of information and poor or partial understanding of the
driving forces and mechanisms. This imposes a limit on our confidence in the response
or output of the model. SA is used to increase the confidence in the model and its
predictions, by providing an understanding of how the model response variables
respond to changes in the inputs. There are several ways of carrying out SAs, the most
common of which is based on sampling. “A sampling-based SAis one in which the
model is executed repeatedly for combinations of values sampled from the distribution
(assumed known) of the input factors” (Saltelli, 2000). A number of sampling-based
strategies are available, including random, importance, and Latin hypercube sampling.
Chapter 3 of this thesis uses the latter.

There are many examples of the use of SA in building thermal modeling (Bedir, et al.,
2011; Corson, 1992; Furbringer and Roulet, 1999; Harputlugil, etal., 2011; Lam and
Hui, 1996; Macdonald, 2004; Spitler, et al., 1989; Westphal and Lamberts, 2005). For
energy-sensitivity simulation models, a set of input parameters and their values are
defined and applied to a building model, and the simulated energy consumption of the
model is used as a base for comparison to determine the extent to which output (here
measured in terms of heating energy demand per year) changes as a result of particular
increments of input values (Corson, 1992; Harputlugil, et al., 2011). The results show
which parameters can be classified as “sensitive” or “robust.” Sensitive parameters

are those that cause effective changes in the outputs when changes are made to their
values; in contrast, a change to robust parameters causes a negligible change in the
outputs (Harputlugil, etal., 2011).

Hamby (1994); Hansen (2007); and Saltelli, et al. (2000) discussed the various
classifications of SAs, including local SAs and global SAs. According to the definitions
put forward by Hansen (2007), a local analysis follows a one-at-a-time approach, is less
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complex, has a sensitivity ranking that is dependent on the reference building, and has
parameters that are assumed to be independent. In contrast, a global analysis requires
random sampling, has a large degree of complexity, has a sensitivity ranking that is
less dependent on the reference building, and provides information about possible
correlations (interdependencies) between parameters. Chapter 3 of this thesis uses a
global SA.

Lutzenhiser (1993), in his cultural model, proposes to look at household types for
studying energy consumption. Raaij and Verhallen (1983) and Tyler and Schipper
(1990) investigate energy consumption from a lifestyle point of view, and consider
lifestyle as patterns of activities. Groot et al. (2008) and Paauw et al. (2009) combine
this consideration with household characteristics. Another common approach to
lifestyle is about values, motivations, needs and attitudes (Gladhart, 1986; Ajzen,
1991; Assael et al., 1995; Poortinga et al., 2005; Vringer and Blok, 2007). A series of
energy studies adopt Bourdieu's concept of lifestyle on energy consumption (found in
Holm Pedersen et al, 1997; Kuehn et al, 1998), and therefore focus on social classes.
Lastly, Gram-Hanssen's (2004; 2010) and Shove's (2003) works imply that lifestyle

could be used only partially to understand routines and to explain energy consumption.

They propose to look at routines and habits, as well as household and building
characteristics.

Routines and habits may oppose the cognitive and financial drive and dominate

other rational alternatives (Heijs et al, 2006); therefore, they could indeed become
alternative predictors of electricity consumption (van Raaij and Verhallen, 1983). In
addition, because electricity consumption seems to depend far less on the physical
characteristics of a house, than space and water heating (Wright, 2008), routines of
electrical appliance use might provide us with more articulated insight into household
and user behavior. This could be important for research and policies which focus on
influencing individuals and households to consume less energy.
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Heating behavioral patterns

According to an empirical study by ECN and IVAM (2001), an energy intensive lifestyle
in an energy efficient dwelling can lead to higher energy consumption than an energy
extensive lifestyle in a less energy efficient dwelling. If we are able to understand
determinants and behavioral patterns related to energy consumption clearer, we might
be able to develop advise for energy consumption to be further reduced. The goal
would be to ascertain how occupant behavior interacts with the influence of building
regulations on energy consumption of dwellings.

Energy use for space heating depends on the heat gains and losses of a dwelling, which
are determined by its technical and architectural characteristics on the one hand and
by the behavior of the residents on the other (Papakostas & Sotiropoulos, 1997).
Guerra Santin (2009) proved that 42% of the variation in the energy consumed in the
Dutch dwellings for heating space and water could be explained by type of dwelling,
type of HVAC system, and insulation level. An additional 4.2% could be explained by
household characteristics and occupant behavior.

User profiles and their behavioral patterns related to energy consumption for space
heating have been defined with household characteristics such as household
composition, income, age, education, and household size (Groot et al., 2008; Paauw et
al., 2009; Assimakopoulos, 1992; Vringer, 2007); lifestyle (Raaij & Verhallen., 1983a;
Groot et al., 2008; Paauw et al., 2009; Assimakopoulos, 1992); and cognitive variables
such as values, motivations, needs, and attitudes (Assael, 1995; Ajzen, 1991; Vringer,
2007; Poortinga et al, 2005). In addition, Hens discusses habitual behavior and
rebound effect in relation to energy consumption, extensively (Hens, 2010). As early
as 1983, Raaij and Verhallen found that 5% of the variation in energy consumption
could be explained by energy-related attitudes that could be categorized under price,
environment, energy concern, health concern, and personal comfort.

In a study by TNO-ECN (2006) five groups of households were studied on the basis
of consumption: Single inhabitant, couple, single-parent, family, and seniors. Four
profiles were built: convenience/ease (comfort is of priority, saving money, energy
or the environment is not a consideration), conscious (comfort is of priority, while
environment and cost consideration appears), cost (awareness of energy costs, and
saving money), climate/environment (concern for the environment).

Poortinga et al. (2005) found that seniors, singles and low-income households were

less willing to apply energy-saving measures at home. Vringer (2007) researched
the influence of values, motivation and perception of climate change on the energy
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consumption of Dutch households. He grouped the households according to household
size, age, income, and education. He didn't find any significant differences in the
energy consumption of groups of households with different values and motivations.

Groot et al. (2008) and Paauw et al. (2009) worked with five groups of households in
the Netherlands, which were studied on the basis of household composition: singles,
couples, single-parents, families and seniors (>60). Four profiles were built according
to the responses to questions about potential reasons to energy consumption in
relation to income, environmental concern and personal comfort: ‘convenience/
ease’ (comfort/ important, nointerest/ saving energy, money or the environment),
‘conscious’ (comfort/ important, some environmental and cost awareness),

‘costs’ (energy costs and saving money/ important) and 'climate/environment’
(environment/important).

Raaij & Verhallen (1983) defined five patterns of energy behavior in relation to heating
and ventilation habits: conservers, spenders, cool, warm, and average. They found
significant differences according to the age and educational level, while ascertaining
no differences forincome and employment. Another output was that the inhabitants’
lifestyle(s) influences energy-related attitudes and behavior. Family size and
composition, besides presence at home, had a direct effect on behavior and energy
consumption.

Guerra Santin’s (2010) work takes account only of behavior defined as the use of
heating and ventilation systems and other home amenities. Previous studies have
already revealed a relationship between energy consumption and occupant behavior
(Branco et al., 2004; Linden et al., 2006; Haas et al., 1998, Groot et al., 2008; Leth
Petersen & Togeby, 2001; Andersen et al., 2009; Papakostas and Satiropoulos, 2007).

Relationships between energy consumption and household (Andersen et al., 2009;
Sardianou, 2008; Schweiker and Shukuya, 2009; Lenzen et al., 2006; Liao and Chang,
2002; Biesiot and Noorman, 1999) and building characteristics (Andersen et al.,
2009; Sardianou, 2008; Hirst & Goeltz, 1985; Caldera et al., 2008; Tiberiu et al., 2008;
Olofsson et al., 2009; Sonderegger, 1977-78) have also been found in other research.

Electrical appliance use patterns

Energy savings in households can be achieved by changing residents’ behaviorand/
or attitudes. Behavioral changes are planned to be achieved through campaigns,
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awareness, and information (Verbeek and Slob, 2006; Wilhite, 2008; Dahlbom,
2009; Barbu et. al., 2013). Ouyang and Hokao (2009) showed that an average of 14%
energy savings could be achieved by merely improving occupants’ behavior. Wood
and Newborough (2003) reported energy savings of more than 10% (20% in some of
the groups) in households included in their study. Similarly, Darby (2014) reported
reduced consumption by up to 20% in cases where improved feedback was used.
More research on user patterns and profiles at home could help a great deal, to prove
both the assumed behavior change and guide to improve the information feedback
strategies.

Abreu et al. (2012) adopted a pattern recognition method to identify user profiles of
electricity consumption. The study explained that approximately 80% of household
electricity use results from the persistent daily routines and patterns of consumption or
baselines, typical of specific weather and daily conditions. The applicable “profiles” for
this population were unoccupied baseline, hot working days, temperate working days,
cold working days, and cold weekend days. Widen et al. (2009) produced load profiles
over 5 existing time use data sets, collected in Sweden in 1996, 2006 and 2007. The
results showed that household behavior patterns regarding cooking, washing, lighting,
TV, PCand audio use were able to be modeled using time use data of electricity
consumption. Electricity consumption was closely related to occupancy, and grouping
of appliances according to specific activities could be a good way to cluster/model
consumption.

Coleman et al. (2012) monitored 14 households in the UK and included between
March 2008 and August 2009. They found that usage patterns varied widely between
households, in both size and make-up, the average (mean) household electricity
consumption from ICE (information, communication and entertainment) appliances
equated to around 23% of average whole house electricity consumption (median
18%). Of this, standby power modes accounted for 11.5 kWh, which was around 30%
of ICE appliances consumption and around 7% of average whole house electricity
consumption. O'Doherty et al. (2008) analyzed the determinants of domestic electrical
appliance ownership in the Irish housing stock. Their survey conducted in 2001 and
2002 on 40 000 houses revealed that newer and more expensive houses had more
appliances, but also more energy saving appliances (ESA). Lutzenheiser's theoretical
study (1993) proposed a new cultural model, which built itself on “recognizable
lifestyles or cultural forms”. For instance, in the US, these were classified under
typology such as: retired working class couples, middle aged couples, low income rural
families, suburban executive families, and young urban families.
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Aspects of urban sprawl, over-consumption of energy and release of CO2 emissions,
use of natural resources, excessive use of fossil fuels, and waste production make
evident the growing share of the building sector in energy consumption and
environmental depletion. Especially for the last 4 decades, improving energy efficiency
in all sectors has been a major concern in the European context.

Improving energy efficiency of buildings requires a holistic approach, the close
collaboration of several professions, and the consideration of the occupancy period.
What we know for sure is that there are large variances between the calculated energy
performance and the actual energy consumption of dwellings in energy efficient housing.
This energy performance gap could be caused by several reasons, such as unexpected
occupant behavior, lack of comprehensive data of the whole building process, calculation
drawbacks, the construction defects/mistakes in building construction.

This research is focused on the relationship between occupant behavior and energy
consumption in dwellings. It is interested in contributing to the problem areas
regarding occupant behavior, which are about (1) collecting more detailed data on the
determinants and actual occupant behavior, (2) bringing together cross-sectional and
longitudinal methods of analyzing occupant behavior, (3) identifying the determinants,
patterns, and profiles of behavior, so that occupant behavior could be represented more
articulately in the building design, energy performance simulation, sensivity analysis,
and energy consumption calculation processes. This way energy efficiency calculations,
and policies, consequently the energy efficiency of dwellings could be improved.

This research contributes to literature in the following areas: (1) applying sensitivity
analysis in a large sample size of households/dwellings, (2) combining inductive and
deductive methodologies, where cross-sectional data on the determinants and the
actual behavior, as well as energy consumption figures in larger household/dwelling
samples is brought together with longitudinal data on occupant behavior, (3) revealing
behavioral patterns and profiles of electricity consumption, (4) revealing behavioral
patterns and profiles of heating energy consumption. This research will help to
understand the occupant related factors of energy consumption in dwellings, which
will contribute to the better design of products, systems, dwellings, and achieving more
advanced regulations.
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