
5 Large vario-scale datasets

In Chapter 3 the focus was on vario-scale data structure description. This was extended
in Chapter 4, where generating beɦer content for this structure was investigated. It
showed how the structure has been developed and used in practice, and current tech-
nical limitations. One of them is processing really massive dataset with records in order
of millions which do not fit in themainmemory of computer. It is a notorious and chal-
lenging problem. This is especially true in the case of map generalization, where the
relationships between (adjacent) features in themapmust be considered. Therefore,
this chapter presents our solution for automated generalization in vario-scale struc-
ture based on the idea of subdividing the workload according to amulti-level structure
of the space, allowing parallel processing. More specifically: Section 5.1 specifies our
goal. Section 5.2 presents related work and other options to handle large datasets.
Section 5.3 explains the principles of our method inmore detail. In Section 5.4modifi-
cations of the process specific for road network generalization are introduced. Statistics
and a test of real dataset withmore than 800 thousand objects are given in Section 5.5,
followed by conclusions and the future work related to processing large datasets in Sec-
tion 5.6

Own publications
...

This chapter is based on the following of my own publications:

• Meijers, M., Šuba, R., and van Oosterom, P. (2015). Parallel creation of vario-
scale data structures for large datasets. ISPRS - International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, XL-4/W7:1–9.

...
§ 5.1 Requirements

...

Geographic vector datasets are an example of the big data phenomenon. Practition-
ers using these large geographic datasets of the whole world, a continent or a country,
for example, can easily get into difficulties because the sheer size of the data is too big.
Functionalities such as storage, analysing, processing or visualisation hit the physical
limitations of a computer when treating all data at once. Automatedmap generaliza-
tion is not exceptional in this. This is also true for the process of generating vario-scale
data structures, see Chapters 3 and 4. Only datasets which can fit into themainmem-
ory of the computer can be processed efficiently, limiting themaximum size of datasets
to be processed. Therefore, we have developed an automated generalizationmethod
for processing large geographic vector dataset of arbitrary size into vario-scale data
structures.

71

Themain goal of our research for this chapter is to create a process to be able to pro-
duce a vario-scale data structure for a large dataset based on the following require-
ments (each one supported by its ownmotivation):

• Input independent – The approach should be able to process different source
datasets intended for variousmap scales.

• Automatically generated partition – The division of the space into smaller pieces
should work fully automatically and not require manual intervention.

• Suitable for parallel processing – Besides the fact that datasets hiɦing the physi-
cal limitation of the computer cannot be processed, the approach should be suit-
able to run in parallel for more practical reasons, such as reduction of processing
time.

• The features should be processed just once – Features on the boundaries of a
dataset split in pieces will require special care. However, it should be guaranteed
that features should not be split in artificial parts, and the feature is processed
just once during the whole process, increasing the efficiency and consistency of
the result.

• Be suitable for data produced at a range of map scales – A vario-scale structure
contains a whole series of simpler maps where features in themap aremodified
versions of their own predecessor. This requires a hierarchical data structure to
record all the successive changes.

The describedmethod in this chapter fulfils the requirements listed above. It fits to one
of our goals to produce a vario-scale topographic dataset (for example based on the
large scale 1:10,000map for the whole of The Netherlands) and disseminate this data
via a web service interface enabling access at arbitrary map scale and smooth zoom
user interactions over the web, see Section 3.6. This dataset’s planar area partition
(roads, water, terrain) contains approximately 5.2million area features. To be able to
process amassive dataset of this size we have used the concept of a Fieldtree (Frank
and Barrera, 1990) which was proposed quite some time ago to be applied to create
tGAP (van Puɦen and van Oosterom, 1998), but has never been implemented nor
tested. Themethod splits the original dataset into smaller pieces, called fields (at mul-
tiple levels). Starting at the lowest level, these small fields can be handled separately,
and processed fields (with less data after generalization) are combined into bigger
fields at a higher level. An additional benefit is the possibility to process the fields in
parallel on today’s multi-core systems, which can significantly speed up the gener-
alization process. The objects located on the boundaries of the fields require special
aɦention, which will be closely described later in the text.

...
§ 5.2 Other approaches

...

Automatedmap generalization of large datasets is a notoriously difficult problem: It
is a computationally complex, time demanding and data-intensive problem and it re-
quires high-performance computing, commonly considered as onemain approach for
handling such data. Using cluster-, grid-, cloud- or super computing, parallel process-
ing is a good way to deal withmassive datasets (Sharker and Karimi, 2014). It requires
decomposition into independent tasks that can run in parallel. This can be executed
in less time, leading tomore efficient computation and solving of complex problems,

72 Design and development of a system for vario-scale maps

whichmap generalization unarguably is. These reasons and the fact that computers
withmultiple cores are common in these days explains why researchers focus onmap
generalization of large datasets in parallel.

Many aspects of processing geographic data in parallel have been extensively studied in
the past. Domain decomposition for parallel processing of spatial problems has been
studied by Ding and Densham (1996), Armstrong and Densham (1992), Zhou et al.
(1998) andMeng et al. (2007). Meng et al. (2007), for instance, used the Hilbert space
filling curve to achieve a beɦer parallel partitioning. Another focus point has been on
the development of frameworks for parallel computing (see e. g. Hawick et al. (2003),
Wang et al. (2011) and Guan et al. (2012)). TheMapReduce programmingmodel
(Dean and Ghemawat, 2004) is well known for parallel computation and has only re-
cently been extended with capabilities for various computational geometry problems
(Eldawy et al., 2013). It must be noted, that all these works do not focus on the prob-
lem of automatedmap generalization.

Meijers and Ledoux (2013) present an algorithm, termed EdgeCrack, to obtain a topo-
logical data structure and perform small geometric corrections of the input by snapping
to avoid problems. They show how they extend the algorithm to a Divide-and-Conquer
approach using a quadtree based subdivision, which is also suited for parallel process-
ing. They report on successfully obtaining a topological data structure for 5.3million
polygons with their approach, however it does not consider any generalization.

The Netherlands’ Kadaster processes the whole of The Netherlands from scale 1:10,000
to 1:50,000 in an automated fashion in parallel (Stoter et al., 2014). They developed
their custom solution using ESRI generalization software. To obtain amap for the
whole of the country they partitioned the dataset based on themain road network.
Their irregular partitioning requires minimal spliɦing of features and the amount of
data is more less distributed equally. This advantage comes with drawbacks, because
defining this partitions is difficult and cannot be done fully automatically (e. g. near the
coast the road network is too sparse to obtain reasonable small dataset parts). Their
solution is created and tuned for generalization of maps for a specific target scale and
to achieve the best result possible, however this tailor-made solution can not be ap-
plied out of the box for different dataset or targeting creation of data for another map
scale such as a European land usemap.

Thiemann et al. (2011) present the automated derivation of CORINE Land Cover (scale
1:100,000) from the high resolution German authoritative land cover datasets (scale
1:10,000) of the whole area of Germany. First the datasets are split into rectangular
and slightly overlapping tiles. These are processed independently and then composed
into one result. To preserve consistency of data some redundancy is added to the par-
titions in the form of overlapping border regions. In these border regions features are
processedmore than once, leading to redundant (and potentially inconsistent) out-
put. This redundancy is removed in the composition phase. Their generalization uses
some deterministic algorithms for every tile to guarantee that the tiles can be stitched
together without any observed problems later. A user parameter that describes the size
of the overlapping border regions is required.

73 5 Large vario-scale datasets

NRLEVELS=8 # Given number of levels to create
FINEGRID=12500 # Grid size (m) at most detailed level
THEORIGX=0 # Origin in x- and y-direction
THEORIGY=0

for (i=0; i<NRLEVELS; i++) do
SIZE[i] = FINEGRID * 2^i

ORIGX[NRLEVELS -1] = THEORIGX
ORIGY[NRLEVELS -1] = THEORIGY
for (i = NRLEVELS -2; i>=0; i--) do

ORIGX[i] = ORIGX[i+1] - SIZE[i+1]/4
ORIGY[i] = ORIGY[i+1] - SIZE[i+1]/4

FIGURE 5.1 Pseudo code as given by van Oosterom and Vijlbrief (1996) for determining the lay-
out of a Fieldtree (its grid size and the shifted origin of the grid cells at every level).
Note that the number of levels (needed to be able to fit the whole domain of the
dataset in one last field) can be determined given the parameter for the finest grid
size (finegrid) and the extent of the dataset.

...
§ 5.3 Generating a large vario-scale structure

...

The whole process of obtaining a large vario-scale data structure is composed of a se-
quence of steps: Data import, constructing a Fieldtree and distribution of the objects
over the Fieldtree, processing field by field (level by level) and finalization. The descrip-
tion of the complete process will now follow in the same order in sections, step by step.

§ 5.3.1 Import
...

The initial step of the process is to import the planar partition into a topological data
structure consisting of nodes, edges and faces. We consider topological clean data
where nodes with a degree of two do not exist (unless for island rings) and there are
no intersecting or dangling edges. If the input data is not in the required topological
structure (as data is oftenmodelled as a set of simple features) and the dataset is large,
then this is also a large data processing challenge, to which the same parallel process-
ing strategy could have been applied as presented in this paper.

§ 5.3.2 Constructing a Fieldtree and object distribution
...

To split the dataset into smaller pieces we use the Fieldtree data structure (Frank and
Barrera, 1990). The Fieldtree has been designed for GIS and similar applications. Be-
sides its multi-level organization of space, it subdivides space regularly, spatial objects
are never fragmented, and geometric and semantic information can be used to assign
the location of a particular object in the Fieldtree.

Figure 5.2 demonstrates the organization of fields at multiple levels in the Fieldtree.
Themost detailed and smallest fields are at the boɦom (large scale), and the less de-
tailed and larger fields (small scale) are at the top of the Fieldtree. The boɦom fields
will initially be filled with the input data, while the content of the higher level fields is

74 Design and development of a system for vario-scale maps

Level 1

Level 2

Level 3

(a)Three levels where lowest is in pink, middle
in green and top level in blue.

(b)3D impression of the same fields. Note, the
third dimension is scale.

FIGURE 5.2 A Fieldtree (top view and 3D impression)

(mainly) generated during the generalization process. Note that due to the shifted grid
origins, every field has nine child fields (of which 1 completely contained, 4 half con-
tained, and 4 quarter contained) in the level below, except the fields from the lowest
level. In the reverse direction: a field has either 1, 2 or 4 parents (depending on its lo-
cation in the grid). The fact that a field can havemore than one parent causes it to be a
non-hierarchy and strictly speaking the term ‘tree’ is incorrect. The number of levels in
the Fieldtree is based on the extent of the dataset, and the size of the lowest level field
is given by a user defined parameter (cf. Figure 5.1).

When the layout of the fields for all levels in the tree has been determined the features
of the dataset are redistributed over the fields. The nodes, edges and faces are dis-
tributed to the fields in the lowest level based on their bounding box, see Figure 5.3.
Every feature is stored in the smallest field in which it is completely contained. If the
object is bigger than a field or it intersects withmore fields, a non-fiɦing object is placed
in a field at a higher level and it will be processed later (together with the generalized
features of the child fields). It has been proven that an object is completely contained
in a field not more than two levels higher, compared to its own size. A very large object
will be placed in one of the highest levels of the Fieldtree, whichmeans that such an
object will not be processed (generalized) until that level is reached.

Once the distribution is finished, the lowest level fields can be treated separately in
parallel. Every field has it own set of tables with nodes, edges and faces in the database:
When a field is processed these tables provide the initial input; during processing these
are populated with the result of the generalization steps and at the end of processing
output is wriɦen to the appropriate parent field tables.

Note that only features completely present in a field are processed at the current level
(i. e. for an area feature (face) all its composing nodes and edges are present in the
field). Features on the boundary of a field are processed at a higher level, where they
completely fit. When all the nine child fields are processed, then the parent field one

75 5 Large vario-scale datasets

(a)Lowest level fields (b)Highest field

FIGURE 5.3 Distribution of the edges over the fields of the Fieldtree. Data that fits in a field has
its own colour. Edges that intersect the boundary of one of the fields at the lowest
level, have been stored in the field at the next level. Note the shift in origin of the
field at the highest level.

lever higher can be processed. This processing of fields is repeated until the top level is
completed.

The grid location at the next level is shifted, in order to guarantee that objects which
could not be processed in the current field (e. g. they are bigger than the field) can be
treated in the next or one level above that. Note that every field of the next level has
edges of twice the size (and therefore four times the area size) compared to the fields
at the current level. It is our goal to simplify the content of a field by a factor 4, that is,
if the input consists of n area features, then the output should be of size n/4. In a uni-
form distribution this will result in higher level fields with similar workload as in the
lower level fields. In case of non-uniform data the reduction by a factor of 4 will main-
tain the relative differences inmap density, while decreasing the number of features
towards the higher (and larger) level fields.

§ 5.3.3 Processing Field by Field
...

When the features have been distributed over the fields of the Fieldtree every field in
the lowest level can be processed. Processing fields (i. e. executing the automated gen-
eralization process for this part of themap and keeping track of the result in a tGAP
structure) is themost time and computational consuming part. But because objects in
the different fields are not in interaction with each other, every field can be processed
separately and this processing can happen in parallel. Note that our automated gener-
alization process is based on iteratively finding the least important feature in the cur-
rent field, instead of a global criterion, this has now become a ‘local field’ criterion. This
makes sense as generalization of for example the northern part of the dataset, should
not influencemuch the generalization that happens in the south. Furthermore, replac-
ing the global by a local criterionmakes the problem computationally easier.

76 Design and development of a system for vario-scale maps

Processing one fieldmeans applying generalization operations: Merging faces, re-
moving boundaries (edges), simplification of edges, collapsing areas to line features
and spliɦing of faces. This leads to simplification of the objects of the part of themap
stored in the field and divides generalized features into two categories. First, finished
features: these are not valid anymore for themap scale that has been reached with the
generalization process. These features are stored for the final vario-scale dataset. Sec-
ond, unfinished features: these still need to be processed (together with the ‘boundary’
features, which did not fit in the lower level fields and the features that were intersect-
ing the field boundaries of the just processed level). These features are placed in the
tables of the grid cell of the next level in the Fieldtree in which they completely fit. We
call this propagating features up. As explained above, to preserve the same amount of
information (processing work) through the whole Fieldtree about 75% of the field is
processed. The other 25% is left and propagated up. Because the area of a field at the
next level is four times bigger, the data amount (and thus the workload) for a field at
the next level will be approximately the same.

§ 5.3.4 Finalization
...

After all fields at all levels of the Fieldtree are processed the final operation takes place;
it combines all information together. All processed fields are searched and the final
global ordering (and numbering) of the objects based on their range of scales defined
during the vario-scale structure creation takes place. This global ordering is helpful
when using the structure for makingmaps at arbitrary map scale. The individual field
tables are merged together to create one set of tables (with one node, edge and face
table for the final dataset) that encodes the result of the progressive generalization
process for the whole dataset. At this stage the structure is ready to use by other appli-
cations such as web clients supporting smooth zoom of vario-scale data.

...
§ 5.4 Read-only buffer zone for road network

...

When we tried to use our Fieldtree approach for a road network dataset of The Nether-
lands (in Dutch: Nationaal Wegen Bestand), we realised that for generalization nearby
features are important (e. g. in the connectivity analysis needed in road network gener-
alization), and this was slightly problematic with our design where features overlapping
tile boundaries are already propagated up (not present at lower levels).

We outlined in Section 5.3 that objects on the boundary of a field can not use informa-
tion about their direct neighbours for generalization decisions, because they are not
present (having already been propagated up). However, in case of processing the road
network, we need extra information at the boundary of the field because the connectiv-
ity of the roads is crucial, because roads incident withmany other roads should stay in
the process the longest. Therefore we introduced a ‘read-only’ data buffer around the
boundary of the field where no generalization actions can be performed and objects are
used only for connectivity information purpose, see the red features in Figure 5.4. The
buffer is computed locally. Instead of using a geometric radius ϵ, we use a topological
measure, only considering i-neighbours, see Section 4.3.3. It is similar to a breadth-
first search, e. g. 1-neighbours check only direct neighbours, 2-neighbours check the
neighbours of the direct neighbours, etc. In our case, first the faces intersecting with

77 5 Large vario-scale datasets

FIGURE 5.4 The inward ‘read-only’ buffer example for a subset of the road network dataset with
only four field at the boɦom. The buffer for right boɦom field in the figure is illus-
trated in red. 2 − neighbours of the intersecting face with boundary of field has
been chosen. Note two things: First, only the content of the fields at current level are
shown. Faces intersecting with boundary are not in the figure (already propagated
up). Second, the part of the dense region near to the boundary is not selected as a
buffer because no intersecting face is within the i− neighbours distance.

the field boundary are selected. Then the ‘read-only’ buffer based on the i-neighbours
of these faces is computed. Since the boundary intersecting faces and buffer faces are
propagated up and generalization is only performed in the non-buffer regions less work
is done. As a result all generalization happens in smaller region – in the area that is
shrunk inwards. When the field is processed, all objects from the ‘read-only’ buffer are
propagated up.

...
§ 5.5 Statistics

...

We have tested our method withmultiple datasets that differ in content, size and type
of features. The details of these datasets (Figures 5.4 and 5.5 give an illustration) are
as follows:

• CORINE Land Cover dataset for an area of the United Kingdom and Ireland with
approximately 100,000 faces and an area around Estonia with approximately
130,000 faces both intended to be used at a 1:100,000map scale (Figure 5.5a).

• A road network dataset of the Netherlands (in Dutch: Nationaal Wegen Bestand).
This dataset is intended for use at a 1:25,000map scale. Note that the cycles/
areas of the road network (i. e. the ‘space between the roads’) have been used
for creating a planar area partition and driving the generalization procedure
(iteratively picking the smallest cycle of the road network to be removed, ulti-
mately leading to removal of an road from the network, as described by Šuba
et al. (2014b)). It contains approximately 200,000 of these areas.

• Dutch cadastral dataset (scale 1:1,000) for area of the province of Gelderland
(The Netherlands) with approximately 880,000 faces. The geographic extent

78 Design and development of a system for vario-scale maps

(a) (b)

FIGURE 5.5 Two of the testing datasets: (a) CORINE and (b) cadastral map

of the data spans 130 km× 90 km. Although the generalization process is less
meaningful for cadastral parcels, this dataset is a useful test dataset for our re-
search as it is topologically structured and has been proven to be topologically
clean and valid (Figure 5.5b).

All datasets have been processed in parallel (multiple fields at same time) at our re-
search server with 16 CPU cores1. All vario-scale tables are stored in a PostgreSQL
databasemanagement system extended with PostGIS2.

The different datasets we processed show that the approach works, even for different
types of input data (land cover data, road network and cadastral map). The success-
ful processing with the road network dataset demonstrates that when it is important
to have neighbouring features available (for generalization decisions), it is possible to
shrink the domain inwards. With this approach we are still able to process fields in par-
allel, while each feature is just processed once.

To obtain insights into what is a reasonable field size for the smallest fields in the field-
tree, we ran the whole process (constructing fieldtree, distributing the objects, gen-
eralization field by field, finalization) with different sizes for the smallest fields in the
fieldtree. We varied the sizes of these fields, based on the average size of a feature
in the dataset. We used sizes varying from 20 to 160 times the average feature size.
Figure 5.6 shows the resulting timings we obtained. The graph shows that as rule of
thumb, we can set the size of smallest fields to 100 times the average feature size (i. e.
around 10,000 objects in the smallest fields) and that the total runtime is then rather

1 HP DL380p Gen8 server (with two 8-core Intel Xeon processors, E5-2690 at 2.9 GHz, 128 GBmainmemory,
and RHEL 6 operating system) with Disk storage (direct aɦached) with 400 GB SSD, 5 TB SAS 15K rpm in RAID 5
configuration (internal), and 2× 41 TB SATA 7200 rpm in RAID 5 configuration.

2 PostgreSQL 9.3.4 and PostGIS 2.2.0dev

79 5 Large vario-scale datasets

20x 60x 100x 160x 220x
Smallest field size (as average object size)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
un

tim
e

(h
)

cadastral
land cover Estonia
land cover UK

FIGURE 5.6 Processing time needed versus field size (smallest fields). Note that the smallest
field size was determined as amultiple of the average feature size in the dataset.

optimal. Furthermore, this graph teaches us that too small fields lead to a large over-
head in processing: Many tables that contain a liɦle bit of data cannot be generalized
sufficiently for the next level (so no reduction will take place at a level, wasting process-
ing time / copying data to the next level).

For the biggest dataset (the cadastral map with 880,000 faces) we investigated in-
depth the runtime needed for the generalization step. In a sequential run this step took
7900 seconds (slightly more than 2 hours). Wemeasured the time needed for parallel
processing field by field. We also investigated whether this could be shortened by tak-
ing a different order of processing the fields. Figure 5.7 shows two possible scheduling
strategies for distributing work inmultiple parallel CPUs.

The first strategy, the ‘level order’ scheduling, takes care of all fields at the same level
before the higher level is started. The second andmore refined strategy, the ‘parent
child’ scheduling, will schedule the parent field for scheduling if all its children are pro-
cessed.

We assumed that the second scheduling option would significantly reduce the process-
ing time, but this was a bit disappointing. Amodest reduction was observed – from
340 to 290 seconds (15%). Themain boɦleneck remains near the top of the Fieldtree
wheremost of the CPUs have to wait while only few processors are used. Note that the
processing time of a field is dependent on the amount of data in that field. This might
be used in a beɦer scheduling strategy.

We found having processed the CORINE land cover dataset that themajority of the
generalization work was performed towards the end of the whole process (40% of the
runtime was devoted to processing the last field). After inspection, this turned out to be
caused by some very large polygons remaining to the end of the process (thesemassive
polygons with a lot of holes representing the land between all small seɦlements, which

80 Design and development of a system for vario-scale maps

(a)Level order scheduling (b)Parent child scheduling

FIGURE 5.7 Two different scheduling orders for the cadastral dataset. Every rectangle represents
one field. Note that different colours correspond to the levels of the fieldtree (i. e.
red corresponds to the fields with finest grid size). (a) Level order scheduling: The
process waits until all fields of the same level are processed before processing of the
next level starts. (b) The parent child scheduling: Fields are scheduled for process-
ing when all its up to 9 child fields are done.

only fiɦed in the largest field of the Fieldtree). Apart from having a negative influence
on the run time, these polygons will also have a negative impact on the cartographic
result as these polygons will keep their full original amount of detail until when they are
processed.

In order to assess the visual impact, we performed two following tests:

• We compared the result of the parallel version of the algorithmwith the sequen-
tial run (original non-parallel approach); see Figure 5.8. The visual impression of
both approaches are quite similar. Themain difference is that the number of ver-
tices is higher in the parallel version (counting showed that this is roughly twice
the number of vertices). We assume this is due to number of lines fiɦing in the
field, i. e. even longer lines fit in the field in the sequential run, hencemore line
processing could be performed.

• We selected three output maps at specific locations, in order to observe the effect
of the regular grid on cartographic quality of the end result, see Figure 5.9. We
chose three locations; Slice A, right after the lowest field level, slice B, in themid-
dle of the second field level, slice C at the beginning of the third. Themost visible
‘seams’ are right after previous level because almost no generalization took place
on the field boundary compared to the generalized centre of the field. Note that
user’s viewport is smaller than any of the field of the grid. This means user would
not have enough context information on the display to observe differences be-
tween generalized and less generalized regions.

81 5 Large vario-scale datasets

FIGURE 5.8 The visual comparison of a sequential run (in left column) and run in parallel (in
right). The rows display different feature counts: 250, 500 and 1000 from top to
boɦom.

82 Design and development of a system for vario-scale maps

(a)Fieldtree – Side view for the cadastral
dataset. Dashed lines indicates location
of output maps captured in 5.9b, 5.9c and
5.9d. (b)Slice A

(c)Slice B (d)Slice C

FIGURE 5.9 The effect of regular subdivision of space on cartographic quality. An example of the
cadastre dataset shows that ‘seams’ may be themost visible when inappropriate
location in the Fieldtree is selected such as the beginning (b) or the end (d) of field
level.

83 5 Large vario-scale datasets

...
§ 5.6 Conclusions

...

An approach for automatedmap generalization to obtain a vario-scale data structure
of massive datasets has been proposed and tested. We have described all steps of the
process chain and we tested the approach with real data. It has been shown that our
approach is generic and works for different types of input data such as land cover or
road network data. We have tested with real world data , although we still plan to test
the approach with a really massive dataset (e. g. topographic dataset of The Nether-
lands or CORINE for whole of Europe) which will not fit in mainmemory. We expect
that larger dataset will benefit from having evenmore parallelism assuming the hard-
ware is available, e. g. 32 processors. The design is scalable: each job gets its input data
from the database and writes the output again to the database. So, the whole dataset
does not have to fit in mainmemory. As long as the active jobs do fit in memory, the
process should remain efficient. We have to explore this further. If we keep the same
amount of mainmemory but increase the number of parallel processes, will these jobs
still fit in mainmemory? If not, we should either make the average job size smaller or
addmorememory.

The Fieldtree is very appropriate as it is good start for divide-and-conquer, but also
offers very useful multiple levels: What is not solved at the lowest level can be solved
at higher (which glues partial solutions from lower level fields together). This fits very
well with our approach tomap generalization, but the divide-and-conquer approach
using the Fieldtreemay not be limited tomap generalization only, and other spatial
problems could benefit from this type of organization as well, e. g. obtaining an explicit
topological data structure.

We have presented two approaches for scheduling the parallel work. We are aware of
the fact that both of the scheduling approaches are still sub-optimal. An improved
schedulingmight be based on processing the largest fields (with respect to number of
features contained) first and smaller later, and applying dynamic scheduling from a
‘work-pool’.

Furthermore, we only carried out limited evaluation of the cartographic end results and
as we found out with processing the CORINE land cover dataset withmassive polygons,
our approach is less robust against these polygons.

This shows that there are still some open questions to be answered. Our future work
includes:

• Very large features survive until the end and are not generalized. These large ob-
jects and also their island objects are affected. In our tests typical cases are: large
‘background’ polygons, or very long infrastructure features, such as rivers and
roads. Our proposal for a solution in this case: split the large features. This raises
another interesting challenge: How to best split these large features into smaller
(artificial) chunks.

• The effect of the regular grid on cartographic quality of the end result can be re-
duced. The ‘seams’ of the grid are caused by non-processed features because
they lie on boundary of a field. Therefore we propose two options; a) to use two
grids at every level (the second one shifted to themiddle) and have two gener-

84 Design and development of a system for vario-scale maps

alization steps of 37,5% (instead of one 75% generalization), b) to have smaller
steps between levels (and less generalization per level), result is more levels, but
also more arbitrary off-sets.

• The proper size of the lowest fields need further investigation. What is a good
balance between size of fields, running time and cartographic result? We showed
that the running time depends on the field proportions and number and sizes
of the features within. Too small fields lead to a lot of overhead in processing.
Too big fields can lead tomemory problems. This implies that a proper size of
fields is crucial for obtaining a good cartographic end result. The size of fields
is reflected in generalization quality. If the fields are big the ‘seams’ of the field
may be visible, because the objects on the boundary could not be generalised for
a long time while the rest of the field has been simplified a lot. By contrast too
small fields will contain fewer objects which leads to fewer generalization options
again leading to a worse result.

• The Fieldtree subdivides space regularly where the density of the original data
is not considered. In some cases a large city is in one field (lot of generalization
processing is needed) while the rest of the fields cover the rural regions where not
much simplification is required. Thenmost of the resources are spent on the field
containing the city while the other fields are already processed. A good strategy
would be to locally deepen the fields at lowest level where high data density re-
gions are reached. This would result in a slightly different Fieldtree: a structure of
which the lowest deepened fields are not covering the whole domain anymore

• An influence of the parallel creation compared to the traditional creation (based
on global criterion for least important feature) on cartographic quality is not ver-
ified. For example is it possible to distinguish area processed by a different field?
Does the user perception change when we use different/modified grid of the
Fieldtree? Based on initial visual inspections we assume this is probably not the
case, but should be verified with user tests.

• As the parallel creation is not based anymore of the global criterion (of least im-
portant feature), the Fieldtree structure can be also used for the update of vario-
scale structures: only the field with updated data needs to be reprocessed, and
only if generalized result of field is significantly different, then also the parent(s)
needs to be reprocessed (recursively).

85 5 Large vario-scale datasets

