
3 Vario-scale data structures

The previous chapter presents state-of-the-art in map generalization at NMAs’ and
continuous generalization. There is a noticeable technological shift towards contin-
uous generalisation which supports interactive map use where users can zoom in,
out and navigate more gradual way. Despite some research efforts there is no satis-
factory solution yet. Therefore, this chapter introduces the truly smooth vario-scale
structure for geographic information where a small step in the scale dimension leads
to a small change in representation of geographic features that are represented on the
map. With this approach there is no (or minimal) geometric data redundancy and there
is no (temporal) delay anymore between the availability of data sets at different map
scales (as was and is the case withmore traditional approaches of multi-scale repre-
sentations). Moreover, continuous generalisation of real world features is based on the
structure that can be used for presenting a smooth zoom action to the user.

More specific, Section 3.1 and 3.2 provide historical overview of the development and
the theoretical framework for vario-scale representations: the tGAP-structure (topolog-
ical Generalized Area Partitioning). Section 3.3 describes the initial effort to generate
the beɦer cartographic content; the concept of constraint tGAP. Section 3.4 explains
the 3D SSC (Space-Scale Cube) encoding of 2D truly vario-scale data. Section 3.5
shows idea how to combinemore level of details in onemap. Section 3.6 summarizes
the open questions of the vario-scale concept and it indicates research covered in fol-
lowing chapters. Finally, Section 3.7 presents vario-scale data research in parallel to
this PhD for progressive data transfer. Then, Section 3.8 summarises the chapter.

Own publications
...

This chapter is based on the following own publications:

• van Oosterom, P., Meijers, M., Stoter, J., and Šuba, R. (2014). Abstracting Geo-
graphic Information in a Data Rich World: Methodologies and Applications of Map
Generalisation, volume 2014 of Lecture Notes in Geoinformation and Cartogra-
phy, chapter Data Structures for Continuous Generalisation: tGAP and SSC, pages
83–118. Springer International Publishing.

• Šuba, R., Meijers, M., Huang, L., and van Oosterom, P. (2014a). An areamerge
operation for smooth zooming. In Huerta, J., Schade, S., and Granell, C., edi-
tors, Connecting a Digital Europe Through Location and Place, Springer Lecture
Notes in Geoinformation and Cartography, pages 275–293. Springer Interna-
tional Publishing. ISBN: 978-3-319-03611-3.

• Huang, L., Meijers, M., Šuba, R., and van Oosterom, P. (2016). Engineering web
maps with gradual content zoom based on streaming vector data. ISPRS Journal
of Photogrammetry and Remote Sensing, 114:274 – 293.

19

...
§ 3.1 History of development

...

Data structures for multi-scale databases based onmultiple representations aɦempt
to explicitly relate objects at different scale (or resolution) levels, in order to offer con-
sistency during the use of the data. The drawbacks of themultiple representations data
structures are that they do store redundant data (same coordinates, originating from
the same source) and that they support only a limited number of scale intervals. Most
data structures are intended to be used during the pan and zoom (in and out) opera-
tions, and in that sensemulti-scale data structures are already a serious improvement
for interactive use as they do speed-up interaction and give reasonable representations
for a given level of detail (scale).

NEED FOR PROGRESSIVE DATA TRANSFER: A drawback of multiple representation
data structures is that they are not suitable for progressive data transfer, because each
scale interval requires its own (independent) graphic representation be transferred.
Good examples of progressive data transfer are raster images, which can be presented
relatively quickly in a coarse manner and then refined as the user waits a liɦle longer.
These raster structures can be based on simple (raster data pyramid) (Samet, 1984)
or more advanced (wavelet compression) principles (Lazaridis andMehrotra, 2001;
Hildebrandt et al., 2010; Rosenbaum and Schumann, 2004). For example, JPEG2000
(wavelet based) allows both compression and progressive data transfer from the server
to the end-user. Also, some of the proprietary formats such as ECW from ERMapper
andMrSID from LizardTech are very efficient raster compression formats based on
wavelets and offeringmulti-resolution access suitable for progressive data transfer.
Similar effects are more difficult to obtain with vector data and require more advanced
data structures, though a number of aɦempts have beenmade to develop such struc-
tures (Bertoloɦo and Egenhofer, 2001; Buɦenfield, 2002; Jones et al., 2000; Zhou
et al., 2004).

MULTI-SCALE / VARIABLE-SCALE VECTOR DATA STRUCTURES FOR LINE FEATURES:
For single (line) objects, a number of multi-scale/variable-scale data structures have
been proposed: Strip-tree (Ballard, 1981), Multi-Scale Line tree (Jones and Abra-
ham, 1987), Arc-tree (Günther, 1988), and the Binary Line Generalisation tree (BLG-
tree) (van Oosterom, 1990). The Strip-tree and the Arc-tree are intended for arbitrary
curves, not for simple polylines. TheMulti-Scale Line tree is intended for polylines, but
it introduces a discrete number of detail levels and it is a multi-way tree, meaning that
a node in the tree can have an arbitrary number of children. The BLG-tree is a binary
tree for a variable-scale representation of polylines, based on the Douglas and Peucker
(1973) line generalisation algorithm but can be combined with several other line gen-
eralization algorithms. Note that these line data structures can only be used for spa-
tial organization of single objects and for (indexing, clustering) of multiple objects (as
needed by variable-scale or multi-scale map representations), so they only solve part of
the generalisation and storage problem.

One of the first multi-scale vector data structures designed to avoid redundancy was
the reactive BSP-tree (van Oosterom, 1989), which supports both spatial organization
(indexing) andmultiple level of details. Its main disadvantage, however, is that it is a
static structure. The first dynamic vector data structure supporting spatial organiza-
tion of all map objects, as well as multiple scales, was the Reactive tree (van Oosterom,

20 Design and development of a system for vario-scale maps

1992, 1994). The Reactive tree is an R-tree (Guɦman, 1984) extension with impor-
tance levels for objects: more important objects are stored higher in the tree structure,
whichmakesmore important object more accessible. This is similar to the reactive
BSP-tree, but the dynamic structure of the Reactive tree enables inserts and deletes,
functions that the BSP-tree lacks. The BLG-tree and the Reactive tree are eminently ca-
pable of supporting variable-scale/multi-scale maps composed of individual polyline
or polygon objects.

GENERALIZED AREA PARTITIONING: The BLG-tree and Reactive-tree structures are not
well suited for an area partitioning, since removal of a polygon results in a gap in the
map and independent generalisation of the boundaries of two neighbour areas results
in small slivers (overlaps or gaps). Overcoming this deficiency was themotivation be-
hind the development of the GAP tree (van Oosterom, 1995). The BLG-tree, Reactive-
tree, and GAP-tree data structures can be used together, while each supports different
aspects of the related generalisation process, such as selection and simplification, for
an area partitioning (van Oosterom and Schenkelaars, 1995).

Following the conceptualization of the GAP tree, several improvements were published
to resolve limitations of the original data structures (van Puɦen and van Oosterom,
1998; Ai and van Oosterom, 2002; Vermeij et al., 2003). The next section describes
the background of the topological GAP tree, which combines the use of the BLG-tree
and the Reactive tree and avoids the problems of the original GAP tree – redundant
storage and slivers near the boundary of two neighbour areas.

...
§ 3.2 GAP tree background

...

The first tree data structure for generalised area partitioning (GAP tree) was proposed
by van Oosterom (1995). The idea was based on first drawing the larger andmore im-
portant polygons (area objects), so as to create a generalised representation. However,
one can continue by refining the scene through the additional drawing of the smaller
and less important polygons on top of the existing polygons (based on the Painters
algorithm; see Figure 3.1. This principle has been applied to the Digital LandMass
System-Digital Feature Analysis Data (DLMS DFAD) data structure (DMAUSDMA,
1986), because it already had this type of polygons organization. When tested with the
Reactive tree and the BLG-tree, it was possible to zoom in (zoom out) and obtainmap
representations withmore (less) detail of a smaller (larger) region in constant time (see
Figure 3.3, left).

COMPUTING THE GAP TREE: If one has a normal area partition (and not DLMS DFAD
data) one first has to compute the proper structure. This is driven by two functions.
First, the importance function (for example: Importance(a) = Area(a) * WeightClass (a))
is used to find the least important feature a based on its size and the relative impor-
tance of the class it belongs to. Then the neighbour b is selected based on the highest
value of Collapse(a,b) = Length(a,b) * CompatibleClass(a,b), with Length(a,b) being the
length of the common boundary. Feature a is removed and feature b takes its space on
themap. In the GAP tree this is represented by linking feature a as the child of parent
b (and enlarging the original feature b). This process is repeated until only one feature
is left covering the whole domain, forming the root of the GAP tree. Figure 3.1 gives a
schematic representation of such a GAP tree.

21 3 Vario-scale data structures

(a)The scene (b)The GAP tree

FIGURE 3.1 The original GAP tree (van Oosterom, 1995).

Work by van Smaalen (2003) focuses on finding neighbour paɦerns, whichmight in
turn be used for seɦing up an initial compatibility matrix. Bregt and Bulens (1996) give
area generalisation examples in the domain of soil maps, based on the same principles.
Both van Smaalen (2003) and Bregt and Bulens (1996) use an adapted classification
for the higher (merged) level of objects, instead of keeping the original classification at
all levels of detail; e.g., deciduous forest and coniferous forest objects are aggregated
into a new object classified as ‘forest’ or ‘garden’, while ‘house’ and ‘parking place’ ob-
jects form the new object ‘lot’. This could also be done in the GAP tree.

IMPLEMENTATIONS AND IMPROVEMENTS OF THE GAP TREE: Though the GAP tree
may be computed for a source data set, which has a planar partitioning topology, the
GAP tree itself is not a topological structure. Each node in the GAP tree is a polygon,
and this introduces some redundancy as parents and child may have some parts of
their boundary in common. The first GAP-tree construction based on topologically
structured input was implemented by van Puɦen and van Oosterom (1998) for two
real world data sets: Top10vector (1:10,000) and GBKN (1:1,000; Figure 3.3, right). It
turned out that finding the proper importance and compatibility functions (which drive
the GAP-tree construction) is far from trivial and depends on the purpose of themap.
In addition, two improvements were presented in the 1998 paper (at the conceptual
level): 1) adding parallel lines to ‘linear’ area features, and 2) computing a GAP tree for
a large seamless data set.

Ai and van Oosterom (2002) presented two other possible improvements to the GAP
tree: One improvement was that the least important object should not only be assigned
to one neighbour, but subdivided along its skeleton and the different parts assigned to
different neighbours/parents (the result is not a tree but a directed acyclic graph: GAP-
DAG). The second improvement concerned extending the neighbourhood analysis by
considering non-direct (sharing a common edge) neighbour areas as well. Both sug-
gestions are based on an analysis using a Triangular Irregular Network (TIN) structure.

22 Design and development of a system for vario-scale maps

FIGURE 3.2 Importance levels represented by the third dimension (Figure 3 of (Vermeij et al.,
2003)). At themost detailed level (boɦom) there are several objects, while at the
most coarse level (top) there is only one object. The hatched plane represents a
requested level of detail, and the intersection with the symbolic 3D volumes then
gives the faces.

TOPOLOGICAL VERSION OF THE GAP TREE: All improvements still result in a non-
topological GAP structure, whichmeans that it contains redundancy. Vermeij et al.
(2003) presented a GAP-tree structure that avoids most redundancy by using a topo-
logical structure for the resulting GAP tree, not only for the input: thus the edges and
the faces table both have aɦributes that specify the importance ranges in which a given
instance is valid. The 2D geometry of the edges (and faces) is extended by the impor-
tance value range (on the z-axis) for which it is valid (see Figure 3.2). One drawback of
this approach is that it requires considerable geometric processing at the client side
– clipping edges, forming rings, and linking outer and possible inner rings to a face.
A second drawback is that there is some redundancy introduced via the edges at the
different importance levels: i. e. the coordinates of detailed edges are again present in
the edge at the higher aggregation level. Finally, van Oosterom (2005) introduced data
structure which also avoids the redundant storage of geometry at different levels of de-
tail (in the edges). Figure 3.4 shows the generalisation process for the tGAP structure in
which also a simplified version of the edges is available, without explicitly storing them.

MORE COMPACT TGAP STORAGE: The structure stored the node and face data very ef-
ficiently. However, there was a lot of redundancy in the way the edges were stored. The
edge table for a realistic data set did have up to 15 timesmore rows than the original
edge table (and the theoretic worst case is evenO(n2)with n the number of edges at
the largest scale). This wasmainly due to the changing references to the left and right
faces after merging two neighbour faces. Therefore, Meijers et al. (2009) have pro-
posed themodification of structure which removes this redundancy without loss of
functionality.

It was based on two following aspects; First, multiple edge rows in the edge table may
merge in one row if 1) they relate to the same edge and 2) only the left/right references
were changed (not the edge geometry). This results in no change for the geometry,
start and end nodes, and id aɦributes. The imp_low and imp_high aɦributes con-

23 3 Vario-scale data structures

FIGURE 3.3 Left: GAP-tree principle applied to DLMS DFAD (add detail when zooming in).
Right: GAP tree applied to large scale topographic data set (shown at same scale).
Taken from (van Oosterom, 2005).

24 Design and development of a system for vario-scale maps

FIGURE 3.4 Generalisation example in five steps, from detailed to course, wheremerge and sim-
plification operations used. Steps with blg in the title shows the effect of simplifying
the boundaries via the BLG tree. Note that nodes are depicted in blue and removed
nodes are shown for one next step only in white. Taken from (van Oosterom, 2005).

25 3 Vario-scale data structures

tain the union of all importance ranges of the edge (which are per definition adjacent
ranges). Second, the left and right face references should be stored related to the low-
est importance range. In these cases the referred face (and the corresponding edge)
with the highest imp_low level is used as start in the tGAP face-tree and the tree is tra-
versed upwards until the face identifier at the right imp level is found. The left/right
information and the tGAP face-tree can then be exploited to properly identify the areas
at a certain importance level (scale).

Then, just storing only rows for edges that are really new (because these edges are
merged) saves a lot of storage (rows) (the number of rows reduced by a factor of at least
2 as edges are merged pairwise) (Meijers et al., 2009, p. 14). Saving storage space also
implies saving data transfer times in a server-client architecture.

DESCRIPTION OF THE STRUCTURE: All modifications resulted in the tGAP structure
captured in Figure 3.5. The figure summarizes the structure in current implementa-
tion, its database tables and UML diagram.

The description originates from (Meijers, 2011, p. 157); “Edges table (polylines) is the
most important in the database. It contains edges, The imp_low and imp_high at-
tributes define the range of map scales for which a topological entity is valid and has to
be shown. Face references that are stored are limited to the neighbours that are adja-
cent at the start of such a scale range (left_face_lowest_imp
and right_face_lowest_imp) and which faces are neighbouring at the end of this
range (left_face_highest_imp and right_face_highest_imp). This way it is pre-
vented that a lot of duplicate edge records have to be stored, while the only thing that
changes (due to a generalisation operation) is a neighbouring face. Note that the two
extra face pointers (at the high end of the scale range) are added, as this is useful for
replaying generalisation operations progressively, while traversing the tGAP structure
from top to boɦom (in a strict sense, these extra pointers are not necessary, but this
takes away the necessity to perform a translation of the face pointers using the tGAP
face tree hierarchy to the high end of the scale range, before sending the edge).”

...
§ 3.3 Improved cartographic quality in constraint tGAP

...

The tGAP (topological Generalised Area Partitioning) structure was designed to store
the results of the gradual generalisation process as described in previous sections. Ear-
lier research had been focusedmore on proofing the concept, designing the solution,
and shifting the technical limitation than improving cartographic quality of the tGAP.
The generated content had been steered by an importance function, for selecting the
least important object and thenmerge with themost compatible neighbour based on
a compatibility matrix. From the cartographic point of view this solution was not really
optimal.

The initial aɦempts for improving cartographic quality were carried out by Haunert
et al. (2009); Dilo et al. (2009). Figure 3.6 presents an approach, named constrained
tGAP. Instead of generating newmaps from one source (Figure 3.6a) or a sequence of
simpler and simpler map as in classical tGAP (3.6b), the process is based on a refer-
ence, smaller scale, well generalizedmap, see 3.6c. With the additional smaller scale
input data (the constraints), the iterative algorithm can be controlled to obtain higher
quality (intermediate) maps.

26 Design and development of a system for vario-scale maps

(a)UML diagram

CREATE TABLE tgap_faces (
face_id integer,
imp_low numeric,
imp_high numeric,
imp_own numeric,
feature_class_id integer,
area numeric,
bbox box2d);

(b)Face table

CREATE TABLE tgap_face_hierarchy (
face_id integer,
parent_face_id integer,
imp_low numeric,
imp_high numeric);

(c)Face hierarchy table

CREATE TABLE tgap_edges (
edge_id integer,
imp_low numeric,
imp_high numeric,
start_node_id integer,
end_node_id integer,
left_face_lowest_imp integer,
right_face_lowest_imp integer,
left_face_highest_imp integer,
right_face_highest_imp integer,
geometry geometry);

(d)Edge table

FIGURE 3.5 UML diagram and the database tables for tGAP, source: (Meijers, 2011, p. 159).

27 3 Vario-scale data structures

1

2

3

(a)Generalisation from a single
source dataset (repeated
optimization).

1

2

3

(b)Successive generalisation
(classic tGAP approach).

1

2

3

(c)Intermediate representa-
tions fiɦing in the target
representation (constraint
tGAP approach)

FIGURE 3.6 Approaches to create a sequence of LoDs from (Haunert et al., 2009).

Generalisation for the tGAP data structure is performed on an area partition; thus the
large-scale dataset is required to be an area partition. Area objects of the smaller scale
data set act as region constraints in the generalisation process, i. e. they restrict the
aggregation of large-scale objects only inside the region constraints. Themethod pro-
posed here consists of two stages: the first stagematches objects of the large-scale
dataset to objects of the smaller scale dataset, which act as region constraints in the
next stage; the second stage compiles additional information needed for the con-
strained tGAP and performs the generalisation.

The result of generalization is highly dependent of the ‘target’ generalised dataset
(smaller scale input) and it can be obtained via two routes: 1) from an external, in-
dependent source or 2) via a different generalisation algorithm (same source). The
first option was explored by Dilo et al. (2009). The second option was investigated in
(Haunert et al., 2009). Dilo et al. (2009) implemented constrained tGAP with real to-
pographic datasets from the Netherlands for the large-scale (1:1,000) and indepen-
dent medium-scale (1:10,000) data. This solutionmay suffer from geometrical and
time inconsistencies, e. g. the geometry of reference scale is different or not up-to-date.
This couldmake the preprocessing step evenmore complex.

On the other hand, Haunert et al. (2009) used German Land Cover data in 1:50,000
scale (ATKIS DLM50) as input. They eliminated the problem of inconsistency by deriv-
ing small scale data by the optimized (and computationally expensive) algorithm from
the same base data.

Themost significant limitation of using constrained tGAP is in the fact of using ad-
ditional knowledge derived from other solution. In theory, it means that the solution
cannot run independently. Moreover, the results are very dependent on the ‘target’
small scale approach obtained from complex and expensive preprocessing step.

...
§ 3.4 The tGAP structure represented by the 3D Space-Scale Cube

...

The tGAP structure has been presented as a vario-scale structure (van Oosterom, 2005).
So far, the historical overview of development and current implementation have been

28 Design and development of a system for vario-scale maps

(a)Original map (b)Result of collapse (c)Result of merge (d)Result of simplify

(e)Corresponding tGAP structure

FIGURE 3.7 The 4map fragments and corresponding tGAP structure (taken from
(Meijers, 2011, p. 70)).

presented. Here, we will explain howmore gradual (morphing-like transition) between
the stages of the structure can be ensured.

The tGAP structure can be seen as result of the generalisation process and can be used
efficiently to select a representation at any required level of detail (scale). Figure 3.7
shows four map fragments and the tGAP structure in which the following generalisa-
tion operations have been applied:

I. Collapse road object from area to line (split area of road and assign parts to the
neighbours);

II. Remove forest area andmerge free space into neighbour farmland;

III. Simplify boundary between farmland and water area.

The tGAP structure is a Directed Acyclic Graph structure (DAG) and not a tree structure,
as the split causes the road object to have several parents; see Figure 3.7e. In current
tGAP implementation the simplify operation on the relevant boundaries is combined
with the remove or collapse/split operators and is not a separate step. However, for
the purpose of this chapter, it is clearer to illustrate these operators separately. For
the tGAP structure, the scale has been depicted as a third dimension – the integrated
Space-Scale Cube (SSC) representation (Vermeij et al., 2003; Meijers and van Oost-
erom, 2011). We termed this representation the space-scale cube in analogy with the

29 3 Vario-scale data structures

(a)SSC for the classic tGAP structure (b)SSC for the smooth tGAP structure

FIGURE 3.8 The space-scale cube (SSC) representation in 3D, source (Meijers, 2011).

space-time cube as first introduced by Hägerstrand (1970). Figure 3.8a shows this 3D
representation for the example scene of Figure 3.7. In the SSC the vario-scale 2D area
objects are represented by 3D volumes (prisms), the vario-scale 1D line objects are
represented by 2D vertical faces (for example the collapsed road), and the vario-scale
0D point object would be represented by a 1D vertical line. Note that in the case of the
road area collapsed to a line, the vario-scale representation consists of a compound
geometry with a 3D volume-part and 2D face-part aɦached.

Thoughmany small steps (frommost detailed tomost coarse representation – in the
classic tGAP, n − 1 steps exist, if the basemap contains n objects), this could still be
considered asmany discrete generalisation actions approaching vario-scale, but not
truly smooth vario-scale. Split andmerge operations cause a sudden local ‘shock’: a
small scale change results in a not so small geometry change where, for example, com-
plete objects disappear; see Figure 3.9a. In the space-scale cube this is represented by
a horizontal face; a sudden end or start of the corresponding object. Furthermore, poly-
gon boundaries define faces that are all vertical in the cube, i. e. the geometry does not
change at all within the corresponding scale range, which result in prisms constitut-
ing a full partition of the space-scale cube. Replacing the horizontal and vertical faces
with tilted faces as depicted in Figure 3.8b, results in smooth tGAP providing gradual
transitions; see Figure 3.9b.

Then, a map can be obtained from this volumetric partition by horizontal slice. The
continuously changingmap one can imagine as gradually moving the slicing plane (and
scaling) from the top of the cube downwards, there will be any object suddenly appear-
ing or vanishing. All changes result in a smoothly changing 2Dmap: a small change in
themap scale means a small change in the geometry of the resultingmap.

30 Design and development of a system for vario-scale maps

(a)Wireframe and slices of classic SSC (with
shocks).

(b)Wireframe and slices of smooth SSC.

FIGURE 3.9 Themap slices of the classic tGAP structure: (b) step 1 (collapse), (c) step 2 (merge)
and (d) step 3 (simplify). Note that nothing changes until a tGAP event has hap-
pened. Figures originate from (Meijers, 2011).

...
§ 3.5 Mixed-scale representations

...

So far discussion has been restricted to the creation of 2Dmaps by slicing the SSC hor-
izontally, however nothing prevents us from taking non-horizontal slices. Figure 3.10
illustrates amixed-scale map derived as a non-horizontal slice from the SSC. What
does such a non-horizontal slice mean? More detail at the side where the slice is close
to the boɦom of the cube, less detail where the slice is closer to the top. Consider 3D
visualizations, where close to the eye of the observer lots of detail is needed, while fur-
ther away not somuch detail. Such a slice leads to amixed-scale map, as themap con-
tains more generalised (small scale) features far away and less generalised (large scale)
features close to the observer.

Themixed-scale representation brings new aspects to consider:

• Non-planar slices – 2Dmap can also be obtained by slicing surfaces that are non-
planar; e. g. a bell-shaped surface that could be used to create ameaningful ‘fish-
eye’ type of visualizations, see Figure 3.11.

• Slices resulting in multiple parts – It might be true that a single area object in
the original data set might result in multiple parts in the slice (but no overlaps or
gaps will occur in the slice). This increases the number of objects in themap and
it results in a degradation of the quality of themap.

• Limits of slicing surfaces –What are other useful slicing surface shapes? Are there
any limits? One can think of a bell-shaped, a sine curve surface or a 3Dmesh ob-
ject based surface. On the other hand, a folded surface seems to be nonsensical
as it could lead to two representations of the same object in onemap/visualiza-
tion.

31 3 Vario-scale data structures

(a)A set of smooth slices
derived from the SSC.

(b)How the non-horizontal
slice of (c) is taken.

(c)Correspondingmixed-scale
map (non-horizontal slice):
top of map showsmore
generalised features than
boɦom.

FIGURE 3.10 Checker board data as input: each rectangular feature is smoothly merged to a
neighbour. Subfigures show: (a) a stack of horizontal slices, (b) taking a non-
horizontal slice leads to a ‘mixed- scale’ map and (c) onemixed scale slice (non-
horizontal plane). All figures are taken from (Meijers, 2011).

(a) (b) (c)

FIGURE 3.11 A ‘mixed-scale’ map. Harrie et al. (2002) term this type of map a ‘vario-scale’
map, while we term this a ‘mixed-scale’ map. Furthermore, it is clear that there
is a need for extra generalisation closer to the borders of themap, which is not
applied in (b), but is applied in (c). With our solution, this generalisation would
be automatically applied by taking the corresponding slice (bell-shaped, curved
surface) from the SSC. Illustrations (a) and (b) taken fromHarrie et al. (2002) and
(c) from Hampe et al. (2004).

32 Design and development of a system for vario-scale maps

...
§ 3.6 State of the art

...

The text above gave overview about past developments and the state-of-the-art of
vario-scale concept when PhD project started. There were also some open questions
which indicate what were themain limitation and desires at that time, from (van Oost-
erom, 2005; van Oosterom andMeijers, 2012; Šuba, 2012). Below a list of open issues
prior to this research is included:

I. It will be necessary to verify theoretical concepts about SSCmore practically. Fur-
ther, to test whether it is necessary to create and store SSC as a 3D structure or
is it possible to work with only the 2D representation? How to realize conversion
from tGAP to smooth tGAP?

II. Explore new possibilities of creatingmaps by slicing. It should be possible to cre-
ate amap with a slice which is not even horizontal. It would lead to a ‘mixed-
scale’ map. How can this be done efficiently? How will users perceive this?

III. The current structure only explicitly supports area features. Line and point fea-
tures are not yet included explicitly in the storage structure. However these type
of objects are produced during the creation of the tGAP structure. The collapse
process is a good example. When the long feature is collapsed to a skeleton it
changes dimension, e. g. from dimension 2 to dimension 1, from an area feature
to a line. It is convenient to store information about the collapsed feature.

IV. Labels are an important part of maps, but are not included in the structure. Ob-
jects in themap need a label and every label in themap takes space. It is a clas-
sical cartographic problem: each object that has to be labelled allows a number
of positions where the corresponding label can be placed. However, each of these
label candidates could intersect with other label candidates and other objects as
well. It is possible to find the right solution for just one predefined selected scale,
but how can we find the right solution for the variable-scale?

V. Larger real world data sets should be tested (to further assess the potential of
vario-scale maps). How should we deal withmillions of records not fiɦing into
thememory? One solution could be split in smaller parts. After that every part
has to be computed separately (and potentially processed in parallel) and in the
end these have to bemerged together. How can the whole process bemademan-
ageable?

VI. Onemerge operation at a time is supported in the structure. More generaliza-
tion actions could run concurrently, e. g. a parallel merging process could be an
improvement with objects involved at different locations.

VII. Make the structure more dynamic. The current tGAP structure is a static one. It
cannot handle changes of source data over time. If a small change of data takes
place in the structure, the whole structure has to be recomputed.

VIII. Beɦer decisions, because the selection of an object is based on area and class
of object only. Moreover the thematic semantic aspect should be considered
because there is no approach that would take into account the feature type of the
objects, e. g. linear or areal.

33 3 Vario-scale data structures

TABLE 3.1 The list of open questions from previous publications (August 2012)
number Proposed concept Implemented, tested during PhD
I SSC - practical test, convertion yes, Chapter 6
II Slicing, ‘mixed-scale’ map yes, Chapter 6
III Other map features yes, Chapter 4
IV Labels no
V Bigger dataset yes, Chapter 5
VI More operations simultaneously yes, Chapter 4
VII Dynamic structure no
VIII Beɦer decisions yes, Chapter 4
IX Beɦer techniques for gen. map content yes, Chapter 4
X Progressive transmission no, §3.7
XI User testing yes, Chapter 6

IX. Improve the current vario-scale techniques for beɦer vario-scale map content.
Can we come up with a beɦer method to steer the generalization process that is
used to obtain data for the tGAP data structures?

X. Explore progressive transmission (and implement a working prototype in a GIS
viewer, such as QGIS). A streaming solution, in which previously sent ordered
geometry is reused, will only be possible with an approach where redundancy is
addressed from the start. Data streaming becomesmore important with a very
large dataset. Having a coarse overview first, adding gradually more detail, makes
it possible to stop when sufficient detail has arrived.

XI. Measure the impact of vario-scale on users. Is the vario-scale approach perceived
beɦer as multi-scale solution or faster, more intuitive or more effective for user
navigation. User testing is a tool for such a validation. However there is no proto-
type to realize such testing at this moment.

These open questions give us an idea what were themost urgent issues in the project.
However, the number of problems faced was quite large and the research time was lim-
ited. Therefore we considered; 1) the original research proposal, 2) discussion with
the STWUsers Commiɦee, 3) a logic order, and 4) urgency in the vario-scale research.
Those aspects have been used for defining themain research parts in the next chap-
ters. Table 3.1 summarize the list above. It also indicates what was selected to be re-
searched in this thesis; If so, the related chapter is mentioned.

...
§ 3.7 Progressive data transfer

...

Table 3.1 indicates that topic progressive data transfer was investigated during the
time of this PhD project. Even though the topic is not withinmain focus of this work,
it is important to mention it because shows additional aspect of vario-scale approach
and completes the picture of the project.

Huang et al. (2016) have shown a solution for the progressive transfer of geographic
vector data using vario-scale data structure in web-services seɦing. Note, that no 3D
SSC and slicing as described in Section 3.4 was implemented, it is based on ‘normal
tGAP’. It focuses on data streaming through possibly limited bandwidth. First, the

34 Design and development of a system for vario-scale maps

FIGURE 3.12 Client-server communication architecture for progressive data transfer (Figure 9 of
(Huang et al., 2016)).

vario-scale data structure is prepared on the server side which encodes the results of
the sequence of generalization steps; then, client-server communication architecture
with client-side visualizations and smooth zoom interactions is efficiently realised us-
ing data from a vario-scale server.

In situation when the user performs an zooming operation, see Figure 3.12, the re-
quest parameters are; 1) a pair of bounding boxes (capturing the original and desired
map state) and 2) optimal counts1. The response consists of a stream of chunks. Each
chunk contains sufficient information (i. e. edges, faces and importance value) to bring
themap at the client side to a new consistent state. Thus themap is gradually refined
with content after an updated edges and face have been processed –- the user might
still be zooming. Therefore, the response is dealt with chunk by chunk. For every in-
coming chunk of the response:

I. The client selects which edges and faces have to remain from the last response
received.

II. The winged edge structure is updated accordingly (adding new edges/faces, re-
moving unneeded faces/edges).

1 Optimal count defines the user preference of howmuch data is retrieved and visualised. By changing it, the user
canmodify themap appearance from a densemap to amap with few objects.

35 3 Vario-scale data structures

III. Ring and display objects are formed for updated topology primitives (faces) and
the relevant styling is added.

IV. Display objects from the previous step are updated accordingly (those SVG poly-
gons that are no longer needed are deleted and new ones that were formed are
added).

This leads to faster visual feedback for a user. The user can see themap improve while
downloading additional refinements (with a partial answer themap can already be
constructed).

The idea of vario-scale as an optimal tool for progressive transfer of geographical data
via the Internet was one of the original hypotheses, but it has been never proven until
now. The paper by (Huang et al., 2016) demonstrated the potential of the vario-scale
concept, because solutions for efficiently transferring vector data especially for lim-
ited bandwidth are urgently needed in desktop andmobile applications at high per-
formance levels. To conclude, this makes the vario-scale approach relevant research in
the field of automatedmap generalization because it combines 1) minimal duplication
in data storage, 2) explicit links (because of the hierarchy structure) between themap
objects, and 3) support for progressive data transfer.

...
§ 3.8 Final remarks

...

This chapter presented vario-scale development in the past and state of the art when
PhD project started. It explained vario-scale approach inmore detail using a specific
data structure, which stores the results of map generalization actions; features are gen-
eralized in small steps, progressively leading to simpler and simpler maps. Themain
advantages of the concept compared to themulti-scale approaches can be summa-
rized in the following aspects:

I. Redundant storage is eliminated asmuch as possible by avoiding duplication of
features (as in multi-scale) and storing the shared boundaries between neigh-
bouring areas instead of the explicit polygons themselves, i. e. using a topological
data structure composed of nodes, edges and faces.

II. More intermediate representations can be constructed, because the automated
generalization process records for every topological primitive (node, edge or face)
the valid range of map scales for which this element should be shown.

III. The lineage of the generalization steps is stored explicitly and implies the links
between generalized and original objects. Obtaining these links is regarded as a
very difficult task for multi-scale databases. Themain advantages of this are (1)
making progressive updates/transmission possible and (2) future updates of the
features are more easy to implement without re-generating the dataset.

IV. The Space Scale Cube (SSC) conceptual model makes possible really smooth
transitions throughout the scales. It changes representation from 2Dmap fea-
tures to 3D polyhedra. Then to derive amap from an SSC, themodel is sliced
by a plane at the desired level of detail. Hereby, exact LODs can be chosen and
smooth transitions between abstraction levels are ensured.

36 Design and development of a system for vario-scale maps

Our approach can, in some aspects, already provide an advanced solution compara-
ble to results of a well-knownmulti-scale solution. However, the vario-scale concept
is still ongoing research which requires further development and testing. Therefore,
Section 3.6 identified themost urgent needs of the approach and some of themwill be
addressed later.

For the remaining chapters it is good to keep inmind that vario-scale produce a se-
quence of successively more generalizedmaps, so that thesemaps go well together,
similar to (Chimani et al., 2014); instead of considering each level of generalization
independent. We aim at providingmore degrees of freedom in data use. In our per-
spective, the sequence of generalization steps is more valuable than just the final map
of specifically-identified scale. Our ambition is to produce data without explicit lower
and/or upper bound. This makes themethod very generic. On the contrary, it is diffi-
cult to compare with current maps because vario-scale is different by design.

37 3 Vario-scale data structures

