§

5.1

165

Behavioral patterns relating to thermal
comfort and energy consumption

Since the introduction of computers, the way research is performed has changed
significantly. A huge amount of data can be gathered and handled by a computer,
compared to the situation before these machines were commonly available to
scientists and households. Every interaction with a computer system or sensor

can be recorded, resulting to an abundance of data that has already surpassed the
human capability to analyze and understand them. Computers are not only used for
monitoring, creating and recording data but also they have become the tool to analyze
these data with the use of certain automations that otherwise would make the data
analysis take years.

This abundance of data has led to a new field in research, related to scientific methods
and processes aiming at extracting knowledge from data in various forms [24], known
as data mining. Data mining techniques have been developed to perform sequential
pattern mining by processing time-ordered input streams and discover the most
frequently occurring patterns [1] in applications such as healthcare, education, web
usage, text mining, bioinformatics, telecommunications and other applications [17].
When data contain temporal information then they may hide additional interesting
characteristics such as periodicity. A great deal of nature behaves in a periodic manner,
the orbit of earth around the sun, the spinning of the planet around its axis and further
on division of this periods into years, days, hours and so on. These strong periodic
elements of our environment have led people to adopt periodic behaviorin many
aspects of their lives such as the time they wake up in the morning, the daily working
hours, the weekend days off, the weekly sports practice, watching your favorite sports
events or fiction series on TV every week at the same time. These periodic interactions
could extend in various aspects of our lives including the relationship of people with
their home thermal environment. What are the periodic elements in people’s lives
concerning the temperature inside their dwelling, their clothing and metabolic activity
patters, their actions towards improving thermal comfort such as opening or closing
windows, having a hot or cold drink or having a hot or a cold shower? These periodic
elements could probably exist and are waiting to be found if a huge amount of data
could be recorded and was available for analysis. Computers nowadays are powerful
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enough and new mathematical methods have been developed to take advantage of
this rise in computational power. Therefore, data collected by system of sensors and
computers, related to the interactions of people and their residential environment
could contain patterns that exhibit periodic behavior.

Recently there has been extensive research on the development of smart built
environments. The goal was to reduce the energy consumption of dwellings and at the
same time maintain the maximum possible comfort level for the occupants. Occupant
behaviorin buildings has large impact on energy consumption (space heating or
cooling, ventilation demand, lighting and appliances) [2]. A number of studies have
been published using stochastic models in order to model occupant presence and its
interaction with space appliances and equipment.

However, all these studies were either tested in a single person office or were focused
only on a specific application (occupancy [3,5,7,8], lighting [5,6,8], ventilation [4,8]
etc.). Most of these works are based on the ‘supervised' approach, which means that
machine learning occurs by providing a set of data, and for each input value, the user
provides also the output value. An (supervised) algorithm is then used to train the
model and produce an inferred function, which can predict the output data when

new input data is used. This method requires ground truth input data in order to be
successful. For example, when talking about occupancy prediction models, the data
are often based only on motion sensor readings, which could fail to detect occupants
that are sitting or standing still [9]. A more complicated sensor network that includes
CO, and humidity sensors is needed in order to have more robust occupancy and
behavior detection in the residential environment than motion sensors alone [26]. The
unsupervised approach on the other hand is a machine-learning task in which the user
provides only input and no output data. The algorithm then is able to find the structure
or relationships between the different inputs.

A smart environment, in the built environment context, is defined as an environment
thatis able to acquire and apply knowledge about the tenants and their physical
surroundings in order to improve the tenant’s experience [10] and in our case to
provide insights that could lead to potential energy savings. Such an experimental
network of smart environments was created during the Ecommon (Energy and Comfort
Monitoring) measurement campaign, which took place in the Netherlands as part

of the Monicair [11], SusLab [12] and Installaties 2020 [13] projects. Thirty-two
residential dwellings were monitored for a 6-month period, from October 2014 to April
2015, which is the heating season for north Western Europe.

This study is a continuation of the work made by Ioannou et al. [14,15]under the
Ecommon measurement campaign. In the above-mentioned studies, the authors used
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the subjective and quantitative data related to thermal comfort to test the prediction
success and the underlining assumptions of the two models widely used in this field,
the PMV and the adaptive model. According to the adaptive model’s main hypothesis,
people are expected to perform the necessary actions, when feeling uncomfortable,
that will bring them to neutral comfort sensation. Many tenants, however, had
recorded “neutral” thermal sensation while the indoor temperatures were below the
lower limit of the adaptive model. Furthermore, while many data points were inside
the comfort band of the adaptive model, the thermal sensation votes recorded by

the tenants showed comfort levels other than “neutral”. Could the adaptive model

be poorly estimating the tenants’ adaptive capacity in relation to thermal comfort?
Despite the fact that they had all kinds of options in their disposal (adjusting clothing,
metabolic activity, opening or closing windows, turning up or down the thermostat,
having a hot shower etc.) and the temperature was inside the comfort bandwidth, they
still voted for comfort sensations other than "neutral”. It could be that they exercised
their adaptive options at their disposal and these were just not enough to make

them feel comfortable because other parameters such as psychological ones could
have a greatimpact. It could be the case that they did not do any of those actions. In
both cases the indoor temperatures were leading the adaptive model to assume that
the tenants were comfortable, having already done their adaptive actions towards
thermal comfort and having "neutral” thermal sensation. But tenant’s non- “neutral”
feeling might lead them to take extra actions which could always come at the expense
of energy consumption (especially when the tenants in the monitoring campaign
answered that the economic factor plays no role in their energy spending) [14,15].

Furthermore, a statistical analysis was made with chi? tests between the various
actions towards comfort and the thermal sensations recorded by the tenants during
the monitoring campaign in order to find out which of these actions took place
habitually and which were aimed towards improving thermal comfort. For example,
the indoor temperature during the morning hours in some dwellings was above 20

°C, however, tenants were waking up and as a first thing they were turning up the
thermostat. Moreover, other habitual actions, such as having a hot shower and opening
the window, were found to be unrelated to thermal comfort and related to increased
energy consumption.

The aim of this paper is to go a step further in this direction. Repetitive behavioral
actions in sensor rich environments, such as the dwellings of the Ecommon
measurement campaign, can be observed and categorized into patterns through

data mining techniques. These discoveries could form the basis of a model of tenant
behavior that could lead to a self-learning automation strategy [16] or better occupancy
data to be used for better predictions of building simulation software such as Energy+
or ESP-rand others.
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Heierman et al. [1] described a sequential pattern mining approach that was borrowed
from economics [18] and applied in the context of the built environment. An example
of a sequential pattern mining application in economics is used by major supermarket
chains. These supermarkets monitor the purchases of their clients (usually by a
discount card in which supermarkets store information) and by applying pattern
mining they try to find at a specific time of the day, which are the purchase patterns of
the customer. For example, at 13:00 when the customer A is buying cheese it is most
likely that he will also buy bread and orange juice. Specific patterns can be defined for
the various times of the day. The same customer during the early morning hours could
have a specific purchase pattern, buying for example croissants and orange juice while
during the evening hours he could be buying vegetables and chicken. In the context of
the built environment, the customer A can be substituted by a specific dwelling. The
products that the customer can buy can be substituted by quantitative data like specific
ranges in temperature (for example 18 °C <T. <20°Cor T, >20 °C) or by subjective data
(clothing and metabolic activity levels and actions such as opening or closing a window,
having a hot shower or a hot drink).

In this study, real time data obtained by a seasonal monitoring campaign on the

built environment will be implemented on the above-mentioned methodology in
order to gain insights in the occupant behavior related to energy consumption of

the residential sector. The main aim of this study is to demonstrate if such a pattern
recognition algorithm is suitable for discovering meaningful patterns of occupancy
behavior. Furthermore, this study will try to explore how these patterns can be used to
improve the energy simulations for the prediction of energy consumption in the built
environment.

Research Questions and goals

The research questions and sub-questions are formulated as follows:

Can we implement an unsupervised algorithm as a data driven model for the prediction
of occupant behavior related to energy consumption and thermal comfort in order to:
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— discover the most frequently recorded thermal sensations, actions towards
thermal comfort, and metabolic activity and clothing levels based on the
tenants' recorded data?

— discover the most frequent occurring sequences among the above mentioned
items?

— discover if there are different patterns of behavior at different times of the day?

2 Estimate how building energy simulations can be improved by this methodology.

§ 5.2.2 Ecommon Campaign set-up

Detailed information on the Ecommon campaign set-up, the data acquisition set, and
the subjective and quantitative data gathered during the campaign can be found in the
previous chapter of this thesis.

The dwellings that participated in the measurement campaign were part of the Dutch
social housing stock which represents about one third of the total residential units
and it is quite representative of the residential stock as a whole [27]. The sample was
divided into energy A/B-rated and F-rated dwellings (Ioannou and Itard, 2017 [14])
and the final sample of the dwellings is described in Table 5.1. Finally, only seventeen
dwellings were included in the analysis due to data limitations.

TABLE 5.1 Dwellings participating in the Ecommon campaign

ENERGY | HEATING SYSTEM NO. OF AVERAGE NO. OF DATA POINTS

e codlitblys izl Morning hours | Evening hours
HOUSEHOLD

A

WO004 Heat pump 2 135 167
m A Condensing gas boiler 1 92 109 61
m A Condensing gas boiler 2 77 166 157
A Condensing gas boiler 2 29 96 80
B Condensing gas boiler 2 70 173 131
B Condensing gas boiler 3 39 8 16
Total A/B dwellings - = = 2 62.33 687 612
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TABLE 5.1 Dwellings participating in the Ecommon campaign

ENERGY | HEATING SYSTEM
RATING

Total F dwellings

w012

NO. OF

OCCUPANTS

AVERAGE
AGE OF
HOUSEHOLD

NO. OF DATA POINTS

w013

Wo014

Wo021

Wo022

w024

Wo31

F Condensing gas boiler 4 40.5 295 482
F Condensing gas boiler 3 533 291 332
F Gas stove 1 83 35 26

F Condensing gas boiler 2 74 323 258
F Condensing gas boiler 2 73 118 273
F Condensing gas boiler 2 64 171 301
F Condensing gas boiler 1 72 89 105
F Gas stove 3 43 67 70

F Condensing gas boiler 4 21 65 85

F Condensing gas boiler 2 72 174 190
F Condensing gas boiler 3 43 958 1924
- - 25 58 2586 4046
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Sequential pattern mining methods have applications in many fields. A very common
goal when using sequential mining is the discovery of the most frequent patterns
[18,19]. The more frequent an event, the more important it is and more likely to be a
pattern. During the analysis of time-stamped data it is important to know if event (a),
event (b) and event (c) occurs frequently but it is more intriguing to know how often
the event (a, b), (a, c) or the event (a, b, c) occurs. Furthermore, knowledge on the most
frequent combinations of events over time, adds even more value to the analysis.

In market research, this would mean not only knowledge on which are the most
common product combinations that a customer buys in his visits to the shop, but also
knowing in which part of the day these occur. Customers usually buy different things in
the morning and different ones in the evening and in that way shops can create tailor
made marketing strategies to increase sales. In the context of the built environment
this would mean that instead of tracing combinations of events that might occurin a
dwelling in a whole day (which could have limited use in terms of improving thermal
comfort and reducing energy consumption), now we can target specific hours and see
the behavior of tenants in different periods of the day.
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The algorithm that was used for the mining of sequential patterns in this study is the
Generalized Sequential Pattern (GSP) algorithm [21], which is an enhanced version of
the a priori algorithm suggested by Agrawal and Shrikant [20]. The methodology for
the application of the specific technique in the context of the built environment has
been described by Heierman et al. [1] but it lacked any experimental demonstration.
The Ecommon campaign provided enough built environment related data that could be
implemented in the above-mentioned methodology.

Input parameters

The time parameter and the customer id are inputs to the algorithm. With this pair

of parameters, the algorithm is generating a sequence per customer containing every
transaction made in a specific time. Then the algorithm searches sequential patterns
such as: if customer A bought the item (a) and item (b) in a transaction, he bought item
(c) in the next one.

Another input parameter is the minimal support, which describes how many customers
must support a pattern in order for the algorithm to regard it as frequent. It takes
values between 0 and 1 with 1 being the 100% of the customers. If we set for example
the minimal support to 0.9 the algorithm will prune all the patterns that are supported
by less than 90% of the customers.

Furthermore, three remaining input parameters are defining how transactions are
handled. These are the min-gap, the max-gap, and the window-size. The window-size
defines the period within successive transactions could be considered as a single
transaction. For example, if a customer bought some products (a, b, ) but forgot to buy
the product (d) and comes back after 10 minutes to buy this remaining product then
the question is: will this transaction be treated as a completely new one or it will be
added to the previous one? In order to avoid this issue the window-size determines how
long a subsequent transaction is treated as the same transaction. In the above example
if the window-size is larger than 10 minutes then buying the product (d) will be treated
as part of his initial transaction when he bought (a, b, c).

The max-gap parameter is used in order to filter out large gaps in data sequences. For
example, a customer bought the product (a) and despite that he is within the specified
window there is a very large gap between buying the product (b) which is his new
transaction. For a business owner this huge gap, even if it is inside the window size,
might still make the customer uninteresting. Therefore, this is an extra tool of the

GSP algorithm when seeking supported sequences. The max-gap parameter causes
sequences not to support a pattern if the transactions containing this pattern are
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time-wise too widely separated. The same applies for the min-gap parameter for the
sequences that belong to transactions that time wise appear too near.

The concepts of the window-size, min-gap and max-gap parameters were the most
important upgrades of the apriori algorithm, introduced by Agrawal and Shrikant [18],
and led to the GSP algorithm [21]. These concepts helped to overcome important
weaknesses of the apriori algorithm such as the absence of time constraints and the
rigid definition of a transaction. The apriori algorithm has no time constraint, which
means that the data source is a time ordered input sequence with no natural points
thatindicate the start or stop of the pattern. Furthermore, the user cannot specify a
minimum or a maximum time gap for two adjacent elements of a sequential pattern.
For example, if we were applying the apriori algorithm in the transactions of a library
where a person borrowed the book (a) and then he borrowed another one after three
years the algorithm would still show (a, b) as a potential pattern if the window size was
three years. However, such a pattern has such a major gap between the transactions
that it does not really add substantial knowledge to the library concerning the
borrowing patterns of people. Setting the minimum or maximum gap into, for example,
three months will automatically prune all the patterns that are not supported from this
time gap and are not of interest to the library.

The rigid definition of the transactions as mentioned above is related to the window-
size. This parameter sets the time window within successive transactions to be treated
as a single transaction. For example, a person that borrows book (a) from a library,
book (b) next week and book (c) the week after. If the user sets the window-size to three
weeks then the supported pattern for that person would be (a, b, c). If the window size
was two weeks then the supported patterns would be (a, b) and (c). This concept adds
greatly to the flexibility of the analysis and offers much more options to the user that is
mining for sequential patterns.

Sequential pattern mining in the context of the built environment

In order to make use of an algorithm developed for the retail industry in the context of
the built environment first all the input parameters have to be defined in the respected
context. Furthermore, the data have to be transformed into the right format in order to
be handled by the algorithm.
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Input data

In the retail context the customer buys various products (transactions) in specific hours
and based on his frequent combinations transaction patterns are mined. In our case,
the transactions are called events and our customers are the people of the seventeen,
dwellings that participated in the monitoring campaign. The various ‘products’ that
our ‘customer’ (dwelling) can ‘buy’ are temperature range, recorded thermal sensation,
actions towards thermal comfort, clothing, and metabolic activity levels.

Temperature Range: Houses of A/B and F label have usually a temperature range from
18-24°C which for the purposes of the pattern mining was broken down into bins of 2
°C (18°C-20°C, 20°C-22°Cand 22°C - 24 °C) at a given time.

Recorded thermal sensation: is the vote casted by the occupant according to his
thermal sensation at a given time of the day. It can be distinguished into ‘cold’, a bit
cool’, 'neutral’, 'a bitwarm’ and 'hot".

Actions towards thermal comfort: Several actions that the occupants could choose
towards the improvement of their thermal comfort were predefined in the comfort
logbook. The options were opening or closing a window, having a hot or cold drink, put
on or put off clothes, turning the thermostat up or down, having a warm or cold shower.

Clothing: Tenants could choose from a set of predefined clothing items, which were
closest to the clothing ensemble that he/she was wearing at a specific moment. The
options were sleeveless t-shirt, t-shirt, knit sport shirt, long sleeved sweatshirt, jacket,
jacket and hood (Table 5.2).

Metabolic activity: occupants could also choose from a set of predefined metabolic
activity levels. These levels were lying/sleeping, sitting relaxed, light deskwork, walking,
jogging, running (Table 5.2).

All the above answers were given by the occupants every time bearing in mind the last
30 minutes.

All the input data for the GSP algorithm have to be binominal (nominal with two
possible values, true or false). This means that the data, quantitative and subjective,
had to be properly transformed to be compatible with the GSP algorithm input
requirements. As already mentioned in section 2.2, the quantitative data (temperature,
humidity, and CO,) are real numbers obtained by a set of sensors with a 5-minute
interval for a period of six months between October and April. For the purposes of this
study, the temperature was the quantitative measurement that was used in the GSP
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calculations. In order to transform the temperature into binominal data the following
process took place: the 5-minute interval data were aggregated into hourly values

for the whole period of two weeks and then three bins of temperatures were defined
(18<T<20, 20<T<22, T>22). If the temperature in a specific hour was, for example,
between 18 °C and 20 °C then the 18<T<20 bin would take the value TRUE (for this
specific hour) and the rest of the bins would take the value FALSE. The procedure is
repeated until all the hourly values under the four temperature bins are transformed
into TRUE or FALSE. The reasons for the hourly aggregation of the data were that the
previous research of the authors [11,14,15]was based on hourly aggregation of the
data due to their large volume. Furthermore, the hourly time-step is a very common
time-step during building simulations and one of the major goals of the Ecommon,
Monicair and Installaties2020 projects was the improvement of the prediction quality
of the simulation software for the built environment. Therefore, for consistency
between our goals and results so far we chose to use the hourly aggregation of the
data alsoin this study. Furthermore, only the data that were accompanied by recorded
motion data were used for the analysis in this study.

The subjective data were transformed in similar way with the difference that the bins
in this case were the subjective data themselves. Thermal sensations, actions towards
thermal comfort, clothing, and activity level are categories that can take binominal
values for each hour of the day. For example, if a tenant has recorded that he feels
‘neutral’ within the 5-minute interval between 13:30 and 13:35 then for the 13" hour
the value under 'neutral’ bin would be TRUE while the value under all other thermal
sensations would be FALSE. The same applies for the clothing, activity levels, and
actions towards thermal comfort. If within the 5-minute interval between 13:30 and
13:35 of a day a tenant recorded that he wears 't-shirt’ and is 'sitting relaxed’ then the
value under the 't-shirt’ and 'sitting relaxed’ bins for the 13" hour of that day would
be TRUE and all the other clothing and metabolic activity options would take the value
FALSE. Also, if during the 5-minute interval of an hour an occupant recorded that he
has opened the window, or turned the thermostat on then at that specific hour the
values of ‘open window’ and ‘thermostat up’ would be TRUE and all the rest of the
actions would be false.

One limitation of this approach was, as mentioned already, that tenants were
instructed to fill in the subjective data based on what they did the previous halfan
hour. The recording of the thermal sensation is not affected by this directive, when

an occupant recorded that he felt ‘neutral’, ‘a bit cool’ or ‘cool’ he was recording his
instantaneous thermal feeling. However, for the rest of the subjective data such as
actions towards thermal comfort, clothing, and activity levels recorded data at the
13:15 hours could mean that some of these actions such as ‘close window' or ‘open
window’ could have occurred before 13:00 hours. For the clothing it is more likely that

Thermal comfort and energy related occupancy behavior in Dutch residential dwellings



tenants recorded what they were wearing at that exact moment with the exception of
‘jacket’ which indicated most of the times that people were outside and came home
with in the last half hour. Nevertheless, the actions towards thermal comfort could
have a delay up to half an hour. The general assumption for the purposes of this study
was that during the hourly aggregation when an action, clothing or metabolic activity
appeared within a specific hour’s 5-minute interval then it was eventually assigned

in this hour. The reason for this was that we had no way to determine the exact time
an action, clothing or activity levels took place from the time it was recorded and the
previous half hour. This problem could have been even more evident if we had not
aggregated the data into hourly values. As already mentioned, prior research has taken
placein hourly values and hourly values is a very common time step for simulation
software. With hourly aggregation every action, clothing and metabolic activity
recorded with timestamp in the second half hour (for example after 13:30) it had most
chances to have occurred within this hour rather than before 13:00.

Finally, for the analysis not all the hours of the day were used partly because that would
require a very big data file and slow computational time and partly because not all

the hours of the day are of the same importance. As already mentioned only the data
points with motion were kept for the analysis. Further filtering removed all the data
points that had no subjective data recorded. Hourly data of thermal sensation, actions
towards thermal comfort, clothing and metabolic activity that had only FALSE values
were removed from the analysis. Each hourly value in order to be used for further
analysis should have at least one TRUE value in the subjective parameters.

From occupant behavior related to thermal comfort point of view the most interesting
hours of the day are the early morning hours when people wake up and the early
evening hours when people return from work. In that sense, the morning hours
between 7-9 a.m., for each day of the two weeks that occupants were given the comfort
dial, were chosen for the morning analysis and the 5-7 p.m. were chosen for the
evening analysis. In Table 5.2, we can see a data set example with all the necessary
transformations that was used by the GS algorithm for the purposes of this study.
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TABLE 5.2 Example of input file for (morning hours) sequential pattern mining with the use of the GSP algorithm in the context of
residential built environment

TEMPERATURE THERM ACTIONS TOWARDS OTHING METABOLIC
RANGE SENSA THERMAL COMFORT ACTIVITY

o

S S

: < : | 5 3| %

O (=) (= o (= n piar]
5 1 7 TRUE : FALSE TRUE @ FALSE FALSE : TRUE TRUE : FALSE FALSE : FALSE
5 2 7 FALSE :© TRUE FALSE : FALSE FALSE : TRUE FALSE © FALSE FALSE : FALSE
5 3 7 TRUE : FALSE FALSE : FALSE FALSE : TRUE TRUE : FALSE FALSE : TRUE
5
5 8 TRUE : FALSE FALSE : FALSE FALSE : FALSE FALSE : TRUE TRUE @ TRUE
5 2 8 FALSE : TRUE FALSE : FALSE FALSE : FALSE FALSE : FALSE TRUE : TRUE
5 3 8 FALSE : TRUE FALSE : FALSE FALSE : FALSE FALSE © FALSE TRUE : TRUE
5
5 1 9 FALSE © FALSE FALSE : TRUE TRUE : FALSE FALSE © TRUE TRUE : TRUE
5 2 9 TRUE : FALSE FALSE : FALSE FALSE : TRUE FALSE : FALSE TRUE : TRUE
5 3 9 FALSE : TRUE FALSE : FALSE FALSE : FALSE TRUE : FALSE FALSE : FALSE
8 1 7 FALSE @ TRUE FALSE : FALSE TRUE : FALSE FALSE : FALSE TRUE : FALSE
8 2 7 TRUE : FALSE TRUE : FALSE FALSE : FALSE FALSE © FALSE FALSE : FALSE
8 3 7 TRUE : FALSE TRUE : TRUE TRUE @ FALSE FALSE © FALSE FALSE : FALSE
8
8 1 8 TRUE : FALSE FALSE : FALSE FALSE : FALSE FALSE : TRUE TRUE @ TRUE
8 2 8 FALSE : TRUE FALSE : FALSE FALSE : FALSE FALSE © FALSE TRUE : TRUE
8 3 8 FALSE @ TRUE FALSE : FALSE FALSE : FALSE FALSE © FALSE TRUE : TRUE
8
8 1 9 FALSE © FALSE FALSE : TRUE TRUE : FALSE FALSE @ TRUE TRUE : TRUE
8 2 9 TRUE : FALSE FALSE : FALSE FALSE : TRUE FALSE : FALSE TRUE : TRUE
8 3 9 FALSE : TRUE FALSE : FALSE FALSE : FALSE TRUE : FALSE FALSE : FALSE

The customer id, as mentioned already, denotes the dwelling under monitoring, the
timestamp shows the hour under consideration (e.g. 7 means the 7 hour of the day
between 6 a.m. and 7 a.m.) and the rest of the columns show the quantitative and
subjective parameters that have been transformed into binominal values for the GSP
algorithm simulation. In the end, there is one input string per dwelling per day per
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timestamp. Temperature range and thermal sensation can have only one value that
can be true for each timestamp while for the rest of the parameters more than oneis
possible. Furthermore, in Table 5.3 we can see the taxonomy that was used for this
analysis. The analysis took place for the A/B and F dwellings for the morning and
evening hours respectively.

Input Parameters

The Customer-id is the first input parameter. Originally, this would be the customer of
a retailer as already mentioned. For the purposed of this study the customers are the
seventeen respondents of each of the seventeen dwellings that were monitored during
the campaign.

The timestamp would be the time that a retail customer would make a transaction.

In our case, the quantitative data that were gathered by the wireless sensors had a
granularity of 5 minutes. The data were aggregated into hourly values and so the
timestamp could get a value between one and twenty-four with one being the first hour
of the day between 00:00 and 1:00 am and 24 being the last hour of the day between
23:00 pm and 00:00.

The minimal-support that was used for our analysis was adjusted for each simulation
until we were able to find the highest support between dwellings that was giving
meaningful patterns. We started with 0.9 (which means that 90% of the dwellings
support a pattern) and run one simulation each time reducing the minimal support by
0.1 at a time until meaningful patterns were revealed.

The window-size was assumed zero, which means that the three hours of the morning
(7-9 a.m.) period and evening period (5-7 p.m.) were treated as a single time window.
The reason for this choice was that for the purposes of this study we were not interested
in what is happeningin each hour specifically but for the morning and evening periods
as awhole.

The min-gap and max-gap values were assumed to have a value of 1. The reason for this
was again that we wanted to find frequent patterns in an hourly basis. By setting the
min-gap and max-gap to one, we assure that all frequent patterns will be contained in
the hourly basis that we have been aiming.

177 Behavioral patterns relating to thermal comfort and energy consumption



§ 53.2

§ 54

178

Building simulations

In order to demonstrate how the sequential pattern recognition methodology can
improve the energy consumption calculations for the built environment, we had

to perform simulations with a whole building simulation software (Energy+). The
dwellings that participated in the measurement campaign had various typologies and
it was not possible to perform exact energy simulations for each one of those dwellings.
However, we had abundance of data concerning the daily temperature profiles for

each type of room of these dwellings, their heating system, the insulation level of their
windows, and their walls (assumed from the energy label of each dwelling and the year
of construction), the number of people and their occupancy profiles (derived from the
motion sensors). Therefore, we used the Delft University of Technology Concept House
[23]as the reference building in order to perform the simulations for the dwellings that
participated in the measurement campaign. The typology of the Concept house and
the dwellings was not the same, however, all other aspects of the simulation (heating
system, U values for walls and windows, occupancy schedules, hourly temperature
profiles for each type of room, number of people) were based on realistic data gathered
during the campaign. Some of the simulation parameters were adjusted to the energy
label and age of the dwellings (such as infiltration and ventilation) and others such

as electricity consumption for lighting and appliances were assumed the same for all
dwellings.

The heating control for each dwelling was simulated with three different ways. First,
the heating set point temperature was corresponding to the indoor air temperature,
followed by the indoor operative temperature and finally the PMV comfort level.

The indoor temperatures for each room of each dwelling were provided by the
measurement campaign’s data while the PMV was set to be between the comfort levels
of -0.5and +0.5.

Sections 4.1 until 4.5 present the temperatures, recorded thermal sensation, actions
towards thermal comfort, clothing, and activity levels for the data points that were
used in the GSP analysis. Section 4.6 shows the results of the GSP analysis and 4.7 the
results of the Energy+ simulations.
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§ 54.1 Temperature

Figures 5.1 and 5.2 display the morning and evening temperatures of all dwellings for

the total data points that were used for the simulations with GSP.
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FIGURE 5.1 Morning temperatures of all dwellings for the total data points used in GSP analysis
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FIGURE 5.2 Evening temperatures of all dwellings for the total data points used in GSP analysis
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For A/B labelled dwellings, Figure 5.1, all temperatures during the morning hours (7-9
a.m.) were above 20 °C and four out five dwellings had temperatures above 22 °C. For F
dwellings, the majority of morning temperatures are above 20 °C, however, significant
increase is observed in temperatures below 18 °C or between 18 °C and 20 °C. The
thermal envelope of A/B dwellings could have played a significant role in this respect
apart from potential occupant behavior.

For the A/B dwellings during evening hours, Figure 5.2, the temperatures of 95%

of the data points were above 22 °C and the rest between 20 °C and 22°C (dwelling
WO010). In terms of temperature there seem to be no great differences between
morning and evening hours for the A/B label dwellings. The majority of temperatures
for the F labeled dwellings, approximately 75% of the data points, were above 20 °C.
Compared to the morning hours there is a significant increase (more than double) in
the percentage of temperatures above 22 °C and a decrease in temperatures below 20
°C, Figure 5.3. This shows clearly that occupants prefer their dwellings to be warmerin
the evening than in the morning hours. In A/B labeled dwellings there is an increase
in temperatures above 22 °C and a decrease in temperatures between 20 °C and 22
°C. Therefore, A/B and F label dwellings are warmer in the evening hours than in the
morning hours.

Comparison between morning and evening
temperatures--all dwellings

100
X 30 ¥ A/B--morning
g 60 = A/B--evening
g. 40 F--morning
8 18 B F--evening
1}
= 20 2

0
T<18 18<T<20 20<T<22 T>22
Temperature range

FIGURE 5.3 Comparison between morning and evening temperatures of all dwellings for the total data points
used in GSP analysis
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§ 5.4.2 Reported thermal sensation

Figures 5.4 and 5.5 display the total amount of reported thermal sensation scores for

the data points during used for the GSP simulation.
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FIGURE 5.4 Morning thermal sensation scores of all dwellings for the total data points used in GSP analysis
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FIGURE 5.5 Evening thermal sensation scores of all dwellings for the total data points used in GSP analysis
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The reported thermal sensation for the morning hours are not enough to draw
conclusions, however, it is still surprising that despite the high indoor temperatures,
occupants of A/B dwellings recorded thermal sensations such as ‘a bit cool’. For the
F labeled dwellings there were more thermal sensations reported and the majority of
those were ‘neutral’ despite the lower indoor temperatures.

On the one hand, this could be a result of the occupants’ difficulty in discriminating
between the various thermal sensations [14]. The seven-point thermal sensation scale,
developed in climate chambers, provides no guarantee that a specific thermal comfort
level reported by a Dutch occupant corresponds to the PMV scale. Furthermore,
studies have found that people’s thermal sensations vary between winter and

summer, from individual to individual, and are dependent on race, climate, habits

and customs [29,30,31]. On the other hand, this could as well be a sign of the effect

of psychological expectations. Adaptation is defined as the gradual lessening of the
occupants’ response to repeated environmental stimulation and can be behavioral,
physiological and psychological [28]. The majority of the thermal sensations recorded
in this measurement campaign were between -1 (a bit cool) and +1 (a bit warm).
Analysis of these data in a prior study showed that the PMV model predicted well the
thermal comfort of the occupants for thermal sensations between -1 and +1 while

the prediction was getting less accurate approaching -3 or +3 [14]. These dwellings

are the personal space of the occupants, a place they always try to keep a comfortable
as possible, and comfort is part of what people associate with the notion of home.
Occupants of the F dwellings may be aware of the lesser thermal capabilities of their
homes and used to the lower indoor temperatures of their dwellings and have adapted
to these conditions. If this is true, then despite the fact that these people might have
lowered their thermal comfort standards, it is beneficial for the environment and
energy efficiency of the housing sector because occupants could have just been using
more energy in order to increase their comfort instead of adapting. All occupants in this
campaign said they have no problem paying their energy bills, which they found easy to
pay, despite the fact that theirincome ranged between half and one and a half time the
Dutch median [32].

The comfort votes of the A/B dwellings during evening hours have shifted to more
‘neutral” and 'a bit warm’, which is logical based on the indoor temperatures. For F
labeled dwellings the effect of increased temperatures during evening hours does not
seem to be translated into more comfortable thermal sensation votes although still the
majority of thermal sensations are between ‘a bit cool’ and 'a bit warm'. However, the
amount of data is not sufficient to draw concrete conclusions.
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Actions towards thermal comfort

Figures 5.6 and 5.7 display the actions towards thermal comfort for the morning and
evening hours used for the GSP simulation. For the morning hours, the occupants of
the F labelled dwellings recorded having a ‘'hot drink’, having a ‘warm shower’ and
‘thermostat up’ as the most common actions which seem intuitively sensible given the
lower temperatures of their dwellings. These actions seem to be genuinely performed
in order to improve thermal comfort. The occupants of the A/B labelled dwellings,
however, have used various actions in a more erratic way. For example, WO04 had
morning temperatures above 22 °C for the whole period of analysis and the tenants
still recorded having a warm shower and a warm drink every morning while feeling
‘neutral’. Obviously, these actions in this particular case are not related to thermal
comfort. Dwelling W006, with similar indoor temperatures as W004, recorded having a
'hot drink” and even turning the ‘thermostat up’ while thermal sensations were mainly
‘neutral’. This occupant behavior could be led by behavioral reasons and could have

an impactin energy consumption of a dwelling with no significant benefit to indoor
comfort.

Actions--all dwellings--morning
100% cold shower

90% warm shower
°\° jgz;z thermostat down
‘E 60% thermostat up
'g 50% = put off clothes
% 40% =put on clothes
= 30% H cold drink

20% H hot drink

13://2 H closing window

H opening window
A/B dwellings ‘ F dwellings ‘

FIGURE 5.6 Morning actions toward thermal comfort scores of all dwellings for the total data points used in
GSP analysis
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FIGURE 5.7 Evening actions toward thermal comfort scores of all dwellings for the total data points used in GSP
analysis

During the evening hours, all F label dwellings that recorded ‘thermostat up’ had
temperatures above 20 °C. However, only dwellings W020 and W024 had recorded
majority of thermal sensations ‘a bit cool’ or ‘cool’, which could explain the action

of thermostat up. All other F labelled dwellings had temperatures above 20 °C and
the majority of thermal sensations were 'neutral’ followed by 'a bit cool’, to a lesser
extent, while dwelling WO12 even had thermal sensations of ‘a bit warm’. Regardless
of the recorded thermal sensations, the level of indoor temperatures is very high to
substantiate an action such as ‘thermostat up’, which affects energy consumption.
Compared to the morning actions, for F labelled dwellings, ‘cold drink’ has been
substituted with ‘warm shower’. This action in A/B labelled dwellings has substituted
‘closing the window".

Clothing

Figures 5.8 and 5.9 display the clothing levels for the morning and evening hours used
for the GSP simulation.
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FIGURE 5.8 Morning clothing scores of all dwellings for the total data points used in GSP analysis
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FIGURE 5.9 Evening clothing scores of all dwellings for the total data points used in GSP analysis

During the morning hours, for the F labeled dwellings, we see the majority of clothing
being rather warm ‘long sleeved sweat shirt". Take dwellings W020 and W028, for
example. The majority of hours between 7-9 a.m. have temperatures between 20
°C < T< 22 °C and the occupants mainly feel 'neutral’ and a few times ‘a bit cool".
The seemingly consolidated 'long sleeved sweat shirt’ clothing pattern for F labeled

dwellings could be part of the psychological adjustment mentioned earlier. The worst
(compared to A/B dwellings) thermal conditions in these dwellings are compensated
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by a higher clothing level which is a good practice concerning energy conservation. As
we can see in Figure 5.10, from the 41 data points on actions towards thermal comfort
recorded for W020 and W028, only 5 times there was an increase in thermostat

levels during the morning hours. Occupants have adjusted themselves in order to feel
neutral by means of clothing and other actions such as "hot drink’ or ‘warm shower".
Temperature conditions in A/B dwellings are always above 22 °C, which allows for a
variety of clothing ensembles.

For the evening hours, clothing seems similar for all dwellings with the 'long sleeved
sweat shirt’ being the most frequently used garment. If we compare the morning and
evening clothing patterns there seems to be no significant difference. In the evening, there
is a complete absence of t-shirt, but still sleeveless t-shirt (which provides even lower
thermal protection) is presentin A/B and F labelled dwellings. More data are needed in

an extended measurement campaign in order to establish detailed clothing patterns of
occupants based on the time of the day, their age, sex and health conditions.

Metabolic activity

Figures 5.10 and 5.11 display the metabolic activity levels for the morning and evening
hours used for the GSP simulation.

The metabolic activity data during the morning hours show that for the A/B dwellings
the most common activity level is 'sitting relaxed’ followed by ‘lying/sleeping’. For the
F labeled dwellings, the most common activity was ‘walking’ followed by ‘light desk
work'. Despite the small number of data, which does not allow definite conclusions, the
increased metabolic activity (just as with the increased clothing levels), which results in
more comfortable thermal sensations, could be another evidence of adjustment for the
occupants of the F dwellings.

For the evening hours, the most common metabolic activity of the occupants of

A/B labelled dwellings was ‘sitting relaxed’, while for the F labelled dwellings it was
‘walking'. Just like for the morning hours this could be a sign of adjustment to the
thermal sensation for the F labelled dwellings’ occupants. Two of the three dwellings
that recorded ‘cool’ for thermal sensation had also recorded ‘walking’ as a metabolic
activity despite the fact that indoor temperatures were almost identical for all
dwellings. However, the metabolic activities could be related more to the established
routines of occupants in the dwellings rather than thermal sensation and further
research with increased amount of recorded data is needed.
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FIGURE 5.10 Morning metabolic activity scores of all dwellings for the total data points used in GSP analysis

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

data points %

Metabolic activity--all dwellings--evening

o
N
(=
=

“running

Hjogging

= walking

"light desk work

Bsitting relaxed

®lying/sleeping

o~ o~ on < — | N < wn el feel —

S zls|s slglg g/ 8lglg

=|=zlz=2 zl=z=zlz2/232
A/B dwellings F dwellings

FIGURE 5.11 Evening metabolic activity scores of all dwellings for the total data points used in GSP analysis
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Generalized sequential pattern recognition (GSP)

The analysis of the data so far gave us an insight in the cumulative data scores on
thermal sensation, indoor temperatures, actions towards thermal comfort, clothing
and metabolic activity. However, this analysis is not dynamic, it does not take into
account, for example, the exact hour at which an action took place, and what other
action, temperature, clothing, and metabolic activity or a combination of the above was
recorded at the same hour. Such time combinations between the above-mentioned
parameters could also shed light in the causality of certain actions, clothing preferences
or metabolic activity patterns. For example if actually metabolic activity is used as an
adjustment factor for lower thermal sensations or if warmer clothing is actually used as
an adjustment for low temperatures, or if having a warm shower and a hot drink is not
related to any of those things and are happening out of pure habit. Moreover, the GSP
analysis could lead to patterns supported by all dwellings, which means that with the
accumulation of enough data, patterns supported by greater population groups would
be possible to be defined.

The data set described in Table 5.2 was fed to the GSP algorithm with the purpose of
defining significant sequential patterns. The software that was used for the analysis
was rapidminer [22]. The GSP analysis took place for the morning hours between 7-9
a.m. and the evening hours between 5-7 p.m. for all dwellings and for A/B and F label
dwellings separately. There is one input string per dwelling per day per timestamp, but
the sequences are aggregated on the three morning hours and the three evening hours.

Most important sequences

The results of the GSP algorithm concerning the most important sequences discovered
for the morning and evening hours are presented in Tables 5.3, 5.4, and 5.5. The
events' combinations with the highest support and the smaller amount of events

are presented first in the tables. There were many combinations of events that were
supported by all dwelling days (Table 5.3), A/B dwelling days (Table 5.4), and F labeled
dwelling days (Table 5.5), especially in lower support values such as thirty or twenty
per cent. In this study we choose to present results that were supported by minimum
of 40% of the dwelling days. In this work, 100% support means that the sequence is
found in all dwelling days (meaning in turn that for all days of all dwellings this specific
sequence was found between 7 and 9 o'clock.
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The sequences (combination of events) are presented as a, b, c etc. meaning that, a was
the first event, followed in time by b (although b could also takes place at the same hour
as a), followed in time by c (although c could also takes place at the same hour as b).

When all seventeen dwellings were participating in the GSP simulation, for the morning
hours, the highest support was found to be 0.59 and the events combination was
20<T<22, T>22.This means that 59% of the dwelling days between 7-9 a.m. have
their temperature increased from a value between 20 °C and 22 °C to a temperature
above 22 °C. This combination of events is also the most supported (82%) among

the F labeled dwellings. For the evening hours, and for all dwellings participating in

the simulation, the most supported sequence (65%) was T>22, Neutral. The same
sequence is supported the most by A/B dwellings (67%) and F dwellings (65%). This
shows that regardless of the energy label of the dwelling, during the early evening
hours, residential dwellers in our sample seem to agree that neutrality is accompanied
by temperatures above 22 °C. F label dwellings, however, should consume considerably
more energy to reach the same level of indoor comfort.
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SUPPORT EVENTS COMBINATION--MORNING SUPPORT EVENTS COMBINATION--EVENING

0.59 20<T<22,T>22

T>22, Neutral

0.53 20<T<22, A bit cool

20<T<22,T>22

0.53 T>22, hotdrink

T>22, hotdrink

0.53 T>22, warm shower

T>22, rather warm clothing

0.47 18<T<20, 20<T<22

20<T<22, Neutral

0.47 20<T<22, thermostat up

T>22, cold drink

0.47 T>22, Abit cool

T>22, thermostat up

0.47 T>22, thermostat up

T>22, sitting relaxed

T>22, walking

0.47 20<T<22,T>22, thermostat up

Neutral, rather warm clothing

hot drink, cold drink

0.41 18<T<20,T>22

T>22, Neutral, rather warm clothing

0.41 20<T<22, Neutral

T>22, hot drink, cold drink

0.41 20<T<22, hotdrink

0.41 20<T<22, warm shower

0.41 T>22, Neutral

T>22, A bit cool

0.41 T>22, rather warm clothing

A bit cool, Neutral

0.41 A bit cool, Neutral

Neutral cold drink

0.41 A bit cool, warm shower

Neutral, sitting relaxed

0.41 hot drink, thermostat up

rather warm clothing, sitting relaxed

0.41 18<T<20, 20<T<22,T>22

20<T<22,T>22, Neutral

0.41 20<T<22,T>22, Abit cool

T>22, A bit cool, Neutral

0.41 20<T<22,T>22, hotdrink

T>22, Neutral, cold drink

0.41 20<T<22, Abit cool, Neutral

T>22, Neutral, sitting relaxed

o
i

20<T<22, hot drink, thermostat up

T>22, rather warm clothing, sitting relaxed

I

T>22, hot drink, thermostat up

]
]
[ 1

TABLE 5.4 GSP results from morning and evening simulation of A/B labeled dwellings

SUPPORT

T>22, light desk work

T>22, Neutral

EVENTS COMBINATION--MORNING SUPPORT EVENTS COMBINATION--EVENING

0.5 A bit cool, A bit warm

T>22, hotdrink

0.5 A bit warm, normal clothing

A bit warm, sitting relaxed

T>22, cold drink

normal clothing, sitting relaxed

Neutral, cold drink

hot drink, cold drink

A bit warm, normal clothing, sitting relaxed

_ hot drink, normal clothing
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0.82 20<T<22,T>22

SUPPORT EVENTS COMBINATION--EVENING

20<T<22,T>22

T>22, Neutral

N

3 18<T<20, 20<T<22

0.55 T>22, rather warm clothing

0.55 T>22, thermostat up

18<T<20,T>22

20<T<22, Abit cool

0.45 20<T<22, Neutral

o

64 20<T<22, thermostat up

0.45 T>22, Abit cool

T>22, hot drink

0.45 T>22, hotdrink

o
[

4 T>22, thermostat up

0.45 T>22, sitting relaxed

T>22, warm shower

0.45 T>22, walking

0.45 A bit cool, Neutral

18<T<20, 20<T<22,T>22

0.45 Neutral, rather warm clothing

20<T<22,T>22, thermostat up

0.45 rather warm clothing, sitting relaxed

0.45 20<T<22,T>22, Neutral

0.55 18<T<20, thermostat up

0.45 T>22, Abit cool, Neutral

0.55 20<T<22, Neutral

0.45 T>22, Neutral, rather warm clothing

0.55 20<T<22, hotdrink

0.45 T>22, rather warm clothing, sitting relaxed

0.55 20<T<22, warm shower

0.55 T>22, A bit cool

0.55 A bit cool, Neutral

0.55 hot drink, thermostat up

0.55 18<T<20, 20<T<22, thermostat up

0.55 18<T<20, T>22, thermostat up

0.55 20<T<22,T>22, Abit cool

0.55 20<T<22,T>22, hotdrink

0.55 20<T<22, T>22, warm shower

0.55 20<T<22, A bit cool, Neutral

0.55 20<T<22, hot drink, thermostat up

0.55 T>22, hot drink, thermostat up

0.55 18<T<20, 20<T<22, T>22, thermostat up

0.55 20<T<22,T>22, hot drink, thermostat up
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Clearly, there are much more variations (events combinations) in F labeled dwellings
thanin A/B ones. This could however, result from the significantly higher number of
data points related to the F label dwellings.

Occupancy Behavior patterns

Such pattern recognition of important sequential events in buildings aims at shedding
lightin occupancy behavior, related to thermal comfort, which in turn is connected
with energy consumption. Having this in mind, we categorized the above combinations
of events in two groups that are related to energy consumption, energy and non-energy
consuming events, for the morning and evening hours, Table 5.6. Furthermore, the
two main categories were further categorized into thermal sensation related and
surprising events, which are denoted by superscripts as shown in Table 5.6. By ‘energy
consuming’, we mean all the events that could relate directly to an increase in energy
consumption. ‘Non energy consuming events' are the events that are not related to
anincrease in energy consumption. For example the event (18<T<20, 20<T<22)
shows anincrease in temperature, which is expected to lead to an increase in energy
consumption. Another example are the thermal sensation related events (20<T<22,
Neutral) and (T>22, Neutral). It is logical to expect (despite the numerous parameters
that affect thermal comfort) that for temperatures above 20 °C people would have
many chances to feel neutral. ‘Surprising’ were the events that were counter intuitive,
having in mind that people would try to maximize their thermal comfort even at the
expense of increased energy consumption. For example the events (20<T<22, T>22),
(20<T<22, thermostat up) or (T>22, A bit cool) describe combinations that are counter
intuitive, especially when temperatures are above 22 °C and occupants say they are ‘a
bit cool’ or they turn their thermostat up. Such combinations have more chances to
lead to rebound effects and unnecessary energy consumption.

Thermal comfort and energy related occupancy behavior in Dutch residential dwellings



TABLE 5.6 Categorization of combination events in groups related to energy consumption for the morning and evening hours of all

SUPPORT EVENING

dwellings

SUPPORT

MORNING

Energy consu
events

20<T<22,T>22°F

Non energy consu
events

20<T<22, Abitcool ™

Energy consum Non energy consuming
events events

T>22, Neutral ™

20<T<22,T>22

T>22, hotdrink

T>22, warm shower ™

T>22, hotdrink °¢

oo |o
N|(w|w

18<T<20, 20<T<22

T>22, ratherwarm

20<T<22, thermostat
Up SE

20<T<22, Neutral ™

0.47

T>22, Abit cool ™5

T>22, cold drink

0.47

T>22, thermostat up

0.47

20<T<22,T>22,
thermostat up ¢

T>22, sitting relaxed

0.41

18<T<20,T>22

T>22, walking

0.41

20<T<22, Neutral ™

Neutral, ratherwarm™

0.41

20<T<22, hot drink °¢

hot drink, cold drink

20<T<22, warm
shower st

T>22, Neutral, rather
warm™

0.41

T>22, Neutral ™

T>22, hot drink, cold
drink ¢

0.41

T>22, rather warm

T>22, a bit cool ™

0.41

A bit cool, warm
shower™

A bit cool, neutral ™

o (=} o
= = S

fes
o

hot drink, thermostat

Neutral, sitting relaxed
s

0.41

18<T<20, 20<T<22,
T>22

rather warm, sitting
relaxed

20<T<22,T>22,
Neutral

0.41

20<T<22,T>22, Abit
cool TS.5E

0.41

20<T<22,T>22, hot
drink ¢

T>22, Abit cool,
Neutral ™ 5¢

20<T<22, Abit cool,
Neutral ™

T>22, Neutral, cold
drink ™

o o
i i

20<T<22, hotdrink,
thermostat up ¢

T>22, Neutral, sitting
relaxed ™

0.41

T>22, hot drink,
thermostat up ¢

T>22, rather warm,
sitting relaxed

TS: thermal sensation related event / SE: surprising event
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The most populous category was the ‘energy consuming events’ with 15 event
combinations, followed by 'Surprising events’ with 13 event combinations. Even more
discouraging, in terms of energy efficiency, is the fact that the energy consuming and
surprising events share 10 common events. These unexpected events are mostly
related to jumping from already high indoor temperatures to even higher ones.

These events are tightly connected with energy consumption and their effectiveness
towards thermal comfort is doubtful, given the already very high indoor temperatures.
Furthermore, there is a complete absence of alternative ways to improve one's thermal
comfort such as clothing, orincreased metabolic activity. The GSP algorithm found
only one sequence (supported by 41% of the dwelling days nonetheless) for which
people feeling ‘a bit cool’ took a ‘warm shower’. However, this is more likely related

to a habitual event, since many people have a warm shower in the morning in order

to start their day. The combinations of events towards the improvement of thermal
comfort showed a prevalence of conventional means such as increase of indoor
temperature and turning the thermostat up while actions such as hot drink or warm
shower were deemed more as habits rather than actions towards comfort. We have to
mention again that the data we had were not exhaustive and that there is a great room
forimprovement, especially for the gathering of the subjective data such as actions,
clothing and metabolic activity.

The GSP simulation for the evening hours showed rather different results compared to
the morning hours. The energy consuming combinations were significantly reduced
mainly because of the absence of temperatures below 20 °C and having a warm shower.
Usually dwellings are not heated during the night and temperatures could fall below
20°Cand even below 18 °C, therefore, it would not be surprising that occupants are
trying to increase indoor temperature in the morning hours. Having a warm shower
on the other hand seems to be a daily routine more than an action towards comfort.
This finding is supported by the results of the chi?tests that are shown in Table 5.4

of chapter 4, according to which for both A/B and F label dwellings, having a “warm
shower” was found entirely unrelated to the reported thermal sensation. The ‘energy
consuming’ combinations were reduced to 3 while the ‘surprising events’ were only 5
and only one of them was shared with the 'energy consuming’ category.

§ 5.4.7 Energy+ simulation results

First, the concept house was simulated with the commonly available occupancy profiles
and set point temperatures that are predefined in almost every building simulation
software such as Energy+, Design Builder, and ESPr. Therefore, the temperature
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heating set point was 20 °C for all rooms, and the heating system’s availability was
matching the occupancy schedule; the heating system was on from 7-9 a.m. when
people were waking up and getting ready to go to work. Then it was off until 17:00
when people were absent from the dwelling and on again from 17:00 until 24:00 when
people were going to sleep.

Subsequently, the concept house was simulated with the actual hourly temperature
profiles and occupancy schedules that we obtained from the measurement campaign.
loannou and Itard (2015) showed with a Monte Carlo sensitivity analysis, with the
same Concept House as the reference building, that using the thermostat and altering
the indoor temperature, can explain more than 90% of the variance in the total heating
consumption of the dwelling. Therefore, actual hourly heating profiles could improve
simulation accuracy compared to business as usual simulations that are taking place
with schedules and heating points based on assumptions that may not reflect actual
ones

This was done by using the hourly heating profiles of three different types of dwellings
that participated in the campaign in order to model a reference dwelling. The dwellings
used were A and B label, with gas boiler and radiators as the heating system, A label
and heat pump coupled with hydronic underfloor heating, and F label with gas boiler
and radiators. As already mentioned in section 3.2 the simulations were repeated three
times, one time with the control of the heating system corresponding to the indoor air
temperature (T ), one time corresponding to the indoor operative temperature (T__),
and one corresponding to the PMV thermal comfort index. The reason for performing
the simulations with the above three different set points was to compare the energy
consumption, the indoor temperatures, and the comfort index between these
configurations. This approach allows the comparison of the performances of these

three control strategies of the heating system.

Because the control set points were not known from the measurement campaign, and
only the indoor air temperature was known, the following model calibration procedure
was applied:

The actual hourly air temperature profiles from the measurement campaign were fed
to the model and the control set points (T, and T ) were iteratively adjusted up to
the moment where the hourly air temperature profiles, resulting from the simulations,
were matching the actual ones (the ones obtained during the measurement
campaign). When the PMV was used as the control, it was set between -0.5 and +0.5,
which corresponds to the neutral comfort level of the PMV scale and the resulting
hourly air temperature profile from the simulation is presented in the results and

compared to the profiles obtained for T, and T _ as the control set points. The
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simulations took place for the period between 15t March and 7" March which is the
period that the tenants were handed the comfort dial.

For the reference simulation (standard profile) the T and T _ were assumed to be

20°C, during the hours that the dwelling was occupied, which is a common approach
among engineers when simulating residential dwellings.

A/B label dwellings with boiler and radiators

Figure 5.12 shows the annual heating consumption of the concept house, simulated as
an A label dwelling with gas boiler and radiator, with first business as usual schedules
and heating set points, and then simulated with the actual hourly heating profiles and
occupancy schedules of dwellings WO10 and W032. These two dwellings were chosen
because they were both in the A/B label category and their actual hourly temperature
profiles were above 22 °C and around 20 °C respectively. Figure 5.13 shows the indoor
temperature T_ and the PMV resulting from the simulations for the living room of those
dwellings.

Annual heating consumption--Concept house
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FIGURE 5.12 Annual heating consumption simulated for three different heating set points for the Concept
House and dwellings WO10 and W032

When heating set point corresponds to the T_ (which is the way the majority of
thermostats are controlled) or T, all profiles lead to higher energy consumption. This
clearly relates to the indoor temperatures, Figure 5.13. WO10 has the highest indoor
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temperature profile, the highest energy consumption, and the most comfortable
PMV index, which suggests that the tenants of WO10 strive for higher comfortin the
expense of energy consumption. However, if the indoor temperature is controlled by
the PMV we see that the simulated PMV of tenants is significantly lower (but still within
the comfort range) and the indoor air temperature is 1.5 °C to 2 °C lower. This could
lead to significant energy savings. This effect, in the presented dwellings, seems to be
more obvious when the indoor temperatures of the dwelling are higher. This can be
seen in the comparison between W010 and W032. WO10 that has the highest indoor
temperatures records the greatest drop in the PMV level (and indoor air temperature)
when control is switched from T_ and T__ to PMV. This effect is smaller (but still
significant) in W032.
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FIGURE 5.13 Indoor Tair and PMV simulated for the Concept house (well insulated and HR boiler) with three
different heating set points and occupancy profiles

A label dwellings with heat pump and underfloor hydronic heating

Figure 5.14 shows the annual heating consumption of the concept house, simulated
as A label dwelling with heat pump and hydronic underfloor heating system, with
business as usual schedules and heating set points, and with the actual hourly heating
profiles and occupancy schedules of dwellings WO03 and WOO04. Figure 5.15 shows the
indoor T_ and PMV for the living room of those dwellings.

The effect of the different heating set points is not visible in this case of dwellings

due to the continuous operation of this heating system and the big amount of time
needed for specific changes in the thermostat to be felt in the indoor environment of
the dwelling. The differences in the annual energy consumption between the dwellings
is because of the different hourly temperature profiles that we obtained during the
measurement campaign. In the standard profile the concept house was simulated with
20 °C heating set point for the whole day, while WO03 and W004 had an average of 26
°Cand 24 °Cin the living room respectively. The PMV for all dwellings was within the
comfort limits and only for concept house, which had the lowest heating set point, the
PMV drops slightly below the comfort limits during evening hours. This is due to the
undersized heating element that was used for the simulation of each thermal zone of
the dwellings (3000 Watts).
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FIGURE 5.14 Annual heating consumption simulated for three different heating set points for the Concept
House and dwellings WO03 and W004
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FIGURE 5.15 Indoor Tair and PMV simulated for the Concept house (well insulated, heat pump, and underfloor
heating) with three different heating set points and occupancy profiles

§ 5.4.7.3 Flabel dwellings with boiler and radiators
Figure 5.16 shows the annual heating consumption of the concept house, simulated as
an F label dwelling, with gas boiler and radiator, with business as usual schedules and
heating set points, and simulated with the actual hourly heating profiles and occupancy
schedules of dwellings W013, W022, W026, and WO31. Figure 5.17 shows the indoor
T_.and PMV for the living room of those dwellings.
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FIGURE 5.16 Annual heating consumption simulated for three different heating set points for the Concept
House and dwellings W013, W022, W026, and WO031
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Using the PMV set point as the corresponding value for the operation of the heating
system results in the lower energy consumption in W022 and W026. The reason for
this is, similar to the case of A label dwellings (Figures 5.12 and 5.13), the unusual
high temperature profiles preferred by the tenants of these dwellings, Figure 5.17.

As we can see in the graph for dwelling WO22 the indoor air temperatures are above
24 °C for the whole day, while for maintaining an hourly comfort level of -0.5, only 22
°C are needed, Figure 5.17. In contrast, WO13 has lower indoor temperatures for the
whole day and the PMV calculations show that tenants are not supposed to be felling
neutral. In this case, switching to PMV as the set point will result to increased energy
consumption, which, however, will bring the tenants within the comfort zone of the
PMV index. Nonetheless, during the evening hours the tenants of WO13 reported
neutral thermal sensations just like their WO022 counterparts. This suggests that

they might have adjusted their thermal comfort levels to a lower level compared to

the tenants of WO22 or that the later are more comfortable than they need, utilizing

a rebound effect on comfort. Therefore, using the PMV as the set point temperature
could result to either an increase or decrease in the energy consumption, depending in
the indoor temperature that the tenants prefer. In any case, the comfort of the tenants
in this case will be brought within the comfort zone of the Fanger model. But as we saw
for the example of WO13, this could not be the desired comfort level of the tenants.
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FIGURE 5.17 Indoor Tairand PMV simulated for three different heating set points for the Concept House and
dwellings WO03 and W004

Majcen et al. [27] demonstrated the discrepancy between actual and calculated energy
consumption in energy labelled residential dwellings in the Netherlands. Furthermore,
Santin [33] and Page et al. [2] showed the importance that occupancy behavior might
have in the energy consumption of a dwelling. From a building simulation perspective,
loannou and Itard [23] showed that behavioral parameters such as the use of the
thermostat affects greatly the total energy consumption and the PMV of the tenants.
Therefore, if the tenants of a residential dwelling command their indoor environment
based on their comfort levels, the components of building simulation software related
to the PMV must be improved.
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In order to calculate the PMV index, values from six parameters are needed; clothing,
metabolic activity, mean radiant temperature, air speed, air temperature, and relative
humidity. In a smart built environment, it would be easy to gather the quantitative data
related to the PMV with the use of an extensive network of sensors. However, clothing
and metabolic activity are more difficult to capture, but a mobile or tablet application
incorporating the features of the comfort dial and log book, could give a solution to

this problem. Gathering enough subjective data and simulating them with the GSP
algorithm could lead to hourly clothing and metabolic activity profiles that would
improve greatly the simulation components related to the PMV, thus, improving the
accuracy of the simulated energy consumption of residential dwellings.

Using big data, from a sensor rich environment in residential dwellings, into a data
driven model such as the GSP algorithm could lead to the prediction of occupancy
behavior patterns. Even grouping all dwellings together, regardless of the energy

label, provided high enough support (% of dwelling days that are following a pattern

in a specific hour) for occupancy patterns that were revealed by the simulation. For
example, in 59% of dwelling days in the morning hours the temperatures between 7-9
a.m. were increasing from 20 °C< T< 22 °Cto T> 22°C. Furthermore, in 56% of them
the temperature 20 °C< T< 22 °C was found to be a bit cool and even for temperatures
above 22 °C occupants were reporting having a warm shower leading to the suspicion
that a warm shower is a routine action not related to thermal comfort. For the evening
hours between 5-7 p.m. the simulation for all dwellings showed that in 65% of the
dwelling days temperatures higher than 22 °C were found to be neutral and in half of
them the temperature was increased from 20 °C < T< 22°Cto T>22 °C. For only the A/B
label dwellings, GSP showed that in 80% of the dwelling days temperatures above 22
°C were experienced as being neutral. Furthermore, in the F labeled dwellings in 64% of
the dwelling days T > 22 °C was found to be neutral and the temperature was increased
from 20°C < T< 22°Cto T>22 °C. This shows that tenants of lower labeled dwellings do
not compromise their comfort by heating less than the tenants of A/B label dwellings.
This will lead of course to higher energy consumption. This is in agreement with some
of the findings of the initial questionnaire given to the tenants. To the question “do you
find it difficult to pay you monthly energy bills?” all tenants replied “no” despite the fact
that the household incomes ranged between 700 to 4.5 thousand euros.
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Furthermore, the sequential pattern analysis revealed patterns of occupancy behavior
that were categorized as energy consuming, non-energy consuming, thermal sensation
related, and surprising. The common notion in building simulations, reflected in the
premade models of occupancy available in simulation software, is that during the night
the heating is switched off, temperature drops and therefore in the morning hours
when people wake up they try to bring the temperature to the desired comfort level.
However, the hourly air temperature profiles of the specific dwellings mentioned in

this study suggest otherwise since the temperature profiles during the night were very
stable and most of the time above 20 °C. If the "energy consuming” patterns are due to
habitual reasons then a GSP algorithm could reveal these patterns and feed them back
to the tenants leading to potential energy savings, as long as of course these patterns
do not compromise their comfort levels.

Finally, the GSP pattern recognition could be proven beneficial in the improvement

of the building simulation process. Subjective parameters that are very difficult to
capture and transform into hourly profiles, to be used in simulations, can be fed to the
GSP algorithm, via information technology applications for mobile phones or tablets,
and can be processed into hourly profiles. These customized profiles can afterwards
be used to predict more accurately the energy consumption of a specific dwelling. If
common patterns are found between large groups of dwellings then profiles that are
more generic can be created for larger groups of dwellings based on their energy label,
heating system or other categories.

Propositions for further research include the development of a more detailed
application for smartphones or tablets for the tenants. The more data are fed into the
algorithm, the more its precision will improve and therefore a more exhaustive, non-
obligatory, selection of choices should be available. Furthermore, a challenging task
would be how the findings of the GSP algorithm could be used. Some people might
be interested in reducing their energy consumption while others might interested in
maximizing their comfort, or some might be interesting in finding a balance between
the two. The findings of the GSP could be used to attempt to alter tenants’ behavior
by introducing a teaser function in order to save energy, or they could just be used for
tenants to help them find the appropriate levels of indoor parameters to maximize
their comfort. Moreover, the customized profiles obtained by the GSP algorithm should
be used in an attempt to close the gap between the simulated and actual heating
consumption in residential dwellings.
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