
6 Smooth zooming

Chapter 2 showed that current maps on the Internet are composed of the discrete set
of LODs/scale pyramids with big changes of map content and representations. This
can lead to confusion for the users when they navigate in themap. Therefore, a con-
ceptual model (SSC) was proposed, see Chapter 3. We believe that, by capturing the
whole generalization process in small smooth incremental changes, it is possible to
achieve a beɦer user experience e. g. when the user zooms in and out. To verify this hy-
pothesis it is necessary: (1) generate a SSC dataset (2) develop a software prototype
where a dataset can be used in its full potential and (3) perform usability test. Hence
this chapter will describe the benefits of such as smooth representation inmore detail.
Section 6.1 gives an introduction to the problem and it suggests our solution. Sec-
tion 6.2 covers the theoretical background, principle and example of smooth zooming.
Section 6.3 presents possible conversion strategies to smooth representation. Sec-
tion 6.4 explains the software prototype for possible usability testing. This is followed
by our initial usability test, which was carry out addition to our plans. More specific,
Section 6.5 defines all elements of the testing. Section 6.6 presents preliminary re-
sults, and Section 6.7 describes gained experiences. Then, Section 6.8 summarizes
possible improvements for the future.

Own publications
.............................................................................................................................

This chapter is based on the following own publications:

• Šuba, R., Meijers, M., Huang, L., and van Oosterom, P. (2014a). An areamerge
operation for smooth zooming. In Huerta, J., Schade, S., and Granell, C., edi-
tors, Connecting a Digital Europe Through Location and Place, Springer Lecture
Notes in Geoinformation and Cartography, pages 275–293. Springer Interna-
tional Publishing. ISBN: 978-3-319-03611-3.

• Šuba, R., Driel, M., Meijers, M., van Oosterom, P., and Eisemann, E. (2016a).
Usability test plan for truly vario-scale maps. In Proceedings of the 19th ICA
Workshop on Generalisation and Multiple Representation, Helsinki, Finland.

• Huang, L., Meijers, M., Šuba, R., and van Oosterom, P. (2016). Engineering web
maps with gradual content zoom based on streaming vector data. ISPRS Journal
of Photogrammetry and Remote Sensing, 114:274 – 293.

.............................................................................................................................
§ 6.1 Benefit of smooth representation

.............................................................................................................................

Cartographic generalization is the process of transforming amap from a detailed scale
to a less detailed scale. Only the end result of such a process is usually stored. However,

87



for some applications the visual process of continuously changing the level of detail
is important. Instead of discretely switching from one scale to another, a continuous
transformation from source to target scale is preferable because it provides a beɦer
impression to the user.

An essential factor in map usage is how the user perceives a transition betweenmap
scales at different levels of detail in the course of zooming in or out. From the exper-
iment carried out by Midtbø and Nordvik (2007) it is evident that sudden changes
during zooming are distracting to the user, andmay also result in losing track of the
objects the user is interested in.

The classical solutions for zooming are based on amulti-scale approach, where every
scale with different map content is stored separately. Then the zooming is effectively
‘switching’ from onemap to another with suddenmap content change. Aɦempts are
made to relieve ‘map shocks’ by tricks such as graphic enlargement of themap layer
before ‘switching’, blurring themap at the time of switching or mapmorphing, i. e. an
animated translation from onemap to another (Reilly and Inkpen, 2004, 2007).

Despite some useful efforts presented so far, see Section 2.3, there is no optimal solu-
tion yet. This brings new challenges but also new demands which should be reflected
inmap generalization and its requirements. Based on the current solutions, we can
identify two following directions to introducemore gradual change of the scale:

• Generating smooth content – The purpose of themap is considered in the data
generation. Themap generalization is perceived as a production of a sequence
of successively more generalizedmaps. The sequence can then be shown to the
user. The characteristic of data should be also consider for data transfer; e. g.
(Sester and Brenner, 2005; Chimani et al., 2014).

• Using graphic techniques – The original data and data in transfer are not mod-
ified. Additional graphic techniques are used on top of themap solution. Most
of the time well-known techniques from the field of computer graphics are used
such asmorphing, blending between the layers, transparency and initialising,
e. g. (Reilly and Inkpen, 2007; Nöllenburg et al., 2008; Danciger et al., 2009).

Our vario-scale solution with representation of the generated sequence of the gener-
alization steps fits into the first category, see description of the concept in Chapter 3,
which provides solid base for smooth user experience. However, for optimal smooth
user experience both smooth content and graphical techniques are important. Addi-
tionally, the zooming operation can be performed and implemented in a variety of dif-
ferent ways. Therefore, the following explanation describes the zooming functionality
used in this chapter.

.............................................................................................................................
§ 6.2 Smooth zoom aspects

.............................................................................................................................

Letm0 andm1 be the twomaps that will be shown while performing a zoom operation.
The initial mapm0 shows coarse data at a specific scale (small scale). Mapm1 will con-
tainmore detailed data (larger scale), since it covers a smaller geographical area. Note
that both the area and the content of themapsm0 andm1 are different.

88 Design and development of a system for vario-scale maps



(a)Initial viewm0. Dashed
rectangle shows the final
extend of themapm1.

(b)Original mapm0 where only
graphical zoom has been
applied.

(c)Mapm1 where the content
zoom has been fully applied.

FIGURE 6.1 User experience of a zoom in operation. Figure (a) is original map. The rectangle
shows the area zoomed in upon by the user. Figure (b) where the content of the
initial coarse map is first graphically enlarged and then replaced by themore de-
tailedmap (in one go, thus not in small incremental steps). Figure (c) Map after the
rescaling and the content zoom operations have been applied.

The transition fromm0 tom1 is what we call a ‘zoom in’ operation. During this transi-
tion two operations are performed: For the first aspect of the transition, called rescal-
ing, the objects shown onmapm0 are graphically enlarged (scaled, translated). Only
the region corresponding tom1 is shown (clipped) after this enlargement (no new con-
tent is yet retrieved or shown). The second aspect, called content zoom, changes the
objects of themap (the content). The already graphically enlarged region of mapm0

changes its contents to becomemapm1, see Figure 6.1. A zoom out operation applies
the same steps as the zoom in operation, but in reverse order: instead of enlarging the
map it shrinks it. Starting withmapm1, it first shrinks the objects graphically to the
extent ofm0. Then the content is changed to becomemapm0. Additional graphic tech-
niques (e. g. blurring, morphing or making objects more transparent) can be applied
for both (rescaling and content zoom) aspects in the transition. Note that a zoom op-
eration consists of one rescaling, one step of content zoom and none or more graphic
techniques all together integrated in one final map (e. g.m1).

Figure 6.2 illustrates an alternative that, with a smaller difference in the content be-
tweenmapm0 andm1 the content zoom step is perceived to be changedmore grad-
ually (less of a shock). Therefore, we can apply the content zoom operationmultiple
times, changing themap content only bit by bit (leading tomore temporary maps,
showing the transitioning of themap content in small steps fromm0 tom1 , e. g.m0,
m′

0,m′′
0 ,m′′′

0 ,... ,m1 ), and thus progressively refining themap. This leads to a very
smooth transition from one scale to another -– hence the term smooth zoom.

To conclude, we can define smooth zoom operation as following: After one user request
(e. g. zoom-in) a series of frames is generated with small differences per frame w.r.t.
both graphic and content zoom aspects. Then, one smooth zoom operation consists of
one rescaling, content zoom of n steps (where n > 1, e. g.m′

0,m′′
0 ,m′′′

0 ,m1 ) and none
or more graphic techniques. This is integrated in n final maps in order to achieve a very
smooth transition from one scale to another.

.............................................................................................................................
§ 6.3 Generating 3D Space-Scale Cube

.............................................................................................................................

In the previous section we gave detailed description of themethod which could pro-
vided beɦer user map impression. It is based on combination of graphic techniques,

89 6 Smooth zooming



(a)Initial viewm0. Dashed rect-
angle shows the final extend
of themapm1.

(b)Original mapm0 where only
graphical zoom has been
applied.

(c)Mapm1 where one incre-
mental step of the content
zoom has been applied.

(d)Mapm1 where the content
zoom has been fully applied.

FIGURE 6.2 User experience of a smooth zoom in operation. The content of the initial coarse
map is first graphically enlarged (shown in Figure (a) and (b)) and then replaced in
incremental steps, leading to the refinedmap (shown in Figure (c) and (d)).

rescaling and transition over the sequence of maps with small changes in content.
However, an issue still remains; how can such amap sequence for content zoom be
generated?

It has been investigated in (van Oosterom andMeijers, 2011b), (see Section 3.4 on
page 28) where the tGAP structure delivers vario-scale data and can be used for gradual
content zoom in the form of SSC representation. The structure has very significant ad-
vantages over existingmulti-scale/multi-representation solutions (in addition to being
truly smooth vario-scale): (a) due to tight integration of space and scale, there is guar-
anteed consistency between scales (it is one integrated space-scale partition), (b) since
map features are represented as volumetric data, which are ‘sliced’ to producemaps, it
is relatively easy to implement because this is well-knownmethod from 3D computer
graphics, (c) it provides a compact (good for storage, transfer and CPU use) and object-
oriented encoding (one higher dimensional representation for a single object over the
complete scale range).

We focus on transition of vector data in a representation convenient for content zoom
captured in tGAP structure to be stored in a SSC, investigating generalization opera-
tions such asmerge, split, line simplification to do so. Figure 6.3 illustrates aɦempt at
implementing a line simplification algorithm that generates smooth output for one ob-
ject. In this section will focus on themerge operation (aggregation) as themost domi-
nant operation in tGAP structure creation and we will present three algorithms for such
a transition. It is important remind that tGAP/SSC exists in two versions: classic and
smooth, see Section 3.4.

We aim at smooth representation in the smooth version of tGAP/SSC, where all changes
result in a smoothly changing 2Dmap: a small change in themap scale means a small
change in the geometry of the resultingmap, see Figure 3.8b on page 30. Figure 6.4

90 Design and development of a system for vario-scale maps



(a)3D perspective view (with sudden boundary
simplification). The lower part of the object is
result of previous step. It is used as input for
simplification.

(b)3D perspective view (with smooth boundary
simplification)

(c)(less detailed) – without smooth simplifica-
tion (d)(less detailed) – with smooth simplification

(e)without smooth simplification (f)with smooth simplification

(g)2D horizontal slice (detailed) – without
smooth simplification

(h)2D horizontal slice (detailed) – with smooth
simplification

FIGURE 6.3 Two Space-Scale volumes with (right column) and without (left column) smooth
line simplification and some derived slices. The red lines indicate the position of the
slices. The boundaries of the object are simplified with the VisvalinghamWhyaɦ
algorithm (Visvalingam andWhyaɦ, 1993), leading to a coarser object. The order in
which the vertices are removed from the line by the algorithm are stored in a binary
tree structure (the so-called Binary Line Generalization tree, BLG tree). This tree
structure provides enough information to construct a 3D volume for the object.

91 6 Smooth zooming



FIGURE 6.4 A small subset of CORINE Land Cover dataset in smooth tGAP with arbitrary slices.
The colours are randomly assigned. Shows 7 area objects (at themost detailed
level). The horizontal slices illustrate the last step of the tGAP structure where the
pink object is merging with green one.

provides an example of smooth representation for small subset of CORINE Land Cover
dataset. The arbitrary slices in Figure 6.4 demonstrate the final impression from a ver-
tical shift of the slice plane.

The remainder of this section is organised as follows: First, the basic principle of smooth-
merge operation is described in §6.3.1. Second, the requirement for such a conversion
are covered in §6.3.2. Third, designed algorithms for the operation are demonstrated
in §6.3.3 followed by §6.3.4 describing the storage efficiency. Finally, §6.3.5 presents
a final comparison of the algorithms.

§ 6.3.1 The principle of smooth-merge operation
.............................................................................................................................

The creation of the tGAP structure is based on themerge operation of the least impor-
tant object which is called the loser, with its most compatible neighbour, called the
winner. Figure 6.5a presents such an operation in a classic tGAP structure, where
the white winner merges with the grey loser and creates the growing white object.
Figure 6.5b presents the same process in the smooth tGAP, which will be termed the
smooth-merge operation. Figure 6.5b shows that any arbitrary horizontal slice leads to
a new 2Dmap. If the slice plane is moved up, then the white winner grows and the grey
loser shrinks. All the geometry changes gradually.

During the transition to the smooth tGAP structure, some objects could be deformed
or misrepresented and the resultingmap (slice of the smooth tGAP representation)
can be confusing. For instance, a single object representation could break intomultiple
parts, see the white object in Figure 6.6. Such spuriousmultiple parts cause a tran-
sitory increase in the number of objects in themap and result in a degradation of the

92 Design and development of a system for vario-scale maps



Space scale view Slices

(a)Themerge operation in classic tGAP

Space scale view Slices

(b)Themerge operation with arbitrary slides in
smooth tGAP

FIGURE 6.5 Themerge operation in classic tGAP in (a) and smooth tGAP in (b). The white winner
takes space from the grey loser. Slices are shown at four levels, from top to boɦom
in the image: from high, to low.

quality of themap. Therefore, our intention is to ensure that area features do not break
into discontinuous parts.

(a)Space scale view. Only shared
boundary between objects is
shaded.

(b)Slices

FIGURE 6.6 More complicated shapes with arbitrary slices in smooth tGAP. Themiddle and low
slices in (b) show two parts of the same object (white winner).

§ 6.3.2 Requirements
.............................................................................................................................

An important challenge of our research was to transfer objects from classic tGAP to the
smooth tGAP represented in SSC where horizontal faces, causing abrupt changes, do
not exist. A smooth-merge operation was developed. This should compute in 3D a set
of tilted faces representing the boundary surface between the loser and the winner. We
identified the following requirements for good smoothmerge operations (each one
supported by its ownmotivation):

93 6 Smooth zooming



I. Topologically correct in 3D – The input 2Dmap is topologically correct and forms
a 2D partition of space, the resulting 3D representation should also be topologi-
cally correct and not have gaps, overlaps or intersections

II. No new points, that is no new x, y coordinates – The construction of tilted faces
make use of the already existing geometry. It follows from one of themain as-
pects of the vario-scale approach, which is to minimize the redundancy of data.
Only the new edges and faces are created using existing geometry.

III. No horizontal faces – This follows from the definition of the smooth tGAP struc-
ture mentioned above as horizontal faces cause sudden changes.

IV. No vertical faces between winner and loser – The winner should gradually take
over the area of loser, but vertical face means nothing happens here for a while.

V. Nomulti-parts – Spuriousmulti-part objects (which should be single part), add
confusion to themap.

VI. Constant steepness of tilted face/faces – The shared tilted boundary composed
frommultiple faces with different steepness would result in the effect that some
parts of the loser mergemuch faster than others during smooth zoom. The steep-
ness of the faces should be as constant as possible.

VII. Optimal shape of shared boundary – The shared 3D surface boundary can consist
of multiple faces. There often exist more configurations of faces, and each de-
fines a 3D surface of the shared boundary. The configuration that gives the best
merge impression to user should be selected. That is, a natural looking boundary
should remain during the smooth zoom (slicing operator).

The list above contains three ‘hard’ and four ‘soft’ requirements. The first three re-
quirements will always be guaranteed by the algorithms. It is not possible to guarantee
the all other requirements, as they are sometime contradictory and they are therefore
classified as soft requirements. It will be tried to optimized these in a well balanced
manner. Note that the different ‘soft’ constraints may be competing; e. g. constraint
6 has preference for a single plane (equal steepness), but may result in multi-parts;
see Figure 6.6 . The hard requirements guarantee functionality and they are crucial to
finding the solution. The soft requirements are aesthetic requirements which are more
like recommendations for a goodmap recognition (readability). We would like to fulfil
them. However, they are not to be strictly satisfied, e. g. In some cases a loser can be
composed of multi-parts.

§ 6.3.3 Threemethods
.............................................................................................................................

Three different algorithms for smooth-merge operation have been created and imple-
mented to satisfy the hard requirements and optimize the soft requirements: the ‘Sin-
gle flat plane’, the ‘Zipper’ and the ‘Eater’. The difficulty of implementation with these
algorithms ranges from trivial, with the ‘Single flat plane’; to more complex, with the
‘Zipper’; to rather complex, with the ‘Eater’. Based on the various types of map objects
– the thematic classification and shape, whichmay result in different emphasis on the
soft requirements, it should be possible to select themost suitable algorithm.

SINGLE FLAT PLANE The first implemented algorithmwas ‘single flat plane’. It origi-
nated from idea that smooth-merge can be represented by simple single flat plane of

94 Design and development of a system for vario-scale maps



(a)A case where the base line is same as the
shared boundary.

(b)A case where the shared boundary is not a
straight line. The base line is the longest
edge of the convex hull (dashed line) of the
shared boundary located in the winner.

FIGURE 6.7 Definition of the Base line for the ‘Single flat plane’.

constant steepness as illustrated in Figure 6.5b. In principle, the loser (the face that
has to be removed) can always be removed with a single flat plane. The plane is de-
fined in 2D by the shared boundary, the edge(s) between the winner and the loser, and
the furthest point of the loser from the shared boundary; see Figure 6.7a. Then in the
3D the plane is lowest at the shared boundary and highest at the furthest point. As
it is a single flat plane, linear interpolation can be applied for calculating the height
at any other point on the share boundary surface between the winner and the loser.
Figure 6.5b shows the final 3D representation of smoothmerge using the ‘Single flat
plane’ algorithm. In context of the smooth-merge operation the shared boundary is
used, where themerging starts and the distance from the shared boundary to every
point of the loser is calculated to find the point most far away. If the shared boundary
is not a straight line; see Figure 6.7b, then the concept of a base line is introduced. The
base line is an ‘approximation’ of the shared boundary and it is used for measuring
distances and finding the furthest point. Three ways of finding the base line are investi-
gated:

• The base line is the longest edge of convex hull of the shared boundary located in
(or on the boundary of) the winner; see Figure 6.7b.

• The base line is the edge of the smallest rectangle around the loser which has
biggest overlap with the face of winner (and has loser completely at other side).

• The base line is result of a best-fit line technique known as Eigenvector line fiɦing
to obtain the orientation of the base line (van Oosterom, 1990, p. 61). There are
two options: use all points of the loser or just the points of the shared boundary.
Then this Eigenvector line is translated tomake sure the loser is completely on
one side (and touching the line) with the winner on both sides, but preferably
with the largest part opposite the loser.

95 6 Smooth zooming



The first approach, the longest edge of convex hull of the shared boundary has been
used for our implementationmostly because it gives the best results in initial testing.

Themost serious limitation of the ‘Single flat plane’ approach is orientation. There
always exists only one direction where the plane can be oriented. However, in some
cases the winner and the loser can havemore shared boundaries, e. g. the boundary be-
tween the winner and the loser is broken by another polygon. In such a case, the deci-
sion where the tilted plane should be placedmust bemade. The situation is even worse
when the loser lies inside the winner, where no good quality solution exists. Also in
case of a very long and faceted boundary, the base line will not be able to represent this
well. Some vertical faces are needed tomake the single flat plane fit into the 3D SSC.
Note this is also the case when base line fits rather well, only then the vertical faces will
not need to be very high. The vertical faces result in the effect that at their locations for
a while, nothing changes while other parts the winner is already taking space from the
loser. In addition to this, users may find objects modified by ’Single flat plane’ disturb-
ing while they use smooth zoom. This is because the boundary between the loser and
winner may become a straight line during transition which can be perceive as artificial
sweep line going from one side to another.

Despite the abovementioned limitations of the ‘Single flat plane’ algorithm, it can
be very effective for simple convex polygons where a simple shared boundary exists.
The computation of the base line, together with a definition of the tilted face, is trivial.
From the smooth zooming point of view, the ‘Single flat plane’ has the advantage of the
winner face growing with constant speed. These aspects make the ‘Single flat plane’
algorithm a good candidate for processing simple convex faces, such as rectangular
buildings.

(a)Space scale view. (b)Slices

FIGURE 6.8 The ‘zipper’ algorithm. The white winner taking over space from the gray loser. (b)
shows slices at four levels from top to boɦom.

ZIPPER The second approach is based on the decomposition of the loser polygon into
triangles. These triangles will then in 3D become the tilted surface of the shared bound-
ary. The segments of the boundary of the loser are classified into two types: (1) The
Shared Boundary (SB), which is the boundary between the winner and the loser and (2)
The Opposite Boundary (OB), which is the remaining part of the boundary of the loser,
holes included. Figure 6.8 shows the final 3D representation. It is assumed that the
tilted faces should be tilted from SB (low) to OB (high).

96 Design and development of a system for vario-scale maps



Before we designed the ‘Zipper’ algorithm, we first investigated another method for
finding a good solution satisfying as many requirements as possible. We call it ‘De-
launay triangulation and flipping’. It starts with a Delaunay triangulation of the loser,
giving the faɦest triangles possible (satisfying the soft requirements). Then it traverses
the triangulation and flips edges whichmight provide a beɦer configuration of the tri-
angles more satisfying the requirements. This method is computationally expensive
and does not guarantee the best solution, because a local flip of the triangles may not
lead to the global optimal solution.

Therefore, another method, the ‘Zipper’, was implemented. The hard requirements
remain valid during the whole process: topology is correct, no new vertices (x, y coor-
dinates) are created and no horizontal faces are generated. Note that horizontal faces
appear when a triangle connects vertices on SB only or on OB only. The other optimiza-
tion rules have beenmet:

• Every triangle connects SB and OB, whichmeans that at least one vertex lies on
the SB and at least one other vertex lies on the OB;

• The triangles should have a low aspect ratio - the aspect ratio is the longest side
divided by the shortest altitude of triangle (Shewchuk, 1996). It guarantees that
the triangles have no sharp angles;

These additional rules guarantee that we get a good solution according to the hard and
soft requirements. Another optimization rule, not further explored could be: the two
edges that run from SB to OB should be asmuch as possible of equal length, making
sure that the speed of transition is as nearly as possible equal.

FIGURE 6.9 Principle of the ‘Zipper’. The optimal solution, only the final connections are
present.

Figure 6.9 describes the principle of the ‘Zipper’ algorithm. One can imagine the pro-
cess as a walk along the SB and OB simultaneously, creating of a connection from one
vertex at SB to another vertex at OB, if possible. When the connection is created, a
new triangle is defined. The process starts at the junction of SB and OB (vertex I in Fig-
ure 6.9) and ends in another junction (vertex II in Figure 6.9). For every edge, connect-
ing SB and OB, the aspect ratio is computed. Then the process can start from the other

97 6 Smooth zooming



side of the SB. The optimal solution is defined as one where the whole area of the loser
is processed and where the sum of aspect ratios is minimal.

Figure 6.10 presents an alternative visualization of the process as for a step there can
be two options; 1) forward SB, 2) forward OB. The process can be represented as a
graph where every connecting edge is a node in the graph. The vertical axis corresponds
to the index of SB. The horizontal axis corresponds to the index of OB. Only moving to
the right or moving downwards in the graph is possible as the algorithm to create trian-
gles either takes a step on SO or OB, but not both as this would result in a quadrangle.
The weight of a graph edge is defined as the aspect ratio of the triangle associated with
the graph edge connects.

FIGURE 6.10 Graph representation of the ‘Zipper’ approach for configuration in Figure 6.9. The
‘zipping’ starts at triangle (I, A, 1) towards (II, 4, C). The process can also run in the
opposite direction. The best solution is presented in red. Note that graph note (B,
1) (dashed) is not possible as triangle (B, A, 1) would be outside the loser.

The process starts in the upper left corner and finishes (if a solution exists) in the bot-
tom right corner. If a solution exists, then a connection between the upper left and the
boɦom right corner exists.

The graph representation can be used for optimization. The best solution is the so-
lution with the lowest total sum of aspect ratios of triangles (corresponding to graph
edges). Basically, it is the cheapest path through the graph. As it can be observed, the
edges with the lowest ratio tend to lie mostly on the diagonal of the graph, see Fig-
ure 6.10. This means that for an optimal solution it is sufficient compute the diagonal
connection from the upper left to the boɦom right corner and then if such a connection
does not exist one can start to compute other nodes further from diagonal. If there is
no connection between the upper left and the boɦom right corner this means that it
is not possible to process the loser in a single step, one of the faces of the loser must
be split into more pieces. Note that in such a situation the other algorithm (‘Delaunay
triangulation and flipping’) also cannot find a solution as there is no solution without
spliɦing loser in multiple parts. Only certain types of polygons (all nodes on OB are vis-
ible from nodes of SB) can be processed directly. This always the case with convex poly-
gons, but also for certain type of concave polygons; e. g. relatively long polygons with
visibility between the two parts of the boundary SB and OB (e. g. road or river polygons
without side branches, which should be treated as separate objects).

98 Design and development of a system for vario-scale maps



Where it is not possible to process the polygon in this way, the graph can suggest where
a split can take place. The associated vertex of the graph nodes, where the connec-
tion fails in most cases, can be a candidate for spliɦing. Unfortunately, with spliɦing
a number of possible solutions arise and for the overall optimal solutionmany or all
of them should be checked. Therefore, another algorithm, which is called the ‘Eater’
was developed. It will be presented in the next section offering a general solution for
arbitrary polygons without the need to split either feature.

(a)Space scale view. (b)Slices

FIGURE 6.11 Tilted faces of loser processed by the ‘Eater’. (b) slices at four levels, from top to
boɦom in the image: from high to low.

EATER The third approach, which is called the ‘Eater’ provides a solution to any arbi-
trary polygon (with holes, concave, or multiple shared boundary parts). It is based on a
triangular tessellation of the polygon and ordering the triangles into a gradual change
from low to high. Figure 6.11 shows the result. The Delaunay triangulation is the ini-
tial step, where the face of the loser is tessellated. Then finding the starting triangles
for the walk takes place. The triangles which have two edges of shared boundary are
selected as starting triangles if any exist, and added to the so-called active set. These
triangles are processed first whichmakes the shared boundary less ‘curvy’. Note that
when processing such a triangle in 3D there are two options how to set relative heights:
(1) Keep both edges of SB completely at the lowest start height, or (2) keep only the
shared node of these two edges at the lowest start and other two nodes at the first
height step. The first option will result in a horizontal triangle and therefore violates
a hard requirement. Therefore, the second option is selected, which has only the draw-
back of introducing some vertical triangles, but this is ‘just’ violating a soft constraint
and not a hard one. If there are no triangles with two edges in SB, then all the trian-
gles which have one edge in SB are selected as starting triangles and these add into the
active set (and both nodes of involved edge get fixed height at start level).

The Algorithm Eater depicts the process steps to defined the triangle in 3D space, fit-
ting into the SSC topology. Table 6.1 presents the run of the algorithm for the case cap-
tured in Figure 6.12 results in Figure 6.11.

In general, this algorithm guarantees a solution for every object, the face withmulti-
ple shared boundaries included. With this algorithm it is always possible to convert a
dataset in classic tGAP representation into a smooth tGAP representation, where no
horizontal faces exist. The price for that is some vertical faces and a chance of multi-
parts. The comparison and conclusion will follow in Section 6.3.5.

99 6 Smooth zooming



FIGURE 6.12 Principle of the ‘Eater’. The triangles are walked from dark to light grey. The num-
bers present relative z value.

Algorithm Eater
Require: All triangles of tessellated polygon

1: All triangles set to not− visited
2: Define starting triangle and put it to active set
3: Set relative height to 1
4: Next active set = ∅
5: while active set not empty do
6: Pop the first triangle from the active set.
7: for all vertices of triangle do
8: if vertex does not have height set then
9: Set vertex height to relative height

10: Add all not− visited neighbours of triangle into the next active set.
11: Set the triangle to visited
12: if active set is empty then
13: Relative height +1
14: Active set = next active set and next active set = ∅
15: return A set of triangles with heights for all vertices

Step
in

algorithm
1. Iteration 2. Iteration 3. Iteration 4. Iteration 5. Iteration 6. Iteration 7. Iteration

6 A B C1 C2 E1 E2 F
10 [] {B} [] {C1, C2} [C2] {E1} [] {E1, E2} [E2] {F} [] {F} [] {}
14 [B] {} [C1, C2] {} [C2] {E1} [E1, E2] {} [E2] {F} [F ] {} [] {}

TABLE 6.1 demonstrates the principle of Algorithm Eater and shows the sequence of the traver-
sal of the triangles. The ‘Eater’ ends with the triangles ordered, and a relative height
assigned to every vertex. The elements in square brackets refer to the active set, the
elements in curly brackets refer to the next active set.

100 Design and development of a system for vario-scale maps



(a)UML diagram for the structure. (b)An example of polyhedrons.

ssc = PolyhedronStructure()
#bottom
ssc.add_facet(((0,0,0),(0,1,0),(1,0,0)),-1,1)
#side 1.1
ssc.add_facet(((0,0,0),(0,0,0.7),(0,1,0.7),(0,1,0)),-1,1)
#side 1.2
ssc.add_facet(((0,0,0),(1,0,0),(1,0,0.7),(0,0,0.7)),-1,1)
#side 1.3
ssc.add_facet(((1,0,0),(0,1,0),(0,1,0.7),(1,0,0.7)),-1,1)
#middle
ssc.add_facet(((0,0,0.7),(0,1,0.7),(1,0,0.7)),1,2)
#side 2.1
ssc.add_facet(((0,0,0.7),(0,0,1),(0,1,1),(0,1,0.7)),-1,2)
#side 2.2
ssc.add_facet(((0,0,0.7),(1,0,0.7),(1,0,1),(0,0,1)),-1,2)
#side 2.3
ssc.add_facet(((1,0,0.7),(0,1,0.7),(0,1,1),(1,0,1)),-1,2)
#top
ssc.add_facet(((0,0,1),(1,0,1),(0,1,1)),-1,2)

(c)The snippet of Python code creates two simple objects
from (b) in the structure.

v 0 0 0
v 0 1 0
v 1 0 0
v 0 0 0.7
v 0 1 0.7
v 1 0 0.7
v 0 0 1
v 0 1 1
v 1 0 1
g 1
f 1 2 3
f 1 4 5 2
f 1 3 6 4
f 3 2 5 6
f 6 5 4
g 2
f 4 5 6
f 4 7 8 5
f 4 6 9 7
f 6 5 8 9
f 7 9 8

(d)An example from (b) outpuɦed as
*.obj file.

FIGURE 6.13 An UML diagram and corresponding example of the usage for 3D topological
structure.

§ 6.3.4 3D storage of small dataset
.............................................................................................................................

The whole dataset in smooth tGAP has been stored explicitly as polyhedral volumes
in a 3D topological structure, see Figure6.13. The structure records topology for a set
of 2-manifold faces in 3D. The core of the structure is a list of vertices, where scale at-
tributes are used as z values in the 3D representation. Then all polyhedrons with their
facets refer to the vertex indices. Note that shared vertices among the objects are al-
ways represented just once, not duplicated.

The number of resulting elements can give us some idea how efficient the storage is.
The small subset of CORINE Land Cover dataset (7 faces) is used as an input; see Fig-
ure 6.4. It contains 676 vertices and 15 records of faces in classic tGAP structure. Be-
cause of its general applicability the ‘Eater’ algorithmwas used for converting data
stored in classic tGAP into the smooth representation.

101 6 Smooth zooming



This small example is represented by 989 vertices (which is more than the original 676
vertices as some of these havemultiple counterparts at different height levels; how-
ever, there are no new x, y coordinates introduced) and 684 faces, consisting of: 289
triangles – the tilted faces of shared 3D boundaries between winners and losers, and
395 vertical rectangular faces (normal boundaries, which are not the result of a smooth
merge). Finally there are 7 horizontal boɦom faces and 1 horizontal top face.

When all objects of the dataset are converted to polyhedral volumes stored in SSC,
a map can be obtained by horizontal slice. The continuously changingmap can one
imagine as gradually moving the slice plain from the top of the cube downwards. All
changes result in a smooth changing 2Dmap: a small change in scale leads to a small
change inmap content.

One of the challenges here is the explicit boundary calculation of such a slice. This is
computational intensive and can be very expensive due to the polyhedras‘ complexity.

As an alternative to this, we converted the smooth tGAP dataset to tetrahedrons (a
tetrahedron is a geometric object composed of four vertices and four triangular faces)
for visualization during development (Šuba et al., 2013). 1734 tetrahedrons have been
stored for example above, see Figure 6.4. The ideal behind this was simple; the slicing
can be donemore efficiently because tomake a slice of set of the tetrahedrons is much
easier thanmaking a slice of arbitrary 3D polyhedral objects.

However, the conversion to tetrahedrons adds extra computational step into the pro-
cess workflow and it did not get significant speed improvement for the slicing. There-
fore, we used different approach where full potential of graphic hardware can be used.
Section 6.4 will cover more of this in detail.

§ 6.3.5 Comparison of three algorithms
.............................................................................................................................

Table 6.2 summarizes the possibility of smooth-merge operation for three algorithms,
the ‘Single flat plane’, the ‘Zipper’ and the ‘Eater’. Some criteria on the left side of the
table come from soft requirements. Each of these criteria can be quantified and based
on this the different algorithms are compared, however not all criteria are of equal im-
portance when choosing the best solution for specific situation.

First, the ‘Single flat plane’ offers easy computation, constant speed of merging and it
always creates just one tilted plane. Themain disadvantages are defining the orienta-
tion of the tilted plane where the shared boundary is rather complex or more shared
boundaries exist. The algorithm also does not try to avoidmulti-parts and the final im-
pression of mergingmay look artificial – a single straight line ‘sweeping on the screen’.
A low score has been given to ‘Always has solution’, because it in some cases the solu-
tion is not meaningful, e. g. where the winner lies inside the loser. Despite those lim-
its the ‘Single flat plane’ algorithm can be very effective for simple convex rectangular
polygons where only one shared boundary exists, such as the building in Figure 6.14.

Second, the ‘Zipper’ offers amore generic solution. It works for all convex and even for
some concave polygons, this depending on visibility between SB and OB. It fulfils soft
requirements and finds the optimal solution, if it exists; which results in good impres-
sion of merging andminimal risk of multi-parts. Higher computational complexity can

102 Design and development of a system for vario-scale maps



Simple flat plane Zipper Eater
Always has solution + ++ +++

Type of polygon

-
(One SB only,

convex,
rectangular)

+
(Convex,

some concave with
visible SB-OB)

++
(All)

Computational efficiency + - +
Multi-parts - + +
Optimal shape of faces - ++ +
Number of extra elements + + -
Constant steepness ++ + -
No vertical faces at SB - ++ -

TABLE 6.2 Summary table, where - = bad, + = neutral and + + = good. The first three rows eval-
uate the algorithms in general. The remaining rows (in italic) give an overview of
fulfilment of themainly aesthetic soft requirements.

beminimized by an alternative graph visualization, where optimal solution lies closer
to the diagonal, and therefore some options can be omiɦed. If there is no single part
solution, the graph also gives an indication of how to split the polygon intomultiple
parts.

Third, the ‘Eater’ offers a solution for any arbitrary polygon. It always processes one tri-
angle at the time and the whole polygon is processed in one operation; whichmakes
the algorithmmore effective and robust. The Delaunay triangulation withO(n logn)
is themost expensive part of the algorithm. When using the 3D structure and creat-
ing slices, the risk of multi-parts is high and it cannot guarantee constant steepness.
The negative effect of multi-parts can be reduced by includingmore information in al-
gorithm; e. g. knowledge of a triangle configuration in a previous step would lead to a
beɦer configuration for the current step. On top of that, steepness can be improved by
global information about configuration of triangles. This could also improve specific
cases where the loser has many holes and ‘branches’, and where some ‘branches’ are
eaten faster than others.

To be able to use smooth SSC dataset generated the waymentioned above, specific
types of slicing/rendering software is needed. Only then we could perform its full po-
tential and observe the influence on the user if there any. Therefore, the next section
will describe our developed prototype wriɦen as an OpenGL application supporting
smooth interaction with proper user interface.

103 6 Smooth zooming



The ‘Single flat plane’ – exam-
ple of complex building

The ‘Zipper’ – example of a
dam

The ‘Eater’ – example of a
river.

FIGURE 6.14 Example of three approaches with real data, the ‘single flat plane’ on the left, the
‘Zipper’ in themiddle and the ‘Eater’ on the right. The arbitrary slides simulate
gradual merge (from less merged (top) to moremerged (boɦom)). The light grey
face is the winner, the dark grey face is the loser.

104 Design and development of a system for vario-scale maps



FIGURE 6.15 Example SSC data with horizontal intersections. In this example, the colours blue,
grey, yellow and green respectively represent water, road, farmland and forest
terrains.

.............................................................................................................................
§ 6.4 GPU based vario-scale viewer

.............................................................................................................................

As wementioned before, the concept of map generalization research of vario-scale
has shifted towards a truly smooth vario-scale structure for geographic information,
see 3.4. It has the following property: A small step in the scale change leads to a small
change in representation of geographic features that are represented on themap. In
the implementation, the tGAP representation of 2D geo-information can be converted
to a full 3D representation (smooth SSC), see Figure 3.9b on page 31.

The original SSC proposal included an explicit boundary calculation to perform the slic-
ing with a plane. The intersection of the plane with the SSC’s polyhedra yielded the
set of polygons constituting the vectorial map representation. This is geometric com-
putation intensive and not well suited for parallel execution, due to the very different
workloads, depending on the polyhedras’ complexity.

In a spirit similar to our work, some approaches (Guha et al., 2003; Hable and Rossignac,
2005) avoid calculating explicit intersections. Whenever the intersection is needed
they derive only a pixel-precise location, which is sufficient. They do this by taking ad-
vantage of graphics hardware to do calculations at the level of pixels instead of primi-
tives.

The following section describes the concept of the SSC intersection pixel rendering
approach and how it is implemented on a GPU.We will use the term ‘Intersector’ for
the implementation of themethod later in this section. It describes the principle for
beɦer understanding of the environment in which the usability test would take place.

It is important to mention that this section is based onMSc thesis of Maɦijs Driel,
where implementation of the prototype is one of his contributions to the vario-scale
project. The section covers principle of the Intersector in § 6.4.1 together withmore
technical details in § 6.4.2 and followed by addition rendering techniques in § 6.4.3.
Evenmore detailed information about Intersector can be found in (Driel et al., 2016).

§ 6.4.1 Concept
.............................................................................................................................

Space Scale Cube representation assumes that every terrain feature represented in the
data is a polyhedron (or 3Dmesh) with a unique ID, and the terrain features together

105 6 Smooth zooming



(a)Raster placement viewed
where the plane is inter-
secting.

(b)Raster placement in 3D. (c)Side view on one row of
pixels, represented as
their centers.

FIGURE 6.16 The intersectionmethod’s goal is to determine what ‘colour’ to give each pixel
in a raster. To do this, the center points of the pixels are tested for what colour
polyhedron it is inside. This example highlights a single row of pixels in the raster,
and determines that in this row, 1 pixel shows forest, 4 show farmland and 3 show
water. Because of the low resolution and placement of the raster, the road is not
visible.

form a partition of space, so each terrain feature fits tightly to its neighbours. To get
a specific intersection out of the SSC, imagine a 2D pixel raster is placed somewhere
inside the SSC where we want to know for each pixel what terrain feature it is intersect-
ing. In essence, this gives us a displayable result as it is already a 2D raster. An example
of this is presented in Figure 6.16.

We first explain an alternative naive intersectionmethod, as a way to explain by con-
trasting it with our own. The naive method will go over all pixels and for each pixel, do
a point-in-polyhedron test for all polyhedra in the data. With the degenerate case of a
pixel lying on a polyhedron boundary, simply pick one of the polyhedra, the difference
will hardly be visible in a full image. This method, though inefficient, does guarantee
that each pixel in the raster finds the right terrain feature.

Our intersectionmethod builds on this naive method, as it also starts with a pixel
raster. We can notice how projecting each pixel along any direction will first encounter
the inside boundary of the correct terrain feature: the one intersecting the pixel.

Building on this observation, we view the SSC orthogonally from the top downwards.
We then render the insides of the polyhedra below the raster, while simultaneously
clipping off everything above the raster.

What we essentially do here is to pick the z-axis as the projection axis, and by seɦing
the view as orthogonal, project all pixels along the same axis. Then, rendering only
below the raster will prevent any geometry above from interfering with the result. An
example of this is shown in Figure 6.17.

106 Design and development of a system for vario-scale maps



There is one caveat in doing this method. We need to be able to assume that each pixel
on the raster is in a closed polyhedron. However, because the SSCmodel represents a
partition of space, we assume this to be the case.

FIGURE 6.17 By projecting the points downwards we find the correct colours for the pixels. The
upper shaded areamust be explicitly ignored, otherwise some invalid colours will
appear. In this example, if the shaded region was not clipped themost left (the
first) and the fifth pixels would incorrectly get assigned yellow and blue respec-
tively.

§ 6.4.2 Implementation
.............................................................................................................................

Themain argument for using this raster based intersectionmethod over one that does
explicit plane-polyhedron intersections is that we only need an image as an end result.
This is ideal for the GPU, specifically because it fits with the capabilities of the graphics
pipeline.

Views in graphics are often a product of transforming the input vertex data into a box
shaped clipping region. The clipping region represents the visible area on the x-y range,
and the z-axis gives the range in which depth sorting can occur. Everything outside of
the clipping region is clipped off. For the orthogonal transformation required by our in-
tersectionmethod, we need an orthogonal transformationmatrix that specifies where
in space our view is positioned.

The rendering process is initiated by feeding the GPU terrain features where the poly-
hedra are represented as 3D triangle meshes. Keeping with themethod, we only render
inside-facing triangles (method called front-face culling). Triangles are transformed
fromworld to screen coordinates. Then pixels are computed based on orthogonal
downwards viewing resulting in so-called ’fragments’. These are points that correspond
to a pixel in the raster, but also maintain their post-transformation z-position used for
depth sorting. We discard all fragments that appear above the z-position of the raster.
We also use depth sorting on all fragments below the raster, so only the fragments clos-
est to the raster are not discarded.

107 6 Smooth zooming



The remaining fragments store the integer ID of their corresponding terrain features
into a pixel buffer. The buffer can be used to sample single IDs directly when a user
wants to view information on a terrain feature under amouse or touch cursor. Other
than that, the buffer can be used as input for a full screen colour mapping technique
that maps IDs to colours, which gives us our final displayable image.

§ 6.4.3 Additional rendering techniques
.............................................................................................................................

Our approach opens up some other possibilities, in addition to vario-scale and smooth
zooming functionality, that are impossible with the traditional 2Dmap rendering ap-
proach: supersampling antialiasing (for sharper images), non-horizontal intersections
(for mixed scale representations), near-intersection blending (for dynamic movement),
and texture mapping (for enhancedmap readability).

FIGURE 6.18 Using a form of SSAA, multiple samples are taken at every pixel, and their colors
blended.

ANTIALIASING 2D approaches using vector based images would apply a form of an-
tialiasing specific to vector image drawing, which is not an option for our approach. We
instead use a form of supersampling antialiasing (SSAA) by re-rendering the image a
few times with sub-pixel offsets andmerging the result in a blending operation (Fuchs
et al., 1985). Because of the static nature of maps, we can spread the re-renders out
over consecutive frames to increase the image quality over time. The principle is illus-
trated in Figure 6.18.

NON-HORIZONTAL INTERSECTIONS As we havementioned, the intersectionmethod
clips off geometry above the intersection plane by testing each fragment’s z-position
against that of the raster’s plane. This implies a constant z value over the entire raster,
making the intersection horizontal. We canmake this more flexible by instead testing
each fragment with a pre-calculated z-value that is stored in a raster sized buffer. This
buffer can be prepared using any sort of function z = f(x, y), implying any intersection
surface that doesn’t fold over in the z-axis is a valid input. Figure 6.19 shows an ex-
ample using a curve shaped surface, which results in high detail near centre and lower
detail near sides.

108 Design and development of a system for vario-scale maps



A non-horizontal intersection surface would display low and high abstraction in the
same image. This could serve a function in highlighting specific areas, some examples
of which are implemented in the prototype.

FIGURE 6.19 In this example, the center of the raster requires less abstraction than the raster
edges. As a result, the forest becomes invisible and the road visible.

NEAR-INTERSECTION BLENDINGWhen quickly zooming throughmuch informa-
tion with our approach, some changesmight still feel abrupt; e. g. one area removed
and aggregated with neighbour. Near-intersection blending provides a way to further
smoothen the image by blending two terrain features that are adjacent on the z-axis.
This can be conceptualized by imagining a second intersection surface placed c units
below the primary intersection surface (see Figure 6.20). Any polyhedron boundaries
between the two surfaces can be said to be near to the actual intersection with a dis-
tance of d = {0, c}. Below the boundary, a different terrain (and thus a different colour)
is defined. If we blend the colours of both the intersecting and near-intersecting ter-
rains with a factor of fblend = d

c
, we smooth the result.

In the intersectionmethod, remember that we render the insides of terrain feature
polyhedra to get the intersecting terrain. If we were to render the outsides instead, we
would encounter the outside of the terrain feature directly below the intersecting ter-
rain. Also, note that we know from the fragment what the z-position is of the boundary
between the intersecting and near-intersecting terrains. We can utilize this as follows:
we could do both inside and outside renders and store them. Then during colour map-
ping we can blend the two together with the blending factor described above.

The result is a smoother transition between terrains while actively zooming, which is
visually more comfortable to look at. An example of this is shown in Figure 6.21. It
does not influence anything other than the rendered colour, terrain IDs are kept intact.

TEXTUREMAPPING In the final color mapping step of the intersectionmethod, we have
used simple flat colours corresponding to the terrain feature to display for the final
image. When including near-intersection blending, at most two colours are blended.
Instead of, or in addition to flat colors, we can use a texture. As texture mapping char-
acteristic we can simply use all data known to a fragment: the xyz-coordinate and the
terrain feature ID.

109 6 Smooth zooming



FIGURE 6.20 The threemarked points represent an intersection within the given distance. The
left andmiddle points will blend yellow-green and yellow-grey respectively. The
right point intersects on the SSC boundary, so blending will not occur there.

A possible use of this is to give some types of terrain an extra visual hint to their proper-
ties (such as a tree symbol texture to a forest, or wave symbol texture in water). A sim-
ple number texture example is shown in Figure 6.22. Because the z-coordinate is also
usable in themapping, the texture can be rendered at specific ranges of abstraction
levels, giving a user direct visual feedback on the level of abstraction currently visible.

§ 6.4.4 Implementation details
.............................................................................................................................

The Intersector prototype was wriɦen as an OpenGL ES 3.0 application in Java. Because
of the use of the limited OpenGL ES feature set, the application should be possible to
use onmobile phone hardware with limited efforts.

The set of intersections available for demonstration show themain classes of shapes.
Shapes include a horizontal surface, a non-horizontal planar surface, a sine curve sur-
face, a 3Dmesh object based surface, and a control point surface. These shapes are
shown in Figure 6.24, along with some examples of them intersecting the rural region
dataset. The control point surface is based on inverse distance weighting (Shepard,
1968). This method is an example of direct real-timemanipulation of the intersection
shape itself.

110 Design and development of a system for vario-scale maps



(a) (b)

(c) (d)

FIGURE 6.21 This example shows how a transition from one colour (a) to the next (c) can
be abrupt (here shown as purple to yellow), even when the transition is non-
horizontal (smoothed, or non-instant) (b). This is most noticeable while in mo-
tion, scrolling through abstractions. Blending the colours (d) canmake the transi-
tion seem less abrupt.

FIGURE 6.22 Texturing is shown as the numbers rendered in the regions. They fade on the sides
because of the non-planar intersection used to generate the image, showing that
abstraction variations influence the result.

FIGURE 6.23 Subset of the testing data (source: TOP10NL, near Maastricht, NL), shown at the
lowest level of abstraction.

111 6 Smooth zooming



Horizontal raster. Abstraction equal everywhere.

Sine curve raster. Abstraction lower in themiddle.

3DMesh input raster. Abstraction lower in themiddle.

Inverse distance weighting derived raster. Abstraction lower around the boɦom left
buildings, where control points (colored
crosses) are placed. Dark blue and light blue
crosses respectively indicate high and low ab-
straction. Note that the centre of the raster
was shifted to the boɦom left corner to gener-
ate this map.

FIGURE 6.24 Rasters on the left produce corresponding intersections shown right. With lower
abstraction, more buildings and roads become visible.

112 Design and development of a system for vario-scale maps



.............................................................................................................................
§ 6.5 User’s experiences

.............................................................................................................................

With the Intersector prototype implemented the next step was to perform a usability
test with users even though it was not in our original research plan. After short round
of experiments we discovered that the prototype is too complex (withmore function-
alities than needed) and with a non-intuitive interface. Therefore, we developedmore
optimized ‘light’ version of the Intersector and performed initial basic usability test.
Here we describe initial test with preliminary results. It was carried out with a small
group of users using the ‘light’ Intersector prototype. Only the core of our vario-scale
concept was testedmainly for time reasons. For additional testingmore participants,
additional functionality (non-horizontal intersections, colour blending, etc.) and dif-
ferent SSC content with a (range of generalization techniques and options to create the
structure) can be introduced. Our usability test plan included the following elements:
user profiling, scope, apparatus, procedure & task and usability evaluationmethods.

USER PROFILING An important initial analysis was user profiling to limit the research
to a well-defined group of users. The age range of the potential user group could vary
from 18 to 70 years, with no restrictions on their nationality, gender and education
level. Their previous experience of map use were not important. The experiment was
drawn upon the scenario of a map user observing unknownmap location.

SCOPE This usability test should indicate if vario-scale maps can provide beɦer un-
derstanding andmore intuitive perception of the data compared to a fixed and limited
number of maps for discrete map scales (themore traditional multi-scale approach).

Themain scope was to test two types of content. The ‘light’ Intersector was the tool
which helped us demonstrate our vario-scale approach. To eliminate the influence of
the different working environment the experiment was carried out with the same ‘light’
Intersector prototype, that is same GUI, but for two datasets. A classical discrete multi-
scale dataset (SSC content where at limited number of fixed scales the objects change:
all prisms ending and succeeded by new set of prisms) and a vario-scale dataset (clas-
sic SSC based on tGAP content, see Section 3.4 on page 28), both covering the same
geographic extent. We assumed that users would perform beɦer using vario-scale
maps, especially for specific tasks concerning dynamic changes of themap content
such as a zooming operation. This leads us to a series of questions that the usability
testing should answer:

• Can users get beɦer understanding of data with our new vario-scale
representation?

• Can users navigate faster andmore effective with vario-scale maps?

• Could users also be confused by vario-scale maps and if so: how often,
when and why?

• Do users benefit (more pleasant map reading experience and beɦer quality
execution of tasks) from vario-scale concept?

APPARATUS All techniques described in the previous sections were implemented as a
prototype to demonstrate their potential, but the implementation was not optimized
to provide themost user friendly experience, which has had a negative effect on the

113 6 Smooth zooming



results of the experiment. For example, the user performs badly because he is irritated
or confused by the set of mouse interactions and key strokes needed. Therefore, we
implemented and used the new ‘light’ Intersector prototype. We reduced controls to
four keys for movement and four keys for zoom in and out operation in two speeds (no
mouse). Specifically, arrow keys for movement, dash (-) and equal (=) keys for slow,
detail and open bracket ([) and closed bracket (]) for fast, coarse zooming in and out.

Note that the ‘light’ Intersector is implemented such a way that it can generate high
rate of frames per second (FPS). Our working assumption is that 30 FPS (Read and
Meyer, 2000) (in our solution can be even higher) is sufficient to provide good user
impression. Smooth experience is provided by fast interaction; one key press gives
immediately one newmap (direct jump to target frame, throwing away some of the
possibilities of our data structure). More in detail based on smooth zoom aspects, see
Section 6.2 on page 88, one zoom operation is composed of one rescaling, one content
zoom and one graphic technique (antialiasing) integrated in one newmap/frame. Ad-
ditionally, we offer zooming in two speeds detail and coarse, where only different is a
bigger step in the scale.

FIGURE 6.25 The experiment set-up.

For executing the experiment one notebook, powerful enough1 to run the ‘light’ In-
tersector was used by one test person (TP) in a session of maximum 15minutes. The
‘light’ Intersector ran as a window fixed in size, only showing amap view (no additional
controls on screen). The equipment were set up in a quiet room to create a comfortable
experiment environment where the TP accomplished the task, see Figure 6.25. The in-
structor was present throughout the experiment for giving an introduction and in case
any unexpected situations occurs.

The test methodology consisted of a questionnaire, audio-video observation and syn-
chronized screen recording. In addition, the screen geographic coordinates and scale
denominator were recorded, with a time stamp. When the user was performing un-
usual actions, e. g. navigating very fast or extremely slow the TP was asked think aloud.
All this allowed further detailed investigation of the TP’s behaviour, thinking and po-
tential hurdles during the test session.

1 MacBook Air, Early 2015

114 Design and development of a system for vario-scale maps



dataset source tGAP Intersector
no. faces no. faces no. prisms no. triangles

multi-scale 13.200 37.000 27.000 2.114.000
vario-scale 129.000 9.624.000

TABLE 6.3 Two datasets used in experiment. The source is topological planar partition. TGAP
represents generated structure based on the source. Intersector represents generated
testing datasets from tGAP where number of prisms indicates tGAP faces converted
to 3D prisms.

For this experiment, we generated twomain datasets; First, discrete multi-scale, repre-
sents a classic approach, where 7 discrete scales are generated based on the data factor
2 (in each dimension), i. e. level 0 corresponding scale denominator 1:10,000 with
13,200 features, level 1 corresponding scale denominator 1:20,000 with 3,300, level
2 corresponding 1:40,000 with 825, etc. Second, a vario-scale dataset, which captures
our approach. Both were generated from the same tGAP structure. This structure has
been created based on a subset of Dutch topographic map data (TOP10NL) intended
for use at a 1:10,000, in regions of 9× 9 km, see Table 6.3. Figure 6.23 showsmap
design used in experiment on a subset of the data. The structure has been generated
withmerge and split operations. Figure 6.26 shows both dataset used in the experi-
ment in 3D view.

(a)Multi-scale (b)Vario-scale

FIGURE 6.26 The test datasets in 3D view.

PROCEDURE& TASK Before the experiment the TP was welcomed and the experiment
was briefly introduced. Then the TP spent a fewminutes randomly using the ‘light’ In-
tersector to ‘get a grip’ on the working environment. It was practised on similar dataset
at different location of area 1× 1 km at first. Later, we used a bigger practice dataset of
area 7× 7 km. This was donemainly to eliminate the factor of a new unfamiliar envi-
ronment.

Several types of tasks based onmap reading were specified: orientation, searching,
analysis, routing, and planning tasks. Since we wanted perform the experiment within
15minutes per person, it would not have been realistic to have performed all the tasks.
Therefore, we chose only the following task:

I. Orientation-task: zoom out completely to see whole extent of the dataset and
then try to get back as accurately as possible to the same location and zoom level
as started. The time and the precision (the position of the screen) is captured.

115 6 Smooth zooming



We believed that this task had the highest chance to test our hypothesis and it can be
performedmultiple times in limited time to provide statistically sufficient data.

In more detail, when the experiment started, the environment was reset. The TP started
with the practise dataset where controls and the task were demonstrated. When the TP
felt ready we changed to the vario-scale or multi-scale dataset (half of the TPs started
with themulti-scale data and other half started with vario-scale data to eliminate
learning effect). Then, the TP performed the following task, as fast as the TP could three
times for two different datasets (6× total):

• TP pressed the key (s) to start. Intersector showed randomly generated zoomed
in location.

• TP zoomed out completely to see the whole dataset.

• TP used the arrows keys to move themap ‘off the screen’.

• TP got back to the initial location and zoom level. Then TP pressed space key (fi-
nal position was tagged)

At the end of the session the TP had been asked filled the questionnaire to indicate
their preferences. The experiment was concluded by explaining what the difference be-
tween the datasets are (the TPs did not have any understanding before) and answering
additional questions.

USABILITY EVALUATIONMETHOD The experiment was captured in questionnaires, see
Appendix 7.3 on page 143. The screen geographic coordinates and scale denominator
were recorded, with a time stamp. On top of that audio-video recording of both the
screen and the TP took place. Furthermore, when the user was performing unusual
activity, we asked the TP to talk out-loud.

The aim of the questionnaire was to get a more extended profile of the TP together
with his/her opinion. It consisted of questions about the TP his/her gender, age and
how often they usemaps. Another part of questionnaire concerned the validation of
the session, where self-reported participant ratings for satisfaction, i. e. ease of use of
the two types of data. The TP rated themeasure on a 5 point scales and it was used for
quantitative measures. In last part of the questionnaire they indicated likes, dislikes,
suggestions and recommendations to provide subjective measures and their prefer-
ences. This data can be then used for planning additional usability testing in the near
future.

Quantitative metrics were covered by the duration of the task, the amount of time it
takes the participant to complete the tasks, and accuracy of the user’s performance, i. e.
the difference in distance between real world position of starting and ending point for
a given task. On top of that, the recording was intended to reveal the TP’s thinking and
the reasoning behind the TP’s actions to give an indication where possible confusion
arises.

.............................................................................................................................
§ 6.6 Measures

.............................................................................................................................

We collected data from 10 TPs in the first group and 13 TPs from the second, seemore
in Appendix 7.3 on page 145. We captured all tasks in the order in which they have

116 Design and development of a system for vario-scale maps



(a)Results after training with a small practice
dataset (1× 1 km) for the first group of TPs
(10 persons).

(b)Results after training with a bigger practice
dataset (7× 7 km) for the second group of
TPs (13 persons).

FIGURE 6.27 precision of the tasks in the same order as they have been presented (regardless of
type of the dataset).

been performed in Figure 6.27a. A box plot graphs2 have been used. It shows that the
results are affected by the process of learning i. e. the users are less accurate and spend
more time on the first task and they perform beɦer later in the experiment. We as-
sumed that this is influenced by the practice dataset, where users did not experience
the environment enough. To improve this we introduced bigger practice dataset in a
rural region (more similar to the testing location) of the larger area 7× 7 km. Then the
same experiment was run for the second group of users (13 TPs), see Figure 6.27b.

Figure 6.27b demonstrates that overall precision with the bigger practice dataset drops
under 180m in average and indicates overall more precise measurements (with sig-
nificantly smaller Interquartile Ranges). It means that practise dataset had significant
influence on the results. Therefore, only more precise results of the second group with
13 TPs will be considered, see Figure 6.28.

Moreover, every task is composed of three phases; (1) Zoom out, where user started at
initial location and zoomed out to see the whole dataset at once. (2) Move (panning),
where user used the arrow keys to shift the dataset ’out of the window’ and back. (3)
Zoom in, where user zoomed in to the initial location again. Figure 6.29 gives a beɦer
notion howmuch time is spent in which phase for the second group.

.............................................................................................................................
§ 6.7 Lesson learnt – smooth zoom

.............................................................................................................................

For initial user testing the ‘light’ intersector prototype has been designed in such a way
that a smooth experience is provided by fast interaction; one key press gives immedi-
ately one newmap. Assumption behind this was that fast response would provide the
best smooth impression where the user gets newmap as fast as requested. Addition-
ally, the user’s confusion is reduced because zooming in and out is less time consum-

2 The box extends from the lower to upper quartile values of the data, with a centre line at themedian. Lines
extending vertically from the boxes (whiskers) indicate variability outside the upper and lower quartiles. Outliers
are ploɦed as individual points.

117 6 Smooth zooming



(a)Distance between starting and ending loca-
tion

(b)Time for task

FIGURE 6.28 The results for the second group of TPs (13 persons).

FIGURE 6.29 Three phases (zoom out, move and zoom in) of the task for vario-scale andmulti-
scale datasets.

118 Design and development of a system for vario-scale maps



ing. Operation in two speeds was provided; fast, coarse to quickly browse throughout
the scales and slow, detail to perceive all small map content changes. Note that one
zoom action resulting in one newmap (frame) includes following smooth aspects: one
rescaling (scale, translation), one content zoom (change of content) and one graphic
technique (antialiasing).

However, the results of user testing indicates something different based on the screen
recording and responses filled in the questionnaires, see Appendix on page 145. The
users used only coarse type of interactionmost of the time. Some characterised the de-
tail zoom as “annoying slow zoom”. This meant they could never get a smooth impres-
sion (small changes in content). The same is reflected in the responses because users
could not distinguish between vario-scale (small changes in content) andmulti-scale
dataset. From the experiences gained here wemay now define smooth zoom operation
giving the best smooth user impression. The elements which should be included are
following;

MORE STEPS FOR CONTENT ZOOM The configuration when one pressed key gives im-
mediately one newmap is not optimal. More precisely, a content zoom ratio of 1 : 1
between user interaction and number of generated steps is not favourable. From ini-
tial testing it seems that every independent zoom action should returnmap content in
more steps. This can be done by causing a content zoommultiple times, changing the
map content only bit by bit (leading tomore temporary maps, showing the transition-
ing of themap content in small steps fromm0 tom1 , e. g.m0,m′

0,m′′
0 ,m′′′

0 ,... ,m1 ),
and thus progressively refining themap.

The optimal number of small steps in content zoom is not know. However, if we con-
sider 30 FPS as optimal (see Apparatus on page 113), and assume one zoom action
should take approximately 1/3 of a second, whichmakes 10 frames for one zoom oper-
ation. Then relation 1 : n for content zoomwhere n ≈ 10 is favourable.

SPEED PERCEPTION The perception of the speed is another aspect that needs to be
considered to provide smooth experience to the users. The illusion of speed can be
simulated by the frames (temporal maps) and the timing in which they are presented,
e. g. timing of a content zoom sequencem′

0,m′′
0 ,m′′′

0 ,m1. This is similar to the pro-
cess of generating intermediate frames between two images to give the appearance
that the first image evolves smoothly into the second image known from animation as
inbetweening or tweening (Penner, 2002).

However,if the frames are presented with long pauses between them, then the transi-
tion between consecutive maps (frames) feels stiff, artificial andmechanical. Penner
(2002) claims that the notion of acceleration, a change in speed, is needed. The term
easing is used as the transition between the states of moving and not-moving. When
an object is moving, it has a velocity of somemagnitude. When the object is not mov-
ing, its velocity is zero. There are many options for the shape of the acceleration. Exten-
sive list of examples for easing can be found, see (Penner, 2002).

Figure 6.30 shows example of themost common easing for animation. The curve
shown produces themost natural lookingmotion where the object speeds up from
an initial still position, then slows down and stops at the end. Lifts, for example, use the
same Ease-In-Out easing curve (Penner, 2002). We believe that similar kind of tween-
ing together with techniquesmentioned above can significantly improve the user’s

119 6 Smooth zooming



position

time

1

1
(a)Ease-In-Out easing, an example of the lift.

The graph captures the situation when the
object accelerates first, then slows down
and comes to a stop at its destination.
Source: (Penner, 2002).

speed

time

1

1
(b)The same situation as in (a). Here, the focus

is on speed over the time during the Ease-
In-Out easing.

FIGURE 6.30 Perception of speed by using Ease-In-Out easing.

overall interaction in themap. Based on our experiences so far we propose an optimal
tweening for panning in Figure 6.31. Similar design can be used for zooming in and
out.

position

time

1

1
(a)Our proposed tweening for map interaction.

Then user’s action invokes linear accelera-
tion first slowly goes to a stop.

speed

time

1sp
ee

d
in

vo
ke

db
y

a
us

er

(b)The same situation as in (a). Here, the fo-
cus is on speed over the time during the
interaction. Note that initial interaction
speed depends on user’s action, i. e. speed
invokes by a user’s action is equal to initial
interaction speed.

FIGURE 6.31 Proposed tweening for panning which improves the user’s interaction in themap.

DEPENDENT ONUI Zoom operations were provided in two speeds; fast, coarse and
slow, detail. However, both operations were implemented the same way; a key press
makes themap change by constant change of scale . One can imagine this as amoving
the slicing plane (and scaling) in the SSC by ϵ scale where ϵ is constant, see Figure 3.9
on page 31.

The results of the testing shows that users have different preferences in zooming speed
which are not really reflected in user interface (UI) i. e. users can only browse through-
out scales by using coarse or detail zoom.

120 Design and development of a system for vario-scale maps



We propose to use other available UI elements supportingmore levels of freedom (e. g.
duration of action), for instance, mouse wheel or touch screen. This will makes change
of scale more variable and dynamic. It will lead to themovement of the slicing plane in
the SSC by ϵwhere ϵwould be variable based on the duration of the action, how far it
scrolled (for mouse wheel) or the size of the finger gesture (on touch screen). Then the
steps for content zoom should be chosen and presented accordingly.

The discussion above indicates elements of smooth zoom action. An optimal use case
can be described as follows: When the user performs a action such as a roll of mouse
wheel or makes finger gesture a new series of content zoom steps of size ϵ of SSC is cre-
ated. This series is rescale and is combined with graphic techniques to create a series of
pictures/frames. Then, this sequence of frames is visualized to provide a very smooth
transition from one scale to another, similar to animation – hence the term smooth
zoom. Note that all this happens in a short amount of time (e. g. 300ms).

.............................................................................................................................
§ 6.8 Reflection

.............................................................................................................................

In this chapter, we have tried to find indicators that the vario-scale approach can pro-
vide significant improvement inmap use for users. We presented our concept of zoom-
ing together with three options how the smoothmap content can be generated. More-
over, new SSC-based visualization prototype was presented. On top of that we carried
out initial, preliminary usability test to indicate or verify our design assumption that
vario-scale approach could provide a beɦer user experience. This helps understand
zoom action and its effect on user experience. We reflected this in Section 6.7, where
also smooth zoom operation is designed.

From initial test can draw following conclusions; Figure 6.28 shows that difference
between vario-scale andmulti-scale in user performance. Figure 6.28a shows the
vario-scale method to bemore accurate (8m in average). Figure 6.28b, on the other
hand, presents the vario-scale as being slower (12s in average). Overall, with the cur-
rent number of test persons and small differences betweenmethods we cannot reach
any general conclusion. The consequence is that the initial experiment in this particu-
lar configuration is inconclusive.

We believe that the influence of other factors such as the environment, generated
datasets, styling, GUI, etc. wasmore significant and have stronger impact on test (more
thanmulti-scale versus simple vario-scale content). These factors cover most of the
measures and, therefore, the differences between the two datasets are not obvious.
Therefore, the next usability testing should included all aspects in their further devel-
oped stage. Only then further usability testing should take a place. Here the list of our
hypotheses (together with our suggestions i (i a sequence number)) why the results
are not really conclusive follows:

• Themajority of the TPs used only coarse zoom in big steps. This means that users
perceived the generalized data in big steps i. e. They did not really experience
smoothmap content, but made scale jumps.
Suggestion ˖: Improve the zoom functionality. Users should usemore conve-

Suggestionnient UI to control smooth zoom operation which includesmore steps of content
zoom properly integrated with rescaling and additional graphic techniques creat-
ing series of frames. These frames properly displayed would provide perception

121 6 Smooth zooming



of motion leading to beɦer user interaction as we described in Section 6.7. It is
important to keep inmind that users tend to prefer tools that they normally use,
therefore, improved zoom functionality should feel “familiar”.

• Since the part of the user’s task is move themap ‘off the screen’ the users cannot
keep track of their initial location. This means that they have tomemorize the
original position and keep it in mind (’create mental map’). Later when they see
themap again they have to recall that mental map again. This makes the task
more amemory exercise than a testing of themap content.
Suggestion ˗: The testing dataset should be significantly bigger.Suggestion
Suggestion ˘: Other types of task (not memory based) should also be considered,Suggestion
see next bullet.

• Besides orientation task used in experiment there are other following tasks which
can be consider in future:

II. Searching-task: Locate a specific object (e. g. landmark/house) by zooming
and panning: e.g. find church on central market square in town X.

The time and the correct identification of the church is captured.
III. Analysis-task 1: What is the size of central market square in square meters?

The time and the closeness to real size of square is captured.
IV. Routing-task 1: Find the largest lake within 500m route via the road, start-

ing from the church (a more nearby lake via ’the air’ may be possible, but it
should be checked if this can be reached via road and zoom/out in needed).

The time and the correct identification of the lake is captured.
V. Routing-task 2: Go to a specific house/location in a different town.

The time and the correct identification of the house/location is captured.
VI. Analysis-task 2: Estimate distance between two churches that are some-

what further apart.

The time and the closeness to the real distance is captured.
VII. Planning-task: Design a running track of about 10 km, which includes

among others about 20% urban area and 30% forest tracks.

The time and the correct quality (length and composition) of the track is
assessed.

• Some faces in the structure changed their classificationmultiple times and then
later in process changed back again. This creates impression that faces are flick-
ering which is distracting and users have a harder time to create their mental
maps, similarly to previous bullet.
Suggestion ˘: The generalized dataset should be improved, methods such asSuggestion
groupingmay help, see Section 4.6. In addition to this, the next vario-scale
dataset should be a smooth-merged SSC see Section 6.3. This way, the classi-
fication change would feel more gradual.

• Themap generalization is applied in such a way that buildings disappear, but no
build-up area is generated. However, the buildings are one of themost signifi-
cant features in themap, because they have distinct colour (black) and specific

122 Design and development of a system for vario-scale maps



shape. This generated an unusual situation for users, when they lost a significant
orientation point.
Our recommendation will be same as Suggestion ˙

• The datasets for the prototype contain road features. All road segments were
selected from the structure, converted to triangles and stored in the prototype
dataset. This method is not optimal because it increases the amount of the data
drastically.

Suggestion ˚: The road features should be handled as line geometry in the proto-
Suggestiontype (used directly by GPU) instead of set of triangles as it is now.

• We used a classic SSCmodel generated by the non-smooth version of merge/re-
move and split/collapse operations. However, some users have had difficulty to
distinguish between datasets.

Suggestion ˛: The next version of a vario-scale dataset should be smooth SSC
Suggestionusing smooth version of generalization operations namely; 1) merged/remove

operation, see Section 6.3, 2) split/collapse and 3) line simplification. This way,
changes of geometry would feel more gradual and the difference between vario-
scale andmutli-scale datasets will be more significant.

• So far we have developed our solution on a desktop. The next logical step should
bemobile usability tests. Is should be conducted after developing amobile im-
plementation of the Intersector and creating other tasks for a mobile user in a
real world seɦing. This also might include finger gestures for zoom, pan and ro-
tate in a natural manner. Additionally it suggests a challenging solution for the
3D viewer with proper streaming on the Internet.

123 6 Smooth zooming






