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Abstract

Following the 2007-08 Global Financial Crisis, there have been a growing research
interest on the spatial interrelationships between house prices in many countries. This
paper examines the spatio-temporal relationship between house prices in the twelve
provinces of the Netherlands using a recently proposed econometric modelling
technique called Bayesian graphical vector autoregression (BG-VAR). This network
approach enables a data driven identification of themost dominant provinces where
house price shocks may largely diffuse through the housingmarket and it is suitable for
analysing the complex spatial interactions between house prices. Using temporal
house price volatilities for owner-occupied dwellings, the results show evidence of
house price diffusion pattern in distinct sub-periods from different provincial housing
sub-markets in the Netherlands. We observed particularly prior to the crisis, diffusion
of temporal house price volatilities from Noord-Holland.

Keywords: Graphical models, House price diffusion, Spatial dependence, Spillover
effect

.............................................................................................................................
§ 3.1 Introduction

.............................................................................................................................

The collapse of house prices during the 2007-08 Global Financial Crisis (GFC) slowed
down economic growth inmany countries. After the GFC, researchers and governments
alike have been seeking to understand the dynamics of house price development in
order to resuscitate the stagnating housingmarket and the general economy. This has
consequently led to a new research agenda that specifically seeks insights into spatial
interactions and diffusion between the regional housingmarkets. House prices vary
over space and time, but developments of house prices across regionsmay not be
entirely independent of each other. As explained by Gong et al. (2016b), there are
significant variations in regional house prices. However, house prices interrelate
spatially over time, and it is paramount for governments to understand these
interrelationships so as to formulate policies to regulate the overall functioning of the
housingmarket.

Spatial interrelationships between regional house prices may take the form of a
long-run convergence or a temporal diffusionmechanism. Long-run convergent
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property markets equilibrate and remain integrated over a long period of time (Holmes
and Grimes, 2008; Cook, 2005; Cotter et al., 2011). Temporal house price diffusion is
also sometimes known in the literature as ripple or spillover effect (see Meen, 1999).
This market phenomenon depicts the situation where house price shocks in one region
is believed to propagate to house prices in other regions with a transitory or permanent
effect (Balcilar et al., 2013; Canarella et al., 2012; Pollakowski and Ray, 1997).
Empirical evidence in support of this temporal house price diffusionmechanism exists
in the context of the US (Canarella et al., 2012; Holly et al., 2010; Pollakowski and Ray,
1997) and the UK (Meen, 1999, 1996; Holly et al., 2011). More recent results from
China and other developing countries also lend support to the house price diffusion
hypothesis (see Gong et al., 2016b; Lee and Chien, 2011; Nanda and Yeh, 2014;
Balcilar et al., 2013). However, in most of these previous studies, the hypothesis is
tested for a lead-lag relationship where it is assumed a priori that the diffusion will
start from some economically “superior region”.

In this paper, we shed light on the spatial and temporal house price diffusion in the
case of the Netherlands. The focus is specifically as follows. First, we investigate if there
is a spatial dependence of temporal house price volatilities and a diffusion pattern
between provinces in the Netherlands. Secondly, we are interested in identifying from
the data the provinces whichmay serve as the dominant sources of house price shocks.
Lastly, we investigate if these spatio-temporal relationships vary over time.

We employ a graphical network approach for studying these spatio-temporal house
price dynamics. Graphical modelling is a class of multivariate analysis that uses graphs
consisting of nodes and edges to study the interaction and path dependence between
variables. The nodes of this graph represent the variables while the edges (or links)
denote their interactions and dependence structure (see Lauritzen, 1996; Eichler,
2007). The graphical modelling approach has become popular as amore natural way
to discover hidden and complex interactions amongmultiple variables. It is applied
mostly in the study of contagion and systemic risk analysis in the financial sector where
there is complicated and non-linear relationships between variables (see Ahelegbey,
2016, for a more comprehensive review). Like most financial variables, one indeed
expects a complex interrelationships between regional house prices which can easily be
handled by the graphical network approach.

This paper specifically adopts the graphical method recently proposed by Ahelegbey
et al. (2016a) called the Bayesian Graphical Vector Autoregression (BG-VAR). The
BG-VAR is a data-driven approach where the directed edges of the network represent
causal relationships. The empirical application in this paper uses quarterly data
(1995:Q1 - 2016:Q1) on temporal house price volatilities for second-hand
owner-occupied dwellings from the twelve provinces of the Netherlands. The results
establish a temporal dependence and diffusion dynamics existing between the
provincial housingmarkets. These spatial relationships, however, vary over time in
terms of the degree of dependence and the centrally dominant sub-markets. In
particular, between 1995Q1 and 2005Q2, Noord-Holland wasmost predominant,
whereas the central regional housingmarket in the period 2005Q3–2016Q1 was
Drenthe.

We organised the remaining sections of the paper as follows. A brief overview of the
related literature is provided in Section 3.2. Section 3.3 describes the BG-VARmodel.
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The description of the data is presented in Section 3.4 while Section 3.5 discusses the
empirical results. The entire paper is concluded in Section 3.6.

.............................................................................................................................
§ 3.2 Extant literature

.............................................................................................................................

Many scholars have been working on the spatio-temporal house price diffusion or the
so-called ripple effect and a vast literature now exist. An extensive review of the
literature is provided by Balcilar et al. (2013) andmost recently by Nanda and Yeh
(2014) and Gong et al. (2016b). We only provide a brief summary here. The study of
this ripple effect hypothesis actually began from the UK when English researchers
observed that house prices rise, during an upswing, first from the South-East (mostly
London) and then spread out to other parts of the country (Giussani and
Hadjimatheou, 1991; Meen, 1996, 1999). According to Pollakowski and Ray (1997)
house price diffusion will not necessarily occur between neighbouring housing
markets, but may require some form of economic interrelationship. Meen (1999)
likewise shared the view of Pollakowski and Ray (1997), and noted that spatial
dependencemay not be necessary for explaining the ripple effect. Meen (1999) then
suggested four probable mechanisms through which rising house prices from one
regionmay later manifest in other parts of the UK. These channels according to the
author include: migration, equity transfer, spatial arbitrage and spatial patterns in
house price determinants. As also noted later by Canarella et al. (2012), migration
particularly may lead to house price ripple effect if households relocate in response to
changes in the spatial distribution in house prices.

Meen (1999) also provided an empirical framework for testing the ripple effect by
assuming that regional house prices will react to shocks at different rates. The author’s
approach was equivalent to testing the stationarity of the regional to national house
price ratios. AlthoughMeen (1999) was unsuccessful in confirming the ripple effect
with the Augmented Dickey-Fuller test, the author’s empirical framework became the
basis for other scholars who later found empirical evidence usingmore sophisticated
stationarity test procedures. Cook (2003), for instance adopted the Threshold
Autoregressive (TAR) andMomentum Threshold Autoregressive (MTAR) test
procedures while Holmes and Grimes (2008) used a combination of unit root test and
Principal Component Analysis (PCA) to confirm the spillover effect in the UK. Canarella
et al. (2012) similarly studied the house price diffusion effect in the US by using a
combination of the Generalised Least Squares (GLS) version of the Dickey-Fuller,
non-linear unit root tests and other test procedures that control for structural breaks.
Balcilar et al. (2013) also adopted a Bayesian and non-linear unit root tests, with and
without structural breaks to investigate the ripple effect in the South African housing
market. The Panel Seemingly Unrelated Regressions Augmented Dickey-Fuller
(SURADF) has equally been employed by other scholars (e.g. Lee and Chien, 2011;
Holmes, 2007).

Recently, tremendous effort, relying on the advances in the econometric literature, has
also been channelled into refining themethodology for testing the ripple effect
hypothesis beside the “Meen framework”. Holly et al. (2011), for example proposed a
dynamicmodelling approach where they allowed shocks from the dominant region to
propagate to other regions and then echo back. The authors found support for the
ripple effect using this approach for the UK with London as the dominant region. Gong
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et al. (2016b) adopted similar method in their study of ripple effect for 10 regions in
the Pan-Pearl river of China. Nanda and Yeh (2014), in a related study also suggested
using a dynamic panel-spatial model. Some studies equally advocated formulating a
Spatial Vector Autoregressive (SPVAR) model and subsequently testing for Granger
Causality (GC) and/or performing Impulse Response Analysis (IRA) to examine the
ripple effect hypothesis. Brady (2014), for example captured the spatial diffusion
between regional housing prices in the US with impulse response functions estimated
from a Spatial Autoregressive (SAR) model.

Pinkse and Slade (2010) as well as Gibbons and Overman (2012), however, argued that
the SARmodel andmany other spatial models (see LeSage and Pace, 2009; Florax and
Folmer, 1992; Dubin, 1992) may suffer generally frommis-specification because the
spatial weightingmatrices which are central to thosemodels are constructed in an
ad-hocmanner. Other authors entirely avoid constructing the spatial weightingmatrix
by estimating traditional VAR to perform GC and IRA. For instance, Vansteenkiste and
Hiebert (2011) adopted a global VARmodel and IRA to study the house price spillover
effects across countries in the euro area. Gupta andMiller (2012a), similarly
formulated traditional VARmodel after which they tested for GC and performed IRA to
verify the spatial diffusion phenomenon between Los Angeles, Las Vegas, and Phoenix
in the US.

The VAR basedmodels, similarly suffer frommis-specification or over-parametrisation,
whichmay render the impulse response function and GC test inaccurate (see Koop and
Korobilis, 2010; Vega and Elhorst, 2013; George et al., 2008). To eliminate the
problem of mis-specification and over-parametrisation, Ahelegbey et al. (2016a)
recently proposed the Bayesian graphical network vector autoregressive (BG-VAR)
method which provides a better approach to specify and estimate a parsimonious VAR
model. The novelty of the BG-VAR is that, we can identify the temporal dependence
structure between the variables without having to estimate the structural (VAR)
parameters.

In addition, themethod could be used to identify the direction of dependence between
the variables and it is somewhat related to the concept of GC. The GC, however adopts a
pairwise (or conditional pairwise) analysis to identify the dependence patterns without
accounting for the structural uncertainties. On the other hand, the BG-VAR employs a
Bayesian technique which incorporates necessary prior information to explore the
structure and to apply model averaging. Ahelegbey (2016) provided empirical evidence
that support the superior efficiency of the BG-VAR over the GC in producing
dependence patterns that are more suitable for capturing complex interdependencies.
Investigating the dependence structure betweenmultiple time series with the BG-VAR
model is generally more convenient for researchers and policy makers to understand
directional or causal relationships.

.............................................................................................................................
§ 3.3 The Bayesian graphical vector autoregressive (BG-VAR) model

.............................................................................................................................

This section presents the formulation of the BG-VARmodel adopted in this paper.
Assume for a moment that temporal house price volatilities in one region is a result of
earlier shock to house prices in other regions. We can formulate a vector autoregressive
process of order p (VAR(p)) to capture these interdependencies. As mentioned earlier,
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some authors study the spatial and temporal house price dynamics by testing for
Granger causality (GC) and performing IRA from this underlying VARmodel.

Let Yt denote the vector of house price volatilities at the time t from n regions which
are demeaned. We can write the VAR(p) process for Yt following the equation

Yt =

p∑
i=1

BiYt−i + ut = BXt + ut, ut ∼ N (0,Σu) (3.1)

where t = p + 1, . . . , T ; p is themaximum lag order to be chosen and
Xt = (Y ′

t−1, . . . , Y
′
t−p)

′ is np × 1 stackedmatrices of the lagged regional house price
volatilities. B = (B1, . . . , Bp), whereBi, 1 ≤ i ≤ p is an n × nmatrix of coefficients,
which determine the dependence of the house price volatilities on their lags.

The set of equations in (3.1) captures the structure of the interactions between the
regional house price volatilities and Ahelegbey et al. (2016a) showed that the temporal
dependencies between them could be inferred fromB. For example, when the
volatility of house prices in one region depends only on a subset but not on earlier
shock to house prices in all the regions, there are components ofB that become zero.
In general,Bij measures the anticipated effect of changes in the j-th predictor (Xj,t)
on the house price development in the i-th region (Yi,t).

Ahelegbey et al. (2016a) demonstrated that the VARmodel (3.1) can be
operationalised as a graphical model using the relationB = (G ◦ Φ), whereG is a
binary (0/1) matrix,Φ is a coefficients matrix, both of dimension n × np, and (◦) is the
element-by-element product. The elements ofG represent the presence or absence of
an edge (interaction) between volatility of house prices in pairs of regions. A
one-to-one correspondence betweenB andΦ conditional onG can be identified. That
is,Bij = Φij ̸= 0, ifGij = 1; andBij = 0, ifGij = 0.

As an example, consider an arbitrary five-dimensional VAR(1) with coefficients matrix

B =


β11 0 0 0 0
β21 0 β23 0 0
β31 0 β33 0 0
0 0 β43 β44 0
0 β52 0 0 β55

 (3.2)

where the non-zero elements ofB are real numbers. The network that depicts the
temporal dependence among the variables associated with (3.2) can be visualised in
Figure 3.1. The nodes of this network are specifically the five variables: Y1t, Y2t, Y3t, Y4t

and Y5t. Since β21 ̸= 0, Y1,t−1 has a significant impact on Y2,t. This also means that an
edge exists between Y1 and Y2 which is denoted as Y1 → Y2. The edges of the network
indicate the lagged dependencies between the variables without self lag effects, which
are the indirect effects.

Elhorst (2014) and LeSage and Pace (2009) discussed the direct and the indirect (or
spillover) effects between spatial variables. Figure 3.1 shows that the two effects may
be easily distinguished with the BG-VAR approach. The direct effect are represented in
the diagonal of the graphmatrix G, while its off-diagonals describe the indirect
interactions depicted by the Figure 3.1(b). For the diffusion dynamics, it suffices to
estimate only the network structure captured byG. LetDt = (X ′

t, Y
′
t )

′ be a d × 1

27 3 Detecting spatial and temporal house price diffusion in the Netherlands: A Bayesian network approach



















Y1,t−1 Y2,t−1 Y3,t−1 Y4,t−1 Y5,t−1

Y1,t 1 0 0 0 0

Y2,t 1 0 1 0 0

Y3,t 1 0 1 0 0

Y4,t 0 0 1 1 0

Y5,t 0 1 0 0 1

















((a)) Graphmatrix
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((b)) Graph structure

FIGURE 3.1 Networkmatrix and diagram associated with the temporal dependence in the five-
dimensional VAR(1) process in (3.2).

vector, where d = n + np and assumeDt ∼ N (0,Ω−1), whereΩ is a d × d precision
matrix. The joint distribution for all the variables inDt can be summarised with a
graphical model and represented by the pair (G,Ω) ∈ (G × Θ). Here,G is a directed
acyclic graph (DAG) of the relationships among the variables inDt,Ω consists of the
VARmodel parameters, G andΘ are the graph and parameter space respectively. The
triple (Ω,Σu, B) aremathematical related. SupposeXt ∼ N (0,Σxx) and
Yt|Xt ∼ N (BXt,Σu),B andΣu can be obtained from the covariancematrix ofDt (i.e.
Σ = Ω−1) by

B = ΣyxΣ
−1
xx , Σu = Σyy − ΣyxΣ

−1
xxΣxy (3.3)

whereΣyx is n× np covariances between Yt andXt,Σxx is np× np covariances among
Xt andΣyy is n × n covariances among Yt. GivenB,Σu andΣxx,Ω can equally be
obtained using the well-known Sherman-Morrison-Woodbury formula (Woodbury,
1950),

Ω = Σ−1 =

(
Σ−1

xx +B′Σ−1
u B −B′Σ−1

u

−Σ−1
u B Σ−1

u

)
, where Σ =

(
Σxx Σxy

Σyx Σyy

)
(3.4)

By definingB = (G ◦ Φ), equation (3.4) shows howΩ relates toG throughB. The
specification of the BG-VARmodel is completed with the choice of a hierarchical prior
on the lag order p, the graph structureG and the parameterΩ.

We now focus on the estimation procedure for the graph structure (G) associated with
the temporal dependence between the regional house prices. In the Bayesian
framework, the joint prior distribution of (p,G,Ω) is given by
Pr(p,G,Ω) = Pr(p)Pr(G|p)Pr(Ω|p,G). It is important to first select the optimal lag
order for the VARmodel. Following Ahelegbey et al. (2016b), we choose p in the range
0 < pmin < pmax < ∞, for some lower bound pmin and upper bound pmax. More
specifically, we assume p follows a discrete uniform prior on {pmin, . . . , pmax}with a
distribution

Pr(p) =
1

pmax − pmin + 1
(3.5)

Since we seek to estimate the regional market that is central in the spread of house
price volatility from the data, it is more reasonable to assume a priori that any region is
equally likely to play this role. This implies that the graph structure can be represented
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as a product of local sub-graphs of each equation of themodel andmay be written as

Pr(G|p) =
n∏

i=1

Pr(πi|p) (3.6)

where πi = {j = 1, . . . , np : Gij = 1} is the set of price volatilities of the i-th equation
predictors.

We formulate in what follows, the standard techniques for estimatingG also described
by Ahelegbey et al. (2016a,b). We assume for each edgeGij , an independent Bernoulli
trial with conditional prior probability

Pr(πi|p, γ) = γ|πi|(1− γ)np−|πi| (3.7)

where |πi| is the cardinality of πi and γ ∈ (0, 1) is the Bernoulli parameter. We use
a uniform graph prior by choosing γ = 0.5 so that Pr(πi|p, γ = 0.5) = 2−np and
Pr(G|p) ∝ 1.

Following standard Bayesian paradigm, we also assume thatΩ conditional on p and a
complete graphG is Wishart distributed,Ω ∼ W(ν, S−1), with density

Pr(Ω|p,G) =
1

Kd(ν, S)
|Ω|

(ν−d−1)
2 exp

{
− 1

2
⟨Ω, S⟩

}
(3.8)

where ⟨A,B⟩ = tr(A′B) is the trace inner product, ν is the degree of freedom, S is the
prior sum of squaredmatrix andKd(ν, S) is the normalizing constant. The likelihood
of a random sampleD = (D1, . . . , DT ) is multivariate Gaussian with density

Pr(D|p,Ω, G) = (2π)−
1
2
dT |Ω|

1
2
T exp

{
− 1

2
⟨Ω, Ŝ⟩

}
(3.9)

where Ŝ =
∑T

t=1 DtD
′
t is a d× d sample sum of squaredmatrix.

Given thatG is unknown, a standard Bayesian approach for determining the graph
structure is to integrate outΩ from (3.9) with respect to its prior given by

Pr(D|p,G) =

∫
Pr(D|p,Ω, G) Pr(Ω|p,G)dΩ =

Kd(ν + T, S + Ŝ)

(2π)
1
2
dTKd(ν, S)

(3.10)

where S + Ŝ is the posterior sum of squaredmatrix. The expression (3.10) is the
marginal likelihood function expressed as ratio of the normalising constants of the
Wishart posterior and prior. Following standard application, themarginal likelihood
factorises into the product of local terms, each involving Yi,t and its set of selected
predictors,Xπi,t, given by

Pr(D|p,G) =

n∏
i=1

Pr(D|p,Gi,πi) =

n∏
i=1

Pr(D(i,πi)|p,G)

Pr(D(πi)|p,G)
(3.11)

whereD(i,πi) andD(πi) are sub-matrices ofD consisting of (Yi,t, Xπi,t) andXπi,t

respectively. Letwi ∈ ({i} ∪ πi). The closed-form expression for the left-hand side of
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(3.11) is given by

Pr(Dwi |p,G) =
π− 1

2
T |wi|ν

1
2
ν|wi|

(ν + T )
1
2
(ν+T )|wi|

|Σwi
|
1
2
ν

|Σ̄wi |
1
2
(ν+T )

|wi|∏
s=1

Γ
(
ν+T+1−s

2

)
Γ
(
ν+1−s

2

) (3.12)

where |wi| is the cardinality ofwi,Σwi
and Σ̄wi are the prior and posterior covariance

matrices ofDwi .

Again, we follow standard practice and setΣwi
= I|wi|, where I|wi| is a

|wi|-dimensional identity matrix.1 By definition, (3.12) consists of a component that is
independent of Σ̄wi . We can reduce the computational time by expressing this
independent component as a function Qν(|wi|, p, T ) given by

Qν(|wi|, p, T ) =
π− 1

2
T |wi|ν

1
2
ν|wi|

(ν + T )
1
2
(ν+T )|wi|

|wi|∏
s=1

Γ
(
ν+T+1−s

2

)
Γ
(
ν+1−s

2

) (3.13)

Since for each equation, we have np number of explanatory variables, |wi|will be
bounded below by 1 and above by np + 1. Thus, we can set ν = np + 2. Given ν, T and
p, Qν(|wi|, p, T ) does not directly depend on the variables inwi but on
|wi| ∈ {1, . . . , np+ 1}. Hence, (3.12) may be expressed as

Pr(Dwi |p,G) = Qν(|wi|, p, T ) |Σ̄wi |
− 1

2
(ν+T ) (3.14)

The posterior covariancematrix ofD is also given by

Σ̄ =
1

ν + T

(
νId +

T∑
t=1

DtD
′
t

)
(3.15)

Thus, Σ̄wi in (3.14) can be obtained as a sub-matrix of Σ̄which corresponds to the
elements inwi. Pre-computing Σ̄ andQν(|wi|, p, T ) for |wi| given ν, T and p, before
sampling the network matrix reduces the computational complexity andmakes the
algorithm efficient. The details of sampling the network structure is provided in the
Appendix to Chapter 3.

.............................................................................................................................
§ 3.4 Description of data

.............................................................................................................................

This section gives a brief background to the regional housingmarket in the Netherlands
and describes the data. The spatial units for our analysis include the twelve official
Dutch provinces.2 These are, namely Drenthe (DR), Flevoland (FL), Friesland (FR),
Gelderland (GE), Groningen (GR), Limburg (LI), Noord-Brabant (NB), Noord-Holland
(NH), Overijssel (OV), Zuid-Holland (ZH), Utrecht (UT) and Zeeland (ZE) (seemap in
Figure 3.2). According to Statistic Netherlands (CBS), Zuid-Holland is the largest in
terms of GDP (141.758 billion Euros in 2014), followed by Noord-Holland (133.358

1 For anyn × n identity matrixA, we have |A| = 1.

2 In this paper, we use region and province interchangeably.
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FIGURE 3.2 Map of the twelve provinces of the Netherlands.

Source: d-maps.com

billion Euros in 2014). Zeeland is the smallest with estimated GDP of 11.429 billion
Euros in 2014. The capital Amsterdam is hosted by Noord-Holland while the
government seat (The Hague) is located in Zuid-Holland. The extant literature suggest
a higher tendency of house price shocks to diffuse from some “mega economic
districts” to peripheral regions (see Gong et al., 2016b; Holly et al., 2011). Thus, our
initial expectation is that Noord-Holland or Zuid-Hollandmay be central in the house
price diffusionmechanism in the Netherlands within certain periods.

We use quarterly house price indexes spanning the period 1995Q1 to 2016Q1 for
second-hand owner-occupied dwellings in this paper. The data is obtained from
Statistic Netherlands (CBS). CBS is the Dutch official agency which publishes statistics
on housing and other sectors of the economy. The indexes are constructed adopting
the sale price appraisal ratio (SPAR) method (see de Haan et al., 2009). By using official
annual appraised values for the dwellings and chaining the ratios, CBS adjusts for
appraisal bias in the SPAR index but is unable to control for quality changes. Given
available house transaction data, CBS’ SPAR index is themost reliable in the
Netherlands (De Vries et al., 2009).

A simple plot of the house price indexes (Figure 3.3) shows a common trend in the
growth of house prices in all the twelve regional markets before and after the GFC. The
periods prior to 2009 show a relatively faster house price appreciation whichmay be
attributed tomany factors. For instance, the Dutch government promoted home
ownership forcefully during those periods with the National Mortgage Guarantee
scheme and through an income tax structure that offered generous rebates on the
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FIGURE 3.3 Dutch regional house price indexes.

Note: DR = Drenthe,FL = Flevoland,FR = Friesland,GE = Gelderland,GR = Groningen,LI = Limburg,NB
= Noord-Brabant,NH = Noord-Holland,OV = Overijssel,UT = Utrecht,ZE = Zeeland,ZH = Zuid-Holland.
Source: Statistics Netherlands.

mortgage interest rates (see, Toussaint and Elsinga, 2007; Boelhouwer et al., 2004;
Elsinga, 2003; Boelhouwer, 2002). These incentive packages generally made it cheaper
for individual households to purchase their own dwellings, which consequently led to
increase in demand and rise in house prices before the crisis.

As in other countries, financial institutions in the Netherlands were also hit by the
2007-08 GFC. The impact of the crisis on house prices however started in the last
quarter of 2008 as seen in Figure 3.3. Following the GFC, average house prices in the
Netherlands declined by almost 25% between 2009 and 2013. Teulings (2014),
attributed the collapse in the Dutch property values with the higher unemployment
and redundancy rates during themeltdown. Other scholars however blamed the
collapse on the Dutch financial institutions who tightened upmortgage accessibility
and impeded new home buyers from themarket (Elsinga et al., 2016; Boelhouwer,
2014; Bardhan et al., 2011). Since the beginning of 2014, there has been gradual
recovery of Dutch house prices, somewhat faster in Zuid-Holland and Noord-Holland.

In this paper, we study the temporal diffusion pattern of house price volatilities in the
Netherlands. We followMartens and Van Dijk (2007) to define the house price
volatilities for each region as the squared returns given by

SRt = [100(log It − log It−1)]
2 (3.16)

where It is the house price index at the time t. Figure 3.4 summarises the temporal
regional house price volatilities. It shows that house prices weremore volatile in most
regions from 1995 until the early 2000s, and gradually decline afterwards.

32 Diffusion and Risks of House Prices in the Netherlands



Time/Quarter

S
qu

ar
ed

 R
et

ur
ns

1995 2000 2005 2010 2015

0
10

20
30

40 DR
FL
FR
GE

GR
LI
NB
NH

OV
UT
ZE
ZH

FIGURE 3.4 Regional house price volatilities.

.............................................................................................................................
§ 3.5 Spatio-temporal house price dynamics

.............................................................................................................................

We estimate the temporal dependencies from the network structure described in
Section 3.3 using the (demeaned) regional house price volatilities. We set the
minimum andmaximum lag order to p = 1 and p = 4 respectively. The estimation first
follow a twenty-quarter rolling window and the result is summarised with the network
density to examine the extent of interdependencies between the regional house prices
over time. The network density is a simple aggregate index for the degree of
interdependence. It is defined for each estimation window as the percentage of the
regions whose temporal house price volatilities are dependent on earlier price
movements in other regions. More specifically, the network density is the number of
identified edges in the network divided by the total possible edges. For n number of
regions or variables, there are n(n− 1) possible edges indicating the indirect effects.

Figure 3.5 presents the network density associated with the temporal regional house
price volatility interdependencies. The average network density over the study period is
about 43%, which gives evidence of temporal interdependence and diffusion between
the regional house price volatilities. Figure 3.5 also shows that the degree of
interdependence varies over time. It was higher particularly between 1995 and 2005,
then began to decrease until 2008, after which it has been on the rise again.

The above sub-periods somewhat coincide with recognisable stages in the
development of house prices in the Netherlands. It is recognised bymost Dutch
researchers that the period 1995–2005 is one during which house prices increased
legitimately because of the rise in household disposable income and government
stimulation of the housingmarket (De Vries, 2010; Toussaint and Elsinga, 2007;
Boelhouwer et al., 2004; Boelhouwer, 2002). On the other hand, some analysts argued
that the Dutch house price development from 2005–2008 wasmostly due to
over-valuation and speculative investment activities which also precipitated the crisis
that started in the last quarter of 2008 (Xu-Doeve, 2010; Aalbers, 2009a,b).
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FIGURE 3.5 Network density estimated with rolling window over the period 1995Q2 – 2016Q1.

§ 3.5.1 Sub-period dynamics
.............................................................................................................................

To ascertain if the central regions in the house price diffusion dynamics vary with time,
we study in details the network structure within sub-periods. It is appropriate to
identify if there are structural shifts in the network density and delineate the
sub-periods along them. A simple recurrent plot (Marwan et al., 2007) in Figure 3.6
shows a significant period of structural change in the network density, occurring
between 2005 and 2006.3 Using the sequential method of Bai and Perron (2003,
1998), we also test for the structural shift and the break date. The sequential test
assumes no knowledge of the break date but requires that a model for the series and
maximum likely breaks are specified. Following Brady (2014), wemodel the series for
the network density as an AR(1) process. We allow up to 3 breaks, however the BIC
suggests only one significant structural shift, occurring at 2005Q2. This confirms the
recurrent plot also suggesting one structural shift.

We re-estimate the network structure for the two sub-periods: 1995Q1–2005Q2 and
2005Q3–2016Q1. The summary statistics and optimal lag order associated with the
network structure for each specific sub-period are presented in Tables 3.1 and 3.2.
The average path length, for example, represents the average graph-distance between
all pair of nodes, where interconnected nodes have graph distance of 1. In general,
the higher the graph distance the slower it takes house price shocks in one region to
cascade systemically. Table 3.1 also indicates the total links and average degree which
are important for the network analysis.

The interest here is to identify the regions with temporal house price volatilities that
are predominately interdependent and their specific direction of interconnection with
the others. These regions are interesting because they play important role in the
transmission of house price shocks. In the network terminology, these regions are the

3 A recurrence plot is a way to visualise and study the dynamics of phase space by a two- dimensional plot
(Marwan et al., 2007).
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FIGURE 3.6 Recurrent plot indicating the patterns in the network density over time.

hub-centralities (see, Benzi et al., 2013). The network structures for the two
sub-periods are presented in Figure 3.7. The figure shows the explicit nature and
degree to which the regional house price volatilities are temporarily dependent on one
another. For example, it indicates a direct temporal dependence of house price
volatilities in Nord-Brabant on Noord-Holland between 1995Q1 and 2005Q2 but not
during the period 2005Q3–2016Q1. As with Figure 3.5, Figure 3.7 similarly reveals
that there is heavier dependency between the regional house prices before 2005 than
it was afterwards. Again, this may indicate the shift in the developments of Dutch
house prices.

TABLE 3.1 The network statistics for the sub-period graphs.

Edges/Links Density Average Degree Average Path
Length

1995Q1–2005Q2 94 0.71 15.67 1.29
2005Q3–2016Q1 39 0.30 6.50 1.73

TABLE 3.2 Equation-specific lag order of each equation for the sub-periods.

Period DR FL FR GE GR LI NB NH OV UT ZE ZH

1995Q1–2005Q2 3 2 1 2 4 2 2 2 2 2 1 2
2005Q3–2016Q1 1 1 1 1 1 1 1 1 1 1 1 1
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FIGURE 3.7 Network diagrams showing the temporal dependence between house price
volatilities of the 12 Dutch regional markets during sub-periods.

Note: The sizes of the nodes are proportional to the degrees (number of other regions to which the specified
region at the node is connected to).

To determine the hub-centrality, we use the Katz measure (Katz, 1953). The Katz
measure scores the centrality of a region by considering its direct and indirect
interdependences with other regions. Table 3.3 presents the centralities and the ranks
associated with the network structure in Figure 3.7 for each region. The table indicates
Noord-Holland as themost central during the period 1995Q1–2015Q2, while Drenthe
ranks themost central for the sub-period 2005Q3–2016Q1. As one of the largest
economic regions (mainly due to influence of the national capital, Amsterdam), it is not
surprising that Noord-Holland is central in the temporal house price diffusion pattern.
Earlier studies (e.g. Holly et al., 2011; Giussani and Hadjimatheou, 1991) similarly
found that house prices diffusion in the UK exists from the economic hub, London. On
the other hand, the result of Table 3.3 shows that economically smaller regions such as
Drenthemay equally be pivotal in diffusion of house prices during certain periods.
Although it is unclear why smaller regions will be that central, suburbanisation and
recent trend of urban to rural migration of certain class of people in the Netherlands,
majority who are seniors, may play some role (see De Jong et al., 2016; Accetturo et al.,
2014; Van Ommeren et al., 1999).

The network distance in Table 3.3may be used to further examine the diffusion
dynamics of temporal house price volatilities from the central regions. The network
distance is by definition the length of the shortest path between two nodes in the
network. A network distance of 1 denotes a direct interdependence, while a distance of
2 indicates the interdependence between two nodes that is mediated by another node.
In tandemwith this description, the results of Table 3.3may be interpreted tomean
that, temporal house price volatility from Noord-Holland in the period
1995Q1–2005Q2 had a direct causal relationship with the volatility of house prices in
the other regions, except Friesland and Zeeland where this wasmediated. Similarly, we
find that temporal causal relationships exist between house price volatility in Drenthe
and the rest of the regions during the period 2005Q3–2016Q1, except Zeeland for
which this wasmediated.
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TABLE 3.3 Hub centrality, rank and distance associated with the network for the sub-periods.

1995Q1 – 2005Q2 2005Q3 – 2016Q1

Centrality Rank Distance Centrality Rank Distance

Drenthe 54.55 12 1 23.65 1 0
Flevoland 212.72 3 1 1.00 12 1
Friesland 139.46 9 2 1.78 9 1
Gelderland 136.25 10 1 1.66 10 1
Groningen 163.18 6 1 17.59 2 1
Limburg 179.52 5 1 11.68 3 1
Noord-Brabant 212.98 2 1 1.80 8 1
Noord-Holland 228.85 1 0 2.96 6 1
Overijssel 122.96 11 1 5.25 5 1
Utrecht 142.55 8 1 7.18 4 1
Zeeland 151.88 7 2 1.00 11 2
Zuid-Holland 207.51 4 1 1.80 7 1

The bold values indicate the hubs.

.............................................................................................................................
§ 3.6 Summary and concluding remarks

.............................................................................................................................

In an effort to revive the housingmarkets that have collapsed inmany countries
following the 2007–2008 Global Financial Crisis (GFC), there is an ongoing research
agenda that seeks understanding into the spatio-temporal dynamics of house prices.
This paper makes threemain contributions to this new research area. Firstly, the paper
studied the spatio-temporal house price dynamics in the unique context of the
Netherlands, which is first of its kind. Here, the paper specifically asked if there is
temporal spatial dependence of house prices in the Netherlands. It then investigated
the diffusion pattern and identified the specific regions where temporal house price
volatilities are likely to spread.

For the second contribution, the paper demonstrated the usefulness of graphical and
network techniques in analysing the spatio-temporal house price dynamics.
Particularly, the paper adopted the newly proposed Bayesian graphical vector
autoregression (BG-VAR) model which is in general more efficient in identifying
dependence patterns betweenmultiple variables than the traditional concept of
Granger Causality (see Ahelegbey et al., 2016a). As a third contribution, the paper
proposed a simple data driven techniques to identify the regional housing sub-market
where diffusion of temporal house price volatilities may predominately start. This
approach deviates from previous studies which assumed a priori some “bigger cities”
as most central in investigating the house price diffusion process (e.g. Holly et al.,
2011). The potential selection bias is avoided in our approach because the central
region can be easily inferred from the network using statistical measures for the
centrality.

In the empirical analysis, the paper used temporal volatilities constructed from
quarterly house price indexes for owner-occupied dwelling between 1995Q1 and
2016Q1. The results, based on the BG-VARmodel and various network statistics,
support a temporal dependence and diffusion of house prices in the Netherlands. We
also observed that the degree of temporal interdependence varies over time. Especially,
we found that the Dutch regional house prices were highly interdependent between
1995 and 2005. After 2005, the degree of interdependence weakened until 2008 and
again increased from 2008 to 2016 (Figure 3.5). We performed formal empirical break
tests, which suggest that a structural shift in the temporal dependence actually exists
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at 2005Q2 (see Figure 3.6). The breakmay reflect some experts’ believe of Dutch
housing investments shifting tomore speculative activities which also precipitated the
severe decline of house prices after 2008 (see Xu-Doeve, 2010; Aalbers, 2009a).

Studying inmore detail the resulting sub-periods 1995Q1–2005Q2 and
2005Q3–2016Q1, we identified Noord-Holland and Drenthe as the respective regional
housingmarkets that are most central in a temporal diffusion of house price volatility.
One key lesson from our findings is that, contrary to the extant literature (e.g. Meen,
1999; Holly et al., 2011; Gong et al., 2016b) which posit that temporal house price
volatility spread from some economically “mega city”, there exists the possibility that
the diffusionmay equally start from an “economically smaller” region (like Drenthe in
the Dutch case under study here). The results of the paper also suggest that the central
region where the house price diffusion predominantly starts may change over time
depending on the economic conditions.

Previous literature also suggest that temporal house price volatility diffuse from the
central region and slowly through to the remote peripheral areas. We analyse this
diffusion pattern in this paper with the network distance. The network distance yields
literally the number of regions to which temporal house price volatilities may diffuse
having started from the central region. This however augments the graphical aids
provided by the results of the BG-VAR detailed in themain text. For the Netherlands,
we identified that the diffusion trajectory is limited to at most 2 regions, following a
maximum network distance of 2 in the respective sub-periods studied.

In sum, the BG-VAR provides an effective approach for analysing the complex spatial
interactions between the regional house prices. It builds on the traditional VARmodel
by adopting an efficient identification strategy which avoids estimation of the
structural parameters. Themethod also could easily distinguish the direct and indirect
interaction between spatial variables as discussed by LeSage and Pace (2009). By
transforming the conventional spatial (autoregressive) models into the structural VAR
framework, the BG-VARmay equally be applicable. Furthermore, because themethod
avoids estimation of the structural parameters, the BG-VAR promises a better approach
to avoid the ad-hoc andmis-specification of the spatial weightingmatrix inherent in
most spatial analysis (see e.g. Gibbons and Overman, 2012; Pinkse and Slade, 2010).
We leave this however for further investigation and future research.
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